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Abstract

Primary ciliary dyskinesia (PCD) is a genetic disease of motile cilia, which belongs to a group of 

disorders resulting from dysfunction of cilia, collectively known as ciliopathies. Insights into the 

genetics and phenotypes of PCD have grown over the last decade, in part propagated by the 

discovery of a number of novel cilia-related genes. These genes encode proteins that segregate into 

structural axonemal, regulatory, as well as cytoplasmic assembly proteins. Our understanding of 

primary (sensory) cilia has also expanded, and an ever-growing list of diverse conditions has been 

linked to defective function and signaling of the sensory cilium. Recent multicenter clinical and 

genetic studies have uncovered the heterogeneity of motile and sensory ciliopathies, and in some 

cases, the overlap between these conditions. In this review, we will describe the genetics and 

pathophysiology of ciliopathies in children, focusing on PCD, review emerging genotype-

phenotype relationships, and diagnostic tools available for the clinician.
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INTRODUCTION

Ciliopathies are a growing collection of disorders related to dysfunction of cilia, which are 

essential organelles that extend from the surface of most cells. Cilia are often segregated into 

primary (sensory) and motile (motor) cilia. The ciliary axoneme is evolutionarily conserved 

along the phylogenetic tree, and the structure of motile cilia is nearly identical to the flagella 

used for cell motility [1]. Thus Chlamydomonas reinhardtii, a biflagellated single cell 

organism, has been widely used to model ciliopathies, providing insights into the structure, 
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function, and genetics of the human cilium [2,3]. Indeed, most genes implicated in motor 

cilia disease in humans have an algal counterpart (Table 1).

Motor cilia line the surface of the upper and lower respiratory tract, and serve as the first line 

of airway defense against inhaled particulates and bacteria. A mature ciliated airway 

epithelial cell has approximately 200 uniform motor cilia that are oriented in the same 

direction. Their rhythmic beat is synchronous at a fairly constant frequency (8 to 12 Hz at 

room temperature), which results in a continuous wave critical to fluid movement along the 

conducting airways. Calcium signaling through gap junctions, and mechanical 

hydrodynamic interaction of neighboring cilia, synchronizes cilia motion along the 

respiratory epithelium [4].

Any disruption in the coordinated movement of motile cilia can lead to impaired 

mucociliary clearance and potentially disease. Cilia beat frequency can be affected by 

changes in the external environment, such as changes in redox conditions, mucus viscosity, 

bacterial toxins, and airborne pollutants (including cigarette smoke) [5–7]. Motor cilia 

express bitter taste receptors, identical to those in the tongue and nose [8] that allow the 

motile cilia to adjust their movement in response to changes in their immediate environment. 

These attributes suggest that motile cilia also possess sensory functions.

Motor cilia are complex structures composed of hundreds of proteins organized around a 

cylindrical scaffold of α- and β- tubulin, arranged as helical protofilaments in microtubular 

doublets (A and B tubules), that surround a central pair of microtubules and produce the 

characteristic “9 + 2” configuration seen on transmission electron microscopy (Figure 1). 

The central fibrillar structure, or axoneme, is covered by the cell membrane. The axoneme is 

anchored to the cytoplasm by a basal body (modified centriole), which is a specialized 

structure that is derived from centrosomes used by the cell during replication [9]. The cilium 

is separated from the cytoplasm by a functional diffusion barrier or gate [10], and recent 

evidence suggests that proteins localized to the cilia transition zone, a region between the 

basal body and ciliary axoneme, play a role in regulating the ciliary gate function [11,12]. 

Cilia have specialized transport mechanism that utilize intraflagellar transport (IFT), and 

continuously move essential proteins required for the formation and maintenance of cilia 

from the cytoplasm along the length of the axoneme (Figure 2).

Motor cilia have a set of structural proteins collectively known as dynein proteins, which are 

lacking in primary (sensory) cilia. They form outer and inner dynein arms evident on 

electron microscopy (EM), that serve as ATPase motors to provide the cilium with the force 

required to bend. Dynein arms extend from the A tubule and interact with the B tubule of the 

neighboring outer pair. The force generated by the outer dynein arm proteins translates to a 

sliding motion of two neighboring tubules, while the inner dynein arms are central for 

controlling the rhythmic motion of cilia as part of a complex often referred to as the dynein 

regulatory complex (N-DRC) [13]. Other structures important for the function of the motor 

cilia include the nexin links and radial spokes. The nexin links are part of the DRC and 

extend between two adjacent microtubular doublets, thus limiting the sliding between 

microtubules. The radial spokes regulate dynein arm activity, sending signals from the 

central apparatus to the dynein arms. All these structures work in a coordinated fashion to 
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produce a rhythmic and coordinated ciliary beat, and help maintain the alignment of the 

doublet microtubules [13,14]. Mutations in genes encoding for any of these structures may 

cause disease.

Primary (sensory) cilia are distinct from motile cilia, typically appearing as solitary 

structures extending from the surface of most mammalian cells during interphase. Sensory 

organs, including the eye retina, olfactory bulb in the nose, and cochlea in the ears are 

dependent on sensory cilia. In these organs, primary cilia evolved to form specialized 

sensory functions such as the retinal photoreceptors, cochlear stereocilia, and renal primary 

cilia [15,16]. Unlike motile cilia, most primary cilia are non-motile and lack key elements 

critical for motility, such as the central microtubules pair (“9 + 0” configuration), and dynein 

arms. An exception to this configuration is the kinocilia of the inner ear that retains a “9+2” 

configuration. Primary cilia detect changes in the cells external environment through 

mechanical stimulation, chemosensation, and in specialized cases, changes in light, 

temperature, and gravity [17–19]. Of note, while primary (sensory) cilia are present on 

undifferentiated airway epithelial cells, they have not been found on differentiated airway 

epithelium surface [20]. Primary cilia are essential for normal development and tissue 

differentiation, as evident by the many surface receptors present on these structures, 

including sonic hedgehog (SHH), epidermal growth factor receptor (EGFR), and platelet-

derived growth factor receptor (PDGFR) [15,21,22]. Due to their ubiquitous nature, it is not 

surprising that genetic defects in primary cilia lead to syndromes and conditions that involve 

multiple organ systems that ostensibly appear unrelated [23,24] (Table 2).

Nodal cilia are a third class of cilia that transiently appear in the ventral node of the gastrula 

during embryonic development. Nodal cilia consist of motile organelles with a “9+0” 

arrangement, surrounded by immotile sensory cilia. The lack of a central pair results in a 

rotatory motion of the motile nodal cilia, which produces a leftward flow of fluid across the 

surface of the embryonic node. This fluid flow is sensed by the sensory cilia and is 

responsible for determining body laterality [25–27]. Without this flow, left-right orientation 

becomes random, and results in laterality defects such as situs inversus totalis, situs 
ambiguous, and heterotaxy syndromes [28–31].

MOTOR CILIOPATHIES

Primary ciliary dyskinesia (CILD1: MIM 244400) is the first human disorder linked to 

motor ciliary dysfunction [32]. Primary ciliary dyskinesia is typically inherited in an 

autosomal recessive pattern, though rare cases of autosomal dominant and X-linked 

inheritance have been reported [33,34]. The pathogenesis of primary ciliary dyskinesia was 

uncovered 40 years ago, when the ultrastructural changes in the ciliary axoneme in affected 

individuals were first reported [32]. The frequency of primary ciliary dyskinesia was 

calculated as 1 in 10,000 to 20,000 live births, based on the prevalence of situs inversus 
totalis and bronchiectasis in population surveys from Norway and Japan, but these values 

likely underestimate its incidence in the general population. The prevalence of primary 

ciliary dyskinesia in children with repeated respiratory infections was approximated to be 

5% [35].
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Motor ciliary dysfunction leads to chronic airway infection and inflammation that result in 

progressive airway obstruction, atelectasis, and bronchiectasis, that can occur in young 

children. The upper respiratory tract is frequently involved in primary ciliary dyskinesia, 

clinically manifested as persistent rhinosinusitis that begins in infancy [36]. Middle ear 

involvement is common in children with primary ciliary dyskinesia, and can lead to 

conductive hearing loss. Approximately half of all primary ciliary dyskinesia subjects have 

situs inversus totalis or heterotaxy, since left-right laterality is a cilia-dependent mechanism, 

which can be associated with congenital heart disease, asplenia, or polysplenia [37]. It has 

been estimated that nearly 40% of patients with congenital heart disease associated with 

hetrotaxy have motile cilia dysfunction [37]. Other manifestations of primary ciliary 

dyskinesia include male and possibly female subinfertility and prenatal hydrocephalus [38].

PRIMARY CILIOPATHIES

Most cells of the body have a single non-motile, primary cilium, which contains specialized 

proteins and receptors to capture information from the local environment. These cilia are 

linked to various signaling pathways, and are associated with the regulation of planar cell 

polarity. Mutations in genes encoding for proteins associated with primary cilia lead to 

diverse syndromes and conditions, including retinitis pigmentosa, polycystic kidney disease, 

nephronophthisis, Bardet-Biedl syndrome, and various skeletal dysplasias. Although motile 

and sensory cilia share similar structures, motile cilia dysfunction is relatively rare in 

primary ciliopathies. In this section, we will discuss primary ciliopathies that may have a 

respiratory component, emphasizing the potential involvement of primary cilia in diseases of 

the lung and chest wall.

There are several conditions that encompass both motile and sensory cilia dysfunction 

caused by mutations in proteins that overlap both these organelles. Retinitis pigmentosa is a 

hereditary blindness caused by mutations in the retinitis pigmentosa GTPase regulator gene 

(RPGR). These patients can have symptoms identical to PCD [34,39].

One the earliest diseases to be associated with the primary cilium is autosomal dominant 

polycystic kidney disease, which occurs secondary to mutations in PKD1 and PKD2 genes 

that encode polycystin 1 and polycystin 2 respectively, both localized to the renal primary 

cilium [40]. Polycystin 1 and polycystin 2 are mechanoreceptors that detect urine flow in the 

renal tubules, and respond through calcium influx [41]. Loss or dysfunction of polycystins 

interferes with sensing mechanical cues that normally regulate renal morphogenesis and 

cause abnormal cyst formation. These receptors are also expressed on motile cilia, though 

their exact function in the context of the motor cilium is not known. Indeed, patients with 

autosomal dominant polycystic kidney disease have increased risk of airway disease and 

have an increased prevalence of radiographic bronchiectasis [42–44].

Bardet-Biedl syndrome is a rare, autosomal recessive disorder that is caused by mutations in 

BBS proteins that localize to the basal body of cilia and are important for intraflagellar 

transport [45,46]. Bardet-Biedl syndrome has varied clinical features, such as retinitis 

pigmentosa, polycystic kidneys, truncal obesity, polydactyly, intellectual disabilities, 

diabetes mellitus, hypogonadism, cardiovascular anomalies, and anosmia. BBS proteins also 
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localize to the basal bodies of motile cilia in the airways. Animal models harboring 

mutations in BBS proteins have abnormal morphology in a fraction of motile cilia, including 

bulges filled with vesicles near the cilia tip [47]. The clinical importance of these findings is 

unclear, but encourages further research into the function of motile cilia in primary 

ciliopathies.

Other primary ciliopathies with evidence of motor cilia involvement include Usher 

syndrome, a rare genetic disease that affects the retinal photoreceptors and cochlear cilia, 

and is the leading genetic cause of combined hearing and sight loss. Proteins associated with 

Usher syndrome are thought to be unique to the retinal and cochlear cilia and mostly 

function in cell-cell adhesion, scaffold integrity and signaling [48]. While mutations that 

cause Usher syndrome are not associated with known motor cilia defects, there are 

individual case reports of patients with features similar to PCD [49,50].

Cranioectodermal dysplasia, Sensenbrenner syndrome, short-rib polydactyly, and Jeune 

asphyxiating thoracic dystrophy are another group of primary ciliopathies associated with 

skeletal dysplasia that affects the ribs cage leading to respiratory compromise [51]. These 

syndromes are collectively known as short-rib thoracic dysplasia, and are related to gene 

mutations that interfere with intraflagellar transport in primary cilia. Respiratory disease 

related to these disorders is due to the small, deformed thoracic cage that leads to pulmonary 

restriction, though a recent report hinted that motile cilia dysfunction contributed to 

respiratory insufficiency [52] in a child with cranioectodermal dysplasia due to biallelic 

WDR35 mutations. The actual link between WDR35 and motor cilia assembly or function is 

unknown.

DIAGNOSTIC APPROACH FOR PRIMARY CILIARY DYSKINESIA

Recent advances has allowed for improvements in the diagnosis of primary ciliary 

dyskinesia. Recognizing the clinical manifestations of motile cilia dysfunction continues to 

be the most important indication for diagnostic testing, and form the basis of criteria 

recommended by the PCD Foundation and the Genetic Disorders of Mucociliary Clearance 

consortium [53]. These manifestations are considered major criteria for the diagnosis of 

PCD, and include neonatal respiratory distress, laterality defects, persistent middle ear 

effusions, daily non-seasonal nasal congestion, and daily year-round wet cough that begins 

in infancy. The combination of persistent hypoxemia with situs abnormalities in a term 

infant without congenital cyanotic heart disease is consistent with primary ciliary dyskinesia 

and should prompt the clinician to pursue further evaluation. Children older than 1 month of 

age and older who presents with two or more of the aforementioned clinical manifestations, 

with at least one positive diagnostic test as discussed below, are likely to have PCD.

For years, clinicians have relied on transmission electron microscopy (Figure 1) to reveal 

ultrastructure changes in the cilia axoneme as means of confirming the disease, but this 

approach has significant limitations and can no longer be considered the sole “gold 

standard” for diagnosis, especially since up to 30% of patients with primary ciliary 

dyskinesia have normal ciliary ultrastructure [54–56]. Roughly 20% of patients with normal 

cilia ultrastructure as determined by electron microscopy will have mutations in the dynein 
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axonemal heavy chain 11 (DNAH11; MIM603339) gene that encodes an outer dynein arm 

protein [55,57]. Other patients with mutations in the dynein regulatory complex can have 

subtle changes that are easily missed on electron microscopy [56,58]

The classic ultrastructural defects in primary ciliary dyskinesia typically involve absence or 

shortening of outer dynein arms with or without an inner dynein arm defect (15%). Isolated 

inner dynein arm abnormalities are rare and most have associated microtubular 

disorganization. Changes in cilia structure may also be secondary to airway infections and 

environmental pollutants exposures, and these changes have been erroneously attributed to 

primary ciliary dyskinesia. For instance, ciliary “disorientation” was once considered an 

ultrastuctural phenotype, but misalignment of the central pair is now thought to be an 

acquired defect and should not be used as a diagnostic criterion [59]. In contrast, ciliary 

aplasia, or reduction in the number of cilia, which were once believed to be due to secondary 

injury to the airway epithelium, have now been linked to genetic defects. Several patients 

were reported to have markedly reduced numbers of motor cilia on the surface of airway 

epithelia due to genetic defects of mother centriole generation and migration that are caused 

by rare gene mutations in CCNO and MCIDAS. Affected individuals have respiratory 

manifestations consistent with primary ciliary dyskinesia, with more rapid pulmonary 

function decline and early mortality [60].

Our current understanding of the genetic causes of PCD dictates that biallelic mutations of 

any gene encoding proteins involved in ciliary assembly, structure, or function can 

potentially cause primary ciliary dyskinesia. Massive parallel sequencing has been used to 

analyze regions of interest, and in the absence of candidates, whole exome sequencing has 

been used to successfully identify new candidate genes associated with primary ciliary 

dyskinesia [61–63]. The past three years have witnessed the discovery of a rapidly growing 

number of novel primary ciliary dyskinesia-associated genes. Advances in genetic testing 

have the potential to revolutionize diagnostics, and lead to earlier identification and 

treatment of primary ciliary dyskinesia. There are currently several commercially available 

gene panels that provide coverage of most known genes associated with primary ciliary 

dyskinesia. As more mutations are being identified, we expect genetic testing to ultimately 

become the preferred diagnostic option for primary ciliary dyskinesia.

Mutations in over 30 different genes have been implicated in primary ciliary dyskinesia, 

with clear relationship between genotype and ultrastructural phenotype. The genes currently 

implicated in primary ciliary dyskinesia encode proteins involved in axonemal structure, 

including the outer dynein arm; inner dynein arm and axonemal organization; and the central 

apparatus. Mutations in several genes that code cytoplasmic proteins, likely involved in 

ciliary assembly or protein transport, have been found in individuals with primary ciliary 

dyskinesia who lack both inner and outer dynein arms (Table 1). It is estimated that biallelic 

mutations in known primary ciliary dyskinesia-associated genes account for 70% of cases 

[64]. Many reported mutations causative of PCD are nonsense mutations or deletions, which 

result in loss of protein function. The association between rare sequence variants, such as 

those caused by missense mutations, and disease is more challenging. In most cases, a casual 

relationship often requires in vitro cell modeling. It should be emphasized that the clinical 

significance of common gene polymorphisms in PCD-associated genes is not always clear.
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Relationships between genotype and clinical phenotypes in primary ciliary dyskinesia are 

emerging. Patients with inner dynein arm defects and axonemal disorganization represent 

approximately 12% of all primary ciliary dyskinesia cases. Mutations in CCDC39 
(MIM613798)[65] and CCDC40 (MIM613799)[66], account for the majority of these 

patients, which produce inconsistent ultrastructual abnormalities characterized by disordered 

microtubules in only some cilia (5 to 20%). CCDC39 and CCDC40 are thought to function 

as a ruler dictating the precise repetition of structural proteins along the length of the 

axoneme [67]. Interestingly, CCDC39 and CCDC40 mutations are associated with more 

severe disease and poorer pulmonary function measures compared to other mutated primary 

ciliary dyskinesia-causing genes [64]. The reason for this phenomenon is not known.

Advances in imaging have allowed the use of high-speed video-microscopy as a diagnostic 

tool for primary ciliary dyskinesia mainly in Europe [68,69]. The normal beat frequency of 

human cilia ranges between 8–12 Hz, which can vary with testing temperature and tissue 

manipulation [70]. Slow or abnormal beating can be secondary to an acquired defect, and 

may lead to misdiagnoses. To circumvent some of these limitations, some centers have used 

in vitro airway epithelial cell cultures. Airway cells are obtained from patients and allowed 

to recover and differentiate in controlled cell cultures. This method can eliminate the non-

specific changes caused by tissue manipulation or inflammation in the patient nasal 

passages, but it has limitations. This approache requires substantial experience and is best 

performed at centers that specialize in primary ciliary dyskinesia. Mutations characterized 

by subtle or variable changes in ciliary waveform can be missed. It should be emphasized 

that use of standard light microscopy is insufficient to screen or support the diagnosis of 

primary ciliary dyskinesia.

One of the most important diagnostic advances for primary ciliary dyskinesia is the use of 

nasal nitric oxide measurements, which has been adopted as the screening and diagnostic 

test of choice in North American centers, especially given the standardization of 

measurements [71]. The precise relationship between motile cilia and nitric oxide levels is 

unclear, though nitric oxide synthase localizes to the proximal ciliary axoneme [72] and 

several regulatory enzymes are localized to the basal bodies, suggesting some involvement 

in regulating cilia motility [73,74]. Nasal nitric oxide measurements are sensitive and 

specific for the diagnosis of primary ciliary dyskinesia in children five years and older 

[71,75], with sensitivity and specify approaching 98% and 99%, respectively [71], once 

cystic fibrosis is excluded, as nasal nitric oxide measurements can also be low in patients 

with cystic fibrosis. The accuracy of nasal nitric oxide measurement in younger children still 

needs to be established.

Recently, the PCD Foundation published a consensus statement with recommended criteria 

for the diagnosis of PCD. Standardization should clarify the process and improve diagnostic 

accuracy [53].

EXPERT COMMENTARY

Motor and sensory ciliopathies are a spectrum of diseases caused by dysfunction of the cilia. 

Primary ciliary dyskinesia is a rare, inherited disorder that is characterized by impaired 
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ciliary function leading to diverse clinical manifestations, including chronic sinopulmonary 

disease, persistent middle ear effusions, laterality defects, and infertility. The growing 

number of cilia-related genes associated with primary ciliary dyskinesia has yielded new 

insights into the assembly, structure, and function of motor cilia and their involvement in 

disease. Emerging technologies hold promise for discovery of additional disease-associated 

genes and mutations. The availability of genetic testing has the potential to revolutionize 

diagnostic testing for primary ciliary dyskinesia and other ciliopathies, leading to earlier 

treatment of affected infants and children. Finally, recent discoveries of novel disease 

causing genes have lead to greater understanding of the basic cilia biology, and potentially 

could reveal targets to restore ciliary structure and function in diseases that do not have 

known cures.

FIVE-YEAR VIEW

We anticipate that our understanding of the genetics and pathophysiology of ciliopathies will 

continue to advance. With the discovery of novel disease-associated genes and use of model 

systems, the basic biology of cilia will be defined and functional networks elucidated, which 

will yield new therapeutic strategies to restore ciliary structure and function. Moreover, we 

expect that other genotype-phenotype relationships in primary ciliary dyskinesia and other 

ciliopathies will emerge, thus broadening the clinical spectrum of these diseases.
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KEY ISSUES

1. Cilia are complex organelles that are involved in diverse cellular functions.

2. Historically, cilia in humans have been classified as “motile” and “sensory,” but 

several new lines of evidence suggest that there is greater overlap in function 

than previously appreciated, leading to syndromes with overlapping features.

3. Mucociliary clearance is a critical innate defense of the respiratory tract, 

including the middle ear, paranasal sinuses, and lungs.

4. Primary ciliary dyskinesia is a genetically heterogeneous disorder with varied 

clinical manifestations, including neonatal respiratory distress, chronic 

sinopulmonary disease, laterality defects, and infertility.

5. Mutations in different genes that encode proteins involved in ciliary assembly, 

structure, and function produce similar clinical phenotypes but different 

ultrastructural defects.

6. Transmission electron microscopy has limitations as a diagnostic tool, but recent 

advances in the understanding of the basic biology and function of the cilium 

have led to potential diagnostic alternatives, including nasal nitric oxide 

measurements and high-speed videomicroscopy.

7. Identification of disease-causing mutations will lead to the development of 

comprehensive genetic testing that may overcome many of the current 

diagnostic limitations.

8. Genotype-phenotype relationships in primary ciliary dyskinesia are emerging.

9. Model systems for primary ciliary dyskinesia are advancing our understanding 

of the basic biology of ciliary assembly and function.

10. Pathways are being identified that could yield potential therapeutic targets to 

restore ciliary structure and function.
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Figure 1. 
Electron photomicrograph and schematic diagram showing the ultrastructural features of the 

motor cilium.
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Figure 2. 
Schematic diagram showing the antegrade and retrograde transport of proteins along the 

length of ciliary axoneme via the intraflagellar transport proteins.
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Table 1

Human genes known to be mutated in primary ciliary dyskinesia.

Gene name Locus Protein location TEM Chlamydomonas orthologue

DNAH5 Chr 5 ODA ODA truncation ODA2/re11.g476050

TXNDC3 Chr 7 ODA ODA truncation FAP67/Cre12.g558700

DNAI1 Chr 9 ODA ODA truncation ODA9/DIC1/cre12.g536550

DNAI2 Chr 17 ODA ODA truncation DIC2/Cre12.g506000

DNAL1 Chr 14 ODA ODA truncation DIC1/Cre12.g536550

CCDC114 Chr 19 ODA ODA truncation DCC2/Cre16.g666150

ARMC4 Chr 10 ODA ODA truncation --

CCDC151 Chr 19 ODA ODA truncation ODA10/Cre08.g361200

CCDC103 Chr 17 ODA ODA truncation CCDC103/PR46/Cre06.g253404

LRRC6 Chr 8 Cytoplasmic ODA and IDA truncation MOT48/Cre17.g739850

HEATR2 Chr 7 Cytoplasmic ODA and IDA truncation HTR2/Cre09.g395500

DYX1C1 Chr 15 Cytoplasmic ODA and IDA truncation Dyx1C1/Cre11.g467560

DNAAF1 Chr 16 Cytoplasmic ODA and IDA truncation ODA7/DNAAF1/Cre01.g029150

DNAAF3 Chr 19 Cytoplasmic ODA and IDA truncation PF22/DNAAF3/Cre01.g001657

DNAAF2 Chr 14 Cytoplasmic ODA and IDA truncation PF13/DNAAF2/Cre09.g411400

SPAG1 Chr 8 Cytoplasmic ODA and IDA truncation --

C21orf59 Chr 21 Cytoplasmic ODA and IDA truncation FBB18/Cre16.g688450

ZMYND10 Chr 3 Cytoplasmic ODA and IDA truncation ZMYND10/cre08.g358750

HYDIN Chr 16 Central pair Normal Hydin/Cre01.g025400

RSPH4A Chr 6 Radial spoke Normal/central pair defect RSP4/PF1/Cre05.g242500

RSPH9 Chr 6 Radial spoke Normal/central pair defect RSP9/PF17/Cre07.g330200

RSPH1 Chr 21 Radial spoke Normal/central pair defect RSP1/Cre03.g201900

CCDC164 Chr 2 DRC Normal/DRC defect DRC1/Cre13.g607750

CCDC39 Chr 3 DRC Normal/DRC defect PF8/Cre17.g701250

CCDC40 Chr 17 DRC Normal/DRC defect PF7/Cre17.g698353

CCNO Chr 5 Transcription Reduced cilia number --

MCIDAS Chr 5 Transcription Reduced cilia number --

DNAH11 Chr 7 ODA Normal ODA4/Cre09.g403800

CCDC65 Chr 12 ODA Normal DRC2/Cre13.g607750

DRC: Dynein regulatory complex; Chr: chromosome; ODA: Outer dynein arm; IDA: Inner dynein arm Chlamydomonas genes are found at: http://
phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Creinhardtii
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