Tide: Achieving Self-Scaling in Virtualized Datacenter
Management Middleware

Shicong Meng, Ling Liu
Georgia Institute of Technology
{smeng, lingliu}@cc.gatech.edu

ABSTRACT

The increasing popularity of system virtualization in data-
centers introduces the need for self-scaling of the manage-
ment layer to cope with the increasing demands of the man-
agement workload. This paper studies the problem of self-
scaling in datacenter management middleware, allowing the
management capacity to scale with the management work-
load. We argue that self-scaling must be fast during work-
load bursts to avoid task completion delays, and self-scaling
must minimize resource usage to avoid resource contention
with applications. To address these two challenges, we pro-
pose the design of Tide, a self-scaling framework for virtu-
alized datacenter management. A salient feature of Tide is
its fast capacity-provisioning algorithm that supplies just-
enough capacity for the management middleware. We eval-
uate the effectiveness of Tide with both synthetic and real
world workloads. Our results show that the self-scaling ca-
pability in Tide can substantially improve the throughput
of management tasks during management workload bursts
while consuming a reasonable amount of resources.

Categories and Subject Descriptors

C.4 [Performance Of Systems]: Performance Attributes;
C.5.5 [Computer System Implementation]: Servers

General Terms

Management, Performance, Design

1. INTRODUCTION

Datacenter virtualization has attracted attention in re-
cent years due to various benefits it offers. It saves total
cost of ownership by consolidating virtual servers[18] and
virtual desktops[19]. It also provides high availability to
applications that are not designed with this feature by en-
capsulating them within a highly-available virtual machine
(VM)[17]. Virtual machine live migration[16, 7] can nearly

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Vijayaraghavan Soundararajan
“VMware, Inc.
ravi@vmware.com

eliminate downtime of applications by allowing running vir-
tual machines to be migrated off physical machines that re-
quire maintenance, and can also save power[15] during non-
peak hours by consolidating virtual machines onto a small
number of servers and shutting down the rest. More re-
cently, virtualization has enabled the proliferation of cloud
computing platforms such as Amazon’s EC2[4], where vir-
tual machines in a datacenter can be provisioned on demand
and rented based on usage as if they were physical machines.

In order to provide features like high availability, live mi-
gration, and power management, virtualized datacenters rely
on a rich management middleware layer. This layer provides
unified management of physical hosts, virtual machines, vir-
tualized network switches, and storage devices. One exam-
ple of a virtualized datacenter management middleware layer
is VMware vSphere[20]. VMware vSphere provides three
key management functionalities. First, it executes various
manual or automated management tasks. For example, if an
administrator needs to provision virtual machines to serve as
remote desktops for new end-users, the administrator sends
these provisioning tasks to the management layer, which cre-
ates the new virtual machines and places them automatically
on physical hosts. In addition, vSphere may continuously
balance the workload of applications running in VMs via
automatic live migration[7]. The second functionality pro-
vided by vSphere is monitoring the runtime status of each
physical server and the virtual machines hosted on them.
Finally, vSphere maintains the configuration information of
the components in the datacenter like the host hardware con-
figuration, virtual network configuration, and storage device
configuration.

The ability of the management layer to support such au-
tomated provisioning and load balancing tasks makes it an
ideal platform for cloud-based applications. Cloud-based ap-
plications require elastic, automated control of resources to
meet variable end-user demands. Without efficient resource
controls, hot spots can arise in the infrastructure and the
performance of end-user applications can suffer. Consider a
system without automated load balancing: as more users are
added and more VMs must be provisioned, certain hosts may
become overutilized, and VM performance suffers. Hence,
the performance of the management system can have a direct
impact on cloud application performance and cloud user sat-
isfaction[13]. Moreover, the management tasks themselves
often must complete within specified time windows to satisfy
the periodic maintenance cycles within the datacenter.

1.1 Management Workload

While a typical datacenter operator is often aware of the

resource consumption of end-user applications in the data-
center, it is important to consider the contribution of man-
agement tasks as well, especially when the management layer
is used in cloud-like environments. For example, consider
the cost of powering on a VM. If the management layer is
performing automated load balancing, it must select the ap-
propriate host to run the VM[15]. This selection may require
a complex series of computations involving load inspection
on hosts and compatibility checking between the capabili-
ties of a host and the required capabilities of the VM. For
example, the management layer must not only choose a host
that has sufficient resources, but must also pick a host that
can support the VM’s demands (e.g., hardware-based vir-
tualization or connection to a specific iSCSI device). This
type of computation can be resource-intensive, mostly CPU
and memory intensive, for the management layer, and the
resource usage can grow with the number of hosts and VMs,
and can also grow if multiple VMs are powered on concur-
rently.

The management workload consumes considerable resources

not just because individual management operations may be
expensive, but also because the workload itself is bursty[13].
Figure 1 shows the CDF of management task rates within a
10-minute time window for a production datacenter. While
the average workload is fairly small, the peak workload can
be nearly 200 times higher than the average workload. Ex-
amples of such bursty workloads are prevalent[13]. Com-
panies using virtual machines as remote desktops may per-
form large numbers of virtual machine cloning and reconfig-
uration tasks during a small time window to accommodate
new users. Moreover, in remote desktop environments, a so-
called ’boot storm’ of power operations may occur when em-
ployees arrive at work. Other examples of potentially-bursty
management operations include large-scale virtual machine
provisioning for software-as-a-service, live-migration-based
datacenter-scale load balancing, and massive security patch-
ing. In general, the ability of virtualization to provide auto-
mated management can also lead to bursts in management
workload in order to accomplish such tasks in specified main-
tenance windows.

4

10 .
m Peak Workload
£ 3
€10
o [
g 5 ’
RS
T 10 2
§ .
~ 10'p_Averageorkioad .
7]
©
oo

10 ; - ' -

0 20 40 60 80 100

Percentage of Workload

Figure 1: Burstiness of Management Workload

This workload burstiness may further grow in the near fu-
ture because of two trends. First, increased CPU cores per
host may lead to more virtual machines per host, leading to
a larger number of entities to be managed within a virtual-
ized datacenter and a larger number of management tasks to
be performed on a daily basis. Second, as more datacenters
become multi-tenant and support public or private cloud
computing platforms, the number of different yet overlap-
ping management workflows that must be accommodated

will increase. For example, if a datacenter holds servers
that are shared between different companies with different
backup strategies (backup quarterly vs. backup bi-weekly),
the load on the management layer can be bursty in unpre-
dictable ways, and this burstiness increases as more cus-
tomers share a given datacenter.

1.2 Challengesin Handling Wor kload Bursts

As the preceding discussion indicates, the management
layer must deal with a diversity of tasks at various inter-
vals and with various resource demands. The capacity of
the management layer determines its ability to respond to a
management workload burst. For example, if a single server
is responsible for servicing all management tasks, it can be-
come a bottleneck, especially if the management tasks are
compute-intensive. Another common scenario is spawning
a large number of web server VMs within a short period of
time to accommodate a flash crowd. The longer it takes
for the management layer to create such VMs, the worse
the performance for the end user, and the higher potential
for an SLA violation. Moreover, if the management layer is
busy with such a burst and is unable to perform automated
load balancing in a timely manner, end-user performance
may also suffer. Each of these scenarios highlights the need
for a flexible, elastic management layer to complement the
elasticity of the application infrastructure.

Providing the right capacity for the management layer is
challenging: sizing for regular workloads may induce excess
management task latency when a burst arrives; sizing for
the peak may cause a lot of resources to go unused during
normal periods, resources that could have been used for ap-
plications themselves. We argue that one possible solution
to efficiently handle management workload bursts is to make
the management system self-scaling, which allows the man-
agement system to automatically boost its capacity during
peak workloads and drop its capacity during normal work-
loads.

1.3 Contribution

In this paper, we introducing Tide, a prototype manage-
ment system with dynamic capacity that scales with man-
agement workload. Tide leverages VMware’s vSphere[20]
management layer. It consists of a primary management
server and a number of virtual management server instances
that are powered off during normal workloads. When Tide
encounters bursts in the management workload, it dynam-
ically powers on additional virtual management server in-
stances to boost overall throughput.

One fundamental requirement of self-scaling is that provi-
sioning of management instances should be fast. In addition,
to most efficiently utilize available resources, the number of
provisioned instances should be reasonably small. We devise
a novel provisioning algorithm that can quickly provision just
enough server instances to the management system for the
current workload. The algorithm considers the management
system as a black-box and requires no performance modeling
of server instances or management workload profiling.

To the best of our knowledge, Tide is the first work ded-
icated to the design and implementation of self-scaling in
virtualized datacenters management systems. To evaluate
the effectiveness of Tide, we perform extensive experiments
with both synthetic and real-world management workloads
collected from several virtualized datacenters. Our experi-

mental results show that Tide can quickly react to workload
bursts and efficiently execute large numbers of concurrent
management tasks. It also consumes much fewer resources
compared with systems implemented with conventional pro-
visioning techniques.

1.4 Organization

The rest of the paper is organized as follows. Section 2
gives an overview of Tide. We describe the fast-provisioning
algorithm of Tide in Section 3 and present performance re-
sults in Section 4. We discuss related work in Section 5, and
provide concluding remarks and directions for future work
in Section 6.

2. SELF-SCALING AND TIDE OVERVIEW

The intuition behind Tide is to treat the management
workload similar to how one would treat an application work-
load: when a large number of management tasks must be
performed, Tide allocates new management instances to han-
dle the additional load, thus preventing a single management
instance (or a small number of statically-partitioned man-
agement instances) from becoming a bottleneck in executing
the management workload. When the burst subsides, these
management instances can be deallocated and their underly-
ing physical resources can be used for the end-user applica-
tion workloads, allowing more efficient use of the underlying
infrastructure. We refer to this automatic provisioning as
self-scaling.

To understand the benefits of such an approach, consider
a scenario in which an administrator must live-migrate 500
VMs in a period of 30 minutes to prepare for routine main-
tenance on a datacenter rack. Live migration involves VM-
host compatibility computations, placement computations
and continuous tracking: such a compute-intensive work-
load may saturate a single management server. With mul-
tiple dynamically-allocated management servers, the man-
agement layer can parallelize these computations and mini-
mize the overall latency. Compared with static provisioning
based on peak workload (e.g., always keeping 30 manage-
ment servers running instead of 1), self-scaling provisions
resources only during peak periods, potentially saving con-
siderable resources. Previous work has shown that such
bursts can be frequent[13] and may last for several hours.
Given that administrators prefer predictable time windows
and want to minimize any possible business disruptions, it
is important to reduce management task latency as much
as possible. Tide seeks to reduce the latency to perform
management tasks and also limit the resources used by the
management layer.

Tide is a distributed system consisting of multiple man-
agement server instances, each of which is a vSphere man-
agement server. Specifically, Tide has one primary instance
and multiple virtual instances. The primary instance is a
vSphere server installed on a physical host, while virtual
instances are virtual machines running vSphere. The pri-
mary instance provides the management interface, and all
virtual instances are transparent to administrators. During
normal workloads, the primary instance manages all hosts
and VMs in the datacenter and all virtual instances are pow-
ered off. When encountering workload bursts, the primary
instance dynamically powers on virtual instances based on
perceived workload and dispatches workload to these vir-
tual instances. By parallelizing task execution, Tide tries to

maximize throughput to avoid delaying task execution.

One of the main challenges of self-scaling involves pro-
visioning an appropriate number of virtual management in-
stances quickly enough to benefit the management workload
and yet consume minimal resources. Provisioning speed and
efficiency are both important because they determine man-
agement task execution delay and the overall management
cost. As a concrete example, consider the previous scenario
of live-migrating 500 VMs within a 30 minutes time window.
If the provisioning process takes a long time to complete,
task completion delay would be inevitable as Tide has to
serialize portions of the migration workflow due to insuffi-
cient instances. One may suggest to achieve fast provisioning
by simply adding a large number of instances during work-
load bursts. While this would certainly increase parallelism,
the utilization of the provisioned instances may be low as
the bottleneck may shift to the network subsystem instead.
Moreover, it would also cause the management system to
compete resources with user applications.

Rather than trying to develop a model for the highly-
variable and unpredictable management workload, Tide lever-
ages an on-line measurement scheme that reactively provi-
sions new instances in an iterative manner. To achieve pro-
visioning speed and efficiency, it continuously measures the
change in task execution throughput to determine the best
number of instances to provision in future iterations. We
discuss the detail of this approach in the rest of the paper.

3. FAST AND EFFICIENT PROVISIONING

Directly estimating the appropriate number of manage-
ment instances for a given management workload is diffi-
cult partly because the resource consumption of manage-
ment tasks is hard to predict. Different tasks consume CPU
and IO quite differently. For example, powering-on a VM
involves computations for choosing the best host to run a
VM, while cloning a VM is disk-intensive. Even tasks of the
same type vary heavily in execution cost due to task het-
erogeneity. Another difficulty with estimating the number
of management instances is that the performance of a man-
agement instance is different when it runs on different hosts
(e.g., hosts with different CPU types). Capturing these un-
certainties with performance modeling is difficult, and also
makes provisioning system-dependent.

One possible solution is to use iterative schemes which
repeatedly add new instances into the system until doing
so does not improve throughput. For such schemes, one
difficulty is to determine the number of instances to add
at each iteration, a.k.a the step size, and straightforward
schemes often do not work well. For instance, a scheme
that adds a constant number k of instances each time faces
a speed-efficiency dilemma. If k is small, the scheme may
take many iterations and a long time to provision sufficient
instances. If k is large, it may unnecessarily provision a large
amount of instances for small workload bursts, which causes
resource contention between management and applications.

In Tide, we devise a novel adaptive approach that can
quickly provision just enough instances for a workload burst.
It is system-independent as it does not rely on specific work-
load or system performance models. The key technique in
our approach is monitoring the speedup in management task
throughput and appropriately adding more management in-
stances during the next iteration. We next present details
of this approach.

1000 T

Steady State | Overshooting
|
0
0 20

Figure 2: Throughput with Increasing Instances

Throughput(/min)

n
o
o

40 60 80 100 120
Instances

3.1 Speedup-Guided Provisioning

Figure 2 shows the relationship between the number of
management instances, denoted by N, and the task exe-
cution throughput. Here, we ran a workload trace from a
production datacenter on Tide multiple times, with an in-
creasing number of management instances each time. More
details on setup can be found in Section 4.

As N increases, the task throughput increases until the
throughput of the system matches the workload. After that,
the task throughput levels off even with larger N, because
the gain in throughput is limited but the cost of coordinating
management instances continues to grow. We refer to the
throughput increment after adding one or more instances as
throughput speedup, and the state where the throughput lev-
els off as steady state. In addition, we refer to the situation of
provisioning after steady state as overshooting. Overshoot-
ing is clearly undesirable as it wastes resources. Ideally, we
should stop provisioning new instances when the system en-
ters the steady state. The question is, how do we reach this
state as quickly as possible without causing overshooting?

It is important to note that as the throughput approaches
steady state, the change rate of speedup in throughput de-
creases. Tide uses this change rate information to guide the
provisioning process. It iteratively adds a certain number
of instances to the management system based on previous
speedup change rate. This feature allows us to quickly ap-
proximate the steady state.

We use T'(N) to represent the throughput given N in-
stances. Since speedup is a function of instance number N,
we use f(N) to denote the speedup of N instances. Note
that f(N) is the throughput increment of the system from
N—1 instances to N instances, i.e. f(N)=T(N)-T(N-1).
Figure 3 shows the curve of f(IN) generated from Figure 2.
The system enters the steady state when f reaches the X
axis, i.e. f(Ns) = 0 where N; is the number of management
instances at steady state. Thus, the estimation of the steady
state can be formulated as a root-finding problem.

Our provisioning algorithm is based on Secant method[14],
a widely used root-finding technique in numerical analysis.
The algorithm combines the root-finding process with the
provisioning process. For the first iteration, we measure the
initial speedup by adding one instance, i.e. f(No) where
No = 1. Clearly, f(No) = T'(1) — T(0) where T'(0) is the
throughput of the primary vSphere server. The value of
f(No) is shown by the Py in Figure 3. Similarly, we then
add a fixed small amount of instances to make the total
instance number to N1 and measure the speedup at Ny, i.e.
f(N1) =T(N1)—T(N1—1), as shown by the point P;. Based
on Py and P, we find the number of instances to provision
in the next iteration, Ny as follows. We generate a linear

Speedup
Rate

N1 N2 N3

N4 N5
Instances

Figure 3: The Speedup Rate Curve

function S = g(NN) which passes the point Py and P;. The
root of g(N), as shown by Nz in Figure 3, is the number
of instances to provision in the next iteration. Formally,
given Ny, N;—1, f(N;), f(Ni—1), we generate the number of
instances to provision in (i 4+ 1)-th iteration as follows,

_ Ni=Niox F(N:) (1)
f(Ni) = f(Ni1)

The provisioning process repeats the above iteration by
using two previous provisioning points to determine the next
one. It terminates when the speedup improvement rate
between the two most-recent provisioning is below a pre-
defined threshold . Note that users can set 7 based on
their performance requirements on Tide and the amount of
resources they can assign to Tide. In addition, we mea-
sure throughput based on multiple samples to avoid incor-
rect step size estimation due to unstable readings.

3.2 Restrictions For Robustness

To make our algorithm robust, we also apply three restric-
tions to our algorithm to prevent faulty provisioning.

Nit1 = N; —

Restriction 1 N;11 > N; if f(N;) > 0 ensure N; is a in-
creasing series (dealing with workload fluctuation)

Restriction 2 When f(N;) = 0, gradually decrease N;
(overshoot prevention)

Restriction 3 Ensure N;y1 < N;+m, where m is the maxi-
mum step size (addressing the divide-by-zero problem)

Note that restriction 2 is also the shrinking process, i.e.
scaling-down, in which Tide reduces its management in-
stances when workload bursts disappear. These restrictions
ensure the algorithm provisions the right number of instances
eventually. Due to space limitations, we refer the reader to
our technical report[12] for more details on the provisioning
algorithm.

The speedup-guided provisioning algorithm can look at
speedup to better approximate the steady state. As an ex-
ample, if recent provisioning leads to similar speedup, the
algorithm would provision much more instances in the next
iteration (because the generated linear function g(N) has
relatively small tangent and, accordingly, has a relatively
large root). Clearly, this feature is desirable, as the system
can quickly approach steady state with more instances when
the performance is more predictable.

4. EXPERIMENTAL EVALUATION

Our setup includes a primary vSphere server and a total
of 50 virtual instances of vSphere. The virtual instances are

Throughput (% over Primary)

— Secant
— Fix-1
40t — Fix-5
— Fix-10

— Secant
600 — Fix-1
— Fix-5
— Fix-10

Instance

0 50 150 200 0 50 150 200

100
Time(Seconds)

100
Time(Seconds)

(a) Throughput Trace (b) Instance Number Trace

Figure 4: Performance Trace During Self-Scaling

VMs with vSphere 4.0 installed, and the VMs are placed
in a suspended state so they consume no runtime resources
unless they are used. The datacenter that we study contains
300 physical hosts with a total of 3000 virtual machines run-
ning on them. The primary vSphere server runs on a Dell
PowerEdge 1850 with four 2.8GHz Xeon CPUs and 3.5GB
of RAM. We installed vSphere 4.0 on all management in-
stances.

We conduct experiments based on both real-world and
synthetic workloads. The real-world workload is generated
from traces we collected from several customer datacenters.
The trace data includes management tasks performed over
thousands of virtual machines in a three-year period. From
this trace data, we generate two types of real world work-
loads. The first models short-term workload bursts. We
use this workload to evaluate the effectiveness of Tide’s self-
scaling feature. The second models long-term management
workload, which contains both regular and bursty work-
loads. We use this set of workloads to assess the long-term
performance of Tide and its resource efficiency. By creat-
ing a composite trace composed of traces from several cus-
tomers, we simulate the management workload of a cloud
provider hosting virtualized datacenters of multiple enter-
prise users. Because of the variable resource demands of
individual customers, this workload is heavier than that of
an individual enterprise datacenter. We also use a synthetic
workload to allow us to perform sensitivity analysis of Tide
with respect to different workload types.

Figure 4 shows the throughput and the number of man-
agement instances activated by Tide during a self-scaling
process when using different provisioning schemes. Here
Secant refers to Tide’s speedup-guided provisioning scheme
and Fiz-N is the simple provisioning scheme that adds NV
instances to the system if it observes throughput improve-
ment in the previous iteration. The workload input for this
figure is a management workload burst that lasts 200 sec-
onds, and we normalize all throughput by the throughput of
the primary instance. The speedup-guided scheme is faster
at provisioning the proper number of instances as compared
with all fixed-step schemes. It adds a small number of in-
stances at first and gradually adds more instances in each
iteration as it predicts the speedup change rate better. Al-
though Fix-10 performs reasonably well, it causes significant
resource consumption in the long run due to small and fre-
quent workload bursts[12].

Figure 5 illustrates the convergence time of different pro-
visioning schemes under different workload characteristics.
The convergence time measures the time a scheme takes to
provision the desirable number of instances (i.e., the time

Convergence Time(seconds)

(a) Increasing Workload Scale

=

o,
i
o,

—+ Secant
-%- Fix-1

- Fix-5
—+ Fix-10

—+— Secant
-%- Fix-1

Fix-5
- Fix-10

N
ow

H
1)

3

\}\ “
Convergence Time(seconds)
EN

\

=
o
i

i
5x 0 light heavy

Cost Ratio

(b) Increasing Weight

2x 3x
Workload Scale

Figure 5: Convergence Time under Different Work-
load

at which adding more instances does not provide sufficient
throughput speedup). We use a synthetic workload to con-
trol the workload characteristics. In Figure 5(a), we push the
incoming rate of tasks from its base level of 1x to 5x (5 times
higher). It is clear that the speedup-guided scheme consis-
tently uses less time to converge and its convergence time
is barely affected by workload changes. The convergence
time of fixed-step schemes such as FIX-10, while smaller
than that of the speedup-guided scheme under small work-
loads, degrades with increasing workloads. Because our
speedup-guided scheme is robust to various workload types,
it is particularly appealing in multi-tenant environments,
where the management workload is highly variable. In Fig-
ure 5(b), we evaluate different schemes by increasing the
workload intensity (i.e., resource demands). We rank differ-
ent types of tasks by their CPU consumption at the man-
agement instance. The heavier a workload, the more CPU-
intensive tasks it has. As before, the speedup-guided scheme
outperforms fix-step schemes and is insensitive to workload
changes.

In Figure 6, we study the convergence time of different
provisioning schemes under different types of workload bursts.
Again, we use a synthetic workload as it allows us to cre-
ate workload bursts of different types. Figure 6(a) shows
the convergence time of different schemes under workload
bursts whose task incoming rate increases from the base level
(1x) to higher levels (2x-5x). We can see that the speedup-
guided approach consistently achieves much shorter conver-
gence time compared with other approaches. We can observe
similar results in Figure 6(b) where the workload bursts drop
from a higher level (2x-5x) to the base level (1x). Our ap-
proach has higher convergence time in declining bursts as it
relies on fixed-step instance reduction to handle overshoot-
ing (Restriction 2). However, reducing instances from the
steady state does not cause task execution latency.

5. RELATED WORK

There are a number of management systems for virtual-
ized environments such as Usher[11], Virtual Workspaces[9],
Cluster-on-demand|6], System Center[2], oVirt[3] and Eno-
malism[1]. Despite the large number of existing systems,
their performance has not been studied in detail.

The concept of auto-scaling is not new, but we extend
it beyond application-level scaling and apply it to the man-
agement workload. Application-level auto-scaling[5] dynam-
ically adjusts the number of server instances running an
application according to application usage. Heinis and et

Convergence Time(seconds)

@
S
S

I 2x O Il 2x A
1200 o 3% 700/| I 3x

[4x 3 4x
1000 [8¢ o0l] 7 5x

@

S

S
=3
=]

3
<3
S

S

=]

I
5]
S]
Convergence Time(seconds)
= n w B o [=2)
[=3 o
(=] (=]

N
o
S

1<)

=]

o
o

Fix-1 Fix-5
Algorithms

(b) Declining Bursts

Fix-1 _ Fix-5 Secant Fix-10

Algorithms

Secant Fix-10

(a) Growing Bursts

Figure 6: Convergence Time under Different Bursts

al[8] discussed similar ideas in a distributed workflow engine
with self-tuning and self-configuration capabilities. In fact,
application-level auto-scaling further increases the intensity
and burstiness of the management workload, e.g. creating
many web server VMs to handle a flash crowd of HTTP re-
quests requires fast VM cloning and power-on. We speculate
that Tide may improve application auto-scaling.

The execution of management tasks in a virtualized data-
center involves both the management system and hosts run-
ning virtual machines. SnowFlock[10] studies rapid group-
instantiation of virtual machines across a group of physical
hosts. This work is complementary to ours as we focus on
efficient task execution in the management system.

6. CONCLUSIONSAND FUTURE WORK

The prevalence of on-demand computing requires elastic
mechanisms for dynamic resource allocation for end-user ap-
plications, and virtualization is increasingly being used to
deliver such mechanisms. As more and more datacenters
move to virtualization and provide multi-tenancy, the man-
agement tasks comprise a workload that tends to be bursty
and unpredictable, and statically partitioning of manage-
ment resources may result in both wasted resources and poor
compliance with application SLAs. Automatically scaling
the management infrastructure is one way to avoid these is-
sues, although it is crucial that auto-scale must provide best
performance at minimal resource cost.

In this work, we study the problem of self-scaling of the
management infrastructure. We propose Tide, a prototype
auto-scaling management middleware. To meet the unique
requirements in provisioning speed and efficiency, Tide em-
ploys a novel speedup-guided provisioning algorithm. Ex-
perimental results show that Tide significantly reduces man-
agement task execution delay with efficient resource usage.

To the best of our knowledge, Tide is the first work that
employs self-scaling to address management workload bursts
in virtualized datacenters. We believe the intensive and
bursty nature of management workload is an important prob-
lem to virtualized datacenters, especially those that serve as
the underlying infrastructure for cloud computing platforms.
While we have made an initial attempt to address this prob-
lem with Tide, it certainly deserves further study. As part of
our ongoing work, we are extending Tide to support multiple
management systems with shared resource pools.

7. ACKNOWLEDGMENTS

The first author did the initial work for this project during
his internship at VMware. The authors would like to thank

Jennifer Anderson at VMware for her strong support to this
work. The first two authors are also partially supported by
grants from NSF ISE NetSE program, CyberTrust program,
an IBM faculty award, IBM SUR grant and a grant from
Intel Research Council.

8. REFERENCES

[1] Enomaly homepage. http://www.enomaly.com/.

[2] Microsoft System Center.
http://www.microsoft.com/systemcenter.

[3] oVirt home page. http://ovirt.org/.

[4] Amazon. Amazon web service(aws).
http://aws.amazon.com.

[5] Amazon. Auto scaling.
http://aws.amazon.com/autoscaling/.

[6] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and
S. Sprenkle. Dynamic virtual clusters in a grid site
manager. In HPDC, pages 90-103, 2003.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI, 2005.

[8] T. Heinis, C. Pautasso, and G. Alonso. Design and
evaluation of an autonomic workflow engine. In ICAC]
pages 27-38, 2005.

[9] K. Keahey, I. T. Foster, T. Freeman, and X. Zhang.

Virtual workspaces: Achieving quality of service and

quality of life in the grid. Scientific Programming, 05.

H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,

P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,

and M. Satyanarayanan. Snowflock: rapid virtual

machine cloning for cloud computing. In EuroSys, 09.

M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker.

Usher: An extensible framework for managing clusters

of virtual machines. In LISA, pages 167181, 2007.

S. Meng, L. Liu, and V. Soundararajan. A self-scaling

management system for virtualized datacenters.

http://cc.gatech.edu/~smeng/papers/tide-report.pdf.

V. Soundararajan and J. M. Anderson. The impact of

management operations on the virtualized datacenter.

In ISCA, 2010.

E. Siili and D. F. Mayers. An Introduction to

Numerical Analysis. Cambridge University Press, ’03.

VMware. Distributed resource scheduling and

distributed power management.

http://www.vmware.com/products/drs/.

VMware. vMotion.

http://www.vmware.com/products/vmotion.

VMware. VMware HA.

http://www.vmware.com/products/high-availability/.

VMware. VMware Server Consolidation.

http://www.vimware.com/solutions/consolidation/.

VMware. VMware View.

http://www.vmware.com/products/view/.

VMware. vSphere.

http://www.vmware.com/products/vsphere/.

(11]

(12]

