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In mammalian genomes, linked genes show similar rates of evolution, both at fourfold degenerate synonymous sites
(K4) and at nonsynonymous sites (KA). Although it has been suggested that the local similarity in the synonymous
substitution rate is an artifact caused by the inclusion of disparately evolving gene pairs, we demonstrate here that
this is not the case: after removal of disparately evolving genes, both (1) linked genes and (2) introns from the same
gene have more similar silent substitution rates than expected by chance. What causes the local similarity in both
synonymous and nonsynonymous substitution rates? One class of hypotheses argues that both may be related to the
observed clustering of genes of comparable expression profile. We investigate these hypotheses using substitution
rates from both human–mouse and mouse–rat comparisons, and employing three different methods to assay
expression parameters. Although we confirm a negative correlation of expression breadth with both K4 and KA, we
find no evidence that clustering of similarly expressed genes explains the clustering of genes of comparable
substitution rates. If gene expression is not responsible, what about other causes? At least in the human–mouse
comparison, the local similarity in KA can be explained by the covariation of KA and K4. As regards K4, our results
appear consistent with the notion that local similarity is due to processes associated with meiotic recombination.

[Supplemental material is available online at www.genome.org.]

In mammals, it is claimed that the rates of both protein sequence
evolution (Williams and Hurst 2000; Lercher et al. 2001) and
synonymous nucleotide change (Casane et al. 1997; Matassi et al.
1999; Nachman and Crowell 2000; Lercher et al. 2001; Smith et
al. 2002; Yi et al. 2002; Hardison et al. 2003) show local cluster-
ing, with neighboring regions evolving at similar rates. However,
other authors claim that these results, at least as regards synony-
mous nucleotide changes, are nothing more than methodologi-
cal artifacts (Kumar and Subramanian 2002). Here we ask two
questions. First, is the local similarity in synonymous substitu-
tion rates real? We show that it is. Given this, we then ask why
linked genes might have similar synonymous and nonsynony-
mous substitution rates. In particular, we examine the hypothesis
that transcriptional activity provides a possible mechanistic basis
for both clustering phenomena (Hurst and Eyre-Walker 2000;
Williams and Hurst 2002; Hardison et al. 2003). A priori, a cou-
pling with transcriptional activity is an attractive hypothesis, as
genes with comparable expression profile cluster (Caron et al.
2001; Lercher et al. 2002b; Lercher et al. 2003; Versteeg et al.
2003) and expression parameters are related to substitution rates
(Duret and Mouchiroud 2000). We show here that transcrip-
tional activity appears not to be an important variable underpin-
ning local similarity of rates of evolution. Finally, we briefly ask
what else might then explain the clustering. As the extent of
local similarity appears different in the mouse–rat comparison
and in the human–mouse comparison (Lercher et al. 2001), we
analyze both.

Is Local Similarity an Artifact?
Kumar and Subramanian (2002) argue that all previous findings
of local similarity in synonymous substitution rates are invalid,

owing to a methodological problem in how one estimates sub-
stitution rates. Classical methods (e.g., Tamura and Nei 1993) for
estimating substitution rates from pairwise alignments assume
that the process of molecular evolution is the same in two se-
quences since the time of common ancestry. If this assumption is
not upheld, the methods will provide biased estimates. Move-
ment of gene clusters into a new environment (e.g., by chromo-
some rearrangements) can result in the nucleotide composition
of the genes “ameliorating” to their new location (Kumar and
Subramanian 2002). The inclusion of such sequences with dis-
parate substitution patterns would bias results, leading to over-
estimates of the actual point substitution rates in the translo-
cated gene cluster (Kumar and Subramanian 2002). Kumar and
Gadagkar (2001) developed a disparity test to diagnose such het-
erogeneity, and suggested that only those alignments passing the
test should be employed to investigate mutation rates. Signifi-
cantly, 46% of human–mouse alignments fail the disparity test,
whereas only 8% of mouse–rat alignments are deviant (Kumar
and Subramanian 2002).This alone might then explain the ob-
servation (Lercher et al. 2001) that local similarity in the synony-
mous substitution rate is weaker in the mouse–rat than in the
human–rodent comparison.

By examining the relationship between the difference in the
synonymous substitution rate between two genes and the physi-
cal distance between the genes, Kumar and Subramanian (2002)
then argued that, in their purified data set, there was no evidence
that rates of evolution varied across the genome. Further, the
authors argued that all between-gene variation in evolutionary
rate is attributable to estimation error owing to differences in
length of sequence, and hence that one cannot reject the notion
that there is one mutation rate for all autosomal sequences.
These and other conclusions from their study have been chal-
lenged (e.g., that the global clock rate of synonymous evolution
does not differ between mammalian lineages, Yi et al. 2002).

Below, we first confirm that the signals of local similarity
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examined here are not due to disparate substitution patterns.
Additionally, to be more confident that we are examining region-
ality in nonselective substitution processes, we ask whether, in
the mouse–rat analysis, introns from a given gene have more
similar rates of evolution than expected by chance. Although
thereafter we report results for K4 only from the subgroup of
genes that passed the disparity test, results including all genes are
very similar (data not shown). To further minimize the potential
effect of disparate evolutionary patterns, we calculate K4 employ-
ing a recently developed scheme that attempts to control for
disparity (Tamura and Kumar 2002).

Are Clusters of Germline-Expressed Genes Responsible
for Regionality in the Mutation Rate?
The rate of synonymous nucleotide change, assayed at fourfold
degenerate sites (K4), is often assumed to reflect the local muta-
tion rate (but see Eyre-Walker 1999; Smith and Eyre-Walker 2001;
Duret et al. 2002; Lercher and Hurst 2002a; Lercher et al. 2002a).
Whether more highly expressed genes should be faster or slower
evolving at synonymous sites is, however, hard to predict on a
priori grounds, as two putative forces have potentially opposite
effects. Although there is, for example, evidence that transcrip-
tion can be mutagenic (Datta and Jinks-Robertson 1995; Aguilera
2002), there are repair mechanisms that are coupled to transcrip-
tion (Mellon et al. 1987; Selby and Sancar 1993; van Gool et al.
1997). The latter is believed to explain a recently described tran-
scription-associated strand mutational asymmetry in mammals,
which has acted to produce a compositional asymmetry, an ex-
cess of G+T over A+C on the coding strand, in most genes (Green
et al. 2003).

If the two forces (mutation and repair) do not cancel out, a
covariation between genic mutation rates and rates of transcrip-
tion in the germline is to be expected. Prior evidence suggests the
possibility of a weak reduction in the synonymous rate of sub-
stitution in putatively germline-expressed genes (Duret and
Mouchiroud 2000). Given too that it has been shown that highly
expressed genes are clustered in the human genome (Caron et al.
2001; Versteeg et al. 2003), transcriptionally mediated variations
in the mutation rate could potentially lead to the observation of
local similarity.

Are Clusters of Housekeeping Genes Responsible
for Regionality in the Rate of Protein
Sequence Evolution?
The clustering of highly expressed genes has been shown to be
a secondary effect caused by clustering of housekeeping genes
(Lercher et al. 2002b). Broadly expressed genes (i.e., those ex-
pressed in many tissues, not necessarily at a high rate) are known
to evolve at lower rates (Hastings 1996; Duret and Mouchiroud
2000; Williams and Hurst 2002), possibly owing to stronger pu-
rifying selection on proteins that have to function in a wide
range of different tissues. Thus, such clustering according to
breadth of expression might also explain the local similarity in
the rate of protein sequence evolution (assayed as KA, the rate of
nonsynonymous substitutions; Williams and Hurst 2002).

Alternative Hypotheses
As regards the above issues, we show that local similarity in both
synonymous and nonsynonymous substitution rates is real, but
is not explained by the clustering of transcriptionally comparable
genes. What other explanations might there be? With regard to
the nonsynonymous substitution rate, we ask whether the local
similarity is driven by a corresponding local similarity in the
synonymous substitution rate. Early claims from the mouse–rat
analysis suggested this was not the case (Williams and Hurst

2000), but more recent reanalysis argues to the contrary (Malcom
et al. 2003). We return to this issue and ask, why, if local simi-
larity in the nonsynonymous substitution rate is largely owing to
underlying variation in the mutation rate, is the effect more pro-
nounced in the vicinity of tissue-specific genes (Williams and
Hurst 2002).

Aside from transcription, other possibilities to explain the
local variation in the synonymous substitution rate include (1)
heterogeneity in the activity of repair enzymes (Matassi et al.
1999), (2) recombination-associated mutational and/or repair
hotspots (Perry and Ashworth 1999; Lercher and Hurst 2002b;
Filatov and Gerrard 2003; Hellmann et al. 2003), and (3) GC-
associated mutation or fixation biases (Lercher et al. 2001;
Castresana 2002b; Smith et al. 2002; Yi et al. 2002; Hardison et al.
2003). We examine the last two of these together, as it has been
argued that they are not independent (Meunier and Duret 2004).

Methological Issues
Unfortunately, investigations of this nature can suffer a number
of problems. First, there is no unambiguously best way to esti-
mate expression parameters (Huminiecki et al. 2003). To have
more confidence in any claim that we might wish to make, we
use all possible sources of high-throughput data (EST, microarray,
and SAGE) so as to test for the robustness of all results. As EST
data provide poor representation of expression rates, the latter
are estimated from SAGE and microarray data alone. Further,
recent evidence suggests that in GC-rich regions, the substitution
process may well be affected by both mutation and biased gene
conversion (Eyre-Walker 1999; Smith and Eyre-Walker 2001; Du-
ret et al. 2002; Lercher and Hurst 2002a; Lercher et al. 2002a). To
distinguish mutation from fixation biases, we also analyze sepa-
rately GC-poor sequences. Finally, as gene duplications often oc-
cur in tandem and as it is possible that the two resulting proteins
are under similar purifying selection, neighboring duplicates
could also contribute to local similarity in the rate of protein
sequence evolution. Although some prior analyses control for
the presence of tandem gene duplications (Williams and Hurst
2000, 2002; Lercher et al. 2001), the extent of their potential
contribution to local similarity has yet to be evaluated. We report
that the effect is substantial even for very distantly related genes,
a result which underlines the necessity to eliminate them prior to
analysis.

RESULTS AND DISCUSSION

Disparity Is Not Responsible for Local Similarity
Before analyzing any putative causes of local similarity, it is first
necessary to establish that such local similarity exists. To test for
local similarity, we used a modified version of the method of
Lercher et al. (2001). For each gene, we calculated a ‘focal aver-
age’ of the substitution rate, that is, an average over the rates of
all other genes within 1 Mb of the focal gene. We denote the
correlation coefficient for all data pairs consisting of (1) the rate
of the focal gene and (2) the corresponding focal average as the
‘focal average correlation’, �. Thus, the square of � estimates what
fraction of the variation in the rate K can be explained by com-
parison to an independent regional average. We estimated statis-
tical significance by a randomization procedure (see Methods).
This method was applied to rate estimates of nonsynonymous
(KA) and fourfold degenerate synonymous (K4) substitutions
from orthologous human–mouse and mouse–rat coding se-
quences, as well as to estimates of intronic point substitution (Ki)
and indel (Kindel) rates from orthologous mouse–rat introns.
Throughout the manuscript, we restrict our analysis of synony-
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mous sites to fourfold degenerate third sites; this makes the
counting of such sites unambiguous.

Local similarity measured by � was significant for synony-
mous (K4) and nonsynonymous (KA) rates, as well as for the in-
tronic substitution (Ki) and indel (Kindel) rates (Table 1). Kumar
and Subramanian (2002) argued that local similarities in point
substitutions may be a methodological artifact, and suggested
that genes failing a disparity test should be excluded (Kumar and
Gadagkar 2001). We therefore repeated the analysis, this time
excluding genes that fail the disparity test (Pdisparity < 0.05, esti-
mated for fourfold degenerate sites and intronic sites, respec-
tively). In approximate agreement with Kumar and Subramanian
(2002), we found that 61% of orthologs failed the disparity test in
the human–mouse comparison, whereas the corresponding fig-
ure for mouse–rat was only 13%. Excluding these disparate genes,
we again found significant local similarity for all substitution
measures (Table 1, Fig. 1). From the modest reduction in � values,
we conclude that only a relatively small part of local similarity is
caused by the inclusion of disparate genes. To be conservative, all
analyzes of K4 reported below include only nondisparately evolv-
ing genes. Very similar results are obtained when including all
genes (data not shown). The notion that disparity is not a major
cause of local similarity is supported by our finding of a similarly
strong local similarity of indel rates, because indels are not ex-
pected to suffer from the same estimation problems as point sub-
stitutions. Our finding of comparable local similarities for
nucleotide substitution and indel rates is consistent with the ob-
servation that indels and point substitutions cluster in the same
regions (Hardison et al. 2003). Although this suggests that the
processes of substitution and insertion/deletion may be mecha-
nistically coupled (Ogata et al. 1996; Hardison et al. 2003), we
observe no correlation between the two rates in introns on a
within-gene scale (data not shown, c.f. Ogata et al. 1996).

In agreement with the above results, we also found a sig-
nificant correlation between intronic substitution rates (Ki)
and the synonymous substitution rate (K4) in flanking exons
(rSpearman = 0.17, P = 0.030, both for all genes and for nondispar-
ate genes). The same is reported in the human–mouse compari-
son after exclusion of fast-evolving sequence (Castresana 2002a).
A prior study failed to detect such an effect in the mouse–rat
comparison (Hughes and Yeager 1997). It has been suggested that
this may be due to a limited sample size (Castresana 2002a),

which we supported by a simulated sample size reduction of our
data (not shown).

Why does our result differ from that of Kumar and Subra-
manian (2002), who concluded that controlling for disparity
does destroy the signal of local similarity? We believe that the
crucial difference lies in the measure of local similarity. Kumar
and Subramanian examined the correlation between chro-
mosomal distance and the difference in K4 across individual, di-
rectly neighboring gene pairs. This method has at least two weak-
nesses. First, it supposes that all of the variation between genes
occurs within a chromosomal region and not between chromo-
somes. If a large part of between-gene variation is actually be-
tween chromosomes (Lercher et al. 2001; Castresana 2002b;
Ebersberger et al. 2002; Malcom et al. 2003), this method might
fail to find any signal. However, the exclusion of between-
chromosome effects (by permuting our intronic rates only within
the same chromosome) hardly decreased the significance of the
local similarity in Ki (data not shown). This confirms the previous
notion that a substantial part of local similarity in point substi-
tution rates is independent of chromosomal effects (Lercher et al.
2001).

Further, the method of Kumar and Subramanian may not be
sensitive enough for a weak similarity signal. Notably, they con-
sidered only individual neighboring gene pairs. As variance in
K4 estimates is dominated by size-dependent noise (Kumar and
Subramanian 2002), the value of the difference between two
genes will have a large error component; this component may be
substantially reduced by the calculation of focal averages. Fur-
ther, restriction on next neighbors results in very low sample
sizes, especially at larger distances. We tested this through an
implementation of the method of Kumar and Subramanian
(2002). From the human–mouse data set, we first excluded dis-
parately evolving genes. We then calculated the absolute differ-
ence in K4 (|�K4|) between neighboring genes that reside in the
same syntenic region. Using a sample size similar to that of Ku-
mar and Subramanian (2002), we confirmed that local similarity
is not detectable when comparing mean K4 across windows of
different gene distances (Fig. 1; window size 200 or 500 kb). How-
ever, for distances exceeding 1.5 Mb, windows contained inad-
equate sample sizes well below 50 genes. We suggest therefore
that the protocol employed by Kumar and Subramanian (2002)
may be too prone to size-dependent error variance to detect what

Table 1. Genomic Estimates of Local Similarity in Evolutionary Rates, Assayed by the Focal Average
Correlation �

Human–mouse Mouse–rat

�a pb N �a pb N

All genes
KA 0.126 <0.0001 4596 0.055 0.0018 4116
K4 0.334 <0.0001 4284 0.183 <0.0001 3909
K4

excCpG 0.251 <0.0001 4178 0.179 <0.0001 3815
Ki — — — 0.170 <0.0001 541
Kindel — — — 0.191 <0.0001 541

Nondisparate genes
KA 0.103 0.0003 1568 0.065 0.0010 3554
K4 0.272 <0.0001 1377 0.166 <0.0001 3380
K4

excCpG 0.189 <0.0001 1292 0.173 0.0002 3298
Ki — — — 0.151 0.0016 469
Kindel — — — 0.160 0.0004 469

aFocal average correlation = correlation coefficient for data pairs, each consisting of a gene’s rate K and the mean of its
neighbors within 1 Mb.
bNumber of equal or higher � values found in 10,000 randomly rearranged genomes.
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are relatively weak effects, and also failed to take account of be-
tween-chromosome variation.

Transcription Affects K4 but Does Not Explain
Local Similarity
Any putative mutational processes associated with transcription
are only relevant if occurring in the germline, as only these mu-
tations will reach the next generation. Thus, if transcription does
affect the mutation rate, then genes transcribed in the germline
should show different substitution rates compared to genes not
transcribed in the germline. Unfortunately, we do not have large-
scale expression data for mammalian germlines. Although ge-
nomic expression data does exist for ovaries and testes (Su et al.
2002), these tissues contain a large number of somatic cells. How-
ever, we can gain insight into this issue from analysis of putative
housekeeping genes (for definitions see Methods), which should
also be expressed in germline cells. In contrast, putative tissue-

specific genes (expressed in 0 or 1 of our tissues) are unlikely to be
expressed in the germline. As predicted from the hypothesis of
transcriptionally induced repair, we found that putative house-
keeping genes have significantly lower substitution rates at four-
fold degenerate sites (Table 2). However, differences are small,
suggesting that any transcriptional effect explains only a small
part of the observed variation in substitution rates. Consistent
with this difference between tissue-specific and housekeeping
genes, and in agreement with previous findings (Duret and
Mouchiroud 2000), we also found a significant negative correla-
tion between expression breadth and K4 (Table 3).

Although the latter effect is weak, we can still ask whether
the local similarity in K4 is owing to the clustering of genes of
comparable expression breadth (either because more broadly ex-
pressed genes are more likely to be expressed also in germline, or
for other unknown reasons). To test this hypothesis, we calcu-
lated � values for K4 across all genes with valid expression esti-

Figure 1 Correlation � between substitution rates and focal averages. For K4 (A,B), only nondisparate gene pairs are included. All correlations are highly
significant (P � 0.001). The inset in (A) shows an alternative measure of local similarity as used by Kumar and Subramanian (2002).
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mates. Statistical significance was estimated by comparison of �

to 10,000 data sets obtained by randomly permuting the posi-
tions of all genes (Pall, Table 4). We then repeated the random-
ization procedure, this time permuting only gene positions
within classes of similar expression breadth (Pgroup, Table 4). If
local similarity was largely independent of expression breadth,
we expect Pgroup ≈ Pall; conversely, if expression breadth deter-
mined a large part of the regional variation in K4, we expect
Pgroup � Pall, as randomization in breadth groups would be inef-
fective in destroying local similarity. From Table 4, we conclude
that transcriptional breadth profile per se does not importantly
underpin local similarity in K4.

Might the lower K4 of housekeeping genes likely to be due to
transcription-coupled repair reducing the effective mutation rate
of germline-expressed genes? In addition to the failure of a
breadth-mediated model to explain local similarity, there are at
least two other reasons why this conclusion cannot be accepted
at face value. First, it has been suggested that this correlation is a
secondary effect caused by the KA-K4 correlation, as broadly ex-
pressed proteins are known to evolve at slower rates (Duret and
Mouchiroud 2000; Williams and Hurst 2002). If in some part KA

drives K4, by whatever mechanism, then one would need to cor-
rect for this. Indeed, when we examined residuals of K4 from a
regression on KA, the breadth-K4 correlation disappeared (for
each data set; data not shown). Correspondingly, the difference

between housekeeping (putatively germline-expressed) and tis-
sue-specific genes was much reduced for the residuals (Table 2).

Given that we are unsure whether KA does drive K4 (see
below), a better test then is to analyze germline-expressed genes
alone, and ask if their rate of expression is a good predictor of K4.
To approximate germline transcription rates for each gene, we
calculated the median expression rate for all putative housekeep-
ing genes across all (nongermline) tissues with reported expres-
sion. This measure does indeed provide a reasonable approxima-
tion of the transcription rate in tissues that are not covered by the
experiments. To show this, we performed a benchmarking test,
by excluding each of the individual tissues in turn, and calculat-
ing the median transcription rate only from the other tissues.
This measure is highly correlated with the observed transcription
rate for the excluded tissue: For each expression measure, Pear-
son’s r is above 0.5 for the vast majority of all tissues (Supple-
mental Table S1). However, when correlating this housekeeping
gene expression rate with K4, the results are ambiguous. Al-
though we do find a negative correlation for all measures and
data sets (except for human SAGE data), this correlation is non-
significant in most cases (Table 5; to escape a massive reduction
in sample size, results are given for human and mouse expression
data separately). The correlations become stronger when restrict-
ing the analysis to low-GC genes (Table 5); for the same genes, we
also find a stronger breadth-K4 correlation (Table 3). This is con-

Table 3. Correlation Between Synonymous Substitution Rate (K4) and Expression Breadth

Breadth measurea

Human–mouse Mouse–rat

r b P N r b P N

All genes
EST �0.203 <0.00001 1247 �0.063 0.00088 2759
SAGE �0.125 0.00007 1057 �0.088 <0.00001 2579
Microarray �0.187 0.00003 596 �0.057 0.0237 1592

GC�0.5
EST �0.341 <0.00001 322 �0.165 0.00011 570
SAGE �0.242 0.00011 260 �0.202 <0.00001 565
Microarray �0.339 0.00002 148 �0.090 0.098 340

aBreadth of expression was averaged over experiments in human and mouse for the human–mouse comparison, and was
obtained from mouse only in the mouse–rat comparison.
bPearson’s correlation coefficient between expression breadth and K4. Only nondisparate gene pairs were included.

Table 2. Difference of Synonymous Substitution Rate (K4) Between Housekeeping and Tissue-Specific Genes

Breadth measure

Human–mouse Mouse–rat

House-
keepinga

Tissue-
specifica �K4

b P c N
House-

keepinga
Tissue-

specifica �K4
b P c N

K4

EST 0.387 0.502 0.115 0.00077 121 0.161 0.18 0.019 0.00067 463
SAGE 0.411 0.475 0.064 0.0026 394 0.157 0.175 0.018 <0.00001 1928
Microarray 0.387 0.501 0.114 0.00005 103 0.165 0.172 0.007 0.057 789

K4 residuals from regression on KA

EST 0.024 0.055 0.047 121 �0.031 0.0099 0.0012 0.41 463 0.0087
SAGE �0.002 0 0.51 394 �0.002 0.0092 0.0065 0.032 1928 0.0027
Microarray 0.026 0.048 0.05 103 �0.022 0.0067 �0.0012 0.61 789 0.0079

aAverage K4 or average residuals of K4. Residuals were calculated from expected K4 values, which were predicted from linear regression of log(K4) on
log(KA) including all genes. Genes were classified as housekeeping/tissue-specific if supported by experiments in both human and mouse for the
human–mouse comparison, and by experiments in mouse for the mouse–rat comparison. Only non-disparate gene pairs were included.
bDifference in K4 (or residuals) between tissue-specific and housekeeping averages.
cProbability of finding an equal or greater difference in 100,000 randomized genomes.
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sistent with recent reports of a fixation bias in synonymous sub-
stitutions in GC-rich genes (Eyre-Walker 1999; Smith and Eyre-
Walker 2001; Duret et al. 2002; Lercher and Hurst 2002a; Lercher
et al. 2002a); accordingly, GC-depleted genes may be expected to
most accurately reflect mutational biases. Conversely, this result
suggests that for the most gene-dense regions, characterized by
GC4 > 0.5, systematically varying fixation biases may dominate
the transcription-coupled mutational biases examined here.

In sum, we have suggestive evidence that synonymous sub-
stitution rates of housekeeping genes may be directly affected by
rates of expression, consistent with the action of transcription-
coupled repair processes in the mammalian germline (Svejstrup
2002) or with stronger purifying selection acting on the most
abundantly expressed genes (Urrutia and Hurst 2003). However,
the effect on K4 is at most weak, and is unlikely to contribute
much to the observed patterns of local similarity in K4.

Alternative Explanations for Local Similarity in K4
As the transcription-mediated model failed to account for local
similarity in K4, we need to examine alternative hypotheses. The
rate of synonymous evolution covaries with regional GC content
(Smith and Hurst 1999; Bielawski et al. 2000; Hurst and Williams
2000; Castresana 2002b; Smith et al. 2002; Hardison et al. 2003),
although the exact form and strength of this relationship is still
a matter of debate, and seems to depend on methodology (Hurst
and Williams 2000; Bierne and Eyre-Walker 2003). There is also
evidence of a positive correlation between K4 and meiotic recom-
bination rate (Perry and Ashworth 1999; Lercher and Hurst
2002b; Filatov 2003; Filatov and Gerrard 2003; Hellmann et al.
2003), possibly indicating a mutagenic effect of recombination.
GC and recombination rates are known to covary (Eyre-Walker

1993; Fullerton et al. 2001), and it has recently been argued that
substitutional GC biases are directly associated with recombina-
tion events (Meunier and Duret 2004). Both GC and recombina-
tion rate are known to fluctuate systematically over megabase-
sized regions, suggesting that regionality in K4 may be a second-
ary effect of these variations.

We performed a multiple linear regression of K4 on recom-
bination rate and on three different GC measures for the human–
mouse alignments: GC4 (GC at fourfold degenerate sites, aver-
aged over the aligned sequences); GCi (intron GC, averaged over
the aligned sequences); and |�GCi| (absolute difference in intron
GC between the aligned sequences). We found that r2 = 0.104 of
the variation in K4 can be explained by these four variables, with
all variables contributing significantly (t-test, P < 0.001 for each
variable). When restricting this analysis to nondisparate genes,
only GC4 and recombination rate contribute significantly
(r2 = 0.077). We can ask to what extent this covariation contrib-
utes to local similarity in K4, by examining the residuals of the
multiple regression. We found that � for K4 is reduced from 0.34
to 0.28 when analyzing the residuals (nondisparate genes: 0.30 to
0.23). Thus, part of the regionality in K4 can be attributed to
effects of GC and recombination rate variation in the human–
mouse comparison, even after exclusion of genes exhibiting het-
erogeneous substitution patterns.

As we were unable to obtain fine-scale recombination rate
estimates for rodents, we only tested the influence of the differ-
ent GC measures on the variation of K4 in the mouse–rat com-
parison. In contrast to the above result, the fraction of K4 varia-
tion explained by GC is very low (r2 = 0.002); only GC4 contrib-
utes significantly (P = 0.016). This is practically unchanged when
restricting the analysis to nondisparate genes (r2 = 0.003). Corre-

Table 4. Effect of Expression Breadth on Significance of Local Similarity (�) in K4

Breadth measurea

Human–mouse Mouse–rat

� Pall
b Pgroup

c N � Pall
b Pgroup

c N

EST 0.290 <0.0001 <0.0001 933 0.188 <0.0001 <0.0001 2544
SAGE 0.323 <0.0001 <0.0001 732 0.177 <0.0001 <0.0001 2351
Microarray 0.506 <0.0001 <0.0001 320 0.173 <0.0001 <0.0001 1317

aBreadth of expression was averaged over experiments in human and mouse for the human–mouse comparison, and was
obtained from mouse only in the mouse–rat comparison. Only nondisparate gene pairs were included.
bPall is the fraction of equal or greater � in datasets obtained by randomly permuting all genes.
cPgroup is the fraction of equal or greater � in datasets obtained by randomly permuting genes within classes of similar K4.

Table 5. Correlation Between Expression Rate and K4 for Putative Housekeeping Genes

Rate measurea

Human–mouse Mouse–rat

r P N r P N

All genes
SAGE (human) 0.026 0.761 141 — — —
Microarray (human) �0.134 0.079 172 — — —
SAGE (mouse) �0.068 0.388 166 �0.003 0.96 305
Microarray (mouse) �0.029 0.684 196 �0.050 0.33 391

GC4�0.5
SAGE (human) �0.446 0.006 37 — — —
Microarray (human) �0.038 0.838 32 — — —
SAGE (mouse) �0.401 0.005 47 �0.089 0.43 80
Microarray (mouse) �0.137 0.319 55 �0.006 0.96 93

aRate measures were not averaged over human and mouse in this table to retain acceptable sample sizes. Only nondis-
parate gene pairs were included.
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spondingly, local similarity was unchanged when analyzing the
multiple regression residuals.

One possible reason for a relationship between K4 and GC
content is the hypermutability of CpG dinucleotides. Indeed, it
has been suggested that mammalian isochores (regions of vary-
ing GC content) are the historical consequence of varying sub-
stitution rates at CpG sites (Arndt et al. 2003). To exclude the
influence of these sites, we also calculated K4

excCpG after remov-
ing all sites contributing to a CpG dinucleotide in any of the
aligned sequences. Local similarity is largely unaffected by this
(Table 1), suggesting that a substantial fraction of regional varia-
tion in the mutation rate is caused by processes at nonCpG sites.
Consistent with this supposition, all results reported in Tables
2–7 are essentially unchanged when replacing K4 with K4

excCpG

(Supplemental Tables S2–S6).
It is interesting to note that we found local similarity in K4

to be strongest for the subset of genes with high GC (human–
mouse, GC4 > 0.7: � = 0.473, P < 0.0001, n = 234, nondisparate
only). Regions (‘isochores’) of high GC are also known to exhibit
much more small-scale variation in GC than regions of lower GC
content (Nekrutenko and Li 2000). It has been suggested that this
variation is caused by biased gene conversion at local hotspots of
recombination (Meunier and Duret 2004). Thus, it is conceivable
that local similarity in K4 is indeed caused by recombination-
induced effects. Our inability to confirm such a relationship may
then simply reflect the fact that recombination rate estimates are
regional averages (Kong et al. 2002) and are only a poor predictor
of the ancestral recombination events that shaped substitution
patterns. This view is consistent with a recent study that found a
very strong correlation between human recombination rates and
the GC bias of recent nucleotide substitutions (Meunier and Du-
ret 2004).

Breadth of Expression Has, at Most, a Weak Effect
on Local KA Similarity
Before we can assess the contribution of expression-mediated ef-
fects on KA, we must first exclude duplicated genes from the
analysis (Williams and Hurst 2000; Lercher et al. 2001). As du-
plicated genes may often be subject to similar selective con-
straints, their rates of amino acid substitution will be correlated.
Duplicated genes often reside close to each other and may thus
contribute to a signal of local similarity. We compared the KA

between the two copies of 472 human–mouse duplicate gene
pairs, identified by significant sequence similarity (pairwise blast
expectation value E � 0.001), with at most 1 Mb distance be-
tween them on a human autosome. As expected, the KA values of
duplicated genes are strongly correlated (r = 0.54). Surprisingly,
the same protocol showed a much weaker similarity of duplicate
genes in the mouse–rat comparison (r = 0.26). It is interesting to
note that KA values are still correlated between very distantly
related sequences: When sorting neighboring gene pairs (those

within 1 Mb of each other) into subsets of 100 pairs according to
pairwise BLAST score, we found that the correlation between KA

values was significantly increased for all sets with expectation
values E < 0.01 (Lercher et al. 2002b). To test the effect of these
correlations on the local KA similarity, we recalculated �, this
time excluding all putative duplicates (Table 6). � was reduced by
∼50% in both the human–mouse and mouse–rat comparisons.
Local similarity was still significant in the human–mouse com-
parison. However, in the mouse–rat comparison, local similarity
in KA became nonsignificant after strict removal of duplicate
genes. In the mouse–rat comparison, local KA similarity (before
duplicate exclusion) was enhanced when restricting the analysis
to low-GC genes, and was strengthened by further excluding
genes with disparate substitution patterns (� = 0.21). For this sub-
class of genes, local similarity remained significant even after
exclusion of duplicates (� = 0.17, P = 0.0023).

We then proceeded to analyze the influence of gene expres-
sion on KA. In agreement with previous studies (Duret and
Mouchiroud 2000; Williams and Hurst 2002), our analysis con-
firmed a significant negative correlation between different mea-
sures of expression breadth and the rate of protein evolution, KA

(Table 8).Depending on the data sets used, between 2% and 20%
of the variation in KA can be predicted by a gene’s expression
breadth. Although these numbers appear relatively low com-
pared to Figure 1 in Duret and Mouchiroud (2000), it must be
kept in mind that the latter study grouped genes according to
similar expression breadth, and thereby filtered out a large pro-
portion of additional variation. When comparing different ex-
pression assays, we found that the strongest correlations are con-
sistently seen with EST data; this may be a simple consequence of
the large number of tissues for which EST data are available.
Further, it is striking that the KA-breadth correlation is enhanced
when restricting the analysis to low-GC genes (Table 8). This is
reminiscent of a similar effect for K4 (Table 3).

Next, we analyzed local similarity (�, excluding duplicate
genes) for all genes with valid measures of expression and KA,
assessing statistical significance by comparison to 10,000 ran-
domized data sets. To test whether regional variation in expres-
sion breadth is responsible for part of the local similarity in KA,
we repeated the randomization procedure, this time permuting
gene positions only between genes with similar breadth of ex-
pression (Table 9). The local similarity measure � in Table 9 is
generally low, probably due to the sample-size reductions asso-
ciated with the expression data sets. Controlling for expression
breadth has practically no influence on the estimated statistical
significance of � (Pall ≈ Pgroup). We conclude that, at most, only a
small part of local similarity in KA can be explained by the co-
variation with expression breadth, and alternative explanations
must be sought.

Alternative Explanations for Local Similarity in KA
As commonly described (Li 1997; Smith and Hurst 1999), a size-
able part of the variation in the protein sequence rate of evolu-
tion (KA) is predicted by K4, the substitution rate at fourfold de-
generate sites (human–mouse: r = 0.39, P < 0.00001, n = 4726;
mouse–rat: r = 0.23, P < 0.00001, n = 4092; but see also Bielawski
et al. 2000). This covariation has been attributed, in part, to cor-
related (but not necessarily simultaneous) substitutions between
neighboring synonymous and nonsynonymous sites (tandem
substitutions; Smith and Hurst 1999; Duret and Mouchiroud
2000). When, for example, mouse–rat genes with no tandem sub-
stitutions are analyzed, there is no KA-K4 correlation (Smith and
Hurst 1999). When following the method of Duret and Mouchi-
roud (2000), by excluding all fourfold degenerate changes neigh-
boring a substitution at the first site of the next codon, we find

Table 6. Local Similarity in Nonsynonymous Substitution Rate
KA, Including All Genes or Excluding Duplicate Genes

Human–mouse Mouse–rat

� P N � P N

All genes 0.126 <0.0001 4596 0.055 0.0018 4116
Nonduplicatesa 0.065 0.0002 4515 0.022 0.087 3995

aGenes were excluded from the focal average if they exhibited sig-
nificant sequence similarity to the focal gene (BLAST expectation
value E <0.02; Lercher et al. 2001).
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that the correlation is substantially reduced (human–mouse:
r = 0.13, P < 0.00001, n = 4749; mouse–rat: r = 0.13, P < 0.00001,
n = 4085). However, this could be an overestimate of the impact
of tandem substitutions: even if neighboring substitutions occur
independent of each other, fast-evolving genes will have far more
tandem substitutions than slowly evolving genes (∼KA � K4).
Thus, we will take out disproportionately more synonymous sub-
stitutions for fast-evolving genes than for slowly evolving genes,
which of course reduces the correlation between KA and K4.

To get an unbiased estimate of the underlying mutation rate
excluding any potential tandem substitution effects, we must
adjust not just the number of substitutions, but also the number
of fourfold degenerate sites that are used to calculate substitu-
tions per site. Thus, we recalculated K4, this time excluding all
fourfold degenerate sites (with or without substitutions) that
were followed by a codon with a substitution at its first site. This
new K4� was still correlated with KA (human–mouse: r = 0.28,
P < 0.00001, n = 4725; mouse–rat: r = 0.18, P < 0.00001,
n = 4064).

In sum, although tandem substitution biases appear to exist
[K4� is on average 3% (human–mouse) or 1.6% (mouse–rat) lower
than K4], these biases cannot fully account for the KA-K4 corre-
lation. This finding is consistent with a number of recent analy-
ses, which, in contrast to early reports (Averof et al. 2000), find
evidence for only a very low rate of doublet mutations (Silva and
Kondrashov 2002; Kondrashov 2003; Smith et al. 2003). In fur-
ther support of our conclusion that the KA-K4 correlation is not
due to mechanistic coupling of substitutions of neighboring
sites, we also found a significant positive correlation between KA

and Ki (the substitution rate within introns of the same gene,
rSpearman = 0.248, P = 0.005, n = 127).

The strong KA-K4 correlation demonstrated above suggests
that much of the local similarity in KA may be explained by the
local similarity in K4. To test this hypothesis, we calculated �

values for KA across all genes with valid estimates for KA and K4,
excluding duplicate genes from the focal averages. Statistical sig-
nificance was estimated by comparison of � to 10,000 data sets
obtained by randomly permuting the positions of all genes (Pall,

Table 7). We then tested for the effect of K4, by repeating the
randomization procedure, this time permuting only gene posi-
tions within classes of similar K4 (Pgroup, Table 7). For the human–
mouse comparison, significance of the � value was markedly re-
duced, and became marginally significant (all genes; nonsignifi-
cant when � was calculated as Spearman’s rank correlation
coefficient) or nonsignificant (nondisparate genes or GC � 0.5).
Thus, after the exclusion of duplicate genes, the majority of local
KA similarity in the human–mouse comparison can be attributed
to the genes’ synonymous substitution rates.

Consistent with an earlier analysis (Williams and Hurst
2000), we obtained a markedly different result in the mouse–rat
comparison (Table 7). Significance of the � value hardly depends
on randomization protocol (Pall ≈ Pgroup), suggesting that the un-
derlying mutation rate contributes very little to the local simi-
larity among rodents. In fact, local similarity in KA was nonsig-
nificant for the mouse–rat comparison after removal of duplicate
genes (Table 6). What causes this difference between the two
species comparisons? If we accept the notion that a coupling of
KA and K4 is responsible for the local similarity observed in the
human–mouse comparison, this suggests that the KA-K4 coupling
is reduced in rodents. One possible reason may be that the effec-
tive population sizes of rodents are larger, and thus fewer amino
acid substitutions are effectively neutral; however, further analy-
ses are necessary to resolve this issue.

A Model for the Strength of Local Similarity in KA
In apparent contrast to our finding that transcription does not
have a significant role in local KA similarity, a previous analysis of
mouse–rat orthologs reported that local similarity in KA is most
pronounced in the vicinity of narrowly expressed (tissue-specific)
genes (Williams and Hurst 2002). This we have confirmed for our
human–mouse data set. When analyzing separately each of five
breadth classes, we found significant local similarity only for the
most narrowly expressed genes (excluding duplicate genes:
� = 0.084, P = 0.010 including Bonferroni correction for multiple
tests, n = 1241). The local similarity estimated for this subset of

Table 7. Effect of K4 on Significance of Local Similarity in KA (Duplicate Genes Excluded)

Human–mouse Mouse–rat

� Pall
a Pgroup

b N � Pall
a Pgroup

b N

All genes 0.053 0.0008 0.046 4191 0.026 0.063 0.093 3787
Nondisparate 0.059 0.025 0.21 1312 0.039 0.018 0.029 3264

aPall is the number of equal or greater � in datasets obtained by randomly permuting all genes.
bPgroup is the number of equal or greater � in datasets obtained by randomly permuting genes within classes of similar K4.

Table 8. Correlation Between Expression Breadth and Nonsynonymous Substitution Rate, KA

Breadth measure

Human–mouse Mouse–rat

r P N r P N

All genes
EST �0.286 <0.00001 3451 �0.204 <0.00001 3305
SAGE �0.197 <0.00001 2925 �0.158 <0.00001 3075
Microarray �0.242 <0.00001 1624 �0.133 <0.00001 1909

Nondisparate & GC�0.5
EST �0.463 <0.00001 322 �0.341 <0.00001 570
SAGE �0.276 <0.00001 260 �0.200 0.00001 565
Microarray �0.363 <0.00001 148 �0.225 0.00003 340
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putative tissue-specific genes is actually higher than that esti-
mated for the total data set (� = 0.065). Does this imply a direct
coupling of gene expression with regionality in KA? We wish to
suggest that this might not necessarily be so.

Consider a simple model supposing that the local similarity
in KA (excluding duplicate gene effects) is driven by the local
similarity in the mutation rate (Malcom et al. 2003). Let us fur-
ther assume that K4 is somehow coupled to the mutation rate,
which as noted above need not be true. If one subsamples any
given group of genes, the extent to which one will detect local
similarity will then depend on the extent to which, within the
subsample, KA is coupled to K4. Consider now two extremes: (1)
a set of proteins that evolve neutrally (KA = K4), and (2) another
set under extreme purifying selection (KA = 0 for all). In the
former, KA and K4 are perfectly coupled; in the latter there is no
coupling. More generally, when we select subsamples under dif-
ferent degrees of purifying selection, then lower selection pres-
sures will correspond to a higher proportion of effectively neutral
amino acid substitutions, and thus to stronger KA-K4 coupling. If
narrowly expressed genes are under weaker purifying selection
(as appears to be the case, see above), then we expect a tighter
coupling of KA and K4, and consequently a stronger signal of
local similarity when only these genes are analyzed. Our finding
that the KA-K4 correlation cannot be accounted for by tandem
mutations is of importance for this interpretation, as otherwise
one might suppose that KA drives K4, not the other way around.

As expected from our model, the KA-K4 coupling is strongest
in tissue-specific genes: r = 0.42, compared to r = 0.39 when in-
cluding all genes (human SAGE data). This observation also
strengthens the notion that the coupling is caused by a fraction
of effectively neutrally evolving amino acid positions. If alterna-
tively the coupling was due to similar selection pressures on both
nonsynonymous and synonymous sites, then the coupling
should be stronger when considering the full range of expression
profiles.

We applied two additional tests for our model. We first
asked whether the observed strength of the KA-K4 coupling in
randomly drawn subsets of our data predicts the strength of
local similarity found within the subset: this is indeed the case
(rSpearman = 0.083, P = 0.004, from examining the dependence of
� on the correlation coefficient r between KA and K4, for 1000
randomly drawn subsets of 1000 genes). Secondly, we compared
the quarter of our data set with the highest KA/K4 to the quarter
exhibiting the lowest KA/K4; these groups putatively correspond
to genes under low and high selective pressures, respectively. As
expected, we found stronger similarity in the genes with higher
KA/K4 (excluding duplicate genes: � = 0.132 vs. 0.084); this group
also exhibits stronger KA-K4 coupling (r = 0.62 vs. 0.51).

Thus, the stronger local similarity for narrowly expressed
genes might be explained as a consequence of the stronger KA-K4

coupling, which in turn is due to a fraction of sites that evolve
effectively neutrally. There is, however, at least one problem with
the null model, this being that the local similarity in K4 extends
over many megabases (Smith and Lercher 2002), compared to
less than 3 Mb for local similarity in KA (Lercher et al. 2001). The
local similarity in K4 decreases, however, with increasing dis-
tance. It is thus possible that at larger distances secondary effects
on KA are present, but are too small to be detected.

In sum, we have demonstrated that transcription has little
to do with establishing local similarity in rates of evolution. Local
similarity in KA appears to be largely due to tandemly duplicated
genes, and to the coupling of KA to the mutation rate for sites
encoding amino acids that evolve neutrally. In turn, the local
similarity in K4 may be largely due to recombination-associated
effects.

METHODS
Accession numbers of orthologs and associated data used
for the analyses are available as online Supplemental data.

Orthologous Coding Sequence Identification
We obtained lists of putative human–mouse and mouse–rat or-
thologous genes, identified through reciprocal best BLAST hits,
from Ensembl (http://www.ensembl.org; Hubbard et al. 2002). If
a gene in one species matched more than one gene in the other
species, indicating a lineage-specific gene duplication, it was ex-
cluded from further analysis. This resulted in primary data sets of
13,015 (human–mouse) and 12,637 (mouse–rat) orthologous
gene pairs. We excluded human transcripts without known po-
sition on the UCSC November 2002 genome assembly (http://
genome.ucsc.edu), and mouse genes without known position on
the Ensembl map. As evolutionary forces affecting genes located
on the sex chromosomes differ from those affecting autosomal
genes, we restrict our analyses to genes located on human or
mouse autosomes.

For each gene, we then downloaded all transcripts from
Ensembl. We excluded those transcripts where the coding se-
quence lacked a valid start or stop codon. For each orthologous
gene pair, we selected matching transcripts. This was done under
the assumption that a large proportion of genes is alternatively
spliced, and that two transcripts corresponding to analogous
splice forms should have similar lengths. We first searched for
the longest pair of transcripts with a length difference of at most
1%; if no transcript pair fulfilled this criterion, we selected the
transcript pair most similar in length. If all transcript pairs dif-
fered by more than 5% in their length, we discarded the gene.
This procedure resulted in sets of 5212 (human–mouse) and 4442
(mouse–rat) transcript pairs, where transcript pairs will generally
correspond to analogous splice forms. For the human–mouse
comparison, distances were measured between transcription
midpoints of genes on the human UCSC November 2002 assem-

Table 9. Effect of Expression Breadth on Significance of Local Similarity in KA (Duplicate Genes Excluded)

Breadth measurea

Human–mouse Mouse–rat

� Pall
b Pgroup

c N � Pall
b Pgroup

c N

EST 0.047 0.0072 0.016 3115 0.023 0.10 0.069 3029
SAGE 0.041 0.032 0.044 2572 0.041 0.024 0.020 2740
Microarray �0.037 0.90 0.92 1209 0.038 0.071 0.049 1559

aBreadth of expression was averaged over experiments in human and mouse for the human–mouse comparison, and was
obtained from mouse only in the mouse–rat comparison.
bPall is the number of equal or greater � in datasets obtained by randomly permuting all genes.
cPgroup is the number of equal or greater � in datasets obtained by randomly permuting genes within classes of similar
expression breadth.
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bly; for the mouse–rat comparison, we used the Ensembl mouse
map (build 30).

Nucleotide Alignments and Evolutionary Distances
Transcript coding sequences were first translated to amino acid
sequences. These were aligned using Clustalw (Thompson et al.
1994) with default settings. The amino acid alignments were
then used as templates to align the nucleotides. We calculated
nonsynonymous distances (KA) using the method of Li (1993)
and the Kimura two-parameter model. The neutral substitution
rate was estimated from the distance at fourfold degenerate sites
(K4), using only codons with no changes at other sites. These
rates were corrected for multiple hits with a model that accounts
for compositional biases and for substitution pattern differences
(disparity) between the two sequences (Tamura and Kumar
2002). We defined gene classes of similar K4 by dividing the
ranked data set into 10 equally sized groups.

For intronic substitution rates, only introns located between
coding exons were analyzed. Two methods were used for aligning
introns: manually (by-eye) and MCALIGN, a stochastic maxi-
mum likelihood-based (ML) program that incorporates a Monte
Carlo algorithm (http://homepages.ed.ac.uk/eang33/
mcinstructions.html). We executed the program using the ro-
dent intron parameters provided. Seven large introns (>7 kb)
proved too difficult to align. Our final intron data set consisted of
136 orthologous genes possessing 560 introns. For further details
see Chamary and Hurst (2004).

Within introns we excluded the first and last 20 base pairs,
as these appear to be subject to purifying selection (Majewski and
Ott 2002; Chamary and Hurst 2004). To obtain genic Ki values,
intronic substitution rates were weighted according to the num-
ber of bases compared per individual intron alignment (Smith
and Hurst 1998). The indel rate, Kindel, was calculated as the total
number of indels per base pair of the alignment. After estimating
the Ki per intron by the two alignment methods (manual and
from the ML protocol), we defined a conservative set and a liberal
set. For any given intron, these two sets contain the alignment
that yields the lower or higher Ki respectively, providing two
estimates for the rate of evolution of each intron. We here report
results only for the conservative set; very similar results were
obtained for the liberal set, as well as for an additional set that
consists of only slow-evolving regions (data not shown; Castre-
sana 2000; http://www1.imim.es/∼castresa/Gblocks/Gblocks.
html).

GC Content and Recombination Rates
For each gene, the guanine + cytosine content at fourfold
degenerate sites, GC4, was averaged over the two aligned
coding sequences. We further calculated intron GC for each
transcript from the compositional difference between mRNA
and exon sequences (downloaded from Ensembl), as
GCintron = (GCmRNA � lengthmRNA � GCexons � lengthexons) /
(lengthmRNA � lengthexons). From this, we calculated GCi

avg, the
average over the two aligned transcripts, and GCi

diff, the absolute
difference between the two transcripts. Recombination rate esti-
mates for humans were obtained from the UCSC genome
browser (http://genome.ucsc.edu), and are based on the deCODE
data (Kong et al. 2002).

Expression Breadth and Rate

EST Data
Human and mouse Ensembl genes were mapped to NCBI Uni-
Gene clusters (Schuler et al. 1996; UniGene build 161, obtained
from NCBI at ftp://ncbi.nlm.nih.gov/repository/UniGene) via
RefSeq sequence IDs. Only unambiguous pairings were retained.
dbEST library accessions for all ESTs mapping to these clusters
were extracted from UniGene. For each library mapping to at
least 50 UniGene clusters, the associated tissue type was obtained
from dbEST annotation (http://ncbi.nlm.nih.gov/dbEST). We
kept only libraries based on well defined, nondisease tissue types.
Libraries representing the same tissue type were joined, and tis-

sues matching <500 Ensembl genes were excluded. This resulted
in a data set containing 14,559 genes expressed in at least one out
of 55 tissue types for humans, and in a second set containing
11,418 genes expressed in at least one out of 49 tissue types for
mouse. For each gene, breadth of expression was estimated as the
fraction of tissues with an observed EST.

SAGE Data
Serial Analysis of Gene Expression (SAGE) data (Velculescu et al.
1995) was obtained from SAGEmap (Lash et al. 2000) at NCBI
(ftp://ncbi.nlm.nih.gov/pub/sage). The data sets were curated to
avoid possible GC biases in SAGE libraries, following the ap-
proach of Margulies et al. (2001), by removing libraries with
mean tag GC > 0.5. The resulting SAGE tag/tissue data sets were
based on 40 libraries representing 19 nondisease tissues (human),
and on 23 libraries representing nine nondisease tissues (mouse).
Tag counts for each data set were converted to relative values
(cpm, counts per million) after joining all libraries representing
the same tissue type. If tags were found only once in one tissue
type, we discarded the observation as a likely sequencing er-
ror. These data sets were cross-linked to the mRNA sequences in
RefSeq (ftp://ncbi.nlm.nih.gov/refseq), by extracting the 3�-most
NlaIII and Sau3A SAGE tags for each human and mouse mRNA.
These were then cross-linked to Ensembl genes. We disregarded
all tags mapping to more than one Ensembl gene, and excluded
the associated genes from further analysis. If several tags mapped
to the same gene (representing alternative splice forms), we used
maximum cpm in each tissue. In human, we obtained reliable
SAGE tags for 11,507 genes, with 7285 expressed in at least one
tissue. In mouse, we collected expression data for 10,480 genes,
of which 5016 were expressed in at least one tissue. For each
gene, we calculated breadth of expression as the fraction of tis-
sues with cpm > 0. Rate of expression was defined as cpm in each
tissue.

Microarray Data
Normalized microarray expression data based on Affymetrix
chips for 7315 human and 5971 mouse genes were obtained from
Su et al. (2002). Human data were sorted into 28 nonredundant
tissue types, encompassing 63 replicate hybridizations. Mouse
data for 45 tissue types were based on 98 replicate hybridizations.
For each tissue, the mRNA expression level (termed ‘expression
rate’ to be consistent with SAGE terminology) was estimated as
the mean across replicates. Because there is no unambiguous way
to distinguish expressed from nonexpressed data in this type of
experiment, we based our breadth measure on observed expres-
sion rates, as breadth = (average mRNA expression level across
tissues) / (maximum mRNA expression level across tissues).
Breadth was set to 0 if the mRNA expression level was <50 in all
tissues; this low level could be chosen because our method effec-
tively smoothes out experimental error by joining information
across tissues. We also tried other breadth measures (such as de-
fining genes with level < 100 as nonexpressed, and genes with
level > 200 as expressed; Su et al. 2002), with very similar results
(data not shown).

Definition of Breadth Classes
For the analysis in similar breadth classes, we subdivided the data
set into classes of width 0.05. As the highest breadth classes con-
tain the lowest numbers of genes, we further joined these until
the highest class contained at least 20 genes. For further analysis
of subgroups of genes (nondisparate, low-GC), we joined neigh-
boring classes until each class contained at least 10 genes.

All expression assays are biased against genes expressed at
low levels, which may not be detected unless very high numbers
of ESTs, SAGE tags, or replicate hybridizations are analyzed. For
this reason, we expect many cases where absence of gene expres-
sion is wrongly inferred from the data. Accordingly, we must
allow for false negatives in some tissues when selecting putative
housekeeping genes. For microarray data, we treated all mRNA
expression levels <100 as nonexpressed, all >200 as expressed,
and all other as unknown (Su et al. 2002). We conservatively
labeled those genes without nonexpressed tissues as putative
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housekeeping genes (human: 8.5% of genes; mouse: 11.1%).
Based on this analysis, we estimated that at least 10% of all genes
should perform housekeeping functions. For EST and SAGE data,
we selected corresponding thresholds of observed expression
breadth for putative housekeeping genes: human SAGE, 0.7
(7.6% of genes); mouse SAGE, 0.5 (9.0%); human EST, 0.52
(9.7%); mouse EST, 0.6 (7.9%). In all assays, putative tissue-
specific genes were those with reported expression in 0 or 1 of our
tissues.

For the analysis of local similarity within different breadth
classes, we classified genes according to the number of tissues
with expression reported in human SAGE experiments: 0–1 (tis-
sue-specific), 2–4, 5–8, 9–13, and 14–19 (broadly expressed).

Focal Average Correlation (�) and Statistics
In a modification of the method of Lercher et al. (2001), we first
calculated focal averages of substitution rates. For each gene, we
identified all other genes within 1 Mb along the chromosome,
and calculated their mean substitution rate. On average, each
gene had eight and nine such neighbors in the human–mouse
and mouse–rat comparisons, respectively. When including only
nondisparately evolving gene pairs, this was reduced to four and
eight genes, respectively. When restricting the analysis to a cer-
tain class of genes, we included only focal genes and only neigh-
boring genes within the same class. We then calculated Pearson’s
correlation coefficient across all data pairs consisting of the rate
of a gene and the corresponding focal average; we denote this
focal average correlation by �. A randomization protocol was em-
ployed to assess statistical significance. Gene positions were ran-
domly permuted N0 = 10,000 times, and �rand was calculated for
each random data set. nP was the number of random data sets for
which �rand � �. From this, we estimated P = (nP + 1) / (N0 + 1).
This protocol maintains the original data structure; in particular,
it leaves the distribution of neighbors unchanged.

To assess the correlation of Ki or Kindel values across different
introns of the same gene, we similarly chose a focal intron and
defined the focal average as the mean over all other introns in
that gene. We then calculated Spearman’s correlation coefficient
(�) for data pairs consisting of the focal introns and their focal
average. Statistical significance was estimated as above.

Throughout the paper, r denotes Pearson’s correlation coef-
ficient. Statistical significance was estimated by randomly per-
muting the values in one of the two columns. Repeating this
N0 = 100,000 times, we counted the number of times nP when
rrand

2 � r2, where rrand is the correlation coefficient for the ran-
domized data. From this, we estimate a two-sided P = (nP + 1) /
(N0 + 1). All correlation and focal average analyzes were also per-
formed for Spearman’s rank correlation coefficient, with very
similar results (data not shown).

Before calculating linear regressions, we log-transformed
values for substitution rates and GC measures.
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