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Abstract. Accurate modelling of the carbon cycle strongly rise in atmospheric C& which causes further global warm-
depends on the parametrization of its underlying processesng (Matthews et a|.2007). The quantification of the carbon
The Carbon Cycle Data Assimilation System (CCDAS) cancycle-climate feedback is therefore important for determin-
be used as an estimator algorithm to derive posterior parameng the magnitude of future climate change. However, there
ter values and uncertainties for the Biosphere Energy Transis much uncertainty about the size of natural sinks of the ter-
fer and Hydrology scheme (BETHY). However, the simulta- restrial carbon cycle, which in turn has a major impact on
neous optimization of all process parameters can be challenghe uncertainty of climate predictionZdehle et al.2005
ing, due to the complexity and non-linearity of the BETHY Denman et aJ.2007). The large variations in the prediction
model. Therefore, we propose a new concept that uses erof the future atmospheric GQoad result from differences
semble runs and the adjoint optimization approach of CC-between modelsQramer et al. 1999 Friedlingstein et aJ.
DAS to derive the full probability density function (PDF) for 2006, but also from uncertainties of the process parame-
posterior soil carbon parameters and the net carbon flux at thiers of the terrestrial ecosystem models (TEM&drr and
global scale. This method allows us to optimize only thoseHeimann 2001).
parameters that can be constrained best by atmospheric car- The increase in the complexity of TEMs over recent years
bon dioxide (CQ) data. The prior uncertainties of the re- has also led to an increase in the number of parameters.
maining parameters are included in a consistent way througlPrior parameter values are usually based on “expert knowl-
ensemble runs, but are not constrained by data. The finaédge”, which in some cases is little more than an informed
PDF for the optimized parameters and the net carbon fluxguess. Furthermore, even those parameters that have clear
are then derived by superimposing the individual PDFs foranalogues iin the observed system are often not directly re-
each ensemble member. We find that the optimization withiated to the values derived from laboratory experiments or
CCDAS converges much faster, due to the smaller number o§jte-scale experiments. Parameter optimization methods are
processes involved. Faster convergence also gives us muclery useful in this context: they provide a way of constrain-
increased confidence that we find the global minimum in theing the model parameters against observations and in this
reduced parameter space. way reduce parameter uncertainties.

The Bayesian approach has been shown to provide a pow-
erful and convenient framework for combining prior knowl-
1 Introduction edge about parameters with additional information, in par-

ticular observationsRayner et al.2009. The resulting in-

The terrestrial biosphere plays an important role in the globaverse problem expressed by Bayes’ theorem can be solved in
carbon cycle and has a great impact on the accumulation oflifferent ways, for example through Monte Carlo inversion
carbon dioxide (C®) in the atmosphere. Feedbacks between(Sambridge and MosegaaD03) or variational data assim-
the carbon Cyc]e and climate change, genera”y known aélation. Monte Carlo inversion methods such as the Markov

carbon-climate feedbacks, have the potential to accelerate tHehain Monte Carlo (MCMC) method are able to find an op-
timal solution by sampling the posterior probability density

_ function (PDF) of the parameters directly. They are easy to
Correspondence tol. Ziehn implement and require no assumptions about the model (i.e.
m (tilo.ziehn@bristol.ac.uk) continuity). However, they may require a very large sample
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size which is not always feasible due to computational lim-the fraction of Absorbed Photosynthetically Active Radiation
itations (i.e. long computing time of TEMs). Variational (fAPAR) for optimizing parameters controlling soil moisture
data assimilation, such as the four-dimensional variationaknd phenologyKnorr and Schulz200J). In the second step,
scheme (4-D-Var), allows one to combine observational datasoil moisture and leaf area index (LAI) fields are provided
with a model. It uses derivative code (i.e. the adjoint of theas inputs for a reduced version of BETHY, in the follow-
model) for the optimization of the parameters and thereforeing referred to as CarbonBETHY. This version is used to as-
requires the model to be differentiable with respect to all pa-similate atmospheric Cconcentration observations from
rameters. Although the 4-D-Var approach is very efficienta large number of observation stations for optimizing pho-
in most cases, the optimization might not always convergeosynthesis and soil carbon parameters and to derive their
in time or might only identify a local minimum. These is- posterior uncertaintieR@ayner et al.2005 Scholze et a.
sues arise due to the complexity and non-linearity of state-of2007).
the-art TEMs and the potentially high-dimensional parame-
ter space. 2.1 Data assimilation

In this contribution we address the convergence is-
sue of the optimization scheme in the 4-D-Var approach
as used in the Carbon Cycle Data Assimilation System
(CCDAS) Rayner et al.2005 and propose a new con-
gig;ﬁiredse;;v;wg|;hbear.?.§&rll(xlg]25 gfﬁ rv\?: E?ues:[eorrilj r;c:]tg:]geewith the probability distribution of the.observz:;\tions given the
TEM, the Biosphere Energy Transfer and Hydrology Schemeparametersff(_dx). n .ord.er to determine the Inverse (poste-
(BETHY) (Knorr, 2000, the approach is universal and can rior) probablllty d.lstrlbutlon of the parameters given the ob-
be applied to any other model. The main idea is that weS€"VationsP (x|c):
only optimize a subset of parameters, i.e. those controlling 1
the heterotrophic respiration (in the following called soil car- Pxle)= Zp(clx)P(x)' @)
bon parameters), because they are best constrained by atmo-The factor ¥4 is a normalisation constant and in-
spheric CQ concentration observations as demonstrated byjependent of the parametets In many cases a normal
Rayner et al(2005 and Scholze et al(2007. The prior  distribution is assumed for the prior parameter values and the
uncertainties of the remaining parameters, i.e. those relategbservations. This Gaussian assumption has the advantage
to net primary productivity (NPP), are included through en- that only the mean and covariance have to be provided in
semble runs and are therefore not constrained by the obsegrder to describe the prior probability distribution of each

vations. This new concept allows us to treat all parameter/ariable. Applying a normal distribution to Eql)(leads to
uncertainties in a consistent way. the following expression:

The Bayesian approactTgrantola 1987, 2005 provides

a consistent framework for constraining model parameters
against observations This framework enables us to com-
pine the prior probability distribution of the parameté@yér)

2 Materials and methods P(xle) = %exp(—%(cM o C em _c)>

The 4-D-Var data assimilation scheme has been successfully

applied within CCDAS to constrain process parameters in exp(—}(x—xo)TCx 1(x_x0)) )
a TEM. CCDAS can be used in various modes. For exam- 2 0 ’

ple, in calibration mode it serves as an estimator algorithm‘,\,hereCNI — M(x) are the modelled observations. The co-

for a set of photosynthesis, autotrophic and heterotrophig,gyiance matrice€, andC,, express the uncertainty of the

respiration process parameters by using automatically gengpservations: and the model parameter priarg, respec-

e_rated adjoint code (first derivat.ive) for parameter optimiza—tive|y_ We are usually interested in the maximumps|c),

tion. In Hessian mode, the Hessian model code (second ordggnich will give us the most likely set of parameter values.

derivative) is used for estimating posterior parameter uncerThis can be found in two ways: we can either maximize

tainties. As its ecosystem model, CCDAS uses the BETHYEq () using Monte Carlo inversion, or we can minimize the

quel, \_/vh_lch simulates carbon assimilation and soil respi-negative exponent of Eq2) using variational data assimila-

ration within a full energy and water balance and phenologyijgn.

scheme. Calculated fluxes are then mapped to atmospheric The cost function/ (x)

concentrations using the atmospheric transport model TM2 1

(Heimann 1995. P(x|c) = —exp(—J (x)) (3)
The CCDAS framework has been previously described in A

detail byScholzg(2003 andRayner et al(2009. Therefore, 1

we provide only a brief summary. The data assimilation in J(x) = = ((cM —oTc.:em—0)

CCDAS is performed in two steps: In the first step, the full 2

BETHY model is used to assimilate global monthly fields of +(x —x0)" Cyy Hx —x0)> (4)
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describes the mismatch between the observations and theare constrained relatively little by the assimilation of £0
modelled equivalents and the mismatch between the paraneoncentration observations. Most importantly it could be
eters and their priors. shown in the study byiehn et al.(20113 that an ensem-
The data assimilation in CCDAS is based on the 4-D-Varble run of optimizations, starting each of them in a different
scheme. In our case, the vector of observatiengepre-  point, identified only one minimum in the physical parameter
sents monthly atmospheric G@oncentrations measured at space, which gives us additional confidence that the global
41 remote monitoring station&{OBALVIEW-CO,, 2004). minimum has been found. Additionally, the gradient in the
CarbonBETHY is used to calculate surface fluxes which arecost function minimum was very close to zero and the Hes-
then mapped via the atmospheric transport model TM2 tosian was positive definite so that no manual modification of
atmospheric concentrations;. Since BETHY calculates the Hessian was required. Although the overall performance
only the natural land-atmosphere fluxes, we have to add lan@f the optimization has improved significantly, there is one
use change as an external flux as describellayner et al.  drawback of the technique presented in their work: the un-
(2005. Background fluxes for fossil fuel emissions are basedcertainties in the NPP-related parameters have not been in-
on the flux magnitudes frof@oden et al(2009 as described  cluded, which means that estimated uncertainties of the soil
in Scholze et al(2007. The spatial flux pattern and the carbon parameters and diagnostics were only a lower bound.
magnitude of ocean CQexchange is taken froffakahashi ~ Therefore, we propose a new concept, that treats the uncer-
et al. (1999 with estimates of inter annual variability taken tainties in the photosynthesis parameters via ensemble runs
from Le Queré et al.(2007). and optimizes the soil carbon parameters using the adjoint
The parameter vectox contains the photosynthesis optimization approach within CCDAS.
and soil carbon parameters in CarbonBETHY with their
prior values represented hyp (see Tables S1 and S2). 2.3 Conceptand test case
A quasi-Newton method, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) variant of the Davidon-Fletcher-Powell A flow chart of the concept developed in this contribution is
(DFP) formula Fletcher and Powell1963 Press et al. presented in Figl. In a first stage, ensemble runs are per-
1996, is used for the minimization of the cost function, formed using CarbonBETHY by varying the NPP-related pa-
which requires the calculation of the gradientJofvith re- rameters randomly according to a normal distribution defined
spect to the control parametarin each iteration. All deriva- Py their prior mean and standard deviation (see Table S1).
tive code is generated from the model’s source code using th&ll other parameters (i.e. soil carbon parameters) are kept
tool Transformation of Algorithms in Fortran (TAFB{ering  fixed. Here, we use a sample size/ot=200. We also per-

and Kaminski1998 Kaminski et al, 2003. form one additional forward run, referred to as base case,
where all NPP controlling parameters are set to their prior
2.2 Challenges mean.

CarbonBETHY is driven by observed climate data over

The simultaneous optimization of the photosynthesis and soiR5yr for the period 1979 to 2003. Global vegetation is
carbon parameters in CCDAS as described in the previousnapped onto 13 different plant functional types (PFTs) and
section can be challenging due to slow convergence or faileach grid cell can contain sub-areas (sub-grid cells) with up
ure of convergence. Even if a convergence requirement i¢o three different PFTs with their amount specified by each
fulfilled (i.e. test for convergence ofix), the gradient of the  PFT's fractional cover. CarbonBETHY is run on &2 2°
cost function may not be sufficiently close to zero at the finalgrid with 3462 land grid cells (excl. Antarctica).
convergence point in parameter space. As a consequence theEach ensemble run (including the base case) provides
Hessian is not positive definite (i.e. contains negative eigena monthly field of NPP, which is used as an input field in
values), which indicates that an exact minimum has not beeithe second stage. Here, we apply CCDAS to optimize only
found. This has been noted Rayner et al(2005 where,  the soil carbon parameters, using atmospherie G@hcen-
in order to derive the posterior parameter uncertainties, theration as observations. Most of the soil carbon parameters
Hessian had to be modified manually. Another concern isare globally valid (i.e. they have the same value in each of the
that due to the large input space dimension and the fact thagrid cells), only the carbon balance paramgids differen-
the BETHY model is highly non-linear, it is likely that we tiated by PFT and regiorZ{ehn et al, 20113. In addition to
only identify a local minimum with CCDAS. the 13 PFTs (Fig. S1 and Table S3) we also consider 6 differ-

The study byZiehn et al (20113 has revealed that the per- ent regions (Fig. S2 and Table S4), which results in a set of
formance of the optimization in CCDAS can be significantly 73 parameters (67s+ 5 global parameters 1 offset). For
improved if only the soil carbon parameters are constraineceach NPP input field we obtain a different set of optimal soil
with atmospheric C@concentration data, while all param- carbon parameters including their uncertainties. We can then
eters controlling NPP were kept fixed. Earlier studies with propagate the posterior uncertainties for those parameters to
CCDAS Rayner et a].2005 Scholze et a)2007) confirmed  any output target quantity of interest. This is done by mak-
that NPP-related parameters (i.e. photosynthesis parametersig use of the Jacobian (first order derivative) of the BETHY
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Fig. 1. Flow chart of the ensemble-adjoint optimization approach.

model within CCDAS §Scholze et a).2007). Thus we ob-

Target quantity PDF (e.g. NEP)

200 ensemble members and required about 1700 iterations

tain uncertainty estimates and covariances for output targedbn average. However, of the 198 successful optimization

quantities, such as the net ecosystem productivity (NEP) cal
culated as

NEP=NPP— Rs=NPP—(Rss+ Rs1), %)

whereRs s andRs s are the respiration fluxes from the slowly
and rapidly decomposing soil carbon pools, respectively.

runs we had to exclude further 28 runs, where either the gra-
dient in the cost function minimum was not sufficiently small
enough (i.e. greater thanx110-3) or the optimal (posterior)
parameter set contained non-physical parameter values. For
physically meaningful results we require here that all param-
eters are positive, and some parameters that respresent frac-

In a third stage, we superimpose the posterior PDFs for thdions have to fall between 0 and 1. However, the optimal set
soil carbon parameters and the output target quantity in ordeof parameters derived by CCDAS may contain values out-

to obtain their final PDF, which also accounts for the prior
uncertainties in the NPP-related parameters. The calculatio
of the final PDFp(y) for the output target quantity is given

by the following equations:

Py
p(y)= N (6)
al 1 ( (yl'—/u)z)
Py = expl ——=— ], 7
;1/271(71.2 2‘71'2

where N is the ensemble size and ando; are the mean
and standard deviation for each individual output Indi-
vidual PDFs described by; ando; have a normal distri-
bution. In practice, we discretize those PDFs using a ste
length of 1x 1074 PgC and then calculate the sum over all
discrete points divided by the total numberof PDFs (en-
semble size). In this way we obtain the final PDF as de-
scribed by Egs.g) and (7), which can be non-Gaussian. The
calculation of the final (superimposed) soil carbon paramete
PDF is performed in a similar way.

3 Results and discussion

The optimization within CCDAS (data assimilation in
stage 2, see Fidl) reached convergence for 198 out of the

Geosci. Model Dev., 4, 10110618 2011

side those defined ranges and we therefore have to exclude
the corresponding runs. This leaves us with 170 sets of op-
timal soil carbon parameters, which were obtained by using
170 different NPP input fields (ensemble runs in stage 1, see
Fig. 1). A time series of global mean NPP including error
bars is shown in FigRa.

A list of the posterior parameter values for the five global
parameters including their uncertainties is presented in Ta-
ble 1, the values for the parametgrfor each PFT and re-
gion and the offset (global atmospheric £€oncentration
at the beginning of the optimization period) are presented
in Table S2. Note that we distinguish between model pa-
rameters (physical domain) and parameters as used by the
optimization in CCDAS (normalized domain). For most of

Rhe parameters we assume a log-normal distribution to en-

sure positive values as discussed above, which results in the
asymmetry shown in Tablé and Table S2. However, af-

ter suitable transformation, all parameters follow a Gaussian
Flistribution in the normalized domain. Results are only dis-
cussed in the physical domain and in the following, we focus
only on the five global parameters. The optimal values for
the temperature sensitivity of respiration for the fast and slow
carbon pools Q10 and Q19,s) for the base case are close to
their prior values and within the prior uncertainty range. The
soil moisture dependence parametés reduced from its ini-

tial value, but is also within its prior uncertainty range. The

www.geosci-model-dev.net/4/1011/2011/
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Fig. 2. Time series ofa) the global mean net primary productivity (NPP) &bl the global mean net ecosystem productivity (NEP). For

(a) the median and error bars are calculated from the 170 NPP fields for each year, which are then used as inputs for CQDASe For
median and error bars are based on the final NEP PDF for each year. Error bars represent the lower and upper percentiles equivalent to on
standard deviation (i.e. 15.9th percentile and 84.1th percentile, respectively).
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photosynthesis parameters and was not part of the ensemle), green: superimposed PDF from the 170 individual PDFs.
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Fig. 4. Uncertainty correlation matrix of global mean NEP {aj the 1980s an¢b) the 1990s.

Table 1. Prior and posterior parameter values including their uncertainties for five global parameters. Upper and lower percentiles equivalent
to one standard deviation are given (ie- o is equivalent to the 15.9th percentile and- o is equivalent to the 84.1th percentile). The
relative reduction in uncertainty (Red.) relatedtte is also shown. Prior and posterior parameter values foptharameters are provided

in Table S2. Unitsx¢, years; all others unitless.

Prior Posterior
Base case Superimposed
Parameter m —ol+o m —ol+o Red. m —ol+o Red.
Q10f 1.50 050/0.75 1.24 003/0.04 95% 122 @2/011 86%
0105 1.50 050/0.75 1.65 002/0.02 98% 1.65 @2/0.09 88%
7 1.50 100/3.00 455 028/0.30 90% 4.46 (®6/1.01 66%
K 1.00 Q90/9.00 0.60 001/0.01 99% 0.60 @®M5/0.11 99%
fs 0.20 Q10/0.20 0.80 001/0.01 98% 0.79 ®4/0.03 87%

optimized parameter values for the fast pool turnover time,approximation. The mean values for our target quantities
75, and the fractionfs of the decomposition flux going from are nearly identical for the base case and the superimposed
the fast to the long-lived soil carbon pool are much largercase, showing again that the NPP-related parameters have
than their priors and both outside the prior uncertainty rangelittle effect on the mean values. The uncertainties for the
All five global parameters are well constrained by the,CO target quantities, however, increase by more than 50 % for
data, shown by the small posterior uncertainty in the basehe 1980s and by more than 100 % for the 1990s using the
case. The posterior mean values for all soil carbon paramensemble-adjoint method.
eters are very similar in both cases (base case and superim- According to Denman et al.(2007 the terrestrial
posed case), showing that the mean values are not heavilgarbon sink removed-1.7PgCyr! (range: —3.4 to
effected by changes in the NPP-related parameters. +0.2PgCyrl) during the 1980s and—2.6PgCyr?!

Our target output quantity is global mean NEP, for which (range: —4.3 to —0.9 Pg C yr?) during the 1990s from the
a time series is shown in Figb. In the following we focus atmosphere. The results from our study match the mean
on global mean NEP for the 1980s and 1990s. The PDF¥alues well, with a carbon flux of1.83PgCyr? (range:
for those quantities are presented in F3g.We obtain the ~—1.84 to—1.82PgCyr?) for the decade of the 1980s and
final PDF by superimposing the 170 individual PDFs (Byq. —2.55PgCyr? (range: —2.57 to—2.54 Pg Cyr?) for the
from each optimization run to account for both, the posteriordecade of the 1990s. However, the uncertainties of our re-
soil carbon parameter uncertainties and the prior uncertainsults are small in comparison to those fr@enman et al.
ties in the NPP-related parameters. The superimposed PD2007). One reason for this is the large number of negative
is not necessarily Gaussian. However, skewness and kurtosgtries for individual years in the error covariance matrix of
of the distribution for the case of the 1990s (F8p) indi-  global mean NEP for the 1980s and 1990s.
cate that the assumption of a normal distribution is a good

Geosci. Model Dev., 4, 1011618 2011 www.geosci-model-dev.net/4/1011/2011/
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The covariance between the flux uncertainties can be exall parameters, NPP-related parameters and soil carbon pa-
pressed via the uncertainty correlation matrix of diagnosticsrameters, would be constrained by observational data.
R4, which is defined as follows:
Supplementary material related to this
Cuii article is available online at:
R4 = - (8) http://www.geosci-model-dev.net/4/1011/2011/
0i0j gmd-4-1011-2011-supplement.pdf

whereCé’] is element;, j of the uncertainty covariance ma-
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