×
It expresses the fact that when several microbial species grow on the same substrate in a chemostat, generically at most one species will eventually survive [5, ...
We show that the coexistence of different species in competition for a common resource may be substantially long when their growth functions are arbitrarily ...
We show that the coexistence of different species in competition for a common resource may be substantially long when their growth functions are arbitrarily ...
We show that the coexistence of different species in competition for a common resource may be substantially long when their growth functions are arbitrarily ...
Nous montrons que la coexistence entre différentes espèces en compétition sur une même ressource peut durer sensiblement, lorsque leurs courbes de ...
Nous montrons que la coexistence entre différentes espèces en compétition sur une même ressource peut durer sensiblement, lorsque leurs courbes de ...
We show that the chemostat model with two species having different but close break-even concentrations exhibits a slow–fast dynamics.
[M33] Rapaport A., Dochain D. and Harmand. J. (2008), "Practical coexistence in the chemostat with arbitrarily close growth functions", ARIMA ...
Oct 22, 2024 · We show that the chemostat model with two species having different but close break-even concentrations exhibits a slow-fast dynamics.
We show that the chemostat model with two species having different but close break-even concentrations exhibits a slow-fast dynamics.
Missing: arbitrarily | Show results with:arbitrarily