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Abstract We present a system for performing multi-sensor fusion that learns from

experience, i.e., from training data and propose that learning methods are the most

appropriate approaches to real-world fusion problems, since they are largely model-free

and therefore suited for a variety of tasks, even where the underlying processes are not

known with sufficient precision, or are too complex to treat analytically. In order to

back our claim, we apply the system to simulated fusion tasks which are representative

of real-world problems and which exhibit a variety of underlying probabilistic models

and noise distributions. To perform a fair comparison, we study two additional ways of

performing optimal fusion for these problems: empirical estimation of joint probability

distributions and direct analytical calculation using Bayesian inference. We demon-

strate that near-optimal fusion can indeed be learned, and that learning is by far the

most generic and resource-efficient alternative. In addition, we show that the genera-

tive learning approach we use is capable of improving its performance far beyond the

Bayesian optimum by detecting and rejecting outliers, and that it is capable to detect

systematic changes in the input statistics.

1 INTRODUCTION

This study is situated in the context of biologically motivated sensor fusion (often also

denoted multi-sensory or multi-modal integration). This function is a necessity for any

biological organism, and it seems that, under certain conditions, humans and other

animals can perform statistically optimal multi-sensory fusion[1]. As to how this is

achieved, many questions remain: mainly, one can speculate whether there is a generic,
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sensor-independent fusion mechanism, operating on probability distributions and tak-

ing into account the basic statistical laws such as Bayes rule at some neural level, or

whether optimal fusion, where it occurs, is something that is fully learned through

experience.

In this article, we investigate the matter by comparing several feasible possibilities

for implementing multi-sensor fusion in embodied agents, namely generative learning,

inference based on estimated joint probabilities, and model-based Bayesian inference.

The first method is purely learning-driven, knowing nothing of Bayes’ law and using

adaptive methods both for representing data statistics and inference, whereas the sec-

ond estimates joint probability statistics from data but uses Bayes’ law for inference.

The third method is not adaptive at all but uses models (which have to be known

beforehand) of the data generation process, based on which it performs Bayesian in-

ference. To perform this comparison in a meaningful way, allowing each approach to

play its strengths, we consider two very different simulated fusion tasks: on the one

hand the ”standard model” of multi-sensor fusion, where two physical sensor readings

are modeled by a single underlying ”true” value that is corrupted by (not necessarily

Gaussian) noise, and on the other hand a more realistic process modeling, e.g., the

estimation of depth measurements in which one sensor reading depends non-linearly

upon the ”true” value and the other reading(s). Testing all three approaches on the

same fusion tasks allows a meaningful quantitative comparison, giving indisputable

results.

1.1 Overview of biological literature

The multisensory processes going on in mammalian brains are implied in maximizing

information gathering and reliability by the effective use of a set of available observa-

tions from different sensors [2]. Multi-sensory fusion aims at providing a robust and

unified representation of the environment through multiple modalities or features [3].

This sensory synergy provides speed in physiological reactions [4], accuracy in detection

tasks, adaptability in decision making and robustness in common abstract representa-

tions. It also allows to distinguish relevant stimuli from each other, which permits quick

behavioural and cognitive responses. Hence, it helps avoiding saturation and infobesity

traps in tasks like motion orientation towards auditory signal source or focusing visual

attention for object recognition.

Multi-sensory fusion has been widely studied at different levels (i.e. from particular

cortical cells to individual psycho-physiological behaviour) and into different scientific

fields (e.g. neurophysiology, neuroimagery, psychophysiology or neurobiology). Several

works in neuroscience have already described multi-sensory fusion in individual neu-

rons [5] or in various cortical areas [6]. Since the 1960’s it has been demonstrated that

multi-sensory fusion is carried out hierarchically, layer after layer, within cortical ar-

eas containing cells which respond to signals from multiple modalities[7,8]. Regarding

the superior colliculus (SC), a mid-brain structure that controls changes in orienta-

tion and attention focusing towards points of interest [9], Multisensory enhancement

(MSE) refers to a situation in which a cross-modal stimulus (i.e. from two or more

sensory modalities) provokes a response greater than the response to the most effec-

tive of its component stimuli [5]: this effect increases as the cues strength decreases

(inverse effectiveness rule). Multisensory depression (MSD) hints at the opposite phe-

nomenon[5]. In psychology, following the idea of a certain harmony across senses [10],
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Fig. 1 Schematic overview of the learning system for multi-sensory fusion proposed in this
study.

several well-known experiments have underlined multi-sensory fusion causing so-called

”multi-sensory illusions” like the ventriloquism effect [11], the McGurk effect [12], the

rubber-hand illusion [13] or the sound-induced flash illusion [14].

It stands to reason that multi-sensory fusion in biological systems is not generally

innate but learned [15,16]. Thus not only the question of how multi-sensory fusion is

carried out is of importance, but also of how it is acquired and how it can be adapted

if the statistics of the environment change.

1.2 Goals of the study

This study aims at providing a purely computational perspective on which multi-

sensory fusion strategy might be most appropriate to implement in future artificial

cognitive agents. Criteria we use are precision, generality, outlier detection capacity

and resource efficiency, the last point being important because resources are usually

severely limited in artificial cognitive agents. Lastly, we wish to show that learning

approaches offer ways to improve fusion performance beyond the limit imposed by

Bayes’ law: this seeming paradox can be resolved when accepting to process only those

samples which are particularly suited for fusion, based on simple criteria made available

by learning approaches. In this ”super-Bayesian fusion” setting one may trade reaction

speed for precision, where it depends on the frequency of incoming samples which

compromises can be made.

1.3 Approach

We use a combined generative-discriminative learning approach, see Fig. 1, to address

the proposed fusion problem. It is conceptually similar to several of our previous works

in multi-sensory fusion[17], incremental learning[18–20] and developmental learning[21,

22]. In the light of the evaluation criteria for multi-sensory fusion approaches proposed

in Sec. 1.2, it is in particular the aspect of outlier detection that motivates the use of

generative algorithms. Generative algorithms do no simply model a decision boundary,
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e.g., for separating two classes, but attempt, in various ways, to model the entire distri-

bution of data samples in input space. This will involve, in general, a more substantial

effort, which however pays off when the objective goes beyond separating classes, as it

is the case here.

As the essential building block implementing the generative part of our model, we

chose a modified version of the self-organizing map (SOM) algorithm[23]. This is a

prototype-based generative algorithm which therefore permits the detection of outliers

and changes in input statistics. Apart from approximating the distribution of input

samples by prototype vectors, it implements a topology-preserving mapping of the

computed prototypes, which is of no direct concern here, but will become extremely

important when incremental learning is concerned [19,18]. As incremental learning is

the logical next step following successful change detection, we feel that the use of the

SOM model is very well justified in this case.

1.4 Related work

Multi-sensory fusion can be modeled in various ways, the most relevant ones being self-

organized learning and Bayesian inference. The former regroups a set of bio-inspired,

unsupervised learning algorithms while the latter argues that mammals can combine

sensory cues in a statistically optimal manner.

1.4.1 Self-organizing topology-oriented algorithms and multimodal fusion

Among artificial neural networks, self-organizing maps (SOMs) perform clustering

while preserving topological properties of the input space. Studies applying SOMs to

multimodal fusion are usually focused on reproducing properties one can find in biology:

continuous unsupervised processes, adaptation and plasticity, topological preservation

of the input space relationship, or dimensionality reduction. Self-organized approaches

have the potential to establish a transition from high-dimensional, noisy and modality-

specific sensor readings to abstract, multimodal and symbolic concepts, whereas they

are considered less appropriate for reproducing statistical optimality which should be

respected by any fusion process.

Most SOM-based approaches imitate, more or less closely, the hierarchical and

layered structure of cortical areas, especially the superior colliculus (SC). In [24] the

authors use one basic non-layered self-organizing map to simulate biological MSE and

inverse effectiveness from artificial combinations of sensory input cues with Gaussian

neighborhood and Manhattan distance. Even though their data are low-dimensional

and non-realistic, the authors confirm that the (nearly) original SOM algorithm can

lead to meaningful multisensory cue combination. As in [25], they emphasize the pos-

itive impact of a non-linear transfer function applied to map outputs (in these cases,

a sigmoid function). [26] design a SOM-like feed-forward layered architecture which

uses Hebbian learning to associate maps. The study shows how uni-sensory maps can

be aligned by a system that learns coordinate transformations, and automatically in-

tegrated into a multisensory representation, i.e. a third map. It focuses on comparing

simulated and biological responses to spatially coincident or non-coincident stimuli and

achieves the reproduction of simplistic MSE and MSD effects. [27] models the learning

of words and objects relations by young children from a psychological point of view

using two unimodal SOMs. Hebbian learning is used to model the mapping between



5

unimodal spaces so that the presentation of an object activates the correct correspond-

ing word and vice versa. [28] also deals with imitating SC multi-sensory fusion. The

study designs a SOM-based model which is task-oriented and aims at autonomously

finding a way to reach a specific goal (in this case object localization). The model tries

to characterize the reliability of sensory modalities when dealing with noisy artificial

stimuli. Using a single SOM, it uses a custom distance function that measures the like-

lihood of one input vector to be a noisy version of a known prototype. To this effect,

the original Kohonen algorithm is adapted so that the metric takes into account the

estimation of each sensor modality’s reliability. Nevertheless, noise for different modal-

ities is assumed to independent and normally distributed, and the analogy with the

superior colliculus is rather superficial.

Finally, several studies aim at designing models inspired by recent neurophysio-

logical findings without fully copying biological architectures or processes, focusing on

well-defined applications. Following [29], [30] proposes a learning algorithm based on

a variant of the original SOM, ViSOM [31], which forces the inter-unit distances in a

map to be proportional to those in the input space. As for multi-expert techniques in

supervised learning [30], a single final map is learned that takes into account multiple

SOMs. Each unit of the final map corresponds to a fusion by Euclidean distance, and

a voting process is performed on neurons at the same position of the grid in each uni-

modal SOM. Although the model does not really focus on bio-plausibility and prefers

enhancing topology preservation and data visualization properties, it is remarkable

that it allows autonomous artificial concentration on interesting features in each of the

unimodal SOMs. [32] is one of the most ambitious works using self-organized ANNs

for multi-sensory fusion without only reproducing known biological phenomena. With

a hierarchical lattice of SOMs (two unimodal maps integrated in a multimodal map),

they confirm abilities of SOMs and feedforward connections in integrating unimodal

artificial percepts into multimodal unified representations, as [33] already did. This

study above all puts forward the effective role of feedback connections in artificial at-

tentional mechanisms: without feedback, hierchical SOM networks might only achieve

multi-sensory fusion for elementary artificial stimuli. They apply their (strongly fine-

tuned) model to produce bimodal fusion of phonemes and letters but do not provide a

clear task-oriented (e.g. speech recognition) evaluation.

1.4.2 Bayesian inference as a model of multi-sensory fusion

Several psychophysiological studies have shown that mammalian brains, and in par-

ticular humans ones, fuse multiple sensory signals in an statistically optimal way by

a weighted linear combination of estimates of the individual measurements [2]. The

intrinsic uncertainty of sensory cues make them more or less reliable and this has to

be taken into account by the fusion process [34]. Most of the time, these observations

are conducted using animals at a behavioural level. However, probabilistic inference in

neural circuits is still not well understood. Among fusion methods relying on probabil-

ity distributions or density functions to express data uncertainty, Bayesian fusion is one

of the best-known techniques and is known for having strong links to biological multi-

sensory fusion [35]. It consists of weighting each sense according to its known variance

by applying maximum likelihood estimator (MLE) or maximum a posteriori (MAP)

techniques. A couple of assumptions are usually made when performing optimal fusion

according to Bayesian statistics [36–42], namely the assumption of Gaussian noise that

is applied independently to each sense, and the assumption of known variances. These
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assumptions, while acceptable on a theoretical level, prevent the use of such techniques

in domains such as developmental learning since evidently neither the variances nor

the theoretical distribution and independence properties of signals should be known in

advance.

2 METHODS

In this section, we will give all necessary details of the used learning approach (Sec.2.4),

Bayesian inference based on estimated joint probabilities (Sec. 2.2) and model-based

Bayesian inference (Sec. 2.3). In all cases, the setting is identical: a single ”true” value

r and two noisy sensor readings s1 and s2. The way of obtaining s1 and s2 from r

depends on the particular problem that is treated, as do the noise distributions that

additionally perturb the sensor readings.

2.1 Fusion problems

Two fusion problems are considered in this study, in both of which the goal is to

infer the true value r from noisy sensor readings s1, s2. Several types of noise ε̃(σ)

are considered for corrupting sensor readings (Gaussian, uniform, triangular), all of

which have a single parameter σ that models their ”strength”. In the case of Gaussian

noise, σ would correspond to the standard deviation, for uniform and triangle noise

it is the half-width of the interval with nonzero probability. For every noise type in

both problems, we vary the parameter σ in order to determine how this impacts fusion

accuracy. The probability density functions for all three (additive) noise types are as

follows (see also Fig.2):

pgauss(x, σ) =
1√

2πσ2
exp− x2

2σ2
(1)

puni(x, σ) =

{
1
2σ if x ∈ [−σ, σ]

0 else

ptri(x, σ)


x+σ
1.1σ2 iff x ∈ [−σ, 0.1σ]
σ−x
0.9σ2 iff x ∈ [0.1σ, σ]

0 else

Problem I This first ”family” of problems follows the ”classic” Bayesian framework:

a single ”true” value r that gives rise to several noisy sensor readings si. We suppose

that the sensor readings si are obtained from an unique r value by adding independent,

parametrized noise ε̃(σ).

r ∼ punia,b (x)

si = r + ε̃(σ)
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Fig. 2 Probability density functions for the three parametrized noise types used in this
article: Gaussian, uniform and triangular. For all curves, a parameter value of σ = 0.5 has
been used. Please remark that the triangle distribution is not centered on 0, but on 0.05 which
corresponds to 10% of the parameter σ. With larger σ, triangular noise will therefore not only
introduce significant noise but also systematic bias.

Problem II A more realistic setting is where the sensory readings si and the underlying

true value r are more tightly coupled. In this second problem family, we suppose that

the si are no longer class-conditionally independent and depend on r as well as each

other. In other words, all of the si have to be considered simultaneously for inferring

r. Formally, we express this by drawing r independently from a bounded uniform

distribution, and then making s̃2 a deterministic function of r and s̃1: s̃2 = f(s̃1, r).

Afterwards, the s̃i are subjected to additive Gaussian noise in order to produce the

real sensor values si:

r ∼ punia,b (x)

s̃1 ∼ punia,b (x)

s̃2 = f(s̃1, r)

si = s̃i + ε̃(σ)

2.2 Bayesian inference based on estimated joint probabilities

The basic idea of this approach is to empirically estimate the conditional probability

distribution p(r|s1s2) during a training phase where r is available with each sample,

and to perform Bayesian inference using this conditional probability distribution in the

subsequent evaluation phase where r is not available. First of all, it is straightforward

to see that the maximum of p(r|s1s2) w.r.t. r is equivalent to the maximum of the joint

probability p(rs1s2), so it is sufficient to estimate this quantity. In order to estimate

joint probabilities in practice, all variables must be discretized to n bins using an
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invertible function bµ,n(x) → i ∈ N, where obviously a finer discretization implies

higher precision but also higher memory and execution time demands. For variables in

the [0, 1] interval, we chose b such that it pads the encoded scalar value with borders

of width µ, which is necessary because random variables might fall outside the [0, 1]

interval depending on noise, and still need to be represented properly:

b ≡ bµ,n(x) = floor (n− (µ+ (1− 2µ)x) (2)

b−1 ≡ b−1µ,n(i) =
i
n − µ
1− 2µ

(3)

For three discretized variables, the estimated joint probability matrix p̂ijk has n3 en-

tries and requires roughly n3 samples to be filled properly. During training, samples

(r, s1, s2) are received on by one, and for each sample the matrix is updated as follows:

pijk(0) ≡ 0

pb(r)b(s1)b(s2)(t+ 1) = pb(r)b(s1)b(s2)(t) + 1 (4)

At the end of the training phase, pijk is normalized to have a sum of 1. When performing

inference during the evaluation phase, only the two sensor readings s1 and s2 are

available, and the task to infer the underlying value r∗ that best matches s1 and s2
amounts to finding the matrix bin i∗ for which r has the highest estimated probability:

i∗ = maxi pi b(s1) b(s2)

r∗ = b−1(i∗) (5)

2.3 Model-based Bayesian inference

Similar in spirit to the preceding section, model-based Bayesian inference aims to find

the most probable value of r given the observations s1 and s2:

r∗ = arg maxrp(r|s1s2) ∼ arg maxrp(s1s2|r)p(r) (6)

This amounts to a maximization problem:

∂rp(s1s2|r)p(r) = 0

⇔ ∂r (p(s1s2|r)) p(r) + p(s1s2|r)∂sp(r) = 0 (7)

Eqn. (7) has trivial solutions outside the interval ]a, b[ where both p(r) and ∂sp(r)

vanish. However they minimize p(s1s2|r)p(r) (inserting an appropriate r always gives

a value of 0), and are thus excluded from our considerations. If, however, a solution

exists inside [a, b], it must obey the simplified equation

∂s (p(s1s2|r)) = 0 (8)

On the other hand, if eqn.( 8) has a non-trivial solution outside the interval ]a, b[ then

it must be either s = a or s = b, depending on which is closer, because the infinities

in the derivatives of p(r) achieve a ”clamping” of obtained fusion results to the known

interval [a, b]. This can be implemented very efficiently, without solving any equations

at all, as a post-processing step of fusion.
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Evidently, eqn.(8) needs to be solved both for problem I and II separately, and

in general this approach requires that the data generation model be known. So, we

present two different solutions for problem I and problem II. In general, this approach

is a complex one, and the necessary analytical derivations need to be performed before

testing it. Any change in input statistics requires a repetition of these derivations,

where the form of the new statistics must be analytically.

2.3.1 Problem I

Corrupting a clean variable like r, here supposed deterministic so its distribution is

p(x|r) = δ(x − r), by additive noise drawn from one of the distributions pnoise(x, σ)

given in eqn. (1), implies the convolution of the probability densities of clean and noise

variables from which the resulting noisy variables are effectively drawn. The result of

the convolution is thus the conditional distribution p(si|r) of the form:

p(si|r) = pnoise(si − r, σ) (9)

For making the link to eqn.(8), we observe that the p(si|r) are class-conditionally

independent, and we can thus express their joint probability p(s1s2|r) by the product

of individual probabilities:

p(s1s2|r) = p(s1|r)p(s2|r)
(10)

This leads to the following estimates for the underlying value r:

r∗gauss =
∑
i

1/σ2i∑
j 1/σ2j

si (11)

r∗uni ∼ p
uni
A,B (12)

where [A,B] = [s1 − σ1, s1 + σ1] ∩ [s2 − σ2, s2 + σ2]. For triangle noise, an analytical

treatment is difficult and is therefore omitted from these considerations.

Problem II The only tricky point consists here in computing the quantity p(s1s2|r)
required by eqn. (7), which remains valid as p(r) is still uniformly distributed. Still, the

calculation is a little more cumbersome since the factorization p(s1s2|r) = Πip(si|r)
no longer holds:

p(s1s2|r) =

∫ ∫
ds̃1ds̃2p(s1s2|s̃1s̃2r)p(s̃1s̃2|r)

=

∫ ∫
ds̃1ds̃2p(s1s2|s̃1s̃2)p(s̃1s̃2|r)

=

∫ ∫
ds̃1ds̃2p(s1|s̃1)p(s2|s̃2)δ(f(r, s̃1)− s̃2)

=

∫
ds̃1p(s1|s̃1)p(s2|f(s̃1, r)) (13)

where the first transformation follows from the law of total probability: we insert a

complete set of disjunct states s̃1s̃2. In the second line, the factor r has been removed
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from the conditional probability p(s1s2|s̃1s̃2r) as it can be deduced from s̃1 and s̃2.

Later, the conditional probability has been split as si depends only on s̃i.

The optimal fused value of r in the interval [a, b] is obtained as before by maximizing

eqn. (8). As the resulting expression is in general intractable analytically, we resort to

numerical methods to solve it for r, which do work well for Gaussian noise but not

for other forms of noise due to numerical problems for uniform noise and analytical

intractability for triangular noise.

2.4 Learning approach

The learning approach is schematically depicted in Fig. 1. It is essentially a three-layer

neural network that learns a set of plastic, topologically organized prototypes in its

hidden layer. A read-out mechanism between hidden and output layer maps the set of

graded prototype activities to output values using simple linear regression learning.

2.4.1 Population encoding

In order to increase the computational power of the employed algorithms (see [43]),

we adopt a population-coding approach[43] where continuous values of the input and

target variables (i.e., the noisy sensor readings s1, s2 and r) are represented by placing a

Gaussian of variance σp onto a discrete position in an one-dimensional activity vector

such that the discrete center position is in a linear relationship with the encoded

continuous value. As in Sec. 2.2, this discretization is associated with a loss of precision,

thus a sufficiently large size of the activity vector must be chosen. Furthermore, the

activity vector must have a sufficiently large margin µ around the interval to be encoded

because random variables can fall outside this interval and need to be represented as

well. The precise way of encoding a scalar value x ∈ [0, 1] into a vector v of size n is

as follows, using :

c = bµ,n(x) (14)

vi = exp− (i− c)2

2σ2p
(15)

where we have used the discretizing function b from eqn.(2). As a final step in popula-

tion encoding, the vector v is normalized to have an L2 norm of 1.

2.4.2 Neural learning architecture

The architecture is essentially depicted in Fig. 1 and consists essentially of the layers

I, T and E: the input layer I obtained by concatenating two population-coded sensor

values, a hidden layer T and a fusion estimate layer E, respectively. In addition, there

is a ground-truth layer G that represents the ”true” sensor value r.

Generally, we denote neural activity vector in a 2D layer X by zX(y, t), and weight

matrices feeding layer X, represented by their line vectors attached to target position

y = (a, b), by wXy (t). For reasons of readability, we often skip the dependencies on

space and time and include them only where ambiguity would otherwise occur. Thus

we write zX instead of zX(y, t) and wX instead of wXy (t). Using this notation, the two
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weight matrices that are subject to learning in this architecture are the connections

from I to T, wSOM and the weights from T to E, wLR.

z̄T (y) = wSOM
y · zI (16)

zT = TFp

(
z̄T
)

(17)

zE = wLR · zT (18)

wLR
y (t+ 1) = wLR

y + 2εLRzI
(
zE(y)− zG(y)

)
(19)

wSOM
y (t+ 1) = norm

(
wSOM
y + εSOMgσ(y − y∗)(zI − wSOM

y )
)

(20)

(21)

where gs(x) is a zero-mean Gaussian function with standard deviation s and y∗ denotes

the position of the best-matching unit (the one with the highest similarity-to-input) in

P . In accordance with standard SOM training practices, the SOM learning rate and

radius, εSOM and σ, are maintained at ε0, σ0 for t < T1 and are exponentially decreased

afterwards in order to attain their long-term values ε∞, σ∞ at t = Tconv. The learning

rate of linear regression, εLR remains constant during at all times. TFp represents a

monotonous non-linear transfer function, TFp : [0, 1]→ [0, 1] which we model as follows

with the goal of maintaining the BMU value unchanged while non-linearly suppressing

smaller values:

m = maxyz̄
T (y, t)

TFp

(
(z̄T (y)

)
= mp−1

(
zT (y)

)p
(22)

2.4.3 Rejection strategy for super-Bayesian fusion

In this setting, we simply reject an incoming sample, i.e., take no decision, if the simple

criterion

max zE > θ (23)

with θ(t+ 1) = (1− α)θ(t) + α max zE(t). (24)

is fulfilled. Simply put, we check whether the highest activated unit in the output layer

E has an activity that is higher than the temporal average of past maximal activities,

calculated by exponential smoothing. This is pretty ad hoc and not rigorously justified,

but we find that in practice this strategy gives significant performance improvements

and in no case that we could observe deteriorates performance.

2.4.4 Novelty detection

As the hidden SOM layer implements a generative model of the sensory input, it should

be able to recognize out-of-the-ordinary samples, i.e., outliers. This is particularly im-

portant for detecting persistent changes in input statistics, which must be countered

by adapting the fusion model. Here, a change detection mechanism could provide, first

of all, a means to detect when a model should be adjusted to new realities, and further-

more to stop fusion until this has been successfully done. Such an ability is therefore
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imperative for life-long learning in embodied agents and should be considered a sig-

nificant advantage. We approach change detection by simply monitoring the temporal

average activity of the best-matching until (BMU) in the hidden SOM layer P. This is

done because we assume that the SOM prototypes represent the joint distribution of s1
and s2 in input space; any significant deviation from this distribution should therefore

result in lower input-prototype similarity which results in lower activity. Again, the

temporal average is calculated by exponential smoothing and thus requires no mem-

ory overhead. The smoothing constant β has to be set such that short-term random

fluctuations are smoothed away whereas long-term systematic changes are retained.

3 EXPERIMENTS

For all experiments, we use an interval of [0, 1] for r, s1 and s2. Each experiment is

repeated 25 times, each time with a different pairing of standard deviations which are

chosen for each sensor from the following fixed set: 0.016, 0.032, 0.048, 0.064 and 0.08.

Joint probability estimation parameters The discretization step size is set to n = 100,

and the joint probability matrix is built for n3 iterations. The margin parameter µ is

set to µ = 0.2.

Model-based Bayesian inference parameters This method is parameter-free in the sense

that it only uses the parameters contained in the data generation model. There are a

few parameters tied to the numerical solution of integrals but the standard values of

the numerical solvers always work well so it is not necessary to include them here.

Learning approach Here, several parameters need to be fixed: the hidden layer contains

15x15=225 units, the output layer has n = 100 units. The margin parameter for pop-

ulation encoding is set to µ = 0.2. The variance of Gaussians for population encoding

is fixed at σp = 3 pixels. The LR learning rate is εLR = 0.01 and the parameters for

decreasing SOM learning rate and radius are: ε0 = 0.1, σ0 = 5, ε∞ = 0.01, σ∞ = 0.5,

Tconv = 5000, T1 = 1000. The transfer function parameter p is set to 20. Total training

time is always 20.000 iterations unless otherwise mentioned, and testing is conducted

subsequently for 20.000 iterations for calculating performance statistics, with learning

turned off. The smoothing parameter for super-Bayesian fusion is α = 0.001, and the

smoothing parameter for change detection is β = 0.001 as well.

3.1 Comparison of fusion performances

In this experiment, we compare the performances of all three fusion methods (Bayesian

inference by joint probability estimation, model-based Bayesian inference and our learn-

ing approach) for problem I and problem II, each time using three noise types (Gaus-

sian, uniform and triangular noise) as described in detail in Sec. 2.1. For each method,

problem and noise type we conduct 25 separate experiments, corresponding to all pos-

sible combinations of standard deviations given above. In this way, the behavior of each

fusion method is sampled uniformly in a representative range of noise strengths in a

way that can be directly compared.
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Fig. 3 Comparison of fusion performance under Gaussian noise for four methods on problem
I (left) and problem II (right): Bayesian inference using estimated joint probabilities (red),
model-based Bayesian inference (blue), learning approach(black) and learning approach using
super-Bayesian fusion(green).

Fig. 4 Comparison of fusion performance under uniform noise for four methods on problem
I (left) and problem II (right): Bayesian inference using estimated joint probabilities (red),
learning approach(black) and learning approach using super-Bayesian fusion(green). Model-
based Bayesian inference is not practicable for uniform noise and therefore not shown.

Fig. 5 Comparison of fusion performance under triangular noise for four methods on problem
I (left) and problem II (right): Bayesian inference using estimated joint probabilities (red),
learning approach(black) and learning approach using super-Bayesian fusion(green). Model-
based Bayesian inference is not practicable for triangular noise and therefore not shown.
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Fig. 6 Change detection performance of the learning approach, evaluated for problem I.
Beginning of the testing phase, with unmodified standard deviations, is marked in grey, whereas
the second half of the testing phase where a change of statistics occurs is marked in red. Change
conditions are slight (upper left), medium (upper right) and severe (centered).

Model-based Bayesian inference runs into problems when using uniform noise be-

cause the numerical solution of the involved integrals becomes numerically unstable,

requiring interval discretization that render the problem intractable. As for triangular

noise, it poses severe problems for the analytical derivation due to its non-diffentiability

at x = 0, see Fig. 2. Model-based Bayesian inference is therefore conducted for Gaussian

noise only.

We observe from Figs. 3, 4, 5 that fusion performances are always very similar for

problem I regardless of noise, probably because this problem is rather simple in nature.

For problem II, apart from an overall decrease in precision, we observe that super-

Bayesian fusion always performs best, sometimes by large margins. In the parametriza-

tion used here, around 50% of samples were rejected for the latter. The only noticeable

deviations for problem II occur for triangular noise, for unknown reasons. As we mea-

sure the mean squared error here, however, and not is square root, these differences

are less than they appear, and overall we can state that all fusion methods indepen-

dently obtain very similar results on problem II, too, once more supporting the global

consistency of our experiments.

Memory usage is non-existent for model-based Bayesian fusion, negligible for the

learning approach and enormous for joint probability estimation, as a matrix of n3

elements is to be represented for n = 100. In terms of computation speed, model-based

Bayesian inference is efficient for training as it does not need to be trained, whereas a

training session for the learning approach takes approximately 1 minute and 5 minutes

for inference by joint probability estimation. Execution of models is rather similar for

all three methods, where around 100 estimations can be performed per second.
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Fig. 7 Change detection performance of the learning approach, evaluated for problem II.
Beginning of the testing phase, with unmodified standard deviations, is marked in grey, whereas
the second half of the testing phase where a change of statistics occurs is marked in red. Change
conditions are slight (upper left), medium (upper right) and severe (centered).

3.2 Change detection performance

For this experiment, we introduce the concepts of a slight, medium and severe change

in input statistics. Working on problems I and II using Gaussian noise, we train the

system with noise standard deviations of σ1 = σ2 = 0.016, and then change these

parameters after the first half of the testing phase, i.e., without retraining the system.

We therefore expect a reaction to this change, as described in Sec. 2.4.4. Each change

condition differs only in the new values for the standard deviations: σ1 = σ2 = 0.032

(slight), σ1 = σ2 = 0.048 (medium) and σ1 = σ2 = 0.08 (severe). From Figs. 6, 7 we

can observe that even slight changes can be reliably detected by the system since there

is always a significant decease in average BMU activity.

4 DISCUSSION

When we compare the three fusion methods we investigated in the light of the criteria

we put forward in Sec. 1.2, namely precision, generality, change detection capacity and

resource-efficiency, we find a mixed picture at fist glance.

All proposed methods are pretty equal in terms of precision, except notably the

super-Bayesian fusion by the learning approach, although this is not completely fair as

it cannot treat all samples. Still, it should be noted that the Bayesian ”optimal” fusion

can be surpassed significantly by a rather simple and efficient approach, which can be

very useful to any artificial cognitive agent.

In terms of generality, it is clearly the learning approach and Bayesian inference by

joint probability estimation that are most generally applicable as they can cope with

any problem under any type of noise, which is something that model-based Bayesian

inference is incapable of.
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Regarding resource efficiency, especially in the light of an application in artificial

cognitive agents, it is clearly the learning approach that is most favorable: it has both

a favorable execution and training time, and it is very memory-efficient. In fact, by

reducing the size of the hidden SOM layer, one can gradually trade memory usage

for precision, making use of the graceful decay property of SOMs for this purpose.

Bayesian inference by joint probability estimation has the problem of training time and

memory usage that grow cubically with the discretization step n, quickly rendering this

approach impracticable where high precision is needed. Model-based Bayesian inference

is memory and time-efficient as well but is not very suited to artificial agents as it is

incapable of adapting.

For change detection capacity, it is the learning approach that wins the competi-

tion because it offers a very efficient-to-compute criterion to detect even rather slight

changes in input statistics, using only quantities like the BMU score that are calculated

anyway and thus do not impose a computational burden.

Based on all these points, we may safely conclude that the two adaptive approaches

to multi-sensory fusion are certainly preferable due to their generality and resource

efficiency. The learning architecture we presented possesses the additional capacity to

perform change detection and super-Bayesian fusion which are very important points

in their own right, and it rather more resource-efficient than Bayesian inference by joint

probability estimation.

4.1 Influence of key parameters on the learning approach

The most crucial parameter for the learning approach is the size of the hidden layer

T. Especially for change detection, this needs to be of sufficient size otherwise change

detection capability deteriorates significantly. Intuitively, with smaller hidden layers it

becomes harder to distinguish whether an input is dissimilar from prototypes because

it is an outlier, or because there are simply too few prototypes to properly samples the

input space. For this parameter we can say: the bigger the better: we never observed a

performance deterioration when increasing hidden layer size, but a minimum of 15x15

seems recommended for this task. Another parameter of great importance is the min-

imal neighbourhood radius σ∞. If it is set too high, neighbouring prototypes will be

too similar to each other. This means that one cannot say with surety, from each pro-

totype’s response, where exactly the input is situated, so fusion is less precise. We set

it as small as possible while still making a difference. Smaller values are acceptable as

well but do not change the behavior any more. A free parameter of moderate influence

is the transfer function parameter p = 20. It is important that there be a non-linear

stage in the network which is realized by the transfer function TFp, and results get

slightly better if p > 10. But results tend to be acceptable even for p > 1. The con-

vergence and initialization times are set w.r.t. the total number of samples according

to standard SOM practices. Learning parameters for SOM and linear regression are

similarly set w.r.t. the number of training samples.

5 Summary, conclusion and future work

We have presented a comparison of three methods for perform multi-sensory fusion in

a simulated setting that is nevertheless very closely modeled after real tasks. We com-
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pared these methods in terms of precision, generality, change detection capacity and

resource-efficiency, and found that the self-organized neural network was most suited,

in summary, for application in artificial cognitive agents, thus making a very strong

statement in favor of learning methods in multi-sensory fusion. We furthermore inves-

tigated a simple way to improve fusion performance beyond the Bayesian optimum and

found it both practicable and beneficial for performance under the condition that one

accepts to ignore a certain percentage of incoming samples. As a last, we investigated

how fusion might be continuously updated and re-calibrated by detecting significant

changes in input statistics, and found that the detection of such changes is feasible and

simple for the presented system.

In future work, we wish to investigate the issue of incremental learning for multi-

sensory fusion, meaning that upon the detection of changed input statistics, the learned

fusion model should be adapted in a way that allows stable life-long learning. In ad-

dition, verifying these algorithms on a real-world fusion task will be an important

validation of the presented theoretical work.
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