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Aim: Targeted biocompatible nanoplatforms presenting multiple therapeutic functions 
have great potential for the treatment of cancer. Materials & methods: Multifunctional 
nanocomposites formed by polymeric nanoparticles (PNPs) containing two cytotoxic 
agents – the drug alisertib and silver nanoparticles – were synthesized. These PNPs have 
been conjugated with a chlorotoxin, an active targeting 36-amino acid-long peptide 
that specifically binds to MMP‑2, a receptor overexpressed by brain cancer cells. Results: 
The individual and synergistic activity of these two cytotoxic agents against glioblastoma 
multiforme was tested both in vitro and in vivo. The induced cytotoxicity in a human 
glioblastoma–astrocytoma epithelial‑like cell line (U87MG) was studied in vitro through 
a trypan blue exclusion test after 48 and 72 h of exposure. Subsequently, the PNPs’ 
biodistribution in healthy animals and their effect on tumor reduction in tumor‑bearing 
mice were studied using PNPs radiolabeled with 99mTc. Conclusion: Tumor reduction was 
achieved in vivo when using silver/alisertib@PNPs–chlorotoxin.
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Glioblastoma multiforme (GBM) is the most 
common and deadliest of malignant primary 
brain tumors in adults and is one of a group of 
tumors referred to as gliomas. Classified as a 
grade IV (most serious) astrocytoma, its prog­
nosis is bleak – the median survival time with­
out treatment is 3 months [1]. The number of 
new diagnoses made annually is two to three 
per 100,000 people in the USA and Europe. 
GBM accounts for 12–15% of all intracranial 
tumors and 50–60% of astrocytic tumors [2]. 
The standard treatment is surgery, followed 
by radiation therapy or combined radiation 
therapy and chemotherapy, but surgical 
removal of such tumors only prolongs the 
typical patient’s survival by less than a year. 
Some drugs have been used for treatment of 
adult patients with newly diagnosed GBM. 
The carmustine implant with polifeprosan 20 
[3], temozolomide [4] and bevacizumab [5] have 

been approved by the US FDA to date. There 
are several trials that involve many types of 
therapy, including immunotherapy, anti­
angiogenic therapy, gene and viral therapy, 
cancer stem cell therapy, and targeted therapy 
(personalized medicine) [6,7,101]. Therefore, the 
quest for new drugs and new delivery systems 
for targeted therapy is still ongoing and could 
give new hope to fight GBM.

Nanomedicine is the application of nano­
technology to medicine, and the exploitation 
of nanoplatforms for cancer treatment holds 
great promise [8] due to the possibility of tai­
loring the synthesis of nanoparticles (NPs) in 
order to produce particles with narrow size 
distributions and cavities where drugs can be 
incorporated [9,10]. To date, there is a lot of 
evidence that these nanocarrier materials are 
capable of improving the efficiency of thera­
peutics through well-established targeted 
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drug delivery (TDD) techniques [11]. TDD is based on 
the idea that tumor cells overexpress many receptors 
and biomarkers that can be used as targets for selec­
tive delivery. Therefore, the development of therapeu­
tic carriers that can deliver high drug payloads, while 
protecting the encapsulated drug from degradation and 
reducing off-target toxicities, is currently of significant 
interest [12]. The first generation of drug-loaded NPs 
with applications in medicine date back to the 1970s, 
when nanoscaled liposomes were developed to deliver 
their cargo to diseased cells in a ‘Trojan horse’ fashion 
[13]. Since then, a new generation of TDD vehicles (e.g., 
polymeric NPs [PNPs]) has emerged [14]. 

PNPs are optimal nanocarriers for TDD due to their 
small size and ability to entrap efficaciously drug mole­
cules. These tunable characteristics can help to solve the 
common problems associated with traditional medicine, 
such as poor drugs solubility in water and short in vivo 
lifetime. The main feature of these nanosystems is that 
their surfaces can be functionalized, exploiting termi­
nal reactive groups, with specific proteins, peptides or 
monoclonal antibodies that are able to selectively bind 
a site of action or a particular target tissue without 
interacting with other cells and, thus, minimizing side 
effects and enhancing drug efficiency. The poly(lactic-
co-glycolic acid) (PLGA)-block-PEG-carboxylic acid 
(PLGA-b-PEG) copolymer is an easy-to-synthesize 
material that is emerging as one of the most promis­
ing system for drug loading and in vivo drug delivery 
applications. PLGA-b-PEG is an amphiphilic polymer 
that self-assembles to generate a targetable system (due 
to the presence of terminal COOH functional groups) 
in which the hydrophobic PLGA forms the inner core, 
while the hydrophilic PEG arranges outside creating a 
stabilizing shell [15–17]. 

We have recently reported in vitro applications of 
lipophilic silver (Ag)-loaded PNPs derived from the 
PLGA-b-PEG-COOH block copolymer against glio­
blastoma cell lines [18]. We used the chlorotoxin (Cltx) 
as the targeting agent to show their in vitro targeting 
ability in the U87MG glioblastoma cell line. Cltx is 
a 36-amino acid-long peptide that specifically binds 
to MMP‑2, a protease involved in remodeling the cell 
microenvironment, particularly the basement mem­
brane [18,19]. Indeed, most research today is focused on 
achieving active targeting and therapeutic advantage 
of NPs by chemical modifications. To the best of our 
knowledge, no studies on the TDD of a combination 
of drugs and metallic NPs to treat in vivo malignant 
glioma have been reported. 

In this study, we report the synthesis of PNPs con­
taining the drug alisertib (Ali), a selective aurora A 
kinase (AAK) inhibitor and AgNPs, developed as a 
TDD system against GBM. An in vitro study on glioma 

cell lines and in vivo biodistribution and preliminary 
efficiency evaluations regarding tumor reduction are 
also described. To the best to our knowledge, this is the 
first study in which PNPs are radiolabelled with 99mTc 
and imaged in vivo.

Materials & methods
Synthesis of Ag@PNPs
The Ag@PNP nanosystem has been character­
ized previously [17]. Dynamic light scattering (DLS) 
showed a hydrodynamic diameter of 112.6 ± 2.9 nm 
with a narrow size distribution (polydispersity index 
[PDI] = 0.190 ± 0.011) and a z‑potential of -35.3 mV. 
The concentration of Ag was measured by means of 
atomic absorption spectroscopy (AAS) and it was 
found to be 22799 ppm, corresponding to a 211.3‑mM 
solution.

Synthesis of Ag@PNPs–Cltx
For the Ag@PNPs–Cltx, DLS analysis showed a hydro­
dynamic diameter of 117.4 ± 14.4 nm with a narrow size 
distribution (PDI = 0.22) similar to the results obtained 
before Cltx conjugation. The z‑potential was -16.2 mV 
and the concentration of Ag was measured by AAS and 
was found to be 1402 ppm, corresponding to a 13.0‑mM 
solution.

Synthesis of Ag/Ali@PNPs
To synthesise Ag/Ali@PNPs, 50 mg of PLGA-b-PEG-
COOH (7 kDa PLGA/3 kDa PEG, 0.005 mmol) and 
9 mg of Ali (0.017 mmol) were dissolved into a 1‑ml 
dispersion of AgNPs in dimethylsulfoxide (DMSO). 
The organic phase was mixed with 50 ml of ultra­
pure water under vigorous stirring, maintaining a 
water:organic ratio of 10:1 with constant removal of the 
resulting solution. The mixture was kept under mag­
netic stirring for 30 min and then purified and concen­
trated using centrifugal filter devices (Amicon Ultra, 
Ultracel® membrane with 100,000 NMWL; Millipore, 
MA, USA) until the final volume of 5 ml. This disper­
sion was then filtered on a syringe filter Sterivex™‑GP 
polyether sulfone membrane with a 0.22‑µm pore size 
(Millipore) and stored at 4°C. DLS analysis showed a 
hydrodynamic diameter of 190.6 ± 0.8 nm and a PDI 
of 0.09 ± 0.03 with a x‑potential of -47.8 ± 13.4 mV. 
Ag and Ali concentrations were determined using 
AAS and high-performance liquid chromatography 
(HPLC) analysis, respectively, and they were found to 
be 2280 ppm of Ag, corresponding to 21 and 404 µM 
of Ali.

Synthesis of Ag/Ali@PNPs–Cltx
N‑hydroxysulfosuccinimide (1.3 mg, 11.0 µmol) and 
a solution of 1-ethyl-3-(3-dimethylaminopropyl) 
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carbodiimide 0.28 M (7.1 ml) were added to a suspension 
of Ag/Ali@PNPs (5 ml) in phosphate-buffered saline 
(20 ml, 0.01 M) under magnetic stirring. The mixture 
was left to react at room temperature for 30 min and then 
Cltx (0.150 µg, 0.038 µmol) dissolved in 1 ml of water 
was added and the reaction mixture was allowed to react 
for an additional 8 h. The mixture was then washed 
with phosphate-buffered saline solution three times 
and concentrated into centrifugal filter devices (Ami­
con Ultra, Ultracel membrane with 100.000 NMWL), 
to a final volume of 5 ml. Finally, Ag/Ali@PNPs–Cltx 
were filtered on a syringe filter Sterivex™‑GP polyether 
sulfone membrane with a 0.22‑µm pore size and stored 
at 4°C. DLS analysis showed a hydrodynamic diameter 
of 199.1 ± 0.6 nm with a PDI of 0.21 ± 0.02 and a 
z‑potential of -15.4 ± 4.5 mV. The Ali concentration was 
determined using HPLC and was found to be 41.8 µM. 
An elemental analysis by atomic AAS gave an average 
Ag concentration of 2.17 mM.

Trypan blue assay
Cytotoxicity of Ali alone or PNPs either loaded 
with Ali (Ali@PNPs–Cltx) or with Ali and AgNPs 
(Ag/Ali@PNPs) were evaluated on U87MG using a 
trypan blue exclusion dye test. Cells were incubated for 
48 and 72 h at concentrations of Ali ranging from 0.001 
to 10 µM (Supplementary Material, see online at www.
futuremedicine.com/doi/suppl/10.2217/nnm.14.1). 
Data were analyzed as the percentage of viable cells 
against the control. Results obtained by the trypan 
blue assay were analyzed and expressed as the percent­
age of viable cells against the control (mean ± standard 
error of the mean). Statistical analysis was performed 
applying the one-way ANOVA test and Dunnett’s mul­
tiple comparison test. For each experimental point, six 
replicates and three independent experiments were per­
formed. Linear regression analysis was performed by 
using STATGRAPHICS® Centurion XVI.

Radiolabeling of the 99mTc-NPs
Radiolabeling of PNPs was performed using the direct 
method according to a slightly modified previously 
described protocol [20,21]. Briefly, 40 µl of an acidic, 
aqueous solution containing SnCl

2
 (10 mg dissolved in 

500 µl of HCl 37%, diluted to 10 ml, 1 mg/ml) was 
added to 100 µl of pertechnetate eluate. The pH was 
adjusted to the range of 7, with an aqueous solution 
of NaHCO

3
 0.5 M. Finally, aliquots containing 2 µg 

of NPs were added and the mixture was shaken hori­
zontally at room temperature for 30 min. Radioana­
lysis was performed using acetone and a mixture of 
pyridine:acetic acid:water (3:5:1.5) as mobile phases 
and instant thin layer chromatography medium–silica 
gel (ITLC-SG) sheets as the stationary phase. 

Stability tests
Stability of the radiolabeled PNPs was assessed towards 
transchelation, using diethylenetriaminepentaacetic 
acid (DTPA) and histidine, two widely used chelators 
for 99mTc, and in plasma to assess their behavior in a 
biological medium. Thus, 50 µl of each of the radio­
labeled preparations was challenged against 450  µl 
of histidine and DTPA solutions (0.01 M) as well as 
against plasma. Each sample mixture was incubated in 
a water bath at 37°C for 1, 3 and 6 h, and was analyzed 
by ITLC-SG using acetone and saline as mobile phases 
for the DTPA/histidine challenge study, and acetone 
and a mixture of pyridine:acetic acid:water (3:5:1.5) as 
mobile phases for the plasma stability study.

Imaging studies in animal models
Radiolabeled PNPs (100 µl, 100–300 µCi) were evalu­
ated scintigraphically after bolus intravenous injec­
tion via the tail vein in healthy Swiss mice and severe 
combined immunodeficiency mice bearing U87MG 
tumors. All animal experiments were performed in 
compliance with the European legislation for animal 
welfare. Animals were anesthetized immediately after 
injection by the intraperitoneal injection of a proper 
anesthetizing solution – 0.5 ml of ketamine hydrochlo­
ride (100 mg/ml), 0.25 ml of xylazine (20 mg/ml) and 
4.25 ml of NaCl 0.9% (dose: 0.1 ml/10 g of animal 
weight administered intraperitoneally). The animals 
were placed on the camera approximately 5 min after 
tracer injection and dynamic images of the anesthetized 
mice were obtained between 10 and at least 60 min 
post-injection using a high-resolution g‑camera system, 
which has been described elsewhere [22,23].

Tumor decrease studies
In the control group, no treatment was applied. In the 
Ag@PNPs–Cltx group, 100 µl of a 5.97‑mM AgNPs 
solution was injected. In the Ali@PNPs–Cltx group, 
100 µl of a 0.11‑mM Ali solution was injected and, in the 
Ag/Ali@PNPs–Cltx group, 100 µl of a solution contain­
ing 0.11‑mM Ali (5.93 mM in Ag) was injected. All sam­
ples were injected at day 24 and were not radiolabeled in 
order to avoid further dilution and maximize the quantity 
of NPs and drug injected. The tumor size was calculated 
every day according to the formula 0.5 × length × width2 
and mouse weight was also measured until day 55. Since 
five animals were initially used in each group, the mean 
value and the standard deviation were calculated for each 
group. Both values were extracted until the number of 
surviving animals decreased to three. The experiment 
ended at day 55 because animals in the control group, 
as well as other groups, started to die, and the tumor 
size was in some cases too large, meaning that animals 
had to be sacrificed.
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Results 
Chemistry & nanotechnologies
Polyvinylpyrrolidone (PVP)-capped AgNPs were synthe­
sized as reported in the experimental section. AgNPs were 
coated on their surface with ethyl 11-mercaptoundecano­
ate 1, obtained as previously reported [24,25] in order to 
make them lipophilic and stable in organic solvents and, 
thus, allowing their entrapment into the PNPs. Ligand 1 
was designed with: a terminal thiol group that strongly 
binds to Ag; a connecting aliphatic chain that ensures sta­
bility in the system; and a terminal ester group in order to 
increase solubility in common organic solvents. After incu­
bation of PVP-capped AgNPs with ligand 1, lipophilic 
AgNPs‑1 were washed by centrifugation and redispersed 
in DMSO. The efficacy of this coating was previously 
proved with 1H‑NMR and DLS analyses [18].

Next, AgNPs‑1 were entrapped into PNPs using 
the nanoprecipitation technique [26]. The amphiphilic 
PLGA-b-PEG-COOH copolymer was selected to create 
biocompatible, biodegradable and water-soluble micelles 
able to circulate for long periods of time in the blood­
stream. Therefore, the organic solution of AgNPs‑1 and 

the copolymer was added dropwise to a larger amount 
of ultrapure water under vigorous stirring. The resulting 
Ag@PNPs were characterized as reported previously [18]. 
It is worth noting that, in this system, the AgNPs are 
preserved from dissolution by double-layer protection. 
The organic thiol, due to its high affinity for the parti­
cle surface and low exchange rate, stabilizes the surface, 
while the PLGA-b-PEG nanocarrier erects a defensive 
shell against potentially oxidizing agents (Figure 1) [27].

Exploiting the nanoprecipitation technique, Ali was 
entrapped into the same polymeric system. The DLS ana­
lysis of the obtained Ali@PNPs showed a hydrodynamic 
radius of 80.5 ± 0.9 nm with a PDI of 0.120 ± 0.004 and a 
z‑potential of -51.6 mV. Finally, the simultaneous entrap­
ment into the same nanocarriers of both AgNPs‑1 and Ali 
was investigated; we first dissolved Ali in dimethylsulfox­
ide containing AgNPs‑1 and copolymer, and then we used 
the nanoprecipitation techniques to create micelles. After 
purification, the Ag/Ali@PNPs were fully characterized; 
DLS analysis of this system showed a hydrodynamic 
diameter of 190.6 ± 0.8 nm with a narrow size distribu­
tion (PDI = 0.09 ± 0.03) and a z‑potential of -47.8 mV.

AgNPs
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Figure 1. Synthesis of silver@polymeric nanoparticles-99mTc, silver@polymeric nanoparticles-chlorotoxin-99mTc, alisertib@polymeric 
nanoparticles-chlorotoxin-99mTc and silver/alisertib@polymeric nanoparticles-chlorotoxin-99mTc. 
AgNP: Silver nanoparticle; Ali: Alisertib; Cltx: Chlorotoxin; DMSO: Dimethylsulfoxide; EDC: Ethyl(dimethylaminopropyl) carbodiimide; 
NHS: N-hydroxysuccinimide; PLGA-b-PEG: Poly(lactic-co-glycolic acid)-block-PEG-carboxylic acid; PNP: Polymeric nanoparticle.
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Once fabricated, all three nanosystems were conju­
gated with Cltx. Docking was achieved through amide 
bond formation between the carboxylic acids at the par­
ticle’s surface and the free amine group of the peptide 
using the classical 1-ethyl-3-(3-dimethylaminopropyl) 
carbodiimide chemistry. The Ag@PNPs–Cltx, Ali@
PNPs–Cltx and Ag/Ali@PNPs–Cltx obtained were 
fully characterized using DLS, transmission electron 
microscopy and AAS (Figure 2).

Ag@PNPs–Cltx have already been reported and char­
acterized by us [18]. DLS analysis of Ali@PNPs–Cltx con­
firms that the particle’s dimensions are maintained with 
a hydrodynamic radius of 98.2 ± 3.8 nm and a narrow 
size distribution (PDI = 0.160 ± 0.009). The z‑potential 
was found to be -23.2 mV, and the Ali concentration was 
determined using HPLC analysis and was found to be 
120.8 µM. Regarding Ag/Ali@PNPs–Cltx, DLS ana­
lysis revealed a hydrodynamic diameter of 199.1 ± 0.6 nm 
and a PDI of 0.210 ± 0.018. The z‑potential (-15.4 mV) 
became less negative after Cltx conjugation. The Ali 
concentration was determined using HPLC analysis and 
was found to be 41.8 µM, while the Ag concentration 
was measured using AAS analysis and was found to be 
234 ppm, corresponding to a 2.17‑mM solution.

In vitro biological studies
The effect of Ag@PNPs–Cltx on the U87MG human 
glioblastoma cell line and Balb/3T3 immortalized 
fibroblasts has already been reported, and cell-specific 
recognition of U87MG compared with Balb/3T3 cell 
lines, via Cltx, was observed. The uptake of Ag was also 
quantified and a cytotoxic effect corresponding to an 
IC

50
 of 45 µM was found after 72 h of exposure [18]. In 

the present study, a comparison of these results with Ali 
alone and Ali@PNPs–Cltx, and the evaluation of the 

synergistic effect between AgNPs and Ali both loaded in 
micelles (Ag/Ali@PNPs–Cltx) was carried out. 

The range of concentrations tested, related to the 
amount of Ali for all the compounds, was 0.001–10 µM, 
corresponding to concentrations of 0.00005–0.5 µM of 
Ag in Ag/Ali@PNPs–Cltx. Increasing concentrations 
and exposure times induced a statistically significant 
decrease in cell viability compared with the untreated 
cells (control: 100% cell viability) for all the compounds 
tested (Figure 3). DMSO was used to dissolve Ali and 
it was tested, as a solvent control, at a concentration of 
0.2% v/v. DMSO did not show any statistically signifi­
cant toxicity when administered as the negative control. 
In fact, the cell viability after 48 and 72 h of exposure 
was 98 and 99%, respectively. At each examined time 
point, Ali@PNPs–Cltx were more toxic than Ali alone; 
comparing the IC

50
 of Ali@PNPs–Cltx (0.02 µM) and 

Ag/Ali@PNPs–Cltx (0.01 µM of Ali and 0.0005 µM 
of Ag), the latter was more toxic, but only after 72 h of 
incubation (Figure 3B). Furthermore, Ali@PNPs–Cltx 
showed a nonlinear dose–effect relationship after 
both 48 and 72 h of exposure with almost complete 
cell death at 5 and 10 µM; by contrast, the toxicity of 
Ag/Ali@PNPs–Cltx remained stable at approximately 
45 and 30% cell viability at doses from 0.1 to 10 µM, 
after 48 and 72 h of exposure, respectively (Figure 3).

Radiolabeling
In  vivo biodistribution was assessed using NPs radio­
labeled with 99mTc and high-resolution scintigraphic 
imaging. All of the products of this study were directly 
radiolabeled [21] with high efficiency >95%, and radio­
labeled products demonstrated good stability properties. 
Transchelation against DTPA and histidine was evalu­
ated by ascending ITLC-SG (Supplementary Material) 
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analysis using acetone and saline as mobile phases. In 
DTPA stability studies, after 1 h of incubation, all three 
NPs displayed moderate stability (68 ± 4% for Ag/Ali@

PNPs–Cltx-99mTc, 72  ±  5% for Ali@PNPs–Cltx-99mTc 
and 71 ± 2% for Ag@PNPs–Cltx-99mTc). It is worth not­
ing that no reoxidation to pertechnetate occurred, but 
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rather the instability was attributed to the formation of 
the stable 99mTc–DTPA complex. At 6  h post incuba­
tion, some intact radiolabeled NPs remained present 
(30 ± 0.8% for Ag/Ali@PNPs–Cltx-99mTc, 15 ± 1.3% for 
Ali@PNPs–Cltx-99mTc and 20  ±  0.9% for Ag@PNPs–
Cltx-99mTc). However, at this time point, the presence of 
significant amounts of TcO

4
- was observed, at least for 

Ali@PNPs–Cltx-99mTc (15 ± 4%) and Ag@PNPs–Cltx-
99mTc (41.5  ±  5.5%). The three NPs remained almost 
intact (>94%) after 1 h post-incubation, with no signifi­
cant 99mTc dissociation in favor of donor groups that are 
always present in plasma proteins. Nevertheless, further 
incubation resulted in the formation of larger radiocom­
plexes, as shown by the pyridine:acetic acid:water mixture 
quality control. At 6 h post incubation, only a fraction of 
radiolabeled NPs remained intact (31 ± 2.1% for Ag/Ali@
PNPs–Cltx-99mTc, 17 ± 1.9% for Ali@PNPs–Cltx-99mTc 
and 24 ± 3.2% for Ag@PNPs–Cltx-99mTc).

In vivo biodistribution & therapeutic effect
In  vivo studies in tumor-bearing mice have shown 
noticeable concentrations of the NPs in their tumors. 
Out of all tested products, the highest concentration 
was observed for the full system Ag/Ali@PNP–Cltx-
99mTc. In Figure 4 & Supplementary Figure 11, succes­
sive 2‑min frames of a tumor-bearing mouse injected 
with Ag@PNPs-99mTc and Ag/Ali@PNP–Cltx-99mTc 
are shown. A significantly higher concentration of Ag/
Ali@PNP–Cltx-99mTc on the left shoulder, where the 
tumor is, compared with Ag@PNPs-99mTc  (without the 
targeting agent Cltx) can be observed.

Quantitative analysis (Supplementary Figures 11 & 12) 
of the 2‑min frames shows a concentration of 0.6% for 
Ag@PNPs-99mTc and 5% for Ag/Ali@PNP–Cltx-99mTc 
in the tumor. This concentration is considered signifi­
cantly different between the two formulations, as well 
as between Ag/Ali@PNP–Cltx-99mTc and normal tissue 
(<2%). In addition, the concentration in the liver drops 
from 80% for Ag@PNPs-99mTc to 60% for Ag/Ali@
PNP–Cltx-99mTc, and a noticeable and steady increase in 
the concentration in the bladder (from 3 to 7%) for Ag/

Ali@PNP–Cltx-99mTc compared with Ag@PNPs-99mTc 
is observed. 

For the initial assessment of a decrease in tumor size, 
20 mice were divided into four groups, each one consist­
ing of five animals – control, Ag@PNPs–Cltx, Ali@
PNPs–Cltx and Ag/Ali@PNPs–Cltx. The compara­
tive measurements of the average tumor size and mouse 
weight for the four groups are given in Figure 5. These 
results are comparable and match those obtained in the 
in vitro test (Table 1). 

Discussion
In this work we propose a new method for the synthesis 
of PNPs loaded with Ali and AgNPs to be used as an 
anticancer therapy.

All of the nanosystems reported have been obtained 
with an average diameter of less than 200 nm, which is 
wildly recognized as a good range for drug delivery appli­
cations and medical purposes [28]. Ag/Ali@PNPs have a 
larger diameter that is probably caused by the simultane­
ous incorporation of two different agents into the PNPs, 
which remains a challenging task. The nanosystems have 
highly negative z‑potentials due to the presence of a large 
number of carboxylic acid groups on the micelle’s outer 
shell. Negatively charged NPs have shown prolonged 
blood circulation and are generally less toxic compared 
with positively charged NPs [29,30]. After the conjugation 
reactions, the z‑potential was less negative, probably due 
to the loss of free carboxylic acids groups, which are now 
involved in the peptide conjugation. 

Ali has been chosen as pharmacologic model for drug 
loading because of its effect as a selective AAK inhibitor 
and because its application against solid tumors (epi­
thelial ovarian, fallopian tube and primary peritoneal 
carcinoma) is well known [31–33]. In this work, we also 
studied the synergic effect of Ali and AgNPs. AgNPs 
have already been proposed as anticancer agents because 
of their intrinsic toxic properties [34,35], and the AgNPs’ 
cytotoxic effect against cancer cells has already been 
observed in vitro on U87MG cells, human leukemic 
K562 cells [36] and in vivo [37].

Liver LiverBladder Bladder

Injection
point

Injection
point

Tumor Tumor

Figure 4. Comparative image of a tumor-bearing mouse injected with different polymeric nanoparticle 
formulations. (A) Silver@polymeric nanoparticles-99mTc and (B) silver/alisertib@polymeric nanoparticles–
chlorotoxin-99mTc post-injection.
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Regarding the stability of the radiolabeled NPs, 
DTPA and histidine challenges are the most efficient 
methods to determine stability. DTPA and histidine 
are considered two of the most efficient chelators for 
99mTc, because they have the ability to complex with the 
radiometal in various oxidation states [38,39]. The moder­
ate stability that all radiolabeled NPs present in DTPA 
after 1 h of incubation is expected considering the strong 
affinity that 99mTc has for DTPA. Nevertheless, such 
conditions are never present in vivo, and, therefore, histi­
dine challenge, which showed very good stability proper­
ties even after 6 h of incubation, provides more reliable 
evidence that these 99mTc-NPs will have good in vivo 

properties, since histidine is a molecule widely present 
in living organisms as a protein building material. Addi­
tionally, plasma stability studies are generally used as a 
means to indicate in vivo stability, since interaction with 
plasma proteins may alter the initial structure and/or 
characteristics of the radiolabeled NP, something that 
can ultimately result in the loss of its designed biological 
function. Plasma studies showed good stability proper­
ties of the radiolabeled NPs. The formation of larger 
radiocomplexes in plasma after 6 h may be attributed 
to the plethora of biomolecules existing in a biological 
environment that contain atoms and/or groups able to 
chelate and stabilize the 99mTc core, or even compete for 
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Table 1. Comparison between in vitro and in vivo results.

Compounds tested In vitro in U87MG cells 
(IC50; µM)

In vivo in glioblastoma-bearing mice (average 
size change ± standard deviation; %)

Ag@PNPs–Cltx 45 +22 ± 8.1
Ali@PNPs–Cltx 0.02 -22 ± 6.1
Ag/Ali@PNPs–Cltx 0.01 -34 ± 12
Ali alone 0.1 Not determined
In vitro results are expressed as the IC50 obtained in U87MG cells after 72 h of incubation and in vivo in glioblastoma-bearing mice as the 
observed average tumor size reduction after day 45. 
Ag: Silver; Ali: Alisertib; Cltx: Chlorotoxin; PNP: Polymeric nanoparticle.

Figure 5. Tumor dimensions for the four tested mice groups. Control, Ag@PNPs–Cltx, Ali@PNPs–Cltx and 
Ag/Ali@PNPs–Cltx are shown. A decrease in tumor size is observed for Ag/Ali@PNPs–Cltx. Error bars represent the 
standard deviation. 
Ag: Silver; Ali: Alisertib; Cltx: Chlorotoxin; PNP: Polymeric nanoparticle.
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the limited NP surface, altering the NP’s initial structure 
[40] and causing ‘flocculation’ of the NP.

The results of this study have revealed that, even after 
6 h of incubation, the radiometal stays complexed on 
the NPs as no reoxidation to pertechnetate took place 
in the in vitro conditions that were chosen specifically 
to resemble those of the human body. 

All imaging studies in vivo indicated, as expected, 
that NPs were present in the liver, as well as a slow – but 
continuous – increase in the concentration in bladder. 
The concentration in the tumor of the nontargeted 
Ag@PNPs-99mTc was approximately 0.6% at 60 min 
post-injection, and this is almost certainly due to the 
enhanced permeability and retention effect. Taking 
into account that this value is almost double the con­
centration in normal tissue (~0.3%) we can say that 
this is quite encouraging for future studies. 

For Ag/Ali@PNP–Cltx-99mTc, the concentration 
in liver decreased from 80 to 60% and, therefore, the 
effect of the targeting peptide is quite clear. This result, 
combined with the increased concentration in the blad­
der (from 3 to 7%), provides strong evidence that Ag/
Ali@PNP–Cltx-99mTc has favorable kinetic in  vivo 
properties when compared with Ag@PNPs-99mTc, thus 
providing better scintigraphic images and as well as 
probably being more effective as a therapeutic agent. 
The potential of Ag/Ali@PNP–Cltx as a therapeutic 
delivery vehicle to cancer cells is also suggested by the 
significantly higher uptake of Ag/Ali@PNP–Cltx-99mTc 
compared with other 99mTc-PNPs in tumor tissue and 
the comparatively higher concentration of the nanofor­
mulation in the tumor compared with normal tissue 
(Supplementary Figures 11 & 12). 

The results for tumor size show that treating the mice 
with Ag@PNPs–Cltx did not have a significant effect on 
tumor size. On the other hand, Ali@PNPs–Cltx resulted 
in a slowdown in tumor growth compared with the con­
trol and Ag@PNPs–Cltx groups. It should be noted that 
it was only possible to measure tumor size from day 36 
and on the day of Ali@PNPs–Cltx injection. When 
Ag/Ali@PNPs–Cltx was injected, the development of 
the tumor was altered compared with the three other 
groups, and a decrease in tumor size was noticeable from 
day 48. The weight of the mice was constant for all 
groups, except for the Ag/Ali@PNPs–Cltx group, where 
weight loss was observed after day 48, which correlates 
with the observed tumor decrease. 

Data in Table 1 support the argument that a syner­
gistic effect with Ag/Ali@PNPs–Cltx takes place. The 
in vitro results at 72 h and the in vivo effect after day 48 
showed that the decrease in tumor size was greater than 
with the other nanosystems [41].

It is still uncertain and currently under debate 
whether the toxicity of AgNPs is a particle-specific 

effect [42] or whether it is caused by the dissolution of 
Ag+ ions [43,44]. In our system, the synergistic effect 
may be based on the coexistence of the drug with Ag+ 
ions formed from slow AgNPs dissolution, once they 
are released from the protective polymeric shell.

Since the synergic effect of drugs and NPs could 
have some advantages in the drug delivery and thera­
peutics field, it will be important in the near future to 
better investigate this both in vitro and in vivo, maybe 
also increasing the AgNP concentration and analyzing 
different effects induced by these nanomaterials, as 
well as assessing alternative administration protocols.

Conclusion
In conclusion, we have reported the synthesis of some 
novel theranostic agents containing the small-molecule 
Ali and AgNPs. 99mTc-radiolabeling of the nanocarrier 
allowed us to see the in vivo biodistribution in U87MG-
tumor bearing mice, the IC

50
 at 72 h and the tumor 

reduction in  vivo that was obtained with Ag/Ali@
PNPs–Cltx, which couples the two agents together and 
promotes a synergistic effect. These results convey the 
potential of this novel theranostic agent for TDD.

Future perspective
The potential of targeted NPs for cancer treatment is 
immense, and a variety of systems have been devel­
oped and studied. However, systems bearing multiple 
therapeutic agents with a synergistic effect on tumor 
reduction are relatively novel. Thus, more studies are 
needed to explain the synergistic effect of the two cyto­
toxic agents. The understanding of this mechanism 
will allow the development of novel systems bearing 
multiple components with synergistic effect for the 
treatment of different types of cancer.
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Executive summary

Background
•	 Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a bleak prognosis. The survival time 

without treatment is 3 months.
•	 Nanomedicine and targeted drug delivery are a powerful approach for cancer treatment.
Materials & methods
•	 Synthesis of nanocarriers containing silver nanoparticles with alisertib have been developed.
•	 Resulting polymeric nanoparticles have been conjugated with the peptide chlorotoxin and radiolabeled 

with 99mTc.
•	 In vitro toxicity against GBM cell lines showed a synergistic effect between silver and alisertib.
•	 In vivo radiolabeling showed a GBM-targeted biodistribution of the nanoparticles and a therapeutic effect.
Conclusion & future perspective
•	 A targeted strategy using a polymeric nanoparticles for drug delivery against GBM has been developed.
•	 This approach may be applied for future nanomedicine applications.
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