
HAL Id: hal-02440083
https://hal.science/hal-02440083v1

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radiomics in hepatocellular carcinoma: a quantitative
review

Taiga Wakabayashi, Farid Ouhmich, Cristians Gonzalez-Cabrera, Emanuele
Felli, Antonio Saviano, Vincent Agnus, Peter Savadjiev, Thomas Baumert,

Patrick Pessaux, Jacques Marescaux, et al.

To cite this version:
Taiga Wakabayashi, Farid Ouhmich, Cristians Gonzalez-Cabrera, Emanuele Felli, Antonio Saviano,
et al.. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatology International, 2019,
13 (5), pp.546-559. �10.1007/s12072-019-09973-0�. �hal-02440083�

https://hal.science/hal-02440083v1
https://hal.archives-ouvertes.fr


Wakabayashi T et al. Radiomics in hepatocellular carcinoma 1 

Review article 

Radiomics in hepatocellular carcinoma: quantitative review 

 

Taiga Wakabayashi, MD1, Farid Ouhmich, PhD2, Cristians Gonzalez-Cabrera, MD2, 

Emanuele Felli, MD1, 2, 3, 4, 5, Antonio Saviano, MD2, 4, 5, Vincent Agnus, PhD2, Peter 

Savadjiev, PhD6, Thomas F. Baumert, MD, PhD2, 4, 5, Patrick Pessaux, MD, PhD1, 2, 3, 4, 5, 

Jacques Marescaux, MD, FACS1, 2, 3, Benoit Gallix, MD, PhD2, 6 

 

1Institut de Recherche Contre les Cancers de l'Appareil Digestif (IRCAD), Strasbourg, 

France 

2Institut hospitalo-universitaire (IHU), Institute for Minimally Invasive Hybrid Image-

Guided Surgery, Université de Strasbourg, Strasbourg, France 

3General, Digestive, and Endocrine Surgery, Nouvel Hôpital Civil, Université de 

Strasbourg, Strasbourg, France 

4Inserm, U1110, Institut de Recherche sur les Maladies Virales et 

Hépatiques, Université de Strasbourg, Strasbourg, France 

5Pôle Hépato-digestif, Hôpitaux Universitaires, Strasbourg, France. 

6Department of Diagnostic Radiology, McGill University, Montreal, Canada 

 

Short title: Radiomics in hepatocellular carcinoma 

 

Correspondence to: 

Benoit Gallix, MD, PhD, 

Institut hospitalo-universitaire (IHU), Université de Strasbourg, Strasbourg, France 

1 Place de l’Hôpital 

67000, Strasbourg, France 

Phone: +33 6 19 66 06 13 



Wakabayashi T et al. Radiomics in hepatocellular carcinoma 2 

E-mail: benoit.gallix@ihu-strasbourg.eu 

 

Keywords: Radiomics, radiogenomics, hepatocellular carcinoma, tumor heterogeneity 

 

Compliance with ethical standards 

Conflict of interest: Thomas F. Baumert, Patrick Pessaux, Jacques Marescaux, and 

Benoit Gallix have received research grants from ARC, Paris and Institut hospitalo-

universitaire, Strasbourg (TheraHCC IHUARC IHU201301187). Antonio Saviano and 

Thomas F. Baumert have received research grants from the European Union (ERC-

AdG-2014-671231-HEPCIR, H2020-667273-HEPCAR). Taiga Wakabayashi, Farid 

Ouhmich, Cristians Gonzalez-Cabrera, Emanuele Felli, Vincent Agnus, and Peter 

Savadjiev declare that they have no conflict of interest. 

 

Word count: Abstract 268 words; Main text 4070 words; Tables 2/Figures 2 



Wakabayashi T et al. Radiomics in hepatocellular carcinoma 3 

Abstract 

Radiomics is an emerging field which extracts quantitative radiology data from medical 

images and explores their correlation with clinical outcomes in a non-invasive manner. 

This review aims to assess whether radiomics is a useful and reproducible method for 

clinical management of hepatocellular carcinoma (HCC) by reviewing the strengths and 

weaknesses of current radiomics literature pertaining specifically to HCC. From an 

initial set of 48 articles recovered through database searches, 23 articles were retained to 

be included in this review after full screening. Among these 23 studies, seven used a 

radiomics approach in magnetic resonance imaging (MRI). Only two studies applied 

radiomics to positron emission tomography-computed tomography (PET-CT). In the 

remaining 14 articles, a radiomic analysis was performed on computed tomography 

(CT). Eight studies dealt with the relationship between biological signatures and 

imaging findings, and can be classified as radiogenomic studies. For each study 

included in our review, we computed a Radiomics Quality Score (RQS) as proposed by 

Lambin et al. We found the RQS (mean ± standard deviation) was 8.35 ± 5.38 (out of a 

possible maximum value of 36). Although these scores are fairly low, and radiomics has 

not yet reached clinical utility in HCC, it is important to underscore the fact that these 

early studies pave the way for the radiomics field with a focus on HCC. Radiomics is 

still a very young field, and is far from being mature, but it remains a very promising 

technology for the future for developing adequate personalized treatment as a non-

invasive approach, for complementing or replacing tumor biopsies, as well as for 

developing novel prognostic biomarkers in HCC patients. 
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INTRODUCTION 

Hepatocellular carcinoma (HCC) is the most common liver cancer. HCC mostly occurs 

in patients with chronic liver disease such as cirrhosis or severe fibrosis. Its major 

causes are chronic liver disease due to chronic hepatitis B and C virus infection or 

metabolic liver disease, such as non-alcoholic steatohepatitis or alcoholic liver disease. 

HCC is poorly symptomatic at the early stages of its development, and often becomes 

symptomatic only at an advanced stage when curative treatments are no longer possible. 

Therefore, the prognosis of HCC remains unsatisfactory [1].  

 

Recently, tumor heterogeneity in terms of biological and genomic characteristics has 

become a topic of interest in cancer research [2]. Tumor heterogeneity can be 

demonstrated not only within primary cancers and various metastases (inter-tumor 

heterogeneity), but also within the same tumor (intra-tumor heterogeneity). Numerous 

publications have shown that HCCs are extremely heterogeneous both in terms of their 

genotype and phenotype [3, 4]. Thus, not only can different patients develop very 

different types of cancer, but tumors in the same patient can also be heterogeneous. 

Patient prognosis depends strongly on this phenotypic expression, which could be 

evaluated, for example, by analyzing pathological characteristics, such as the 

histological grade of the tumor [5] and microscopic vascular invasion [6]. Many staging 

systems including clinical, biological and imaging data have been developed such as the 

Barcelona Clinic Liver Cancer staging system [7], the Cancer of the Liver Italian 

Program [8, 9], and the Okuda criteria [10]. However, beyond the size and number of 

lesions, none of these scoring systems include information on the tumor phenotype that 

affects patient survival in a significant way [11]. Diagnostic and therapeutic trends in 

liver cancer are changing; they now tend to be determined by significant biological and 

genomic tumor characteristics.  
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Tumor characterization via medical imaging 

Among all techniques for interrogating tumor phenotype and heterogeneity, medical 

imaging provides several advantages [11, 12]. By allowing an evaluation of tumors as a 

whole, in a minimally invasive and reproducible manner, imaging is complementary to 

biopsies, which only provide samples that are not always representative of tumor 

heterogeneity [13]. Since biopsies merely aim to sample a small portion of the tumor 

and since it is difficult to repeat pathological assessments, they provide limited 

information regarding tumor heterogeneity. Conversely, medical imaging methods such 

as Computed Tomography (CT), positron emission tomography (PET) or magnetic 

resonance imaging (MRI) can capture a tumor in its entire 3D extent with features that 

reflect tumor heterogeneity. 

 

Such cross-sectional imaging techniques have become essential tools for modern 

oncology management [14-16]. Protocols for image acquisition based on these 

modalities have reached such a degree of sophistication that, in order to make a 

therapeutic decision, tissue biopsy is often unnecessary when the diagnostic criteria for 

HCC are all met [17-19]. However, the methods currently used to assess the prognosis 

of patients with HCC based on the acquired images remain very rudimentary and are 

simply based on size, number of tumors and vascular invasion as subjectively analyzed 

by the radiologist [7-10, 20-22]. As we recognize the need to go beyond tumor size and 

number, given the sophistication of the acquired imaging signal, advanced image 

analysis tools are now required to establish biomarkers from the complex signal that can 

be extracted from the images [22]. 

 

Going beyond size: semantic descriptors of tumor appearance 

To improve image-based tumor characterization, one possible approach is based on a 

qualitative or semi-quantitative analysis as performed by an expert radiologist, using 
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standardized reading scores. Examples of characteristics generally described for HCC 

by radiologists include the presence of arteries in the tumor, a peri-tumoral halo or the 

tumor’s apparent heterogeneity. Specifically, an HCC could be encapsulated, well-

limited, or homogeneously hypervascularized after contrast injection or, on the contrary, 

poorly limited with vascular invasion, heterogeneously enhanced, and with a larger area 

of necrosis. This type of image analysis is referred to as a “semantic” analysis of 

lesions, where images are evaluated by one or more trained radiologists on the basis of 

semantic descriptors of the lesion(s) that are part of the established radiologist's lexicon. 

Another example of a semantic approach to tumor classification is the LI-RADS 

classification, which provides a standardized radiological lexicon built by consensus 

among expert radiologists [24]. 

 

The semantic analysis approach is interesting because it often provides a 

pathophysiological explanation for the image descriptions. The process of quantifying 

visual semantic characteristics unfortunately remains quite subjective and difficult to 

reproduce. Its implementation also poses practical problems because this process is very 

time consuming and cannot easily be used with large populations or integrated into 

clinical practice. Furthermore, its low inter- and intra-observer reproducibility makes 

this analysis difficult to standardize.  

 

Going beyond size: quantitative descriptors of tumor appearance 

Another approach to image-based tumor characterization is based on quantitative image 

descriptors. This type of approach is known as radiomics, and it aims to quantify the 

morphological appearance of the tumor, i.e. its imaging phenotype, using 

mathematically defined quantitative features [25, 26]. This type of quantitative 

information cannot be easily assessed by a radiologist, but can be computed with 

specialized computer algorithms. Radiomics was popularized by Lambin et al. [27] in 
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2012, and since then has been extensively used as a methodology to assess tumor 

heterogeneity, in order to establish a correlation with clinical or biological information 

[28].  

 

Radiomics 

The radiomics analysis pipeline consists of three main steps: 1) tumor segmentation, 2) 

computation of radiomic features within the segmented tumoral region and 3) feature 

selection, model building and classification. The details of every stage of the radiomics 

pipeline, their implementation details and limitations have been discussed at length 

elsewhere [29-32]. Here, we briefly mention a few details that are relevant to the 

findings of our review.  

 

Segmentation 

Radiomics requires a tumor region to be segmented in order to define the image region 

where quantitative descriptors are to be computed. Automatic segmentation has been a 

long-standing objective in the computer vision and machine learning fields [33], but 

remains difficult to achieve. This is why most radiomic studies still rely on manual 

tumor segmentation. Unfortunately, the use of manual segmentation not only makes 

measurements long and tedious, but also hinders measurement reproducibility. It should 

be noted that in studies using semantic analysis, segmentation is not necessary [34-41].  

 

Radiomics features 

Many different quantitative descriptors (features) have been proposed for radiomics [29-

32]. The studies included in the present review typically use first-order, second-order 

and higher-order mathematical descriptors such as grayscale matrix analysis (co-

occurrence) which take into account the relationships between neighboring pixels. A 

filtering step – using for example Gauss Laplacian filters – is usually performed prior to 



Wakabayashi T et al. Radiomics in hepatocellular carcinoma 8 

any analysis to reduce noise and improve performance [42-47].  

 

Feature selection, model building, classification 

One difficulty of radiomics is that it can calculate thousands of parameters for a single 

image. If the number of parameters is very high and the population is small – a few 

dozen patients – there is a significant risk of overfitting. This means that in practice 

there will almost always be parameters which are statistically correlated with the 

patient's condition. In order to limit this risk, the number of parameters must be 

significantly reduced before building the statistical model and, if possible, the model 

needs to be tested on an independent imaging dataset, obtained for instance at a 

different institution [33].  

 

Limitations 

The limitations of this method have been thoroughly analyzed in previous review 

articles about radiomics [23, 29-32, 33, 48-50]. One of the main limitations is the lack 

of standardization of image acquisition (such as slice thickness, choice of MRI 

sequences, or timing after contrast injection), which could add a strong bias to the post-

imaging workflow.  

 

Radiogenomics 

Radiogenomics refers to the study of correlations between genome and molecular 

measurements on one hand, and radiological measurements (either quantitative or 

qualitative (semantic) features) on the other [51-53]. Radiomics and radiogenomics 

have the same objective, which is to transform radiological images into objective 

measurements representative of tumor heterogeneity. 

 

Purpose 
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In recent years, we have seen the publication of numerous studies on radiomics with the 

objective of improving the diagnosis and stratification of patients with primary liver 

cancer [54]. The results of these studies are sometimes contradictory and complex to 

reproduce. Unfortunately, many of the published works show significant 

methodological weaknesses which have limited their impact in clinical practice. 

Therefore, there is a need to clarify the performance of radiomics as a prognostic and 

stratification tool for HCCs. We have thus conducted this systematic review to assess 

whether radiomics is a useful and reproducible method for HCC clinical management in 

terms of diagnosis, prognosis, and estimation of treatment response by reviewing the 

advantages and qualities of the studies included. 

 

REVIEW STRATEGY 

This review was conducted for all studies, published between January 1, 2007 and 

December 23, 2018 following PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-analyses) guidelines [55]. We used the following search strategy on 

PubMed and Embase: ((hepatocellular carcinoma [Title]) AND (radiomics [Title] OR 

radiogenomics [Title] OR omics [Title])), and a combination of associated terms from 

the controlled MeSH vocabulary. The final search was carried out on 23 December 

2018. Inclusion criteria were (1) human studies, (2) English language studies, (3) full-

text articles, and (4) studies reporting on semantic features or radiomics analyses for 

HCC. Exclusion criteria included (1) animal/experimental studies, (2) abstracts, 

reviews, and case reports, (3) only ultrasound-related studies, and (4) no investigation 

on clinical outcome. The existing review articles were analyzed in order to look for 

possible additional references. Every abstract was reviewed for initial selection, then all 

chosen articles were fully downloaded. Two authors (T.W, F.O), and an independent 

third one (B.G) when consensus was needed, individually assessed each manuscript to 

eliminate those which failed to meet the inclusion criteria. In accordance with the 
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forementioned search strategy and criteria, we found 48 articles and excluded the 7 

review articles, 7 articles without clinical outcomes, 7 articles focusing on other 

etiology, 2 ultrasound-related studies, 1 animal study, 1 article without imaging 

analysis. Finally, we included 23 of them in this review after a full screening (Figure 1). 

The articles are summarized in Table 1. 

 

The 23 studies included in our review use either semantic or quantitative features. Table 

2 describes the types of features used in the quantitative and semantic categories. 

Quantitative features are computed via specialized software and are classified as first-

order, second-order and high-order descriptors, and morphological features. Semantic 

features are visually interpreted by radiologists and are defined as 8 features in our 

review: two-traits predictor of venous invasion, non-smooth tumor margin, peritumoral 

enhancement, tumor size, tumor-liver difference, PET-CT positivity, infiltrative pattern, 

and mosaic appearance. 

 

For all articles, we analyzed separately 5 phases within the radiomics workflow: 1) data 

inclusion and selection criteria, 2) description and standardization of imaging 

acquisitions, 3) feature extraction, 4) exploratory analysis, and 5) modelling [25]. For 

each study, the following data were systematically recorded: first author, year of 

publication, type of study (retrospective or prospective), number of centers (single or 

multicentric), objective of the study (tumor detection, tumor characterization, prognosis, 

response to treatment), type of imaging modality (MRI, CT, PET), technical parameters 

(slice thickness, magnetic field for MRI scanner, contrast media injection), main 

radiomics investigated features, presence of genomic consideration, number of patients 

used to build the model, presence of a validation cohort.  

 

FINDINGS 
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Variations in imaging modalities and protocols 

Seven out of the 23 studies used a radiomics approach on MRI images [34, 35, 56-60]. 

In one study, both CT and MRI were investigated [35]. MRI provides a very rich signal 

which can provide accurate information about tumors. However, MRI acquisitions are 

very difficult to standardize, with numerous acquisition parameters and many variations 

between manufacturers. MRI is also sensitive to many artifacts which complicate the 

reproducibility of measurements such as motion artifacts – cardiac or respiratory – due 

to long acquisition times or field homogeneity with image and signal distortion 

consequences. 

 

Only two studies performed a radiomics analysis using PET-CT data [36, 61]. Blanc et 

al. [61] reported that a radiomics signature computed on whole-liver PET 18F-FDG 

imaging performed before transarterial radioembolization using Yttrium-90 predicted 

progression-free survival (PFS) and overall survival (OS) in patients with advanced 

HCC. This study is unique, as it uses an integrative whole-liver approach and underlines 

the importance of including not only tumor lesions, but also adjacent liver parenchyma 

to explore the tumor environment. In all the other articles, a radiomics analysis was 

carried out on CT images. An iodine contrast agent was used in all studies [35, 37-47, 

62, 63] except for one study [64]. Four studies dealt with quantitative features from 

contrast-enhanced multiple-phase CT images [43-45, 63] and all six studies dealt with 

only semi-quantitative (semantic) features from contrast-enhanced multiple-phase CT 

images [35, 37-41]. The other four studies focused on quantitative characteristics from 

contrast-enhanced single-phase CT images (arterial phase in 2 [42, 47], portal phase in 2 

[46, 62]). 

 

Clinical utility of radiomic analysis in HCC 

Eight studies dealt with the relationship between the biological variables and imaging 
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findings. For these studies we used the terminology of radiogenomics – which is used 

often in the literature – although most refer to microscopic vascular invasion (MVI), 

which is not a genomic variable [35, 37, 39-41, 58, 59, 62]. Four of these articles 

considered MVI in their studies [34, 38-40]. In fact, MVI is the most frequent feature 

required to investigate the correlation with pathological characterization in our review. 

Among all the included articles, eight studies focused on the correlation between 

radiomic features and MVI [34, 35, 37-41, 63]. Bakr et al. [63] demonstrated that 

quantitative features which capture the lesion texture, intensities, and shape extracted 

from triphasic CT images had a better accuracy in MVI prediction, compared to two 

previously reported signatures based on semantic features, radiogenomic venous 

invasion [39, 40] and TTPVI [35]. 

 

The percentage of studies performed for tumor characterization was 61% (14/23) [34, 

35, 56-60, 36-41, 47, 63]. Rahman et al. [47] described a model that distinguished 

successfully different lesion types (focal nodular hyperplasia, hepatic adenomas, and 

HCC) and normal liver tissue with high predicted classification performance accuracy, 

as compared to two human readers.  

 

Twelve out of 23 (52%) studies were conducted to aid with prognosis [36, 39, 40, 42-

46, 58, 61, 62, 64]. Cozzi et al. [64] have described a radiomics method to predict tumor 

response and OS for patients treated with arc-based radiotherapy. The other 11 studies 

were related to tumor prognosis after surgical treatment. Zheng et al. [42] demonstrated 

that a radiomics score measured on baseline CT was a prognostic factor of the outcome 

in patients that underwent liver resection for HCC. They concluded that this score might 

be complementary to the current staging system and help to stratify individualized 

treatments for solitary HCC patients. 

 



Wakabayashi T et al. Radiomics in hepatocellular carcinoma 13 

Quality assessment of radiomic studies for HCC 

In order to assess the quality of the included studies, we used the Radiometric Quality 

Score (RQS) as published by Lambin et al [25]. The RQS – which evaluates 16 key 

components of the radiomics workflow – is a tool which analyzes the quality of a 

radiomics study. It assigns points according to 16 different criteria, for a maximum 

score of 36. In our work, the RQS score was evaluated by two authors (T.W. and F.O.) 

first separately, and then by consensus. 

 

The results of the quality evaluations according to the RQS criteria are presented in 

Table 1 and the RQS scores are detailed by criteria in Figure 2. The RQS (mean ± 

standard deviation) was 8.35 ± 5.38 (representing 23% of the possible maximum value 

of 36). All but one study were scored below 18 (50%) due to a lack of external 

validation and/or to retrospective design as shown in Table 1. The main three reasons 

for entirely insufficient scores in the reviewed articles are the lack of prospective design 

except in one study [59], the lack of validation except in four studies [38, 39, 42, 56], 

and the lack of open-access scientific data resources except in two studies [39, 42]. 

Additionally, no studies have attempted to analyze the cost-effectiveness of a radiomics 

approach applied to a specific clinical situation. 

 

The prospective nature of the study is a major component of the RQS, representing 

almost 20% of the total score (7 points out of 36). A prospective study ensures that 

included patients could undergo a consistent imaging protocol, which would provide 

results that are more reliable as compared to a retrospective study. From all the studies 

included in the present review, all but one study [59] were retrospective evaluations. 

 

Next, our analysis shows that existing radiomics studies in HCC have involved only 

relatively small patient populations, with an average number of patients of 110, with 
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half of the studies including fewer than 100 cases. In addition, there is a general lack of 

validation in an independent population. Most of the studies trained the algorithm and 

evaluated its performance in only a small group of patients, risking overfitting. In the 

RQS, the type of validation performed accounts for as much as 10/36 points (nearly 

28%), with the highest score being given to validation on independent datasets. In this 

regard, one option is the use of open-access scientific data. If such data is available for a 

radiomics study, researchers will be able to use the data set for a validation, 

reproduction, or replication with various data sets [25]. However, the lack of open-

access data for HCC is a considerable limitation and results in a reduction by as many 

as 4 points of the total RQS. 

 

Finally, only two articles used semi-automatic segmentation [60, 61], while all the other 

studies used manual tumor delineation. This could be a limitation to reproducibility and 

a barrier to the deployment of the method because as noted earlier, manual segmentation 

is very operator dependent and time consuming. 

 

Semantic analysis of HCC  

Eight articles in our review used semantic analysis, with potentially interesting results 

allowing the standardization of vascular invasion criteria for example [34-41]. One 

study examined the correlation between a quantitative and a semantic characteristic in 

an attempt to reduce variability between observers [38].  

 

DISCUSSION 

The results of our analysis showed that the overall quality of the studies evaluated is 

low or moderate with an average RQS score of 8.35 or less than 25%. This underlines 

the fact that radiomics is a very recent technique that has not yet reached maturity, but 

also that this method is complex and that its standardization is not easy to implement. 
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This review demonstrates the importance of being cautiously optimistic about radiomic 

signatures. This new field of research has led to an accumulation of experimental and 

analytical work, most often thorough retrospective studies. However, the consolidation 

and standardization of experimental methods has not been standardized or validated. 

This review shows that the published radiomics work on HCC adds little to scientific 

knowledge, and is currently not useful in clinical decision-making. However, radiomics 

is a very young field, far from being mature, and has many subtleties that researchers 

are just learning to manage. In any case, the automated calculation of oncology 

biomarkers based on data acquired through medical imaging remains a necessity and is 

a matter of urgency. Radiomics in its current conventional form is probably only one 

step in the development of reliable computational image biomarkers that will probably 

need to be specific to a particular organ and tumor type. Although the results of our 

review article are somewhat disappointing regarding HCC, it is important to note that 

these published studies pave the way of the field of radiomics with a focus on HCC. 

Also, they demonstrate that radiomics is a topic of current interest for the management 

of HCC.  

 

For radiomics to be a promising option for personalized medicine, it becomes clear that 

the methods of analysis should be standardized and automated. Radiomics is 

particularly interesting in the case of HCC because this tumor has an extremely varied 

phenotype, depending not only on the tumor type but also on the underlying liver 

disease, and this phenotype has a direct impact on the evolution of cancer. New 

prospective studies integrating the potential clinical impact are therefore needed. The 

standardization of image acquisition methods and injection protocols is also essential to 

obtain more relevant results. 
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Future perspectives in radiomic approaches for HCC 

It is possible to yield additional accuracy with a standardization of CT-scan, MRI, and 

PET protocols. Further developments may also potentially require higher resolution 

imaging modalities. As a consequence, radiomics features may become promising 

diagnostic and prognostic factors, in particular with a carefully conducted validation. 

However, it will always be preferable for radiomics studies to be conducted on large 

patient populations, ideally collected prospectively from multiple institutions.  

 

One of the most important challenges radiomics has to face is the segmentation step. An 

ideal segmentation will define correctly the target region in the image with high 

reproducibility and at a low cost. However, this ideal scenario is far from being 

achieved. Currently used manual drawings of the tumor region lead to a high rate of 

disagreement among interpreters, missing crucial information because of tumor 

heterogeneity [65]. The increasing number of publicly available liver image datasets and 

the development of machine and deep learning can help in automating liver and lesion 

segmentation [66, 67].  

 

While radiomics in HCC is in the early stages of development, recent work in biology 

has shown that variations in phenotype, such as those potentially observed through 

imaging, are at least as important as tumor genetics. In this context, the search for 

imaging biomarkers able to quantify variations in tumor phenotype remains a promising 

avenue for research. These new biomarkers will have to be built in concordance with 

the latest discoveries in HCC biology, in order to attempt capturing the changes that 

occur specifically at the interface between the tumor and the liver, in terms of immune 

and inflammatory reaction, as well as tumor heterogeneity. A better quality of radiomics 

analyses can be achieved using the entire tumor [68] plus the peritumoral environment 

with a three-dimensional analysis. An analysis of the whole liver and factors affecting 
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its structure, its baseline signal and vascularization should also be associated with the 

tumor analysis [61]. This is needed because liver cancer is not an isolated cancer, but 

occurs, in most cases, in a pre-existing chronic liver disease. To do this, we must 

develop computer analysis tools specific to the tumor under investigation, while also 

integrating the adjacent hepatic tissue into the analysis. Furthermore, there is a need to 

use more complex image analysis methods – including artificial intelligence – that are 

more specific than the simple accumulation of a large number of very generic and non-

specific features used in “classical” radiomics. 

 

Utilization of deep learning in radiomic analysis 

In the case of conventional radiomics, the features mined by the discovery algorithm are 

designed by experts in medical image processing. However, a new class of artificial 

intelligence method known as deep learning may replace this approach [69]. Deep 

learning radiomics automatically identify – without human intervention – the best 

characteristics for a specific task [70-72] without the need for tumor segmentation. 

However, regardless of the image analysis method used, it is essential to create public 

image databases of patients with chronic liver diseases, with or without cancer, and 

make them accessible to researchers. This will make it possible to improve patient 

prognosis and to anticipate response to therapy for patient stratification. Unfortunately, 

to our knowledge, there is only one open access database fulfilling those criteria for the 

liver [73]. 

 

Summary 

In summary, radiomics is at its very early stages in HCC and many challenges need to 

be addressed. Nevertheless, recent pilot studies using radiomics in patients with HCC 

have shown their potential. For diagnosis, radiomics may help to characterize 

pathological and molecular liver lesions. For prognosis, image features could be 
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independent prognostic factors, as they can be associated with tumor biological 

characteristics. By estimating treatment response, radiomics analysis may also help to 

pave the way for personalized medicine. Additionally, there is a need for prospective 

evaluations in order to allow for potential clinical applications. As shown in other 

cancer entities, radiomics may be an appropriate option for personalized treatment, as a 

non-invasive approach which can complement or replace tumor biopsy, and which can 

also be used to develop novel prognostic biomarkers in HCC patients. 
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Figure legend 

Figure 1. Study selection 

Figure 2. Completing rate of each query item in radiomics quality score for 23 

studies 
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Table 1. Summary of radiomic analyses from 23 studies 
Author Purposes Treatment Modality 

(slice thickness) #Patients Mean tumor 
size 

Significant 
features 

% RQS score 
(points) Conclusion 

Wu et al. [31] 
Prediction of a 
pathological 
grading 

- T1- and T2-weighted 
MRI (7mm) 170 - Q 42 (15) A computed radiomics signature itself or combined with clinical factors could help 

to classify the patients into high-grade or low-grade HCC cases. 

Zhou et al. [32] 
Prediction of a 
pathological 
grading 

- Gd-DTPA MRI (4.4mm) 46 

Low-grade: 
3.8±2.1cm, 
High-grade: 
6.3±2.9cm 

Q 22 (8) Two extracted features were sufficient to classify the histopathological HCC grade.  

Miura et al. [33] 

Comparison of 
clinicopathological 
properties of high-
HCC 

Hepatectomy 
or TACE EOB-MRI 77 

High-HCC: 
3.6±1.2cm,  
Low-HCC: 
5.3±4.9cm 

Q 17 (6) High-HCC differs from low-HCC in PIVKA-Ⅱ level, histopathological 
differentiation, and expression of SLCO1B3. 

Kim et al. [34] Prediction of MVI Hepatectomy 
or LT 

Contrast MRI (2-5.5 
mm) 104 3.6cm S 14 (5) “Peritumoral enhancement” on MRI may be correlated with MVI during surgical 

planning for patients with HCC. 

Hectors et al. [35] 

Quantification of 
tumor 
heterogeneity, 
prediction of 
histopathology and 
gene expression 

- mpMRI 32 4.4±3.3cm Q 39 (14) 
First-order statistical features from mpMRI showed high intra-tumoral and inter-
tumoral heterogeneity on the HCC lesions. This heterogeneity was also remarkable 
at genomic level. 

Starmans et al. [36] Diagnosis - T2-weighted (Fat-Sat) 
MRI (7mm) 119 >3cm Q 0 (0) Patient-based (age and gender) and textural characteristics were used to differentiate 

between benign and malignant tumors. 
Renzulli et al. [37] Prediction of MVI 

based on TTPVI Hepatectomy Contrast CT (2.5mm), 
EOB-MRI 125 3.3cm (1.8-

5.2cm) S 8 (3) Tumor size, “non-smooth tumor margins”, “peritumoral enhancement” and 
“TTPVI” were correlated with the presence of MVI in HCC. 

Blanc et al. [38] OS and PFS TARE PET/CT 47 6cm (4.3-
9cm) Q 19 (7) Radiomics signature computed with textural features was highly correlated with 

survival. 

Park et al. [39] OS and DFS Hepatectomy PET/CT 92 2.5cm S 17 (6) 
High correlation was found between PET-positivity and survival. Additionally, PET 
positivity may also lead to determine the resection margin in order to improve 
survival. 

Kuo et al. [40] 
Treatment 
sensitivity and 
prediction of MVI 

- Contrast CT (2.5mm) 30 - S 19 (7) “Tumor margin” showed a strong correlation with MVI, TNM, and the expression 
of a drug response gene. “Internal arteries” also showed a correlation with MVI. 

Peng et al. [41] Prediction of MVI - Contrast CT (5mm) 

Training: 
184 
Test: 
120 

Training: 
MVI (+) 6.3 
cm, MVI (-) 
5.7cm, 
Validation: 
MVI (+) 
6.4cm, MVI 
(-) 4.9cm 

S, Q 47 (17) Radiological features and a radiomics signature computed with first-order statistical 
features showed a correlation with MVI. 

Segal et al. [42] OS and Prediction 
of MVI genes Hepatectomy Contrast CT 

Training: 
30 
Test: 32 

- S 42 (15) 
“Internal arteries” was found as a key imaging trait to predict OS and MVI in 
combination with “hypodense halo”. Those features were also correlated with the 
expression of genes involved in the development of HCC lesions. 

Banerjee et al. [43] OS and RFS based 
on RVI 

Hepatectomy 
or LT Contrast CT (2.5-3mm) 157 2.8cm (1.8-

4.5cm) S 53 (19) RVI computed with three different imaging traits was correlated with MVI. 

Taouli et al. [44] 
Prediction of MVI 
and aggressive 
phenotype 

- Contrast CT (5mm) 38 5.7±3.2cm S, Q 19 (7) Correlation was found between some imaging traits and the aggressive profile of the 
tumors. 

Zheng et al. [45] Recurrence 
prediction and OS Hepatectomy Contrast CT 

Training: 
212 
Test: 
107 

- Q 47 (17) A radiomics score computed with textural features was sufficient to predict 
postoperative recurrence and survival in patients with solitary HCC. 



Akai et al. [46] OS and DFS Hepatectomy Contrast CT (5mm) 127 3.7cm (2.4-
7cm) Q 25 (9) First-order statistical features were sufficient to predict postoperative survival. 

Zhou et al. [47] Recurrence 
prediction Hepatectomy Contrast CT (1.25mm) 215 - Q 25 (9) A radiomics signature using first-order statistical features combined with clinical 

factors was a good predictor of early recurrence after surgery. 
Chen et al. [48] OS and DFS Hepatectomy Contrast CT (1.25mm) 61 - Q 17 (6) Tumor prognosis could be predicted using Gabor and Wavelet filtration responses.  

Li et al. [49] OS and Treatment 
sensitivity 

Hepatectomy 
or TACE Contrast CT (1.25mm) 130 8.0cm (5.1-

18.7cm) Q 19 (7) Wavelet features were correlated with postoperative survival on HCC patients, 
suggestive of the suitable treatment choice. 

Raman et al. [50] Diagnosis - Contrast CT (3mm) 80 

Adenoma 
7±3cm, FNH 
6±3cm, HCC 
8±3cm 

Q 3 (1) A model created using first-order statistical features could differentiate three types 
of common hypervascular lesions. 

Xia et al. [51] 

OS with 
interpretable 
biological 
meaning 

Hepatectomy 
or LT Contrast CT 37 - Q 22 (8) 

The volume of transition between tumor and liver, and the heterogeneity of the 
lesion were correlated with survival. Those two features associated with six others, 
were correlated with prognostic genes expression. 

Bakr et al. [52] Prediction of MVI - Contrast CT (≤ 3mm) 28 7.4cm Q 3 (1) Textural features computed with single-phased or combined-phased images were 
correlated with MVI. 

Cozzi et al. [53] OS and local 
control 

Radiotherapy 
(VMAT) 

Non-contrast CT (3mm) 
 138 - Q 14 (5) Survival could be predicted using a radiomics signature made by a single shape-

based feature. 
CT: computed tomography, DFS: disease-free survival, EOB-MRI: ethoxybenzyl-diethylenetriamine pentaacetic acid, FNH: focal nodular hyperplasia, HCC: hepatocellular carcinoma, LT: liver transplantation, mpMRI: multiparametric 
magnetic resonance imaging, MRI: magnetic resonance imaging, MVI: microvascular invasion, OS: overall survival, PET: positron emission tomography, PET/CT: computed tomography integrated with positron emission tomography, 
PIVKA-Ⅱ: protein induced by vitamin K absence-Ⅱ, Q: quantitative features, RQS: radiomics quality score, RVI: radiogenomic venous invasion, sec: seconds, S: semantic features, TACE: transarterial chemoembolization, TTPVI: two-
traits predictor of vascular invasion, TARE: transarterial radioembolization, VMAT: volumetric modulated arc therapy 

 



Table 2. Summary of significant extracted features in 23 studies 

Quantitative features   Number of studies Semantic features Number of studies 

First-order descriptors 12 Two-Traits Predictor of Venous Invasion  

Second-order descriptors 7 Internal arteries 6 

High-order descriptors 3 Hypo-attenuating halos 4 

Morphological feature 1 Non-smooth tumor margin 3 

  Peritumoral enhancement  2 

  Tumor size 2 

  Tumor-liver difference (estimated) 1 

  PET/CT positivity 1 

  Infiltrative pattern 1 

  Mosaic appearance 1 

PET/CT: computed tomography integrated with positron emission tomography 

First-order descriptors comprise of shape (compacity or sphericity), skewness, kurtosis, mean, energy, median, entropy, peak, standard 

deviation, intensity ratio between tumor and liver, enhancement ratio, and tumor-liver difference (computed). Second-order descriptors 

comprise of gray level matrices, cluster prominence, strength, and textual features variance. Morphological feature comprises of tumor 

margin volume. 
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