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This report describes an optimised version of a secondary structure prediction method based on mocal 
homologies, using a new dam base. A 63% prediction accuracy, for three states, was obtained after 
elimination of the protein to be predicted and all proteins with a percentage identity greater than 22% from 
the data base. This corresponds to a 5% increase in accuracy on the original method (Levin et aL FEBS Le~. 
205 (1986) 303-308). The flex|bility of the method to the incorperation of information exWaneous to the 
prediction was demonstrated by the prediction of the homologous proteins in the dau~ base. Using the 
percentage identity with the protein to be predicmd, to weight the relative imlmrtance of each protein, for all 
proteins with a percentage identity greater than 30%, the mean correct prediction per chain was 87%. As a 
result this algorithm can be used during the molecular modelling process, both to give an idea of the 
structural similarity between two rroteins and as an aid in the determination of the best alignment. 
Incorporation of the result of a protein folding type assignment based on the global amino-acid comlmsition 
increased the overa|! prediction to 66%. 

Introduction 

The ever widening gap between the number of 
known sequences (putative or otherwise) and the 
number of known structures present a frustrating 
bottleneck for all those researchers wishing to 
know something about the structural and func- 
tional aspects of a particular protein. Conforma- 
tional determination by computer sequence analy- 
sis (most often seen in the form of secondary 

Abbreviations: K&S algorithm, algorithm according to Kabsch 
and Sander (see Ref. 15); MIR, multiple isomorphous replace- 
ment; H, helix; E,/~ strand; C, coil. 

Correspm~dance: J. Gamier, Laboratoire de Biochimie 
physique, INRA, Bfitiment 433, Universit6 de Paris Sud, 91405 
Orsay, France. 

structure prediction methods), is the only way to 
glean some structural information about a protein, 
which has no homologous counterpart of known 
structure, w~thout resorting to l~agthy and not 
always successful crystallographic and NMR stud- 
ies (with the exception of CD experiments which 
often contain large errors). Unfortunately, to date 
the knowledge gained by computer sequence anal- 
ysis has been rather limited and any improvement 
in the quality of the information so gained as well 
as in the degree of confidence one can place in it, 
must be considered a useful advance. The corollary 
of this, is the ever increasing interest in modelling 
a protein on a homologous protein of known 
structure. Whilst this is fairly straightforward for a 
pair of related proteins with a percentage identit); 
greater than 50%, below this value, insertiow/ 
deletions in the amino-acid sequences, often sig- 
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n_aling structural differences, make for a more 
difficult procedure. The first step in the three-di- 
mensional modelling of one protein on another is 
the alignment of the amino-acid sequences, in 
order to determine the correspondance between 
the residues. For distantly related proteins, align- 
ments based on sequence information alone often 
give results inconsistent with the a!ignments ob- 
tained by superposition of the three-dimensional 
structures [1]. A secondary structure prediction 
algorithm, if sufficiently accurate, i.e., that all the 
secondary structure elements are correctly predic- 
ted, could help to find the best alignment by 
aligning the secondary structures. 

This article presents a revised and updated 
version of a secondary structure prediction al- 
gorithm based on local sequence homology by 
Levin et al. [2], coupled with a prediction of the 
folding type based on the global amino-acid com- 
position. This algorithm falls in the category of 
knowledge-based prediction methods in that it 
requires a data base of known structures for com- 
parison with a protein to be predicted. The most 
widely used secondary structure prediction al- 
gorithms [3-5] also belong to this category. 

The algorithm is based on the hypothesis that 
similar peptide sequences have similar secondary 
structure tendencies. This idea has been previously 
explored [2,6,71. It is then merely necessary, to 
search in a data base of observed secondary struc- 
tures to find a sufficiently large number of similar 
peptides and assign to the unknown peptide the 
conformation most commonly observed. ~':mil~r- 
ity is defined by calculating a match score be- 
tween two peptides, using a similarity matrix (see 
below), and rejecting those peptides below a cer- 
tain cutoff. A peptide length significantly greater 
than 5 is necessary, beeanse, as Kabsch and Sander 
[81 and Argos [9] pointed out, pentapeptides of 
identical sequence can adopt completely different 
confon, ations. 

The percentage of correctly assigned conforma- 
tions after prediction can be improved by adding 
in new information. The most obvious example of 
this is the case of a homologous protein in the 
data base, the assignment need only then be 
weighted towards this model structure. However, a 
prediction of the protein folding type if suffi- 
ciently accurate would also improve the per- 

centage of correctly assigned conformations [3]. 
Klein and Delisi [10] developed a method for 
determining the protein folding type based on a 
statistical analysis of four different secondary 
structure prediction methods. As these methods 
tend to extract the same type of information from 
the primary protein structure, i.e., conformational 
tendencies based on local sequence analysis, it 
would be more interesting, a priori, to employ a 
folding-type determination not based on informa- 
tion deduced from previous secondary structure 
prediction. Nishikawa et al. [11-13] showed that 
the global amino-acid composition is related to 
the protein-folding type and Nakashima et al. [14] 
developed a prediction method based on this. 
Using an algorithm similar to that of Nakashima 
et al. [14]. We can improve the overall secondary 
structure prediction accuracy by weighting the 
protein to be predicted towards the predicted fold- 
ing type. The results are also presented with an 
analysis of the confidence one can place in their 
accuracy. 

Materials and Methods 

Any knowledge-based prediction is only as good 
as the information in the data base. Kabsch and 
Sander (K&S) [151 defined an objective algorithm 
for the assignation of secondary structure in pro- 
teias. Using this algorithm they published a diet- 
ionary of secondary structure using 62 proteins 
from the Brookhaven data bank [16]. The K&S 
algorithm uses the presence of certain characteris- 
tic hydrogen bonds for the assignment of regular 
secondary structure. Imprecisions can sometimes 
be found in coordinates obtained from an initial 
MIR (multinle isomorphous replacement) phased 
electron-density map. For example, Sielecki et al. 
[17] report an overall shift of 0.83 A, during refine- 
ment.(for main-chain atoms) with some shifts of 3 
to 4 A. These imprecisions can result in an initial 
model missing the necessary hydrogen bonds used 
to define the secondary structure. Considerable 
changes can be seen in the secondary structure 
assignments before and after refinement. On ex- 
ample of this is the acid (aspartyl) proteinase 
endothiapepsin, where between versions 2APE and 
4APE (Brookhaven code), the number of amino- 
acid residues assigned by the K&S algorithm as fl 



TABLE l 

THE 67 PROTEINS IN THE DATA BASE 

File names and depositors are from the Brookhaven Data Bank (1987) 

Protein File name Depositors 

Acid proteinase ( E. parasitica ) 
Acid proteinase ( P. janthinellum ) 
Actinidin 
Agglutinin (wheat germ) 
Alcohol dehydrogenase (apo) 
a-Lytic proteinase 
Aspartate carbamoyltransferase 
Azurin (Alcaligenes denitrificans) 
a-Bungarotoxin 
Ca-binding parvalbumin 
Ca-binding protein (intestinal) 
Carbonic anhydrase B (human) 
Carboxipeptidase A 
Catalase (bovine liver) 
a-Chymotrypsin A (bovine) 
Citrate synthase (porcine) 
Crambin 
3,-II-Crystallin (calf) 
Cytochrome c (Albacore tuna) 
Cytochrome c (rice) 
Cytochrome c (prime) 
Cytochrome c peroxidase (yeast) 
Cytoehrome c2 (reduced) 
Cytoehrome c3 ( D. vulgaris ) 
Cytoehrome c-551 (oxidized) 
Dihydrofolate reductase (L. casei) 
Elastase (porcine) 
Erabutoxin B (sea snake) 
Erythrocruonin (reduced deoxy) 
Ferredoxin ( P. Aerogenes ) 
Ferredoxin ( S. Platensis ) 
Falvodoxin (Clos. MP, oxidized) 
Ferredoxin ( Azobacter vinelandii ) 
Glutathione peroxidase (bovine) 
Hemerythrin (met) 
Hemoglobin (human, deoxy) 
Hemoglobin V (cyano, met, lamprey) 
High potential iron protein 
lOG FAB (kappa) MCPC603 
Immunoglobulin FAB (Lambda) Kol 
lmmunoglobulin B-J (V-Dimr) 
Immunoglobulin B-J (V-Mnmr) RHE 
Kallikrein (porcine) 
Lactate dehydrogenase 
Leg, hemoglobin 
Lysozyme (bacteriophage T4) 
Lysozyme (human) 
Melittin 
Myoglobin (sperm whale, met) 
Scorpion Ncurotoxin (variant) 
Ovomucoid third domain (quail) 
Papain D 

4APE 
2APP 
2ACT 
3WGA 
4ADH 
2ALP 
4ATC 
1AZA 
2ABX 
1CPV 
3ICB 
2CAB 
5CPA 
8CAT 
5CHA 
2CTS 
1CRN 
1GCR 
3CYT 
1CCR 
2CCY 
2CYP 
3C2C 
2CDV 
351C 
3DFR 
2EST 
2EBX 
1ECD 
1FDX 
3FXC 
3FXN 
2FD1 
1GP1 
1HMQ 
2HHB 
2LHB 
1HIP 
1MCP 
1FB4 
1 REI 
2RHE 
2PKA 
4LDh 
1LHI 
2LZM 
1LZ1 
1MLT 
1MBN 
1S~"q 
1OVO 
1PPD 

T. Blundell 
A. Sieliki, M. James 
E. Baker 
C. Wright 
C.I. Branden 
Fujinaga, Delbaere, Brayer, James 
W. Lipscomb 
E. Baker, G. Norris 
R. Love, R. Stroud 
R. Kretsinger 
C. Wright 
K. Kannan 
D. Rees, W. Lipscomb 
I. Fita, M. Rossmann 
R. Blevins, A. Tulinsky 
Remington, Wiegand, Huber 
W. Hendrickson, M. Teeter 
T. Blundell 
T. Takano, R. Dickerson 
H. Ochi, N. Tanaka 
B. Finzel et al. 
B. Finzel, T. Poulos, J. Kraut 
G. Bhatia, B. Finzel, J. Kraut 
N. Yasuoka, M. Ka~udo 
Matsuura, Takano, Dickerson 
Fiiman, Metthews, Kraut 
L. Siekcr, D. Hughes 
B. Low 
Steigemann, Weber 
Adman, Sieker, Jensen 
M. Kakudo 
M. Ladwig 
C. Staut 
O. Epp, R. Ladenstein 
Stemkamp, Sieker, ffensen 
G. Fermi, M. Perutz 
Honzatko, Hendfickson, Love 
J. Kraut 
Satow, Cohen, Padlan, Davies 
M. Marquart, R. Huber 
O. Epp, R. Huber 
Furey, Wang, Yoo, Sax 
W. Bode, Z. Chen 
W. Eventoff, M. Rossmann 
Vainshtein, Harutyunyan 
L. Weaver, B. Matthews 
P. Artimiuk, C. Blake 
T. Terwilliger, D. Eisenberg 
H. Watson 
C. Bugg et aL 
W. Bode, O. Epp 
J. Jansonius 

285 



286 

TABLE I (continued) 

Protein File name Depositors 

Phospholipase A2 (bovine) 1 BP2 
Plastoeyanin 1PCY 
Prealbumin (human plasma) 2PAB 
Proteinase A ( S. griseus ) 2SGA 
Proteina~e !I (rat mast ceU) 3RP2 
Ribonuclease A 1RN3 
Rubredoxin 5RXN 
Staphylococcal nuclease 2SNS 
Subtilisin BPN prime 1SBT 
Superoxide dismutase 2SOD 
Thermolysin 3TLN 
Trypsin (orthorhombic) ITPO 
Trypsin inhibitor (bovine) 4PTI 
Virus (satellite tobacco necrs) 2STV 
Virus coat protein (SBMV, T = 3) 4SBV 

B. Dijkstra, J. Drenth 
J. Guss, H. Freeman 
S. Oatley, C. Blake 
M. James, A. Sielecl0 
S. Remington, B. Matthews 
Borkakoti, Moss, Palmer 
K. Waterpaugb 
Legg, Cotton, Hazen 
J. Kraut 
J. Richardson, D. Richardson 
B. Matthews, M. Holmes 
W. Bode, J. Walter, R. Huber 
R. Huber, J. Deisenhofer 
T.A. Jones, L. Liljas 
M. Rossman 

strand went up from 33 to 50%. 2APE is at 2.5 
resolution and partialiy refined and 4APE is at 2.1 
A, with a crystallographic R value of 0.158. 

To avoid discrepencies and inconsistencies in 
the data base, the K&S algorithm was applied to 
67 well refined proteins (see Table I) at high 
resolution (resolution greater than 2.8 ,~, with a 
crystallographic R factor of less than 0.25) with 
known sequences from the Brookhaven data bank. 
As mentioned above the K&S algorithm is very 
sensitive to the coordinates of  the main-chain 
atoms even for well refined proteins, thus slight 
variations in the assignments of  secondary struc- 
ture can be seen between identical chains in 
oligomeric proteins. This is particularly noticable 
for turn assignments which include sections of 
dLtorted helices. To reduce these differences and 
thus create a more coherent data base, the 8 state 
assignment of K&S was reduced to three states: 
H (--helix) ,  defined as all amino-acid residues 
assigned as H, runs of 4 or more Gs and runs of 3 
Gs next to a run of Hs; E ( = / ~  strand), all 
amino-acid residues assigned as E; C (--coil) ,  all 
amino-acid residues not H or E. There are 12058 
amino-acid residues in the data base, 27% helix, 
22% ,8 strand, and 51% coil. 

As the prediction algorithm is based on a search 
for homologous peptides, it is imperative to use a 
data base free of  homologous proteins: for an 
accurate assessment of the predictive capabilities 
of the algorithm. A sequence-matching program 

was written to determine the best match between 
any two amino-acid sequences, allowing for gaps 
(insertions and deletions). The algorithm used was 
a slightly modified version of the algorithm devel- 
oped by Needleman and Wunsch [18]. The matrix 
used to calculate the match scores was the identity 
matrix. Using this program the percentage identi- 
ties between each polypeptide chain in the data 
base were calculated. This percentage is defined as 

TABLE II 

PRINCIPLE HOMOLOGIES IN THE DATA BASE 

For file name see Table 1. 

File Identity File File Identity File 
name (~) name name (~)  name 

4APE 55 2APP 2ACT 48 
2ALP 39 2SGA 2ABX 42 
5CHA(1) a 42 2EST 5CHA(1) 34 
5CHA(I) 43 1TPO 5CHA(l) 37 
5CHA(2) 43 2EST 5CHA(2) 41 
5CHA(2) 45 1TPO 2EST 42 
2EST 30 2PKA(2) 2EST 42 
3RP2 36 1TPO 3CYT 59 
3CYT 44 3C2C 1CCR 40 
3RP2 38 2EST 1FDX 43 
2HHB(1) 45 2HHB(2) 2HHB(1) 35 
1MCP(1) 64 1REI 1MCP(1) 47 
1MCP(2) 44 1FBA(2) 1REI 51 
2PKA(1) 38 3RP2 2PKA(1) 38 
2PKA(2) 34 3RP2 2PKA(2) 41 

1 PPD 
2EBX 
2PKA(1) 
3RP2 
2PKA(2) 
2PKA(1) 
1TPO 
1CCR 
3C2C 
2FD1 
2LHB 
2RHE 
2RHE 
1TPO 
1TPO 

a The numbers in brackets refer to the polypeptide chains. 



G 
P 0 3  
D Q 0 2  
E 0 - 1 1 2  
A 0 - 1 0 1 2  
N 0 0 1 0 0 3  
0 0 0 0 1 0 1 2  
5 0 0 0 0 1 0 0 2  
T 0 0 0 0 0 0 0 0 2  
K 0 0 0 0 0 1 0 0 0 2  
R 0 0 0 0 0 0 0 0 0  I 2 
H 0 0 0 0 0 0 0 0 0 0 0 2  
V - ~ - 1 - 1 - 1 0 - 1 - 1 - ~  0 - 1 - 1 - 1 2  
I - 1 - 1 - | - 1 0 - | - 1 - 1 0 - t - t - t 1 2  
B - t - I - 1 - 1 0 - t - 1 - 1  n - t - 1 - 1 0 0 2  
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2  
L 
F 
Y 
W 

- 1 - | - 1 - 1 0 - 1 - 1 - ~  0 - 1 - 1 - I  ~ 0 2 0 2  
- 1 - 1 - 1 - 1 ° 1 - 1 - 1 - 1 - t - 1 - 1 - 1 0 1 0 - 1 0 2  
- t - | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 0 0 0 0 - 1 0  | 2 
- 1 - | - 1 - 1 - 1 - 1 - t - 1 - t - I  O - I  O O O - 1 0 0  O 2 

G P D E~ A N Q E~ T g R H V T M C L F" Y W 

Fig. 1. The secondary structure similarity matrix (Levin et al. 
Ref. 1) which gives a score for the replacement of one am/no 
acid by another. Reprinted with kind permission from FEBS 

Letters. 

the number of identical pairs of amino-acid re- 
sidues after the best match has been calculated 
divided by the number of amino-acid residues in 
the smaller of the two sequences multiplied by 
100. The data base contains 72 polypeptide chains, 
28 of which have a percentage identity greater 
than or equal to 307o (see Table II). 

The prediction algorithm is essentially the same 
as that which was published in Ref. 1. The first 
part of the algorithm, which consists of a search 
for homologous peptides, uses the similarity ma- 
trix previously published (Levin et al., Ref. 1) (see 
Fig. 1). The algoritlun makes a comparison be- 
tween every sequence of n amino-acid residues, 
where n is the window length, in the test protein 
with every fragment of length n amino-acid re- 
sidues in the data base. If the calculated match- 
score between the two peptides is less than a 
cutoff value the peptide is rejected. Every time a 
peptide is found whose score is greater than or 
equal to the cutoff value, its observed conforma- 
tion is assigned to the test sequence with its simi- 
larity score (see Table III). Once every fragment in 
the test protein has been compared, the secondary 
structure attributed to each residue is that which 
has the highest value after multiplication by the 
following decision conslants: DCH = 1.067, DCE 
--1.25, and DCC=0.75 ,  for the H, E and C 
conformations, respectively (see Table IV). 
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Using this data base and these decision con- 
stants the optimal values of the window size and 
cut off were determined by an exhaustive series of 
runs. The protein to be predicted and all proteins 
with a percentage identity greater than 22% were 
removed from the data base for each prediction 
FUn. 

In order to deterrrfine the protein folding type 
the proteins in the data base were divided into 
four classes: a-rich, greater than 357o helix and 
less than or equal to 10%/~ strand; O-rich, greater 
than 30% fl strand and less than or equal to 10% 

TABLE Ill  

AN EXAMPLE OF SECONDARY STRUCTURE ASSIGN- 
MENTS 

In the above example the window length (n)  is 7 with a cutoff 
of 7. Three homologous fragments were found for amino-acid 
residues 1-7 of the test sequence, i.e., those whose similarity 
scores were greater than or equal to the cutoff. The first with a 
score of 7 had an observed conformation of CHHHHHC. the 
second had a score of 7 and an observed conformation of 
CCEEEEC, and the score for the third was 8 with a conforma- 
tion of CCHHHHC. Then the first amino-acid residue of the 
test sequence (column res) is credited with 7 + 7 + 8 in column 
C which is the only observed conformation of the three frag- 
ments for the first amino.acid residue. The second amino acid 
of the test sequence is credited with the score of 7 in column H 
which is the observed conformation of the second amino-acid 
residue of the homologous fragment with a score of 7 and a 
score of 7 + 8 in column C, which is the observed conformation 
of the other two homologous fragments at tiffs position and ~o 
on for the rest of the test sequence. Two homologous frag- 
ments were found for amino-acid residues 2-g. each had a 
score of 9 and a conformation of CHHHHCC AND CCEEEEC 
and their scores were added to the above table following the 
procedure described above for amino-acid residues 2-8. The 
prediction is then optimised using the decision constants. The 
sums in column H are multiplied by 1.067, those in column E 
by 1.25, and those in column C by 0.75. The prediction is then 
based on 'he conformation with the highest score, so for 
residues 1-8 it is CCHHHHCC (see Table IV). 

Res Conformation 

H E C 

1 
2 7 
3 7 + 8 + 9  7 
4 7 + 8 + 9  7 + 9  
5 7 + 8 + 9  7 + 9  
6 7 + 8 + 9  7 + 9  
7 9 
8 

7 + 7 + 8  
7 + 8 + 9 + 9  
9 

7 + 7 + 8 + 9  
9+ 9  
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TABLE IV 

AN EXAMPLE OF SCORING VALUES FOR THE SEC- 
ONDARY STRUCTURE PREDICTION 

The values are for the example given in Table II1. The pre- 
dicted conformation for each residue, 1 to 8, is listed in column 
5 according to the highest score of the three conformations in 
columns 2-4. 

Res Conformation Pred 

H E C 

1 0 0 17 C 
2 7 0 25 C 
3 26 9 7 H 
4 26 20 0 H 
5 26 20 0 H 
6 26 20 0 H 
7 0 11 23 C 
8 0 0 14 C 

helix; low secondary structure, regular secondary 
structure (helix and /3 strand) less than 25~; 
mixed, all polypeptide chains not in the other 
three categories. The average (%) content for each 
amino acid and standard deviations were calcu- 

lated for each class (see Table III). To determine 
the folding type, the closeness (C) of the global 
amino-acid composition to each of the four pro- 
tein classes ( j )  was calculated: 

2O 

Cj -- ~ (abs(Avq - Per~ )/Sd #j) I~ 
i=I 

Per is the (~) content of amino acid (i) in the 
unknown protein, Av and Sd are the class average 
(%) content for each amino acid and star~dard 
deviations, respectively. C was calculated for each 
of the protein classes and the class predicted was 
the protein class associated with the smallest value 
of C (the C for the low secondary structure class 
was multiplied by a factor of 1.3). W is an opti- 
raised weighting factor for each amino acid, inde- 
pendent of class type (see Table V). 

Results 

When the protein to be predicted and all other 
proteins with a percentage identity greater than 

TABLE V 

THE AVERAGE ~ AMINO-ACID CONTENT (Av) AND STANDARD DEVIATIONS (Sd) FOR EACH OF THE FOUR 
CLASSES 

For definitions of class type see text. There are 20 a-rich, 20/~-rich, 25 mixed and 7 low secondary structure proteins, 

Amino a-Rich #-Rich M~ed Low SS '[¥ 

acid Av Sd Av Sd Av Sd Av Sd 

GLY 7.5 2.3 ' 1~2 3.2 8.4 3.2 9,5 7.4 0.45 
PRO 4.0 1.7 4.6 1.6 ~8  2.3 7.0 3.3 0.33 
ASP 5.9 3.0 4,4 2.0 5.4 2.0 8.9 5.5 1~4 
GLU 6,3 3.8 4.0 2.3 4.7 2.6 6.9 4.0 1.03 
ALA 11,5 5,2 6.5 3.1 8.2 2.4 9.3 7.0 1.66 
ASN 3.5 1,9 4.9 2A 5.8 2.3 3.9 1.7 1.05 
GLN 3.5 2.0 4.6 2.5 3.3 1.5 3.3 2.3 1.32 
SER 5,2 1.9 11.1 3.5 6.8 2.9 5.3 3.8 0.56 
THR 5,J 1.6 7.8 3.0 6.4 2.4 5.3 4.3 1.52 
LYS 10.2 3,0 4.1 2.1 7.1 4.0 4.8 2.6 0.41 
ARG 2,4 1.9 3.4 2.7 3.7 2.8 1.5 1.5 0.56 
HIS 2.9 2,5 2.2 1.7 2.1 1,9 1.0 1.0 0.65 
VAL 6,5 2.7 7.3 2,6 6.8 2.6 5.6 3.2 1.32 
ILE 4.2 2.9 5.1 1.6 4.7 2.7 5.2 4.1 1.05 
MET 1.6 1,1 1.0 1.1 1.9 1.3 0.9 0.7 0 . ~  
CYS 0,9 0.8 3.4 3.4 4.0 4.1 10,6 5.2 1.50 
LEU 9,6 3.5 6,2 1.8 6.9 2.7 3.8 2.7 0.82 
PHE 4.9 2.6 3.8 1.8 3.2 1.7 2.0 1.7 1 . ~  
TYR 2A 1.8 3.8 1.9 4.3 2.2 3.6 1.8 0.59 
TRP 1.6 1.0 1.6 0.9 1.4 1.1 1.4 1.2 0.36 



TABLE V[ 

PREDICTION RESULTS 

The protein to be predicted and all proteins with a percentage 
identity greater than 22% were excluded from the calculation. 
Results are obtained with the new data base (Table I) and are 
given for a three state prediction (helix, fl strand and coil) as 
the number of correctly predicted residues divided by the total 
number of residues multiplied by 100. 

Window Cutoff 

length 3 4 5 6 7 

7 60.1 61.0 61.1 61.0 59.8 
8 61.5 61.6 61.5 61.0 

22% were removed from the data base, the al- 
gorithm cor~ecdy assigned 59.8% of the amino-acid 
residues (number of amino-acid residues correctly 
assigned divided by the total number  of amino-acid 
residues) for a three-state prediction (helix, ,8 
strand and coil), with a window length of 7 and a 
cutoff of 6 and using the data base published by 
K&S. With the same parameters but using the 
new data base 61.0% of the amino-acid residues 
were correctly assigned. 
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Optimisation of the prediction 
We wished to determine the opt imum window 

length and cutoff. To dais end a series of tests 
were performed using the new data base, at vary- 
ing window lengths and cutoffs (see Table VI and 
Fig. 2). For short window lengths, the optimal 
cutoff was 5, for longer window lengths the opti- 
mal cutoff was 7. The best overall prediction, 63%, 
was obtained with a window length of 17 and a 
cutoff of 7 (see Fig. 2). The mean correct predict- 
ion per polypeptide chain was 64.4% with a stan- 
dard deviation of 8.95%, the best prediction was 
95% and the worst 46% (see Table VII column B). 
Although with the original data base the propor- 
tions of each of the three states were respected, 
this proved difficult with the new data base. The 
helix content was correcdy predicted, but there 

" : "  -'~- prediction of /~ strand. An WaS a 2,o]o u~*~,. , ,  

increase in the decision constant for B strands 
results in a decrease in the overall number of 
correctly assigned amino-acid residues. This can 
be explained by looking at the class of proteins 
observed as fl-rich and the class of proteins ob- 
served as mixed. There is an under prediction of fl 
strand of 10% for mixed type proteins but 48% for 
fl-rich proteins. An increase in the decision con- 

62.5, 

62. 

# 61.5, 

'~ 611 

60.5. 

60- 

8 
5~5. 

59 7 . ~ li ~" i3 i5 I~/' 19 
Window length 

Fig. 2. Prediction accuracy as a function of window length for three different cutoff values. The optimal conditions corresponding to 
the best prediction are a window length of 17 and a cutoff of 7. o, cutoff of 6; B, cutoff of 7; O, cutoff of 8. 
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TABLE VII 

COMPARISON OF THE RESULTS FOR EACH PROTEIN OF THE BASIC PREDICTION (B), HOMOLOGY PREDICTION 
(H) AND FOLDING TYPE ASSIGNMENT AND PREDICTION (T) 

Window length 17 and cutoff 7 for all three predictions. B is the basic prediction where all proteins with a percentage identity greater 
than 2270 were removed. H is the prediction explicity using the homologies in the data base. The scores of the similar peptides from 
each protein in the data base are multiplied by its % identity with the protein to be predicted, if this % identity is greater than 3070 the 
scores are multiplied by 2 as well (see text for detailed explanation). T is the prediction using the protein folding type assignment 
with the homologous proteins excluded from the prediction as in B. The assignments are given as one of for classes: a, a-rich; .8, 
.8-rich; M, mixed type; L, low secondary structure. The observed and predicted folding types are given with and without the 
weighting factor Wof  Table V. The type assignment used in column T includes W. If the assignment is for low secondary structure or 
mixed type proteins the proteins of this class observed in the data base have their scores increased by 1070. If the assignment is for 
a-rich proteins, the ~cores for the a-rich proteins in the data base are increased by 10-15070 depending on the difference between the 
value of Chel~x and the next lowest value of C, idem for/~-rich proteins, except the minimdn~ increase is 40~ tsee rex1 i'oc detailed 
explanation). 

File B H Obs Type Type T 
Name (70) (70) assignment assignment (70) 

+ W  

4APE 57 6 88.8 fl .8 .8 64.2 
2APP 56.4 89.5 .8 .8 .8 64.4 
2ACT 53.7 83.5 M M M 52.8 
3WGA 74,1 72.9 L L L 74.7 
4ADH 54.8 56.2 M M M 54.8 
2ALP 50.0 77.8 /3 ,8 .8 67.7 
4ATC(1) 59.7 59.4 M a a 59.4 
4ATC(2) 55.7 53.6 M M M 56.2 
1AZA 45.7 46.5 M M M 45.7 
2ABX 81.1 75.7 L M L 81.1 
1CPV 58.3 62.0 a a a 57.4 
3|CB 94.7 89.3 ¢t ~ a 78.7 
2CAB 64.8 62.5 M M M 64.5 
5CPA 69.7 67.4 M fl fl 63.5 
8CAT 65.3 65.7 M M M 65.7 
5CHA(1) 65.7 89.3 .8 .8 fl 69.5 
5CHA(2) 60,8 87.6 M M M 60.8 
2CTS 65.2 69.6 o M a 67.7 
ICRN 56,5 47.8 a L L 58.7 
1GCR 54,6 57.5 .8 M .8 58.1 
3CYT 57,3 99.0 a M M 57.3 
1CCR 61.3 91,9 a M M 61.3 
2CCY 71.7 74.8 a a a 90.6 
2CYP 66.6 68.6 a M a 68.3 
3C2C 64.3 87.5 a a a 62.5 
2CDV 73.8 70,1 M M M 73.8 
351C 80.5 78.0 a a a 80.5 
3DFR 61.7 58.6 M a a 59.9 
2EST 62.1 86.7 fl .8 .8 68.3 
2EBX 71.0 96.7 fl .8 fl 71.0 
1 ECD 74,3 80.1 a a a 82.4 
1 FDX 70,4 75.9 L L L 70.4 
3FXC 67.4 69.4 L L L 68.4 
3FXN 68.1 66.7 M M M 68.1 
2FDI 64.2 70.8 L L L 64.2 
1GP1 62.5 63.0 M M M 62.5 
1HMQ 52.2 52.2 a a a 56.6 
2HHB(I) 61.7 92.9 a a a 82.3 
2HHB(2) 56.9 89.7 a a a 81.5 
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TABLE VII (continued) 

File B H Obs Type Type .... T 
Name (%) (%) assignment assignment (%) 

- rW 

2LHB 73.2 88.6 a a a 81.9 
1HIP 56.5 57.7 L L L 58.8 
1MCP(1) 67.3 83.2 # fl fl 74.1 
1MCP(2) 67.6 88.7 /3 fl fl 72.1 
IFB4(2) 75.6 87.3 fl fl fl 77.7 
1REI 63.6 94.4 fl fl fl 67.3 
2RHE 64.9 85.1 fl fl fl 70.2 
2PKA(1) 63.8 96.3 fl /9 fl 71.3 
2PKA(2) 60.5 91.5 M M M 59.2 
4LDH 52.9 54.7 M a M 52.9 
1LH1 76.5 79.8 a a a 86.9 
2LZM 69.5 69.5 a M M 67.7 
1LZ1 62.3 63.1 M M M 63.9 
1 MBN 80.4 88.9 ,~ a a 87.6 
1MLT 76 9 80.1 ~ a ~ 84.6 
1SN3 73.9 70.8 M M L 72.3 
IOVO 60.7 64.3 M lVl M 60.7 
1PPD 63.7 92.0 M fl fl 59.9 
1BP2 50.4 52.0 a M M 504 
1PCY 72.7 72.7 fl M fl 75.7 
2PAB 55.3 56.1 fl /~ fl 64.9 
2SGA 54.1 76.8 fl fl fl 63.0 
3RP2 56.7 84.8 fl M M 57.6 
1RN3 60.5 62.1 M M M 60.5 
5RXN 74.1 70.4 L L L 74.1 
2SNS 56.7 56.0 M M M 56.0 
1SBT 65.8 62.9 M fl fl 62.9 
2SOD 73.5 71.5 fl M fl 74.2 
3TLN 61.4 58.2 M M M 59.8 
1TPO 61.4 89.7 fl fl fl 70.9 
4PTl 79.3 74.1 M M M 79.3 
2STV 57.1 57.6 fl M fl 64.1 
4SBV 51.8 50.5 M M M 50.9 

Global 63.0 a 72.8 a 74.0% 83.6% 65.7 ~ 

a Percentage of correctly predicted amino-acid residues for the whole data base (12058 residues) and for the three states. 

TABLE VIII 

NUMBER OF OCCURRENCE AND PROBABILITY OF CORRECT PREDICTION FOR EACH CONFORMATION AND 
SCALE VALUE 

Confidence conformation 
scale ~-- E C total 

(No.) (%) (No.) (%) (No.) (%) (No.) (%) 

1 946 44 558 45 1137 55 2641 49 
2 816 51 518 52 1238 35 2572 53 
3 664 64 395 52 1295 67 2354 63 
4 448 74 276 61 1268 72 1992 71 
5 237 79 169 68 1045 80 1451 78 
6 76 86 72 83 900 87 1048 87 

Tot~ 3187 58 1988 54 6883 68 12058 63 
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stant for ~ strand results ha a far larger number of 
incorrect assignments for fl strand in mixed type 
and a-rich proteins (45 proteins in total) than now 
correct assignments in the class of fl-rich proteins 
(20 proteins). 

Confidence scale 
We were also interested in determining the 

probability of a correct prediction on a residue by 
residue basis. Thus we defined an empirical confi- 
dence scale based on the difference in scores be- 
tween the best and s¢~:ond best choice of the 
predicted conformation [cr each residue. A low 
scale value means the scores between the best and 
second-best conformation are very ¢!ose therefore 
the choice of conformation is uncertain, a high 
value means the residue shows a clear preference 
for a parlicul.ar confor~:~.~c~ T~: ~c*!c. was di- 
vided up into six intervals, the probability of a 
correct prediction increases with the confidence 
scale value. Table VIII shows the number of 
amino-acid residues predicted in each interval and 
the fraction of those residues correctly predicted. 
The results are shown for each of the three states 
singly and together. 

Use of homology 
As shown above, this algorithm has a predict- 

ion accuracy equivalent to that of Gibrat et at. [4] 
when predicting the conformation of a protein 
with no homologous counterpart in the data base. 
However, when explicitly using the homology ex- 
istent between the protein to be predicted and a 
protein in the data base, the prediction accuracy 
considerably improves. When the homologous 
proteins where left in the data base the overall 
prediction increased from 63 to 67%. Then to 
further weight the effects of the homologous pro- 
teins the scores of the similar peptides from each 
protein were multiplied by the percentage identity 
of that protein v.ith the protein to be predicted. 
This gave a prediction of 72% for the whole data 
base, this was improved to 73% by multiplying 
again by 2 if the percentage identity was greater 
than 30%. For example, if the protein in the data 
base has a 15% identity with the protein to be 
predicted, all the matchscores are multiplied by 
15, if the identity was 35%, the matchscores would 
be multiplied by 70. All proteins with a percentage 

identity greater than 30% with another protein in 
the data base were predicted at greater than 70% 
(see Table VII). The average increase for this 
group of proteins was 24% with a mean correct 
prediction per polypeptide chain of 87.2%. 

Use of the protein folding type assignment 
As mentioned above, the fl strand content of 

the class of fl-dch proteins is severely under pre- 
dicted; however, this could be rectified with a 
sufficiently accurate prediction of the protein fold- 
ing type. The prediction of the protein folding 
type correctly assigned 74% of the proteins in the 
data base. This was increased to 84% by optimis- 
ation (see Table VII). This was then u~ed to bias 
the secondary structure prediction towards the 
assigned protein folding type. If the assignment 
was for mixed or low secondary structure type, the 
scores of the proteins in the data base of this class 
were increased by 10%. Even when using the ob- 
served folding types no improvement was found in 
the secondary structure prediction by further 
favouring these two classes of proteins. There were 
no folding type assignments where fl-rich proteins 
were assigned as a-rich or vice versa; however, if 
following an incorrect assignment of a mixed or 
low secondary structure protein into either of these 
two classes the secondary structure prediction be- 
comes too strongly biased towards that particular 
class, the prediction accuracy may decrease by as 
much as 25%. This is particularly noticeable for 
proteins assigned as a-rich as the overall helix 
content is already correctly predicted. As a result 
a sliding scale was developed to progressively in- 
crease the bias towards either a- or fl-rich proteins 
according to the difference in the value of C for 
the class assigned and the next lowest value of C, 
i.e., the bigger the difference the larger the bias. If 
the assignment is for an a-rich protein, the scores 
from the a-rich proteins in the data base are 
multiplied by F with F---(C~- C h ) / 1 . 4 .  C x and 
C h are the second smallest and smallest values of 
C, respectively. The value of F may not exceed 
the upper and lower limits of 2.5 and 1.1. For a 
fl-rich assignment the scores for fl-rich proteins in 
the data base are multiplied by F with F = (C~ - 
C~)/1.3. C x and C~ are the second smallest and 
smallest values of C, respectively. The value of F 
cannot exceed the upper and lower limits of 2.5 



and 1.4, the higher mini~num value of F is because 
fl strand is generally underpredicted. 

For the whole data base a 2.7% increase was 
observed, bringing the overall prediction accuracy 
from 63.0% to 65.7% (see Table VII for detailed 
results). The underprediction of /3 strand de- 
creased from 26 to 9%, the total helix content was 
unchanged. 

Discussion 

Secondary structure prediction algorithms are 
generally sensitive to the data base used. In this 
study the quality of the information in the data 
base was improved from that previously used, and 
the number of proteins e×tended by a careful 
choice of the coordinate sets available at the 
Brookhaven data bank and the subsequent assign- 
ment of secondary structure. This led to an in- 
crease in the prediction accuracy from 59.8% to 
61.0%. By using a program to calculate the best 
match between any two sequences, we were able 
to detenrfine the effects of homologous proteins 
on the prediction accuracy. We were thus able to 
determine the best choice of window length and 
cutoff. If is worth noting that the optimal peptide 
length is 17, the same found by Robson and 
Suzuki [19] and this appears to imply that 17 
amino-acid residues is the limit for local sequence 
effects. 

For an unlmown protein with no homologous 
counterpart in the data base, i.e., a percentage 
identity less than or equal to 22% with respec~ to 
all the other proteins, one could expect 63% of the 
amino-acid residues to be correctly predicted 
, ,hich is identical to the expectancy obtain by the 
~aethod GOR, Gibrat et al. [4] and is an improve- 
ment of 5% on the previously published version of 
this algorithm [2], the 62% accuracy obtained in 
the original version contained the homologous 
proteins in the data base and thus compares with 
the 67% obtained by the new algorithm when the 
homologous proteins are left in the data base. The 
63% prediction accuracy obtained compares 
fa-~,urably with the results of Sweet [6] 59% and 
Nishikawa and Ooi [7] 60%. Gibrat et al. [4] 
showed that there is only a 5% chance due to 
statistical variation, assuming a normal distri- 
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bution, of a 1% increase in the prediction accu- 
racy. However, as large variations are observed in 
the predictions of the homology algorithm (from 
46 to 95%) for each protein we wished to provide 
an estimate on an amino-acid residue by residue 
basis of the probability of a correct prediction. 
The scale developed shows those amino-acid re- 
sidues with a probability of a correct prediction of 
approx. 45%, to those with an approx. 85% prob- 
ability. This scale is printed out along with the 
sequence and prediction and permits identifica- 
tion of those zones in the sequence which are 
more likely to be correct. A comparison with the 
equivalent scale developed by Gibrat et al. [4] 
shows that the agreement between the two meth- 
ods is very good. Moreover, tl~s agreement ex- 
tends to incorrect assignment of secondary struc- 
ture, suggesting that both methods are picking up 
the same information, or, conversely, that neither 
of these two methods are capable of deterrr6ning 
those zones in the sequence where the secondary 
structure is not determined by the local sequence. 
As a result a secondary structure prediction based 
on a combination of these two methods improves 
the overall prediction by only 2-3% instead of a 
hoped for larger increase given the different na- 
ture of the two methods (Biou et al. [20]). 

The underprediction of/3 strand can perhaps 
be explained by the fact that it is the secondary 
structure most affected by long-range interactions 
It remains to be seen if the division of 13 strand 
into parallel and antiparallel will improve the dis- 
crimination. 

Comparison of the columns H and B of Table 
VII shows the effects of the homologous proteins 
in the data base. The average increase of the 
prediction accuracy per chain is 24% for the pro- 
teins listed in Table II. Thus, the algorithm is 
particularly suited to making a secondary struc- 
ture prediction with a partially homologous pro- 
tein in the data base, as it is very easy to single out 
a particular protein or proteins in the data base 
and increase the weight of the contribution of that 
protein to the prediction. Moreover, this increased 
contribution ,only applies to those parts of the 
sequence where there is a homology as the peptides 
whose matchscores are less than the cutoff are 
rejected, and thus the nonhomologous parts of the 
sequence are not considered. This algorithm should 
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be very useful for the initial modelisation of a 
protein homologous to another protein of known 
structure. 

How can a secondary structure prediction aid 
in the modelisation of a protein? In order to 
determine the correspondance between the 
amino-acid sequences, it is necessary to align the 
sequences. Whilst this generally poses no problem 
for closely related proteins, for distantly related 
proteins the correlation between sequence and 
structural homology is not always obvious, Argos 
[21], and thus one can obtain several different 
plausible alignments by using different alignment 
programs and by varying the input parameters, 
such as the gap penalties or match matrices used. 
This raises the problem of how to choose between 
them. The simplest way to test an alignment is to 
see whether the secondary structures of the two 
proteins are well matched. In the event that the 
conformation of only one of the proteins is known, 
a secondary structure prediction could be used to 
replace the observed conformation for the other 
protein if it was sufficiently accurate. As shown 
above, the secondary structure prediction al- 
gorithm presented here is very reliable when pre- 
dicting the conformation of a protein with a ho- 
mologous counterpart of known structure. 

This algorithm is in fact particularly well suited 
to aid the initial modelling procedure. As those 
zones along the sequence which have no sequence 
similarity with the homologous protein might well 
be assigned to a secondary structure different 
from that observed in the homologous protein, 
differences between observed and predicted con- 
formation can be indications that there is no 
spatial correspondence between these residues in 
the two proteins. Furthermore, should these dif- 
ferences extend over large regions of the proteins 
then perhaps the modelling procedure is unlikely 
to lead to a good structure for the unknown 
protein. Thus the algorithm can aid not only in 
the alignment of the two sequences but can also 
give an indication of the overall three-dimensional 
similarity of the proteins. 

One of the principle advantages of this al- 
gorithm is that there is no set c~f overall parame- 
ters derived from the data base which is used to 
make the prediction, thus one can easily alter the 
importance of a protein or group of proteins with 

respect to the others. One example of this is the 
case of a homologous protein mentioned above. 
Another example is the division of the data base 
into four folding types and subsequently weight- 
ing the proteins in the data base belonging to the 
same folding type as the protein to be predicted. 
Obviously a method for determining the folding 
type of an unknown protein is nece,~sary. The 
method for the assignment of foldin~ type as 
presented above would almost certainly not give 
an 84% correct assignment for proteins not in- 
cluded in the learning data base, as the method 
was optimised for that data base and the data base 
includes a series of homologous proteins. A 
meaningful comparison is very difficult with the 
work of Nakashimi et al. [14] as they used the 
crystallographers' assignments for the secondary 
structure content and they used different criteria 
for defining the folding class types. However, the 
assignments we used demonstrate that a signifi- 
cant improvement in the secondary structure pre- 
diction accuracy can be obtained even by a less 
than 100% correct assignment of folding types. 

The data base used is sufficiently large and 
varied to justify the claim that the accuracy of 
prediction for proteins not in the data base, will 
be equal to the results presented above. However, 
the folding type assignment, as a result of the 
weighting factor, W, is likely to be more biased 
towards data base. A folding type assignment 
method which is less dependent on the data base 
is currently under development in our laboratory. 
Without a large increase in the size of the data 
base it is unlikely that the figure of 63% will be 
improved for non homologous proteins. However, 
when the algorithm is used in conjunction with 
other information, e.g., another prediction al- 
gorithm or the prediction of folding type the pro- 
spects for improvement are optimistic. A recent 
article by Zvelebil et al. [22] improved by 9% an 
earlier version of the secondary structure predict- 
ion method GOR (Gamier et al. [3]) when dealing 
with the specific case of a family of homologous 
proteins. We do not think that the limits in sec- 
ondary structure prediction have yet been reached 
and therefore the prediction accuracy will con- 
tinue to rise, albeit by small increments. 

A prediction pro~am written in Fortran 77 
combining the GOR method and this method has 



been developed, Biou et al. [20] and is available 
from the authors. 
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