Similarity-based and Iterative Label Noise Filters for Monotonic Classification

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Monotonic ordinal classification has received an increasing interest in the latest years. Building monotone models from these problems usually requires datasets that verify monotonic relationships among the samples. When the monotonic relationships are not met, changing the labels may be a viable option, but the risk is high: wrong label changes would completely change the information contained in the data. In this work, we tackle the construction of monotone datasets by removing the wrong or noisy examples that violate monotonicity restrictions. We propose two monotonic noise filtering algorithms to preprocess the ordinal datasets and improve the monotonic relations between instances. The experiments are carried out over eleven ordinal datasets, showing that the application of the proposed filters improve the prediction capabilities over different levels of noise.

Description

Keywords

Soft Computing: Theory Innovations and Problem Solving Benefits, monotonic classification, noise, noise filter, ordinal classification

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email [email protected] if you need this content in ADA-compliant format.