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Kurzfassung

Die zunehmende Nachfrage nach höheren Datenraten einerseits, sowie beschränkte
Ressourcen wie Zeit und Frequenz andererseits, stellt jedoch die Systementwick-
ler vor die Herausforderung der Interferenzhandhabung. Durch Nutzung des Unter-
schiedes zwischen Interferenz und Rauschen als Grundkonzept wurden in den letzten
Jahren effiziente Methoden zur Handhabung der Interferenz entwickelt. Dieser Un-
terschied besteht hauptsächlich darin, dass die Interferenz, anders als das Rauschen,
Träger von Informationen ist. Durch Decodierung dieser ungewünschten Information
ist der Empfänger in der Lage, die Interferenz zu rekonstruieren und anschließend
aufzuheben. Diese Vorgehensweise benötigt jedoch nicht nur ein perfekt synchro-
nisiertes System, sondern auch genaue Kanalkenntnisse, sowohl am Sender als auch
am Empfänger. Um diese Anforderungen zu erfüllen, sollen größe Verwaltungsdaten
wie Pilotsequenzen übertragen werden. Diese Übertragungen erhöhen selbst Leis-
tungsverbrauch, Datenverkehr sowie die Komplexität der Algorithmen. Trotz der
generellen Effizienz der Interferenzdecodierung wird sie aufgrund der vorgenannten
Tatsache kaum in den praktischen Realisierungen angewandt. Stattdessen wird die
auf der Behandlung von Interferenz als Rauschen (engl.: Treating Interference as
Noise, TIN) basierende Herangehensweise angewandt. Vergleicht man dies mit den
Anforderungen an eine Kommunikation über einen Punkt-zu-Punkt Kanal, setzt
diese Vorgehensweise (TIN) keine weiteren Anforderungen voraus. Darüber hin-
aus gewinnt man durch das Zeigen der Optimalität von TIN einen großen Vorteil,
da keine aufwändige Herangehensweise zur Steigerung der Datenraten mehr nötig
ist. All dies motivierte die Forschung, sich mit der Optimalität von TIN in unter-
schiedlichen Kanälen auseinander zu setzen. In der Literatur ist die folgende Op-
timalitätsbedingung für TIN bekannt: In einem Interferenzkanal ist TIN optimal,
falls die Interferenzverbindungen gegenüber den gewünschten Verbindungen besonders
schwach ausfallen. In diesem Zusammenhang ergeben sich weitere Fragestellungen.
Zum einen kann untersucht werden, ob die bereits genannte Optimalitätsbedingung
von TIN für alle möglichen Kanäle erweiterbar ist. Zum anderen stellt sich die
Frage, ob TIN notwendigerweise suboptimal ist, wenn die Optimalitätsbedingung
nicht erfüllt ist. Um diese Fragen zu beantworten, wird in dieser Arbeit die Optimal-
ität von TIN in einem sehr fundamentalen Netzwerk untersucht. In diesem Netzwerk
operieren ein Mehrfachzugriffskanal und ein Punkt-zu-Punkt Kanal über die gleichen
Kommunikationsressourcen. Im Folgenden bezeichnen wir diesen Kanal als PIMAC
(engl.: Point-to-Point Channel Interfering with a Multiple Access Channel). Die
daraus gewonnenen Erkenntnisse helfen uns, die Optimalität von TIN in größeren
Netzwerken zu untersuchen.
Die folgenden Schritte sind notwendig, um die Optimalität von TIN im PIMAC



Contents

zu zeigen. Der erste Schritt ist die Bestimmung der maximal erreichbaren Rate, die
durch Ignorieren der Interferenz am Empfänger und Verwendung eines Gaußschen
Codebuchs am Sender erreichbar ist. Im zweiten Schritt werden obere Schranken für
die Kapazität charakterisiert. Dann werden die Optimalitätsbedingungen für TIN
durch einen Vergleich der erreichbaren Raten mit den oberen Schranken charakter-
isiert. Um die Analyse zu vervollständigen, wird außerdem die Suboptimalität von
TIN für den Fall, dass die Optimalitätsbedingungen nicht erfüllt sind, gezeigt. Un-
sere Kenntnisse über die Optimalität für TIN in Bezug auf die Kapazität ist nur
auf eine kleine Menge der Kanäle begrenzt. Dies liegt hauptsächlich daran, dass die
Kapazitätscharakterisierung generell eine schwierige Aufgabe darstellt und einige
Zwischenschritte benötigt. Ein wichtiger Schritt dafür ist die Charakterisierung der
sogenannten GDoF (engl.: Generalized Degrees of Freedom). Falls ein hohes Signal-
zu-Geräusch-Verhältnis vorliegt kann das GDoF-Maß als Näherung für die Kanalka-
pazität verwendet werden.
Das Ziel dieser Arbeit ist die Charakterisierung der Menge der Kanalparameter,

in der das TIN in Bezug auf die GDoF optimal ist. Um dieses Ziel zu erreichen, wird
zunächst ein vereinfachtes Modell von PIMAC untersucht. In diesem Modell ist der
Zusammenhang zwischen den Ausgängen und Eingängen des PIMAC mit Hilfe einer
linearen deterministischen Funktion definiert. Aus diesem Grund wird das Modell
als LD-Model (engl.: Linear Deterministic) bezeichnet. Anschließend wird dann die
Kapazität des LD-PIMAC ins GDoF-Maß übersetzt.
Aus der vollständigen Untersuchung der Optimalität von TIN im PIMAC in Bezug

auf die GDoF, lassen sich interessante Schlussfolgerungen ziehen. So stellt man zum
einen fest, dass in einigen Kanälen das TIN suboptimal sein kann, obwohl die In-
terferenzverbindungen sehr schwach sind. Zum anderen, dass das TIN selbst dann
optimal sein kann, wenn die Interferenzverbindungen gegenüber den gewünschten
Verbindungen nicht ausreichend schwach sind. Die Gründe dafür liegen nicht nur in
der Struktur und dem Informationsfluss des PIMAC, sondern auch in einigen neuen
oberen Schranken, die in der vorliegenden Arbeit hergeleitet werden. Die Erkennt-
nisse sind dabei jedoch nicht nur auf den PIMAC beschränkt, sondern teilweise auch
auf größere Netzwerke erweiterbar. Um das zu zeigen wird als nächstes die GDoF-
Optimalität von TIN imM×2 X-Kanal untersucht. DerM×2 X-Kanal besteht aus
M Sendern und 2 Empfängern, in dem jeder Sender zwei unabhängige Nachrichten
an beide Empfänger schicken will. Die aus dieser Untersuchung hergeleiteten Bedin-
gungen für die Optimalität von TIN charakterisieren eine größere Menge von Kanal-
parametern als bisher in der einschlägigen Literatur zu finden ist. Die Notwendigkeit
der Bedingungen wird weiterhin für eine bestimmte Art von TIN, in der der M × 2
X-Kanal auf einen 2-Nutzer-Interferenzkanal reduziert wird, hergeleitet.
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Abbreviations and Notation

Abbreviations

AWGN Additive White Gaussian Noise
BC Broadcast channel
CSI Channel state information
DoF Degrees of freedom
GDoF Generalized degrees of freedom
i.i.d. Independent and identically distributed
ITLinQ Information-theoretic link scheduling
IA-CP Interference alignment with common and private signaling
IC Interference channel
INR Interference-to-noise ratio
LD Linear deterministic
MAC Multiple access channel
MIMO Multiple-input multiple-output
PA-CP Phase alignment with common and private signaling
PIMAC Point-to-point channel interfering with a multiple access channel
P2P Point-to-point
Rx Receiver
SNR Signal-to-noise ratio
SISO Single-input single-output
TDMA Time division multiple access
Tx Transmitter
TIN Treating interference as noise
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Notations

The following table summarizes the notations used in this thesis.

Lower-case bold: x column vector
Upper-case bold: X matrix
Calligraphic: X set
xn (x(1), x(2), . . . , x(n))

x[a:b] vector formed by the a-th to b-th element of vector x
X [a:b] matrix formed by the a-th to b-th rows of a matrix X
F binary field
N natural numbers
N0 N ∪ {0}
R real numbers
C complex numbers
0q zero-vector of length q
0l,m zero matrix of size l ×m
Iq q × q identity matrix
Prob(E) Probability of an event E
CN (µ, σ2) circularly symmetric complex normal distribution with

mean µ and variance σ2

H(X) entropy of X
H(X,Y ) joint entropy of X and Y
H(X|Y ) entropy of X given Y
h(X) differential entropy of X
h(X,Y ) joint differential entropy of X and Y
h(X|Y ) differential entropy of X given Y
I(X;Y ) mutual information between X and Y
⊕ modulo 2 addition
bxc integer part of x
dxe bxc+ 1

x+ max{x, 0}
|x| x+ + (−x)+

x∗ complex conjugate of x
|X | cardinality of set X
XT transpose of X

6



1 Introduction

The role of wireless communications as the required infrastructure of future tech-
nologies such as internet of things, car to car communications, etc., becomes more
and more important. However, increase in the number of devices and the demand
for higher data rate on one hand; and limited resources such as time and frequency
on the other hand face the traditional communication networks with a big challenge
namely “interference management”.
In recent years, great progresses have been achieved in interference management

from theoretical point of view. Novel transmission techniques which achieve approx-
imately the capacity limits of interference networks have been proposed. Most of
these techniques use the fact that the interference carries some information. Hence,
by decoding and cancelling the interference a cleaner observation of the received
signal will be available [HK81]. These types of techniques require perfect channel
state information and fully coordinated synchronous systems. This coordination can
enhance the performance of a transmission, at the expense of increasing its com-
plexity and power consumption. In most communication systems existing nowadays,
the communicating nodes have several practical constraints. One such constraint
is the limited computational capability of the communicating nodes. This limita-
tion demands communication schemes with low complexity and consequently, low
power consumption. Hence, the traditional schemes which are based on ignoring
and avoiding the interference, are still the most applicable approaches in dealing
with interference in the practical scenarios. In these approaches, the decoding at the
receivers is restricted to a simple technique namely “treating interference as noise”
(TIN).
By using TIN, the Gaussian channel coding as in the point-to-point (P2P) channel

with power allocation can be used at the transmitter side while the receivers ignore
the interference. Hence, compared to the P2P channel, no additional computation
is required neither at the transmitters nor at the receivers. Showing the optimality
of TIN from a capacity perspective adds to these advantages that no more complex
schemes are required. The results on the optimality of TIN can be motivated from
different aspects. Some of them are listed bellow.

• Developing more efficient scheduling mechanisms: By utilizing the re-
sults on the optimality of TIN, more efficient mechanisms on resource allocation
and scheduling can be developed. For instance, a recently proposed spectrum
sharing mechanism in [NA14], referred to as information-theoretic link schedul-
ing (ITLinQ) uses the information theoretic conditions on optimality of TIN
as a metric for grouping the links (sender receiver pairs) in a network into so-
called not-detrimental links. The not-detrimental links cause sufficiently low
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interference to each other. Hence, they are allowed to be active simultaneously
over the same frequency band. Through the numerical analysis in [NA14], it
is shown that ITLinQ outperforms significantly the previous mechanisms such
as FlashLinQ [WTS+10] with respect to the sum-rate. The scheduling mecha-
nism of ITLinQ has been further improved in [YC15] by using a new selection
criteria and taking also the power control at the transmitters into account.

• No loss for secrecy: Studying the optimality of TIN is also interesting from
secrecy point of view. Roughly speaking, if a system operates in the regime
in which TIN performs approximately capacity optimal, the secrecy constraint
does not lead to a significant loss in the capacity. This fact has been investi-
gated in [GJ15] for the K-user interference channel (IC).

Due to the above mentioned facts, studying the regimes in which TIN performs
(approximately) optimally attracted more focus in recent years. The optimality
of TIN has been studied for different channels such as interference channel and
X-channel. It is shown in [GNAJ15] that TIN is asymptotically optimal in the
interference channel which operates in very weak interference regime. This regime is
defined formally by

SNR|dB ≥ max{observed INR|dB}+ max{caused INR|dB}, (1.1)

where SNR and INR represent signal-to-noise ratio and interference-to-noise ratio,
respectively. In words, in the very weak interference regime, the sum of the powers of
the strongest interference caused by a user plus the strongest interference it receives
is less than or equal to the power of its desired signal, on a logarithmic scale. Roughly
speaking, in this regime, the interference links need to be sufficiently weaker than
desired links.
Now, one question which arises is whether this condition can be extended to any

channel. Is TIN asymptotically optimal in any channel in which interference links
are very weaker than the desired links? Or is there any channel in which TIN is sub-
optimal although the interference links are very weak compared to the desired links?
Another question is what happens when we are outside the very-weak interference
regime. Is TIN necessarily suboptimal if the interference links are not sufficiently
weak? Or perhaps, there exists a regime in which TIN is optimal although some
interference links are strong?
In order to answer these questions, we study the optimality of using TIN at re-

ceivers with Gaussian codebooks employed at transmitters in an elementary channel.
This channel consists of a multiple access channel (MAC) with two transmitters and a
point-to-point (P2P) channel which share the same communication medium. Hence,
we have a P2P channel interfering with a MAC, known as PIMAC. The simple and
compact presentation of the problem for this elemental network allows us to un-
derstand the optimality of TIN deeply from different features. Studying this setup
captures new facts which answer the aforementioned questions. Moreover, the in-
sights obtained from studying this fundamental setup is useful in understanding the
performance of TIN in larger networks.

8



Showing the optimality of TIN from the capacity point of view consists of two
main steps. The first step is to characterize the maximum achievable sum-rate by
using TIN at the receiver side, while the transmitters are allowed to use a Gaussian
codebook. The second step is to assess the optimality of TIN by establishing some
upper bounds on the capacity of the network which serve as benchmark. If for
a range of channel parameters, the achievable sum-rate of TIN coincides with the
established upper bound, we conclude that no other scheme can outperform TIN
and thus in that regime TIN is capacity optimal. Despite continuous attempts in
finding the capacity of different elemental networks, except some few exceptions, the
complete capacity characterization of many of them is still open. This highlights the
fact that the capacity characterization of multi-user networks is in general difficult
and requires some intermediate steps. An important step towards characterizing the
capacity is to study the so-called generalized degrees of freedom (GDoF) which is
an approximation of the capacity at high signal-to-noise ratio (SNR). Studying the
GDoF provides also some insights which can be helpful in obtaining the capacity of
a setup in finite SNR. The main focus of this thesis is to study the optimality of
TIN from the GDoF perspective. In the regimes in which TIN is GDoF optimal,
the capacity of the channel is asymptotically achievable at high SNR by using TIN.
Additionally, showing the optimality of TIN from the GDoF perspective can lead us
to a more general result which is the constant gap optimality of TIN. This result
states that TIN achieves the capacity of the channel for all values of SNR within a
gap which does not exceed a constant number of bits.
By studying the GDoF optimal regime of TIN in PIMAC, we obtain a surprising

result which shows that the GDoF optimal regime of TIN is not restricted to very
weak interference regime as in (1.1). Interestingly, there might be cases in which,
although (1.1) is not satisfied, TIN is still GDoF optimal. The extension of the GDoF
optimal regime of TIN is not only due to the structure of the PIMAC but mainly due
to the new established upper bounds in this thesis. In order to complete our study
on the GDoF optimality of TIN in PIMAC, we show its suboptimality as long as
PIMAC operates outside the GDoF optimal regime of TIN. To do this, we propose
a scheme which uses interference decoding and achieves a higher GDoF than that of
TIN. Interestingly, it turns out that there are some cases in which TIN is suboptimal,
although the observed interference signals at all receivers are very weak compared to
the desired signals. It is shown that even in this case, a more sophisticated schemes
which incorporate interference alignment might outperform TIN.
In fact, the obtained insights from studying the optimality of TIN in the PIMAC

are very helpful in understanding the performance of TIN in more general setups.
To show this, the optimality of TIN is also studied in a so-called M ×2 X-channel in
which each of the M transmitters wants to communicate independent messages to
both receivers. For this channel, the achievable GDoF of TIN with power allocations
at the transmitters is studied. It turns out that the transmit power allocation max-
imizing the achievable GDoF is given by on-off signaling as long as the receivers use
TIN. This leads to different variants of TIN scheme whose GDoF optimal regimes
are characterized. The characterized GDoF optimal regime of TIN for the M × 2

9



1 Introduction

X-channel expands the GDoF optimal regime established in the literature [GSJ15]
significantly.

1.1 Organization of the Thesis

In the following chapter, we present the related works on the optimality of TIN and
some preliminary concepts which are required in the thesis. The focus of Chapter 3
is on the optimality of TIN in the PIMAC. In Chapter 4, the optimality of TIN in
an M ×2 X-channel is studied. Finally, Chapter 5 concludes the thesis. The content
of each chapter is summarized in what follows.

1.1.1 Chapter 2

In the first part of this chapter, we give an overview of the results presented in
the literature on the optimality of TIN. The focus of this chapter is not only on
understanding the links between the results, but also providing the reader an intuitive
explanation about the key ideas behind. To this end, we start the discussion by
giving an overview on the results done on the capacity of the interference channel.
The importance of the interference channel is not only since it has attracted many
researcher as an elemental network which captures main features of interference but
also since the results obtained for the interference channel had important impacts
on further works on different networks. Next, we discuss the optimality of TIN in
X-channel as a general setup which is also studied in this thesis. Finally, we present
the PIMAC and related results.
In the next part of this chapter, we present some preliminaries which will be

required in the thesis. Since our approach towards the analysis of TIN in PIMAC
is based on studying the so-called linear deterministic model, a section is dedicated
to this concept. Finally, we present the preliminaries of lattice codes since it will be
used in some transmission schemes introduced in the thesis.

1.1.2 Chapter 3

In this chapter, the GDoF of the PIMAC is studied with main focus on the optimality
of TIN. Depending the strategy at the transmitter side, different variants of TIN are
introduced. While in the simple variant of TIN, namely naive-TIN, all transmitters
send with full power simultaneously, in the so-called time division multiple access and
TIN (TDMA-TIN), the transmitters divide up the time between each other. Hence,
in TDMA-TIN, the PIMAC is reduced to two 2-user interference channels and a
point-to-point channel which operate over orthogonal time slots. The performance
of each variant of TIN is studied separately. To this end, we consider first the
linear deterministic PIMAC which is an approximation of the Gaussian PIMAC.
The necessary and sufficient conditions on the optimality of TIN from the capacity
point of view are established for the linear deterministic model. This provides us a
complete characterization of the capacity optimal and suboptimal regimes of TIN.

10



1.1 Organization of the Thesis

Next, the insights obtained from the linear deterministic PIMAC are extended to the
Gaussian counterpart. In doing so, the capacity results for the deterministic model
are translated to the GDoF result for the Gaussian setup. Hence, we obtain the
necessary and sufficient conditions on the GDoF optimality of TIN and furthermore
its complete GDoF (sub)optimal regime. Moreover, it is shown that as long as TIN
is GDoF optimal, it achieves the capacity of the PIMAC within a constant gap. The
material of this chapter has been published partially in the following works.

• [GCDS16] S. Gherekhloo, A. Chaaban, C. Di, and A. Sezgin, “(Sub-)optimality
of treating interference as noise in the cellular uplink with weak interference,”
IEEE Transactions on Information Theory, vol. 62, no. 1, pp. 322-356, Jan
2016.

• [GCS16a] S. Gherekhloo, A. Chaaban, and A. Sezgin, “The information-theoretic
constant-gap optimality of treating interference as noise in interference net-
works,” in Utschick, Wolfgang, ed. (Hrsg.): Communications in Interference
Limited Networks. Springer International Publishing, 2016 pp. 75-96.

• [GCS14a] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Coordination gains in
the cellular uplink with noisy interference,” in Proc. of the 15th IEEE Interna-
tional Workshop on Signal Processing Advances for Wireless Communications
(SPAWC), pp. 244-248, Toronto, Canada, June 2014.

1.1.3 Chapter 4

In this chapter, the results on the necessary and sufficient conditions of the GDoF
optimality of TIN for the PIMAC are extended to a more general network, namely
the M × 2 X-channel. To this end, the achievable GDoF of TIN with power alloca-
tions at the transmitters is studied. It turns out that the transmit power allocation
maximizing the achievable GDoF is given by on-off signaling as long as the receivers
use TIN. This leads to two variants of TIN; namely, P2P-TIN and 2-IC-TIN. While
in the first variant theM×2 X-channel is reduced to a point-to-point (P2P) channel,
in the second variant the setup is reduced to a 2-user interference channel in which
the receivers use TIN. The optimality of these two variants are studied separately.
To this end, novel genie-aided upper bounds on the capacity of the X-channel are
established. Additionally, it is shown that the addressed conditions on the GDoF
optimality of 2-IC-TIN are not only sufficient but also necessary. The introduced
GDoF optimal regimes of TIN subsumes and extends the known regime in the lit-
erature. The material of this chapter has been published partially in the following
works.

• [GCS16b] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Expanded GDoF-optimality
regime of treating interference as noise in the M ×2 X-Channel,” submitted to
IEEE Transactions on Information Theory, 2016.
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• [GCS14b] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Extended generalized
DoF optimality regime of treating interference as noise in the X channel,” in
Proc. of the 11th IEEE International Symposium on Wireless Communications
Systems (ISWCS), pp. 971-975, Barcelona, Spain, Aug. 2014.

1.2 Contributions Outside the Scope of the Thesis

Contributions on other topics which are not part of the thesis are listed below.

• [GS16] S. Gherekhloo, and A. Sezgin, “Latency-limited broadcast channel with
cache-equipped helpers,” submitted to IEEE Transactions on Wireless Com-
munications, 2016.

• [GCS15a] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Cooperation for inter-
ference management: A GDoF perspective,” submitted to IEEE Transactions
on Information Theory, 2015.

• [GCS15b] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Optimality of treating
interference as noise in the IRC: A GDOF perspective,” in Proc. of Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2015.

• [GCS14c] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Resolving entanglements
in topological interference management with alternating connectivity,” in Proc.
of IEEE International Symposium on Information Theory (ISIT), Honolulu,
HI, USA, July, 2014.

• [GCS14d] S. Gherekhloo, A. Chaaban, and A. Sezgin, “Topological interference
management with alternating connectivity: The Wyner-type three user inter-
ference channel,” in International Zurich Seminar on Communications (IZS),
Zurich, Switzerland, Feb., 2014.

• [GCS13] S. Gherekhloo, A. Chaaban, and A. Sezgin, “The generalized degrees
of freedom of the interference relay channel with strong interference,” in 51st
Annual Allerton Conference on Communication, Control and Computing, 2013.

• [CGS13] A. Chaaban, S. Gherekhloo, and A. Sezgin, “Relays for interference
management: Feedback, amplification and neutralization,” in Proc. of the
14th IEEE International Workshop on Signal Processing Advances for Wireless
Communications (SPAWC), Darmstadt, Germany, Jun., 2013.
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2 History and Preliminaries

In 1948, Claude Shannon has published his seminal paper [Sha48] in which he founded
the area of information theory that is used as the concept for studying the fundamen-
tal limits of communication systems. In this work, he introduced channel capacity
as the highest transmission rate for reliable communication between a source and
a destination. Since then, finding the channel capacity became the main challenge
in studying communication networks from information theory point of view. While
in the traditional Gaussian point-to-point channel, additive noise imposes the main
restriction on the communication capacity, in networks with multiple senders and
receivers, interference might strongly affect the capacity. Due to the fact that in-
terference has a structure, receivers are able to decode and remove it partially from
the received signal. In doing so, receivers obtain a relatively cleaner version of the
desired signal. Although this way of interference management improves the trans-
mission rate in many cases, it is not used in practical scenarios due to the complexity
of encoding and decoding. Alternative to decoding the interference is to ignore it
completely, i.e., treating interference as noise (TIN) at the undesired receiver. In
this scheme, the receivers decode their desired message in the same way as if they
do not observe any interference. This is a common way to deal with interference in
practical communication scenarios, due to the low complexity and low requirements
on coordination between different nodes. The simplicity of TIN has attracted the
attention of many researchers to study its optimality in different channels. In what
follows, we give an overview of these results.

2.1 TIN in Interference Channel

The interference channel (IC) consists of multiple point-to-point channels which use
the same resources such as time and frequency concurrently. Studying this channel
as a basic setup which captures the effects of interference is not only important from
theoretical point of view but also from practical aspects. For instance, in cellular
networks, the users located close to the edge of the cell might suffer from strong
interference caused by the base station of the adjacent cell. This can be modelled
as an interference channel. The practical scenarios of interference channel are not
restricted to wireless networks but also to wired channels. For instance, the IC is an
appropriate setup for representing the crosstalk phenomenon in telephone lines.
The smallest possible interference channel is a 2-user IC which consists of two

transmitters (Tx1 and Tx2) and two receivers (Rx1 and Rx2) in which Txi (with
i ∈ {1, 2}) wants to communicate its message Wi to Rxi and causes interference at
Rxi′ (with i′ ∈ {1, 2} and i′ 6= i). The Gaussian 2-user IC is shown in Fig. 2.1.
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Y2 → Ŵ2

Figure 2.1: The system model of a symmetric Gaussian 2-user interference channel.

The capacity region of 2-user IC has been first studied by Ahlswede in [Ahl74] by
introducing fundamental inner and outer bounds. In [Car75], Carleial has introduced
the so-called very strong interference regime, in which interference does not reduce
the capacity regime of two parallel point-to-point channels. The capacity region of
the Gaussian interference channel in the strong interference regime has been obtained
later in [Sat81] and [HK81]. Additionally, it has been shown in [Sat81] that the
capacity of the Gaussian 2-user IC in strong interference regime is the intersection
of the capacity region of two multiple access channels (MAC). The inputs of both
multiple access channels are the sent signals by the transmitters, i.e., X1 and X2

while the outputs are either Y1 (for Rx1) or Y2 (for Rx2). The inner bounds for
the capacity of the 2-user IC in the strong interference regime is based on rate
splitting and successive interference cancellation which was extensively improved by
Han and Kobayashi in [HK81]. Based on the Han-Kobayashi scheme, the message of
each transmitter is split into two sub-message namely private and common message.
While the private message is decoded only at the desired receiver, the common
message is intended to both receivers. Although the Han-Kobayashi scheme is the
best known inner bound on the capacity of the interference channel, no outer-bound
could justify its optimality in the low interference regime for decades. After more
than 20 years, Kramer established in [Kra04] two outer bounds on the capacity of
the 2-user Gaussian interference channel. The main idea presented in this work
was a genie-aided approach in which a genie provides the receivers some additional
information. The side information was chosen such that each receiver were able
to decode both messages. The bounds in [Kra04] developed the already known
upper bounds of Sato [Sat77] and Carleial [Car83] and optimized them for the weak
interference regimes. However, these bounds did not coincide with the achievable
sum-rate in the weak interference regime. In 2008, Etkin, Tse, and Wang have
shown in their well-known work [ETW08] that the Han-Kobayashi scheme achieves
the capacity of the Gaussian 2-user IC within one bit gap. Besides this fundamental
result, the work done by Etkin et. al. had significant impact on subsequent works
from different aspects listed below.

• Introducing new metrics: The authors of [ETW08] were aware of the dif-
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2.1 TIN in Interference Channel

ficulty of capacity characterization in general. Due to this, they introduced
the so-called generalized degrees of freedom (GDoF) metric which serves as a
stepping stone towards characterizing the capacity. The GDoF metric gener-
alizes the metric degrees of freedom (DoF). The notion of DoF originates from
the capacity of the multi-antenna Gaussian channel [Tel99] which is later used
for representing the maximum available number of independent point-to-point
streams in a network at high signal-to-noise ration (SNR). To be more precise,
we introduce the DoF metric for the symmetric Gaussian 2-user IC shown in
Fig 2.1. The channels hd and hc represent the real valued desired and interfer-
ence links, respectively. Moreover, the signal power is P and the noise power
is 1. Similar to [CJ08], the DoF of this setup is defined by

d = lim
SNR→∞

CΣ(SNR)
1
2 log2(SNR)

, (2.1)

where SNR is the received signal-to-noise ratio and CΣ represents the sum-
capacity of the channel. Notice that in the definition of DoF, the interference-
to-noise ratio (INR) is not considered. In fact, this definition does not capture
the affect of different channel strengths in a network. Hence, it was not appro-
priate for studying the capacity of the IC in the weak interference regime where
|hc| < |hd|. To solve this problem, Etkin et. al. introduced a new parameter
for representing the channel strength, i.e.,

α =
log2(P |hc|2)

log2(P |hd|2)
. (2.2)

In fact, the parameter α represents the capacity of the point-to-point interfer-
ence link with respect to that of the desired link at high SNR. By including this
parameter into the definition of the DoF, we obtain the GDoF metric which
can be applied to more general set of networks. The GDoF is defined as follows
[ETW08]

d(α) = lim
SNR→∞

CΣ(SNR, α)
1
2 log2(SNR)

. (2.3)

Intuitively, the metric GDoF determines the maximum number of interference-
free and independent streams available in a network at high SNR while the
capacity of each stream is the same as the capacity of a reference point-to-
point (P2P) channel, i.e., 1

2 log2(SNR). Hence, the aforementioned definition
of the GDoF is equivalent to

CΣ(SNR, α) = d(α) log2(SNR) + o(log2(SNR)), (2.4)

where o(log2(SNR))
log2(SNR) → 0 as SNR→∞.

• TIN optimality: The first step towards showing the optimality of treating
interference as noise (TIN) in the IC has been made in [ETW08]. Notice
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Figure 2.2: In the Genie-aided bound which shows the GDoF optimality of TIN in
very-weak interference regime [ETW08], S1 and S2 are provided to Rx1
and Rx2, respectively. The sum-capacity of this channel serves as an
upper bound for the original 2-user IC.

that the Han-Kobayshi scheme reduces to TIN, by just setting the rate of the
common messages to zero. Erkin et. al. have shown that there exists a range
of channel parameters in which TIN achieves the sum-capacity of the Gaussian
2-user IC within a constant gap. To show this, they obtained a new upper
bound which serves as an inspiration of some upper bounds established in the
subsequent works on the optimality of TIN. This upper bound is a type of genie-
aided bound proposed by Kramer in [Kra04]. To establish this bound, the genie
provides to each receiver the noisy version of the interference signal received at
the other receiver (see Fig. 2.2). Since after providing additional information
to receivers, they are more capable in decoding their desired messages, the
capacity of the obtained channel serves as an upper bound for the capacity
of the original interference channel. By using this bound, it is shown that in
a symmetric Gaussian 2-user IC with signal power P and noise power 1 TIN
is approximately capacity optimal in very-weak interference regime which is
defined as follows

P |hc|2 ≤
√
P |hd|2. (2.5)

By using the parameter α defined in (2.2), the very-weak interference regime
can be defined by

α ≤ 1

2
. (2.6)

This result on optimality of TIN in interference channel has been refined in three
independent works [AV09, SKC09, MK09]. In these works, it was shown that TIN
achieves the sum-capacity of the 2-user IC in the so-called noisy interference regime
introduced in [AV09].
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2.1 TIN in Interference Channel

The noisy interference regime is a smaller regime than the obtained regime from
extending the characterized very-weak interference regime in [ETW08] to moderate
and low SNR (defined in (2.5)). The results on the optimality of TIN from capacity
point of view have been further extended in [BSP08], [SCKP10], and [AV11] for the
multiple antenna case of Gaussian IC. Moreover, the optimality of TIN from the
capacity point of view has been also investigated for parallel Gaussian interference
channels in [SCKP11].
At this point it is worth mentioning that even characterizing the achievable rate

region of TIN in the IC was not trivial and required optimizing the transmit power.
It has been shown in [CSHP12] that without involving time-sharing, the achievable
rate region of TIN is in general non-convex. In addition to this, the difficulty of
establishing tight upper bounds on the capacity in closed form has motivated the
researchers to focus their study more on the optimality of TIN from the GDoF
perspective. The GDoF optimality of TIN in [ETW08] has been extended to larger
networks by Jafar and Vishwanath in [JV10]. Interestingly, it turned out that the
GDoF optimal regime of TIN in the symmetric K-user IC with K > 2 is independent
from the number of users K. Hence, TIN is GDoF optimal in symmetric K-user IC
as long as α ≤ 1

2 . Additionally, it is shown that if a symmetric K-user IC operates
outside the very-weak interference regime (α ≤ 1

2), TIN will be outperformed by a
smarter transmission scheme.
The optimality of TIN in the fully-connected fully-asymmetric K-user IC has been

studied in [GNAJ15]. In this work, it has been shown that TIN achieves the capacity
region of the K-user IC within a constant gap if for all transmitter-receiver pairs

SNR|dB ≥ max{observed INR|dB}+ max{caused INR|dB} (2.7)

holds. Note that the obtained condition by applying (2.7) to the symmetric K-user
IC is equivalent to the result in [JV10]. To show the GDoF optimality of TIN, they
have established the outer bound in two steps. First, they reduced the K-user IC to
a cyclic IC. Next, by using the result of [ZY13] on the capacity region of a K-user
cyclic Gaussian IC, they have established an upper bound for the asymmetric K-
user IC. In fact the upper bound presented in [GNAJ15] is inspired from the bounds
established in aforementioned works. In order to highlight this fact, in what follows
we present an intuitive explanation of the upper bound for the 3-user IC shown in
Fig. 2.3a. Here, we enhance the 3-user IC in two steps. In each step, a genie provides
some side information to the receivers [Kra04]. This cannot decrease the capacity
of the 3-user IC. Hence, the capacity of resulting channel serves as an upper bound
for the original 3-user IC. The provided messages are chosen in a way such that the
original channel is reduced to a cyclic IC. An example for the obtained cyclic IC is
shown in Fig. 2.3b. Next, as it is shown in Fig. 2.3c, we provide the noisy version
of the interference caused by each transmitter to its desired receiver. Notice that
the side information in this step is very similar to the side information provided in
2-user IC in very-weak interference regime [ETW08].
The optimality of TIN in the IC in terms of the approximation of the capacity

has been also studied for the multiple antenna case. For instance, while in [GJ11]
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(a) An asymmetric interfernece channel

W1 → Tx1

W2 → Tx2

W3 → Tx3

→ Ŵ1Rx1

→ Ŵ2Rx2

→ Ŵ3Rx3

W2

W3

W1

(b) Giving the side information W2, W3, and
W1 to Rx1, Rx2, and Rx3, respectively, we
obtian the cyclic 3-user IC.

W1 → Tx1

W2 → Tx2

W3 → Tx3

→ Ŵ1Rx1

→ Ŵ2Rx2

→ Ŵ3Rx3

(c) The noisy version of the interfernece
caused by each transmitter is provided to
the desired receiver.

Figure 2.3: The steps for obtaining an upper bound for 3-user IC inspired by
[GNAJ15].

the capacity of the single-input multiple-output IC is studied within a constant
gap, the approximation for the capacity of the multiple-input multiple-output IC
is investigated in [KV12, KV13]. Interestingly, in all these works, it is shown that
TIN does not perform necessarily optimal if the network operates in the very weak
interference regime.

2.2 TIN in X-channel

The interference channel can be extended to a more general setup, namely X-channel,
in which each transmitter has an independent message for each receiver [MAMK08,
JS08]. The X-channel is an appropriate network for modelling the scenarios in which
multiple base stations serve the same users. Studying the capacity of the X-channel
as a rich network which can be reduced to many channels such as interference channel,
multiple access channel, broadcast channel, etc, is interesting from both theoretical
and practical points of view.
Since the X-channel is reduced to an interference channel by setting the rates of

some messages to zero, all achievable some rates in the interference channel are also
achievable in the X-channel. Moreover, the capacity of an X-channel serves as an
upper bound for the capacity of its enclosed interference channels. Notice that from
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2.2 TIN in X-channel

the statements above, we can not follow that whenever TIN is suboptimal in an IC,
it is also suboptimal in the corresponding X-channel. On the other hand, from the
optimality of TIN in the interference channel, we cannot necessarily conclude the
optimality of TIN in the X-channel. The main point which we want to highlight by
this discussion is that although we obtain some deep insights from understanding the
performance of TIN in the IC which can be also useful or even might be extendable to
the X-channel, studying the optimality of TIN in the X-channel is a distinct problem
which requires individual analysis.
Exploiting the fact that the 2 × 2 X-channel is a combination of two broadcast

channels and two multiple access channels, different schemes for maximizing the mul-
tiplexing gain have been proposed for the multiple-input multiple-output (MIMO)
X-channel by Maddah-Ali, Motahari, and Kandani in [MaMK06a, MaMK06b]. Later
in [MAMK08], it was shown that the DoF of

⌊
4r
3

⌋
is achievable in the MIMO 2× 2

X-channel with r antennas at each node. By using the concept of symbol extension
introduced by Jafar and Shamai in [JS08], the achievable DoF is increased upto 4r

3
in [JS08]. This achievable DoF coincides with the upper bound on the DoF of the
MIMO X-channel which is also established in [JS08]. The next step towards obtaining
the capacity of the X-channel was characterizing its GDoF. This has been accom-
plished by Huang, Cadambe, and Jafar for the single-input single-output (SISO)
2 × 2 X-channel in [HCJ12]. Moreover, in this work the GDoF optimal regime of
TIN is characterized for the 2 × 2 X-channel. It turned out that as long as TIN is
GDoF optimal in the 2-user IC [ETW08], it is also optimal in the corresponding X-
channel. In order to show this, they established an upper bound on the GDoF of the
X-channel. To this end, some side information is provided to receivers. The provided
information to each receiver are the undesired messages which are not included in
the IC in addition to the same side information used in the genie-aided bound of
IC in very weak interference regime [ETW08] (see Fig. 2.2). The enhanced channel
after providing this side information to the receivers of the X-channel are illustrated
in Fig. 2.4. In this figure, Wji represents the message of the ith transmitter which is
desired at the jth receiver. By comparing this figure with Fig. 2.2, we see that in the
X-channel in addition to S1 and S2, the messages W21 and W12 are also provided as
side information to the first and the second receiver, respectively. Roughly speaking,
by providing these messages to the receivers, each receiver is interfered by only one
transmitter. In this sense, the setup becomes similar to the 2-user IC and hence, its
capacity can be bounded as in the 2-user IC by providing Sj to Rxj with j ∈ {1, 2}.
It is worth noting that since one can consider two different IC’s in a 2 × 2 X-

channel, two distinct regimes for GDoF optimality of TIN are addressed in [HCJ12].
Furthermore, in [HCJ12], the conditions on capacity optimality of TIN are estab-
lished for the 2 × 2 X-channel. Interestingly, they have shown that that as long as
TIN is capacity optimal in the 2-user IC [AV09, SKC09, MK09], it is also optimal in
the corresponding X-channel.
The optimality of TIN in larger X-channels has been investigated in [GSJ15] from

the GDoF perspective. Interestingly, it is shown in this work that as long as the
optimality conditions of TIN presented in [GNAJ15] are satisfied for a K-user IC,
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Figure 2.4: The enhanced channel after providing the side information to the re-
ceivers of the 2× 2 X-channel. The obtained upper bound on the GDoF
of this enhanced channel is used in [HCJ12] to show the GDoF optimality
of TIN in the X-channel.

TIN is also GDoF optimal in the corresponding K×K X-channel. In other words, if
TIN is GDoF optimal in aK-user IC based on the conditions in [GNAJ15], increasing
the message set cannot increase the GDoF. To show this, they established a tight
genie-aided upper bound on the GDoF. To establish this bound, they extended the
insights obtained from [GNAJ15] to the X-channel. An intuitive explanation of
the bound in [GSJ15] is as follows. Consider the corresponding K-user IC which
satisfies the conditions in [GNAJ15]. Based on this IC, we use the terms (un)desired
transmitters or receivers. In their genie-aided bound, a subset of undesired messages
are provided to each receiver. Roughly speaking, this subset of the messages reduces
the fully connected X-channel to a setup with a cyclic connectivity. In addition to
this, similar to [GNAJ15], they provided to each receiver the noisy version of the
strongest interference which is caused by the desired transmitter. Using this genie-
aided bound, they obtained an upper bound on the GDoF similar to the bound
proposed for the K-user IC.

The authors of [GSJ15] extended their results to an M ×N X-channel with M 6=
N . It turned out that reducing an M × N X-channel to a K-user IC, with K =
min{M,N}, and using TIN at the receivers is GDoF optimal as long as the optimality
conditions in [GNAJ15] are satisfied. However, as the authors of [GSJ15] have also
commented, their addressed conditions on optimality of TIN are sufficient but not
necessary. In this thesis, we extend their GDoF optimal regime of TIN for the 3× 2
X-channel.
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Tx3W3 →

Tx1W1 →

Tx2W2 →

Rx1 → Ŵ1

Rx2 → Ŵ2

MAC

P2P-channel

Figure 2.5: The system model of the PIMAC. Tx1 and Tx3 are the MAC transmitters.
They communicate their messages to Rx1. Moreover, Tx2 communicates
with Rx2 over the same medium.

2.3 Point-to-Point Channel Interfering with a Multiple
Access Channel (PIMAC)

By considering a point-to-point (P2P) channel which interferes a multiple access
channel (MAC) with two transmitters, the PIMAC [CS11c] is generated. This net-
work is shown in Fig. 2.5. Such a setup arises when a P2P communication system
uses the same communication medium as a cellular uplink for instance. In fact, the
PIMAC merges two important channels, namely the multiple access channel (MAC)
and 2-user IC into a setup.
The capacity of a partially connected PIMAC (known as Z-PIMAC), in which

only the MAC transmitters cause interference to the undesired receiver, has been
studied in [ZSCP14]. In this work, an achievable rate region based on superposition
coding and joint decoding was provided. This scheme achieves the capacity of the
Z-PIMAC with very strong interference. Moreover, it is shown that in the weak
interference regime and with power constraints, treating interference as noise achieves
the capacity within a half of bit.
The more general setup has been considered in [CS11c]. In this work, the capac-

ity region of the PIMAC is characterized for some parameter ranges mainly in the
strong interference regime. Moreover, using the similar genie aided approach as in
[AV09], a new outer bound for weak interference regime is established. It is claimed
intuitively that if the interference power is sufficiently low (lower than a threshold),
then treating interference as noise achieves a sum rate which is close to the upper
bound. Interestingly, Chaaban and Sezgin have shown in [CS12] that the achievable
sum-rate of the so-called naive-TIN in which all transmitters send with full power
cannot achieve the capacity. To show this, they proposed a differed variant of TIN
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(a) The Gaussian P2P channel with capacity
C = log2(SNR) at high SNR.
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(b) The approximated linear determin-
istic model for the P2P channel.

Figure 2.6: In the LD-P2P channel, only the n top-most bits of the vector x are
received at the receiver side, where n = dlog2(SNR)e.

in which the transmitters of the MAC (Tx3 and Tx1 in Fig. 2.5) share the time
between each other. Hence, the PIMAC is reduced to two 2-user IC’s which operate
over orthogonal time slots. It turns out that this type of TIN outperforms naive-TIN
which shows the suboptimality of naive-TIN.
The capacity of the linear deterministic [ADT11] PIMAC was also studied in

[BW12] under a symmetry condition on the channel parameters. The condition is as
follows: The powers of the interference caused by the MAC transmitters at the P2P
receiver are equal. For this case, the sum-capacity of the deterministic PIMAC is
derived and it has been shown that it is larger than that of the deterministic IC. In
addition to the mentioned works, the capacity of PIMAC under different cognition
assumptions have been studied in [SBSV+08, CS11b, CS11a].
The complete characterization of the GDoF optimal regime of TIN in PIMAC is

a focus of this thesis.

2.4 Deterministic Model

Our approach towards the analysis of optimality of TIN is starting by studying the so-
called deterministic model. The main idea of the deterministic model is to eliminate
the randomness of noise from the setup in order to simplify the analysis. The general
deterministic model has been first proposed by El Gamal and Costa in 1982 for the
2-user interference channel [GC82]. Using this idea, the linear deterministic model
(LD model) has been introduced by Avestimehr et al. in [ADT11]. The LD model is
an approximation for a Gaussian wireless network in which the output of the channel
is a linear deterministic function of the input. In this model, the transmitters send
bit vectors. Depending on the channel strength, a certain number of bits sent by
each transmitter is received at the receiver side. In Fig. 2.6, the Gaussian and the
LD model of a P2P channel are illustrated.
While in the Gaussian channel (shown in Fig. 2.6a), the sent signal X is added

with a random noise Z, in the LD model, there is no randomness in the channel. In
the LD model, only the top-most n bits of the input vector1 x ∈ Fq2 (with q ≥ n) are

1With a slight notational abuse, we use the boldface lower-case for denoting the random vectors.
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2.5 Lattice Codes

received, where n = dCe and C denotes the capacity of the Gaussian P2P channel
at high SNR, i.e., C = log2(SNR). More precisely, the input-output relationship of
the LD-P2P channel is given as follows

y = Sq−nx, (2.8)

where y ∈ Fq2 is the output vector and S is the shift matrix given by

S =

(
0Tq−1 0

Iq−1 0q−1

)
. (2.9)

In other words, the impact of the noise in the Gaussian channel is reflected by the
shifting operator of the transmit signal vector in the LD model. The larger the
capacity in the Gaussian setup, the more bits are conveyed in the LD-model.
Characterizing the capacity for the LD model is easier than its Gaussian counter-

part. However, the insights obtained from the LD model does not only improve our
understanding from the Gaussian setup but also can be used directly for establishing
an approximation for the capacity of the Gaussian channel. This fact has been shown
first in [BT08] for the two-user IC and later in [BPT10] for many-to-one and one-
to-many IC. In addition to the IC, the LD model has been studied for many setups
such as wireless networks with arbitrary number of relays [ADT11], multiple access
channel interfering with a point to point link [BW11], [BW12], and the X-channel
[HCJ12].
It is worth noting that the LD model is not the only deterministic model which

is available in the literature. Niesen and Maddah-Ali proposed a so-called lower
triangular deterministic model in [NMA13] which is more appropriate than LD
model for explaining the transmission schemes in which interference alignment [JS08,
MAMK08] is involved. However, studying the triangular deterministic model is more
complicated and involving than the LD model. Moreover, if interference alignment is
not required, studying the LD model is sufficient for understanding the transmission
scheme in the Gaussian setup. Interestingly, it turned out in [SJ16] that the details
which are not captured by the LD model but in the lower triangular deterministic
model are irrelevant for TIN. Due to these facts, in this thesis, we do the analysis
based on the LD model.

2.5 Lattice Codes

In order to extend the transmission schemes proposed for a linear deterministic
channel to its Gaussian counterpart a lattice code is sometimes required. A lat-
tice code as a code with linear structure becomes unavoidable, especially if a lin-
ear superposition of independent codewords needs to be decoded or reconstructed.
This fact has reinforced the importance of application of lattices in communication
[NG11, SJV+08, BPT10, WNPS10, NCL11]. In what follows, we present some re-
quired preliminaries on lattices. For more details on lattices, the interested reader is
referred to [Zam09, NG11].
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2 History and Preliminaries

An n-dimensional lattice Λ is a set of points in Rn which satisfies the following
condition. For any arbitrary λ1 and λ2 in Λ, we have

−λ1 ∈ Λ (2.10)
λ1 + λ2 ∈ Λ. (2.11)

Due to the conditions above, we conclude that the origin is always in Λ. The fun-
damental Voronoi region V(Λ) of the lattice Λ is the set of all points in Rn which
have the origin as the closest λ ∈ Λ. For instance, for one dimensional lattice
Λ = {0,±1,±2,±3, . . .}, the Voronoi region is all real x in interval

[
−1

2 ,−
1
2

]
.

In this thesis, some proposed schemes are based on the so-called nested-lattice
code. In order to define the nested-lattice code, we consider two lattices Λf and Λc,
which represent the fine and the coarse lattice, respectively. The course lattice is a
subset of the fine lattice, i.e., Λc ⊂ Λf . Using the nested-lattice code a message W
is encoded into a length-n codeword λ, where

λ ∈ Λf ∩ V(Λc). (2.12)

Hence, the number of possible codewords is the number of lattice points in Λf which
are in the Voronoi region of Λc. This is used for characterizing the rate of the nested
lattice code which is given by

R =
1

n
log2 |Λf ∩ V(Λc)|. (2.13)

Moreover, the power of a nested lattice code is the second moment of the Voronoi
region of Λc. The achievable rate by using nested lattice code over a point-to-
point additive white Gaussian noise (AWGN) channel is summarized in the following
lemma.

Lemma 1 ([EZ04]). Nested lattice code achieves the capacity of the point-to-point
AWGN channel.

Apart from the lower complexity of nested lattice codes compared to random
coding and its achievable rate which coincides the capacity of the AWGN channel,
the nested lattice code offers certain properties which make it a suitable choice for
a general network with multiple users [NG07]. In what follows, we present the main
aspects which will be required in this thesis.
Suppose that two transmitters, Tx1 and Tx2 use the same nested-lattice codebook

(Λf ,Λc) with power P and rate R to encode their messagesW1 andW2 into length-n
codewords λ1 and λ2, respectively. Then, Txi (with i ∈ {1, 2}) generates a real signal
xni as follows

xni = (λi − di) mod Λc, (2.14)

where di is an n-dimensional random dither vector.
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Now, suppose that there is a receiver (Rx) which knows the dither vector di and
is interested in the sum of the codewords (λ1 +λ2) mod Λc. The observation at the
receiver is given by

yn = xn1 + xn2 + zn, (2.15)

where zn is a sequence of real valued additive with Gaussian noise with variance σ2
n.

The following lemma summarizes the conditions on reliable decoding of the sum of
the codewords.

Lemma 2 ([WNPS10]). Given observation yn (cf. (2.15)), the sum (λ1 + λ2)
mod Λc is reliably decodable as long as

R ≤ 1

2

[
log2

(
1

2
+
P

σ2
n

)]+

. (2.16)

This lemma shows that by using the nested lattice code, the sum of two codewords
is reliably decodable as long as the given rate constraint is satisfied. Interestingly, the
gap between the achievable rate of nested lattice code to the capacity of the point-to-
point channel does not exceed half of bit. This gap is negligible in high signal-to-noise
ratio (σ2

n � P ). Hence, it does not have any impact on the achievable (generalized)
degrees of freedom.
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3 TIN in the PIMAC

In this chapter, we study the impact of introducing one more transmitter (without
introducing a new receiver) to the 2-user interference channel which operates in very
weak interference regime [ETW08] on the optimality of TIN. This setup is equiva-
lent to the point-to-point channel interfering with a multiple access channel known
as PIMAC. We present both necessary and sufficient conditions under which TIN
achieves the capacity of the PIMAC within a constant gap. To do this, first we study
the performance of TIN from the capacity point of view in the linear deterministic
PIMAC. Using the insights obtained from the linear deterministic setup, we extend
the results to the Gaussian PIMAC.

3.1 System Model of the PIMAC

The system we consider consists of a point-to-point (P2P) channel interfering with
a multiple access channel (MAC), which is called PIMAC. As shown in Fig. 3.1,
each transmitter has a message to be sent to one receiver. Namely, transmitters 1
(Tx1) and transmitter 3 (Tx3) want to send the messagesW1 andW3, respectively, to
receiver 1 (Rx1), and transmitter 2 (Tx2) wants to send the messageW2 to receiver 2
(Rx2). The messageWi is a random variable, uniformly distributed over the message
set

Wi =
{

1, · · · ,
⌊
2nRi

⌋}
, (3.1)

where Ri denotes the rate of the message.

Tx3

Tx1

Tx2

W3

W1

W2

Ŵ1, Ŵ3

Ŵ2

Rx1

Rx2

Figure 3.1: The message flow in the PIMAC where the solid arrows indicate desired
message flow and dashed arrows indicate interference.

To send its message, Txi (with i ∈ {1, 2, 3}) uses an encoding function fi to map



3 TIN in the PIMAC

its message Wi into a codeword of length n symbols Xn
i ∈ Cn, i.e.,

Xn
i = fi(Wi). (3.2)

After the transmission of all n symbols of the codewords, Rxj (with j ∈ {1, 2})
obtains Y n

j . Rx1 decodes W1 and W3 from Y n
1 by using a decoding function g1.

Hence, it obtains

(Ŵ1, Ŵ3) = g1(Y n
1 ). (3.3)

Similarly, Rx2 receives Y n
2 and decodes W2 by using a decoding function g2, i.e.,

Ŵ2 = g2(Y n
2 ). (3.4)

The messages sets, encoding functions, and decoding functions constitute a code for
the channel which is denoted by an

((
2nR1 , 2nR2 , 2nR3

)
, n
)
code.

An error Ei occurs if for some i ∈ {1, 2, 3}, Ŵi 6= Wi. We assume that the message
triple (W1,W2,W3) is uniformly distributed over [1 : 2nR1 ] × [1 : 2nR1 ] × [1 : 2nR3 ].
A code for the PIMAC induces an average error probability P(n) defined as

P(n) = Prob
(

(Ŵ1, Ŵ2, Ŵ3) 6= (W1,W2,W3)
)
. (3.5)

Reliable communication takes place if this error probability can be made arbitrarily
small by increasing n. This can occur if the rate triple (R1, R2, R3) satisfies some
achievability constraints which need to be found.
The achievability of a rate triple (R1, R2, R3) is defined as the existence of a reliable

coding scheme which achieves these rates. In other words, a rate triple (R1, R2, R3) is
said to be achievable if there exists a sequence of

((
2nR1 , 2nR2 , 2nR3

)
, n
)
codes such

that P(n) → 0 as n→∞. The set of all achievable rate triples is the capacity region
of the PIMAC denoted by C. Further, the sum-capacity defined as the maximum
achievable sum-rate, i.e.,

CΣ = max
(R1,R2,R3)∈C

RΣ, (3.6)

where RΣ =
∑3

i=1Ri. The focus of the rest of this chapter is on the sum-capacity
of the PIMAC.

3.1.1 Gaussian PIMAC (G-PIMAC)

The setup of the PIMAC can be interpreted as a 2-user interference channel with an
additional transmitter. In more details, consider a 2-user asymmetric IC consisting
of two transmitters Tx1 and Tx2 which want to communicate with their desired
receivers Rx1 and Rx2, respectively. Now, by adding an additional transmitter (Tx3)
which wants to communicate only with Rx1, we generate a PIMAC. The system
model of the Gaussian PIMAC is shown in Fig. 4.1. In the Gaussian PIMAC, the
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hd3

hc3

hd1

hd2

hc1
hc2

W3 → Xn
3 (W3)

W1 → Xn
1 (W1)

W2 → Xn
2 (W2)

⊕

⊕

Zn
1

Zn
2

Y n
1 → Ŵ1, Ŵ3

Y n
2 → Ŵ2

Figure 3.2: System model of the Gaussian PIMAC.

received signals of the two receivers at time index t ∈ {1, · · · , n} (denoted by y1[t]
and y2[t]) can be written as1

y1[t] = hd1x1[t] + hc2x2[t] + hd3x3[t] + z1[t], (3.7)
y2[t] = hc1x1[t] + hd2x2[t] + hc3x3[t] + z2[t], (3.8)

where xi[t], i ∈ {1, 2, 3}, is a realization of the random variable Xi which represents
the transmit symbol of Txi, and zj [t], j ∈ {1, 2}, is a realization of the random vari-
able Zj ∼ CN (0, 1) which represents the additive white Gaussian noise (AWGN),
and the constants hk, k ∈ {d1, d2, c1, c2, d3, c3} represent the complex (static) chan-
nel coefficients. We assume that global channel state information (CSI) is available
at all nodes. Note that the noises Z1 and Z2 are independent from each other and are
both independently and identically distributed (i.i.d.) over time. The transmitters
of the Gaussian PIMAC have power constraints P which must be satisfied by their
transmitted signals. Namely, the condition

1

n

n∑
t=1

E[|Xi[t]|2] = Pi ≤ P,

must be satisfied for all i ∈ {1, 2, 3}.
We consider the interference limited scenario, and hence, we assume that all signal-

to-noise and interference-to-noise ratios are larger than 1, i.e.,

min{|hd1|2, |hc1|2, |hd2|2, |hc2|2, |hd3|2, |hc3|2}P > 1. (3.9)

Definition 1. The strength of the channels are represented by the following param-
eters

αk =
log2(P |hk|2)

log2(ρ)
, where k ∈ {d1, c1, d2, c2, d3, c3}, (3.10)

1The time index t will be suppressed henceforth for clarity unless necessary.

29



3 TIN in the PIMAC

Tx3

Tx1

Tx2

Rx1

Rx2

(a) All transmitters except Tx3 are inac-
tive. In this case, PIMAC is reduced
to a P2P channel.

Tx3

Tx1

Tx2

Rx1

Rx2

(b) Tx1 communicates with Rx1 and Tx2
communicates with Rx2. In this case,
PIMAC is reduced to a 2-user IC.

Tx3

Tx1

Tx2

Rx1

Rx2

(c) Tx3 communicates with Rx1 and Tx2
communicates with Rx2. In this case,
PIMAC is reduced to a 2-user IC.

Figure 3.3: In TDMA-TIN, we use time sharing between the users. In each time slot,
the channel can operate as in a P2P channel (in (a)) or 2-user IC’s (in
(b) and (c)). In all figures, the solid and the dashed lines represent the
desired and interference channels, respectively. In (b) and (c), while Tx2
is always active, Tx1 and Tx3 which are MAC transmitters, share the
transmission time between themselves. Hence, in these cases, PIMAC is
reduced to two 2-user IC’s.

where 1 < ρ is the received SNR for the reference P2P channel. Moreover, we define
the generalized degrees of freedom (GDoF) of the PIMAC as follows

dΣ(α) = lim
ρ→∞

CG,Σ(ρ,α)

log2(ρ)
, (3.11)

where α = (αd1, αc1, αd2, αc2, αd3, αc3) and CG,Σ(ρ,α) denotes the sum-capacity of
the Gaussian PIMAC.

This definition is equivalent to

CG,Σ(ρ,α) = dΣ(α) log2(ρ) + o(log2(ρ)),

where o(log2(ρ))
log2(ρ) → 0 as ρ → ∞. In this chapter, the focus is on analysing the (sub-
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3.1 System Model of the PIMAC

)optimality of simple (in terms of computation and decoding complexity) transmis-
sion schemes. To this end, we study the optimality of two types of TIN, namely
naive-TIN and TDMA-TIN which are defined as follows.

Definition 2 (Naive-TIN:). This is the simplest variant of TIN in which all trans-
mitters send simultaneously with their maximum power during the whole transmis-
sion. Note that in this type of TIN, no coordination between the Tx’s is required.
At the receiver side, each receiver decodes its desired message as in the interference
free channel by treating the interference as noise. Interestingly, despite of the sim-
plicity of this scheme, it is optimal in some regimes of many networks such as the
2-user IC [ETW08, AV09, SKC09, MK09], the K-user IC [SKC08], and the 2 × 2
X channel [HCJ12].

Definition 3 (TDMA-TIN:). In this type of TIN, we allow some coordination be-
tween the transmitters in order to have a smarter variant of TIN. This might lead
to a more capable scheme than the naive-TIN. To do this, we have a time division
between three types of channels (one P2P channel and two 2-user IC’s) operating
over orthogonal time slots. In the assigned time slots to the P2P channel, Tx3 sends
with full power while other Tx’s are inactive (See Fig. 3.3a). In the remaining time
slots, Tx1 and Tx3 which are both communicating with Rx1, coordinate their trans-
mission by sharing the transmission time between themselves. These two users send
with their maximum allowed power only in their assigned time slots. Moreover, Tx2
sends always with the maximum power (See Fig. 3.3b and 3.3c). Note that no power
control is addressed in this scheme and the only coordination between Tx’s is for time
scheduling. Similar to naive-TIN, in this scheme, the receivers decode their desired
message by treating the interference as noise.

Remark 1. Let the received signal-to-interference-plus-noise power ratio at a re-
ceiver be denoted as SINR= Pdes

1+Pint
, where Pdes and Pint represent the received power

from desired and interference signals, respectively. The achievable rate using treating
interference as noise at the receiver is given by

RTIN = log2(1 + SINR).

Our approach towards the performance analysis of different types of TIN in the
Gaussian PIMAC starts with the linear-deterministic (LD) approximation of the
wireless network introduced by Avestimehr et al. in [ADT11]. Next, we introduce
the linear deterministic PIMAC (LD-PIMAC).

3.1.2 Linear Deterministic PIMAC (LD-PIMAC)

The Gaussian PIMAC shown in Fig. 4.1 can be approximated by the LD model
as follows. An input symbol at Txi is given by a binary vector xi ∈ Fq2 where
q = max{nd1, nc1, nd2, nc2, nd3, nc3} and the integer nk, k ∈ {d1, c1, d2, c2, d3, c3}
represents the Gaussian channel coefficients as follows

nk =
⌈
log2

(
P |hk|2

)⌉+
. (3.12)
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0
Sq−nd1x1 Sq−nc2x2 Sq−nd3x3
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nd3
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Sq−nc1x1 Sq−nd2x2 Sq−nc3x3
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Tx1

nd2

Tx2
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Figure 3.4: Block representation of received signal

The output symbol yj ∈ Fq2 at Rxj is given by a deterministic function of the inputs
given by

y1 = Sq−nd1x1 ⊕ Sq−nc2x2 ⊕ Sq−nd3x3,

y2 = Sq−nc1x1 ⊕ Sq−nd2x2 ⊕ Sq−nc3x3,
(3.13)

where S ∈ Fq×q2 is a down-shift matrix defined as

S =

(
0Tq−1 0

Iq−1 0q−1

)
. (3.14)

These input-output equations approximate the input-output equations of the Gaus-
sian PIMAC given in (3.7) and (3.8) in the high SNR regime. A graphical repre-
sentation of the received vectors y1 and y2 is shown in Fig. 3.4, showing the three
(shifted) transmitted vectors (shown as rectangular blocks) whose sum constitutes
the received vector. This block representation will be used in the sequel for graphical
illustration of various schemes.
We denote the sum-capacity of the LD-PIMAC by Cdet,Σ.

3.2 TIN in the LD-PIMAC

In this section, we focus on regimes of the PIMAC where the interference parameters
caused by Tx1 and Tx2 are small. Notice that if we remove Tx3 from PIMAC, the
remaining network resembles an asymmetric IC. For this IC, the noisy interference
regime is defined as the regime where

nc1 + nc2 ≤ min{nd1, nd2}. (3.15)

In this regime, treating interference as noise (TIN) is optimal in the IC [GNAJ15].
Adding Tx3 leads to some changes in the channel where TIN might not be the optimal
scheme any more, even if the interference caused by Tx3 is very weak. However, in
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3.2 TIN in the LD-PIMAC

some special cases of the LD-PIMAC (specific ranges of the channel parameters), the
TIN schemes can achieve the sum-capacity as we shall show next.
In order to evaluate the performance of TIN in the LD-PIMAC, we present the

achievable sum-rate of TIN in Section 3.2.1. The upper bounds on the sum-capacity
are presented in Section 3.2.2. Next, we evaluate the optimality of TIN in the LD-
PIMAC with respect to the capacity in Section 3.2.3.

3.2.1 Achievable Sum-rate of TIN

In this section, we introducing different types of TIN in more details and we study
their achievable sum-rate in the LD-PIMAC.

Naive-TIN

First consider the naive-TIN scheme for the LD-PIMAC. In this variant of TIN,
the transmitters send over the interference free components of the received signal
at their corresponding receivers. Namely, transmitters 1 and 3 share the top-most
(max{nd1, nd3} − nc2)+ bits of y1 and transmitter 2 sends over the top-most (nd2 −
max{nc1, nc3})+ bits of y2. We call this variant naive-TIN. An example of this
scheme for the case in which nd3 < nd1 and nc3 < nc1 is illustrated in Fig. 3.5. We
observe that, the top-most nd1 − nc2 levels received at Rx1 are free of interference.
These bits are shared between Tx1 and Tx3. In this example, Tx1 sends nd1 − nd3

bits and Tx3 sends nd3 − nc2 bits. Notice that the whole number of information
bits sent by Tx1 and Tx3 (x1 and x3) cannot exceed nd1 − nc2. Moreover, at Rx2,
the top-most nd2 − nc1 levels of Tx2 are observed interference free. Therefore, the
number of information bits in x2 is nd2 − nc1. Supposing that the transmitted bits
are independent from each other, we achieve

RΣ,Naive−TIN = max{nd1, nd3} − nc2 + (nd2 −max{nc1, nc3})+. (3.16)

In general, the achievable sum-rate of naive-TIN is given in the following proposition.

Proposition 1 (Naive-TIN). As long as (3.15) is satisfied in an LD-PIMAC, the
naive-TIN achieves any sum-rate RΣ ≤ RΣ,Naive−TIN.

TDMA-TIN

By careful examination of Naive-TIN, it can be seen that one can do better by using
a smarter variant of TIN. Namely, consider the case when nd3 > nd1 and nc3 < nc1.
In this case, it would be better to keep Tx1 silent and operate the PIMAC as an IC
with transmitters 2 and 3 active, thus achieving RΣ = nd3 − nc2 + nd2 − nc3 which
is clearly greater than (3.16) for this case.
To take this fact into account, we combine the TIN scheme with TDMA to obtain

the TDMA-TIN scheme. In this scheme, we switch off Tx1 and Tx2 in a τ1 fraction
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Figure 3.5: An example for Naive-TIN where nd3 < nd1 and nc3 < nc1.

of time while Tx3 is active2. In the remaining (1− τ1) fraction of time, Tx1 and Tx3
share the time in a way such that Tx1 transmits in a fraction of τ2 of the time, and
Tx3 transmits in a fraction of τ3 of the time, while Tx2 is kept active. Note that
τ2 + τ3 = 1− τ1. Regardless of the strategy at the transmitter side, the receivers use
always TIN for decoding their desired signals. This scheme transforms the PIMAC
into a P2P channel and two 2-user IC’s operating over orthogonal time slots. This
achieves

RΣ,TDMA−TIN = max
τ1,τ2,τ3∈[0,1]

τ1nd3 + τ2[(nd1 − nc2)+ + (nd2 − nc1)+]

+ τ3[(nd3 − nc2)+ + (nd2 − nc3)+]

subject to τ1 + τ2 + τ3 = 1.

This optimization problem is linear in τ1, τ2, and τ3 and is solved by setting the
optimization variable equal to one of the extremes of the interval [0, 1]. Namely, the
maximization above is achieved by activating the channel which yields the highest
sum-rate. The achievable sum-rate of this scheme is given in the following proposi-
tion.

Proposition 2 (TDMA-TIN). As long as (3.15) is satisfied in an LD-PIMAC, the
TDMA-TIN achieves any sum-rate RΣ ≤ RΣ,TDMA−TIN, where

RΣ,TDMA−TIN = max


nd3

(nd1 − nc2) + (nd2 − nc1)
(nd3 − nc2)+ + (nd2 − nc3)+

 . (3.17)

Remark 2. The proposed TDMA-TIN scheme is a special case of the TIN with power
control where a user is either off or sends with full power. This is very similar to a so-
called binary power control. However, some cases of binary power control are excluded

2The main issue which separates TIN from other transmission schemes is the decoding at the
receivers. By using TIN, the receivers decode their desired signals as in a P2P channel, regardless
whether any interference signal is received or not. Hence, reducing the PIMAC to a P2P channel
is also a type of TIN.
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3.2 TIN in the LD-PIMAC

from our proposed TDMA-TIN. These cases are discussed in what follows. Consider
the cases when the PIMAC is reduced to the P2P channels where either Tx1 or Tx2
are active while other Tx’s are inactive. Doing this, we cannot achieve more than
max{nd1, nd2}. Due to the condition in (3.15), these P2P channels are outperformed
by using TIN in the 2-user IC when Tx1 and Tx2 are active. Therefore, we exclude
these schemes from the TDMA-TIN. Moreover, by switching Tx2 off, and letting Tx1
and Tx3 be active, the channel is reduced into an LD-MAC achieving max{nd1, nd3}
which cannot outperform the achievable sum-rate in (3.17). Therefore, this case is
also excluded from the proposed TDMA-TIN.

TIN alongside power control

In TDMA-TIN, the achievable sum-rates can be achieved by letting the active trans-
mitters send with full power. A more general strategy would be to allow that each
Tx sends with some power less than or equal to P (power control) and the receivers
use TIN [CSHP12], [GNAJ15], [GSJ15]. In the following lemma, we summarize
the analysis on the performance of the TIN scheme alongside power control at the
transmitter side with respect to the achievable sum-rate.

Lemma 3. In the LD-PIMAC, the achievable sum-rate by using TIN at the receiver
side alongside power control at the transmitter side, is upper bounded by the sum-rate
in (3.17).

Proof. First, we write the achievable sum-rate using TIN with power control for the
LD-PIMAC. To do this, suppose that Tx’s do not send with full power. It means
that in the LD-PIMAC, the Tx’s do not need to use necessarily the most significant
bits. Hence, Txi sends such that only its mji bits are received at Rxj. For instance,
suppose that Tx1 generates the following signal

x1 =

(
0nd1−m11

d1

)
, (3.18)

where d1 ∈ Fq−(nd1−m11)
2 represents the information bit vector sent by Tx1 and

m11 ≤ nd1. Rx1 obtains the top-most nd1 bits of x1. Hence, we can write

y1 =

(
0q−m11

d1,[1:m11]

)
. (3.19)

Similarly, since Rx2 receives the nc1 bits of x1, we have

y2 =

(
0q−nc1+nd1−m11

d1,[1:(nc1−nd1+m11)+]

)
. (3.20)

Therefore, if the number of information bits received at Rx1 from Tx1 is m11 ∈
[0, nd1], Rx2 receives

m21 = (m11 − (nd1 − nc1))+ (3.21)
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information bits from Tx1. Similarly, we can write that

m12 = (m22 − (nd2 − nc2))+, (3.22)
m23 = (m13 − (nd3 − nc3))+ if nc3 ≤ nd3, (3.23)
m13 = (m23 − (nc3 − nd3))+ if nd3 < nc3, (3.24)

and m22 ∈ [0, nd2], m13 ∈ [0, nd3], and m23 ∈ [0, nc3]. Let Sm represent the set of all
possible (m11,m21,m12,m22,m13,m23). Now, by using TIN at the receiver side, the
maximum achievable sum-rate is

RΣ,TIN = (max{m11,m13} −m12)+ + (m22 −max{m21,m23})+ . (3.25)

The goal is to show that there exists no (m11,m21,m12,m22,m13,m23) ∈ Sm which
provides a higher sum-rate than that of the TDMA-TIN in (3.17). To do this, we
will show that for any arbitrary (m11,m21,m12,m22,m13,m23) ∈ Sm, the achievable
sum-rate using TDMA-TIN is larger than or equal to (3.25). First, we present the
following properties of (m11,m21,m12,m22,m13,m23) ∈ Sm

m11 −m21 = min{m11, nd1 − nc1} ≤ nd1 − nc1, (3.26)
m22 −m12 = min{m22, nd2 − nc2} ≤ nd2 − nc2, (3.27)
m13 −m23 ≤ min{m13, (nd3 − nc3)+} ≤ (nd3 − nc3)+. (3.28)

These properties can be directly obtained from (3.21)-(3.24). Now, we compare
(3.17) with (3.25) by distinguishing between following cases:

• m13 ≤ m11 and m23 ≤ m21: In this case the sum-rate in (3.25) is upper
bounded as follows

RΣ,TIN = (m11 −m12)+ + (m22 −m21)+

≤max{m11 −m12 +m22 −m21,m11,m22}
(a)

≤ max{nd1 − nc2 + nd2 − nc1, nd1, nd2},

where in (a), we used the properties (3.26) and (3.27) and the fact that m11 ≤
nd1, m22 ≤ nd2, and all n-parameters are non-negative. Now, by using the
condition in (3.15), we can upper bound the sum-rate as follows

RΣ,TIN ≤ nd1 − nc2 + nd2 − nc1 ≤ RΣ,TDMA−TIN.

• m13 ≤ m11 and m21 < m23: In this case, we upper bound the sum-rate in
(3.25) as follows

RΣ,TIN = (m11 −m12)+ + (m22 −m23)+

(b)

≤ (m11 −m12)+ + (m22 −m21)+ ,

where in (b), we used the condition of this case m21 < m23. As it is shown
above this expression is upper bounded by RΣ,TDMA−TIN.
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• m11 < m13 and m21 ≤ m23: In this case, the sum-rate in (3.25) is upper
bounded by

RΣ,TIN = (m13 −m12)+ + (m22 −m23)+

≤ max{m13 −m12 +m22 −m23,m13,m22}
(c)

≤ max{nd3 − nc2 + nd2 − nc3, nd3, nd2},

where in (c), we used the properties (3.27) and (3.28) and the fact that m13 ≤
nd3, m22 ≤ nd2, and all n-parameters are non-negative. By using the condition
in (3.15), this sum-rate is upper bounded by

RΣ,TIN ≤ max{nd3 − nc2 + nd2 − nc3, nd3, (nd1 − nc2) + (nd2 − nc1)} ≤ RΣ,TDMA-TIN.

• m11 < m13 and m23 < m21: In this case, the sum-rate in (3.25) is upper
bounded as follows

RΣ,TIN = (m13 −m12)+ + (m22 −m21)+

(d)

≤ (m13 −m12)+ + (m22 −m23)+,

where in (d), we used the condition of this case, i.e., m23 < m21. As we have
shown in the previous case, this expression is upper bounded by RΣ,TDMA-TIN.

We have shown for any arbitrary (m11,m21,m12,m22,m13,m23) ∈ Sm that the
achievable sum-rate in (3.25) is upper bounded by RΣ,TDMA-TIN.

From Lemma 3, we conclude that power allocation at the transmitter side while
the receivers use TIN cannot outperform TDMA-TIN. Hence, in what follows, we
exclude power allocation alongside TIN.

3.2.2 Sum-capacity Upper Bounds

In order to assess the capacity optimality of TIN, we need to compare the achievable
sum-rate of TIN with the sum-capacity upper bounds of the LD-PIMAC. In this
section, we establish some upper bounds which will be required. The main idea of
these bounds is reducing the LD-PIMAC by removing one interferer at Rx2 into a
channel that can be treated similar to the IC.

Lemma 4. The sum-capacity of the LD-PIMAC is upper bounded as follow

Cdet,Σ ≤ max{nd1 − nc1, nc2, nd3}+ max{nd2 − nc2, nc1}. (3.29)

Proof. The idea of the proof is to create a genie-aided channel where each receiver
experiences one and only one interference just as in the IC. By doing this, the result-
ing channel can be treated in a similar way as the IC [BT08], and the given bound
can be obtained. To this end, we give W3 to Rx2 as side information. This enhances
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the LD-PIMAC to a channel where Rx1 experiences interference from x2 and Rx2
experiences interference from x1 only. Next, we treat the resulting enhanced chan-
nel as an IC and derive a bound similar to that of the IC with noisy interference.
Namely, we give the interference caused by Tx1 given by Sq−nc1xn1 to Rx1 as side
information, and we give the interference caused by Tx2 given by Sq−nc2xn2 to Rx2
as side information. The resulting LD-PIMAC which has been enhanced with side
information is more capable than the original LD-PIMAC, and hence the capacity
of the former serves as an upper bound for the capacity of the latter. Next, by using
Fano’s inequality we can bound RΣ as follows

n(RΣ − εn) ≤ I(W1,W3;yn1 ,S
q−nc1xn1 ) + I(W2;yn2 ,S

q−nc2xn2 ,W3), (3.30)

where εn → 0 as n → ∞. By using the chain rule, and the independence of the
different messages, we can rewrite this bound as

n(RΣ − εn) ≤ I(W1,W3;Sq−nc1xn1 ) + I(W1,W3;yn1 |Sq−nc1xn1 )

+ I(W2;Sq−nc2xn2 |W3) + I(W2;yn2 |Sq−nc2xn2 ,W3). (3.31)

Now, we treat each of the mutual information terms in (3.31) separately. The first
mutual information term can be written as

I(W1,W3;Sq−nc1xn1 ) = H(Sq−nc1xn1 )−H(Sq−nc1xn1 |W1,W3)

= H(Sq−nc1xn1 ), (3.32)

since H(Sq−nc1xn1 |W1,W3) = 0. The second mutual information term in (3.31)
satisfies

I(W1,W3;yn1 |Sq−nc1xn1 ) = H(yn1 |Sq−nc1xn1 )−H(yn1 |Sq−nc1xn1 ,W1,W3)

= H(yn1 |Sq−nc1xn1 )−H(Sq−nc2xn2 ), (3.33)

since given W1 and W3, the only randomness remaining in y1 is that originating
from x2. The third mutual information term in (3.31) satisfies

I(W2;Sq−nc2xn2 |W3) = H(Sq−nc2xn2 |W3)−H(Sq−nc2xn2 |W2,W3)

= H(Sq−nc2xn2 ), (3.34)

which follows since H(Sq−nc2xn2 |W2,W3) = 0 and since x2 is independent of W3.
Finally, the last mutual information term in (3.31) satisfies

I(W2;yn2 |Sq−nc2xn2 ,W3) = H(yn2 |Sq−nc2xn2 ,W3)−H(yn2 |Sq−nc2xn2 ,W2,W3)

= H(yn2 |Sq−nc2xn2 ,W3)−H(Sq−nc1xn1 ), (3.35)

since givenW2 andW3, the only randomness in y2 is that of x1. Now by substituting
(3.32)-(3.35) in (3.31), we obtain

n(RΣ − εn) ≤ H(Sq−nc1xn1 ) +H(yn1 |Sq−nc1xn1 )−H(Sq−nc2xn2 ) +H(Sq−nc2xn2 )

+H(yn2 |Sq−nc2xn2 ,W3)−H(Sq−nc1xn1 )

= H(yn1 |Sq−nc1xn1 ) +H(yn2 |Sq−nc2xn2 ,W3).

38



3.2 TIN in the LD-PIMAC

Now, notice that given Sq−nc1x1[t] with t = 1, . . . , n, the top-most nc1 components
of x1[t] are known and can be subtracted from y1[t] leaving max{nd1−nc1, nc2, nd3}
random components in y1[t]. The entropy of a binary vector is maximized if its
components are i.i.d. with a Bernoulli distribution with probability 1/2, and the
maximum entropy is equal to the length of the vector. This leads to

H(yn1 |Sq−nc1xn1 ) =

n∑
t=1

H(y1[t]|Sq−nc1xn1 ,y
t−1
1 )

(a)

≤
n∑
t=1

H(y1[t]|Sq−nc1x1[t])

≤
n∑
t=1

max{nd1 − nc1, nc2, nd3}

= nmax{nd1 − nc1, nc2, nd3},

where step (a) follows since conditioning does not increase the entropy. Similarly,

H(yn2 |Sq−nc2xn2 ,W3) ≤ nmax{nd2 − nc2, nc1}.

Therefore, we can write

n(RΣ − εn) ≤ n(max{nd1 − nc1, nc2, nd3}+ max{nd2 − nc2, nc1}).

By dividing the expression by n and letting n→∞, we get (3.29) which concludes
the proof.

The following is another upper bound on the sum-rate of the LD-PIMAC ob-
tained by removing the interference from Tx1 to Rx2, i.e., giving W1 to Rx2 as side
information. Then, the resulting interference channel is treated as in [BT08].

Lemma 5. The sum-capacity of the LD-PIMAC is upper bounded as follows

Cdet,Σ ≤ max{nd1, nc2, nd3 − nc3}+ max{nd2 − nc2, nc3}. (3.36)

Proof. We give Sq−nc3xn3 and (Sq−nc2xn2 ,W1) as side information to Rx1 and Rx2,
respectively. Then, by using Fano’s inequality we may write

n(RΣ − εn) ≤ I(W1,W3;yn1 ,S
q−nc3xn3 ) + I(W2;yn2 ,S

q−nc2xn2 ,W1)

(a)
= I(W1,W3;Sq−nc3xn3 ) + I(W1,W3;yn1 |Sq−nc3xn3 )

+ I(W2;Sq−nc2xn2 |W1) + I(W2;yn2 |Sq−nc2xn2 ,W1)

(b)
= H(Sq−nc3xn3 ) +H(yn1 |Sq−nc3xn3 )−H(yn1 |Sq−nc3xn3 ,W1,W3)

+H(Sq−nc2xn2 ) +H(yn2 |Sq−nc2xn2 ,W1)−H(yn2 |Sq−nc2xn2 ,W2,W1)

= H(Sq−nc3xn3 ) +H(yn1 |Sq−nc3xn3 )−H(Sq−nc2xn2 )

+H(Sq−nc2xn2 ) +H(yn2 |Sq−nc2xn2 ,W1)−H(Sq−nc3xn3 )

= H(yn1 |Sq−nc3xn3 ) +H(yn2 |Sq−nc2xn2 ,W1),
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where step (a) follows by using the chain rule and the independence of the messages,
and step (b) follows from the fact that x3 and x2 can be reconstructed knowing W3

andW2, respectively, and since x2 is independent ofW1. Next, by proceeding similar
to the proof of Lemma 4, we can show that

n(RΣ − εn) ≤ n(max{nd1, nc2, nd3 − nc3}+ max{nd2 − nc2, nc3}). (3.37)

By dividing this inequality by n and letting n → ∞, we get the upper bound in
(3.36) which concludes the proof of Lemma 5.

We need to present two new upper bounds which are established different from the
upper bounds in Lemma 4 and Lemma 5. For establishing these two upper bounds
the following lemma is required.

Lemma 6. The difference between the entropies of

Y A = S`−`1A⊕ S`−`2B (3.38)

Y B = S`−`1A⊕ S`−`3B, (3.39)

where A and B are two independent `×n random binary matrices with `1, `2, `3 ∈ N0,
and `2 ≤ `3 − `1, satisfies3

H(Y A)−H(Y B) ≤ 0. (3.40)

Proof. To prove this lemma, we define the following matrices

B1 = B[1:(`2−`1)+], B2 = B[(`2−`1)++1:`2], B3 = B[`2+1:`3−`1], (3.41)

B4 = B[`3−`1+1:`3], B5 = B[`3+1:`]. (3.42)

Notice that if `2 = `3− `1, `2 + 1 > `3− `1. Hence, the matrix B3 does not have any
component. Moreover, due to the condition `2 ≤ `3 − `1, the matrices B2 and B4

do not have any common row. Therefore, the matrix B can be written as follows

BT =
[
BT

1 BT
2 BT

3 BT
4 BT

5

]
. (3.43)

Moreover, we split the matrix A into

A1 = A[1:`1], A2 = A[`1+1:`]. (3.44)

Therefore, we have

AT =
[
AT

1 AT
2

]
. (3.45)

3A similar lemma with a slightly different structure than (3.38) and (3.39) was given in [BW12].
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3.2 TIN in the LD-PIMAC

Using (3.43) and (3.45), we can write

S`−`1A =

[
0(`−`1),n

A1

]
and S`−`3B =


0(`−`3),n

B1

B2

B3

B4

 .

Now, we lower bound H(Y B) as follows

H(Y B) = H(S`−`1A⊕ S`−`3B)

= H



0(`−`3),n

B1

B2

B3

A1 ⊕B4




= H (B1,B2,B3,A1 ⊕B4)

(a)
= H(B1) +H(B2|B1) +H(B3|B2,B1) +H(A1 ⊕B4|B1,B2,B3)

(b)

≥ H(B1) +H(B2|B1) +H(A1 ⊕B4|B1,B2,B3,B4)

= H(B1) +H(B2|B1) +H(A1|B1,B2,B3,B4)

(c)
= H(B1) +H(B2|B1) +H(A1|B1,B2)

(a)
= H(B1,B2,A1)

(d)

≥ H(f(B1,B2,A1))

(e)
= H(Y A),

where (a) follows by using the chain rule, (b) follows from the facts that entropy is
non-negative and conditioning does not increase the entropy, (c) follows due to the
independence of the matrix B of A1, (d) follows since the entropy of function of
random variables cannot be larger than the entropy of the random variables, and (e)
follows by setting

f(B1,B2,A1) =

[
0(`−`1),n

A1

]
⊕

0(`−`2),n

B1

B2


= S`−`1A⊕ S`−`2B
= Y A.

Therefore, H(Y B) ≥ H(Y A) which leads to H(Y A)−H(Y B) ≤ 0.

Now, we are ready to present the other two upper bounds in the following lemma.
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Lemma 7. The sum-capacity of the LD-PIMAC with nc1 + nc2 ≤ min{nd1, nd2} is
upper bounded by

Cdet,Σ ≤ nd3 − nc3 + max{nc3, nd2 − nc2} if nd3 − 2nc3 ≥ nd1 − nc1 (3.46)
Cdet,Σ ≤ nd1 − nc1 + max{nc3, nd2 − nc2} if nd3 − nc3 ≤ nd1 − 2nc1. (3.47)

Proof. First, we establish the upper bound given in (3.46). To do this, we give

sn1 = Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3

as side information to Rx1 and sn2 = Sq−nc2xn2 to Rx2. Note that the side informa-
tion provided to Rx1 is the top-most bits of yn1 upto the first nc3 most significant
bits of xn3 (see Fig. 3.6). Obviously, by giving these side information, the resulting

0

nd3 − nc3

nd1 − nc1

s1,[q−(nd1−nd3)+−nc3+1:q]

Sq−nd1x1 Sq−nc2x2 Sq−nd3x3

nd3

nc2

nd1

Figure 3.6: The block representation of y1 and the elements q−(nd1−nd3)+−nc3+1 :

q of s1 = Sq−(nd1−nd3+nc3)+
x1 ⊕ Sq−nc3x3.

LD-PIMAC channel is more capable than the original LD-PIMAC. Then, we use
Fano’s inequality to write

n(RΣ − εn) ≤ I(xn1 ,x
n
3 ;yn1 , s

n
1 ) + I(xn2 ;yn2 , s

n
2 ), (3.48)

where εn → 0 as n→∞. Using the chain rule, we obtain

n(RΣ − εn) ≤I(xn1 ,x
n
3 ; sn1 ) + I(xn1 ,x

n
3 ;yn1 |sn1 ) + I(xn2 ; sn2 ) + I(xn2 ;yn2 |sn2 ). (3.49)

Next, we consider each of the mutual information terms in (3.49) separately. Using
the definition of sn1 , the first term can be rewritten as

I(xn1 ,x
n
3 ; sn1 ) =H(Sq−(nd1−nd3+nc3)+

xn1 ⊕ Sq−nc3xn3 )

−H(Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 |xn1 ,xn3 )

=H(Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 ). (3.50)
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Now consider the second mutual information term in (3.49). This term can be
rewritten as

I(xn1 ,x
n
3 ;yn1 |sn1 ) =H(yn1 |sn1 )−H(yn1 |sn1 ,xn1 ,xn3 )

=H(yn1 |Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 )−H(Sq−nc2xn2 ), (3.51)

since given xn1 and xn3 , the remaining randomness in yn1 is that of xn2 with xn2 being
independent of xn1 and xn3 . Note also that sn1 is independent of xn2 . By using the
definition of sn2 , the third mutual information term in (3.49) satisfies

I(xn2 ; sn2 ) = H(Sq−nc2xn2 )−H(Sq−nc2xn2 |xn2 )

= H(Sq−nc2xn2 ), (3.52)

since H(Sq−nc2xn2 |xn2 ) = 0. Finally, the last term in (3.49) is rewritten as

I(xn2 ;yn2 |sn2 ) =H(yn2 |Sq−nc2xn2 )−H(yn2 |Sq−nc2xn2 ,x
n
2 )

=H(yn2 |Sq−nc2xn2 )−H(Sq−nc3xn3 ⊕ Sq−nc1xn1 ), (3.53)

since given xn2 , the only randomness remaining in yn2 is that of xn1 and xn3 . Moreover,
xn1 and xn3 are independent of xn2 . Now, substituting (3.50), (3.51), (3.52), and (3.53)
into (3.49), we obtain

n(RΣ − εn) ≤H(Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 )

+H(yn1 |Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 )

+H(yn2 |Sq−nc2xn2 )−H(Sq−nc3xn3 ⊕ Sq−nc1xn1 ). (3.54)

Now, we bound the sum of the first and the last terms in (3.54). To do this, we
consider the following cases

• nd1 − nd3 + nc3 ≥ 0: In this case by using Lemma 6 and condition (3.46), we
can write

H(Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ Sq−nc1xn1 ) ≤ 0 (3.55)

• nd1 − nd3 + nc3 < 0 : In this case, it holds

H(Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ Sq−nc1xn1 )

= H(Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ Sq−nc1xn1 ) (3.56)

≤ H(Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ Sq−nc1xn1 |xn1 ) = 0, (3.57)

where we used the facts that conditioning does not increase the entropy and
xn1 and xn3 are independent.
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Therefore, the expression in (3.54) is upper bounded as follows

n(RΣ − εn) ≤H(yn1 |Sq−(nd1−nd3+nc3)+
xn1 ⊕ Sq−nc3xn3 ) +H(yn2 |Sq−nc2xn2 )

(a)

≤H(yn1,[q−(nd3−nc3)+1:q]) +H(yn2,[q−(nd2−nc2)+1:q])

(b)

≤n(nd3 − nc3 + max{nc3, nd2 − nc2},

where in (a), we use the fact that conditioning does not increase the entropy. More-
over, in (b) we use the fact that the i.i.d. Bernoulli distribution 1/2 maximizes the
entropy terms. So by dividing by n and letting n → ∞, ε → 0 and the sum rate is
bounded by

RΣ ≤ nd3 − nc3 + max{nc3, nd2 − nc2}, (3.58)

as long as the condition in (3.46) holds. This proves (3.46).
The proof for upper bound in (3.47) is similar to (3.46) with a slight difference in

defining the side information provided to Rx1. Here,

sn1 = Sq−nc1xn1 ⊕ Sq−(nd3−nd1+nc1)+
xn3 (3.59)

is provided as side information to Rx1. The provided side information to Rx2 is
sn2 = Sq−nc2xn2 . The sum-capacity of the original LD-PIMAC is upper bounded by
the genie-aided LD-PIMAC. By using Fano’s inequality, we can write

n(RΣ − εn) ≤I(xn1 ,x
n
3 ;yn1 , s

n
1 ) + I(xn2 ;yn2 , s

n
2 ) (3.60)

(c)
=I(xn1 ,x

n
3 ; sn1 ) + I(xn1 ,x

n
3 ;yn1 |sn1 ) + I(xn2 ; sn2 ) + I(xn2 ;yn2 |sn2 ) (3.61)

=H(sn1 )−H(sn1 |xn1 ,xn3 ) +H(yn1 |sn1 )−H(yn1 |sn1 ,xn1 ,xn3 )

+H(sn2 )−H(sn2 |xn2 ) +H(yn2 |sn2 )−H(yn2 |sn2 ,xn2 ), (3.62)

where in (c), we use the chain rule. Using the fact thatH(sn1 |xn1 ,xn3 ) = 0,H(sn2 |xn2 ) =
0, and H(yn1 |sn1 ,xn1 ,xn3 ) = H(sn2 ), we obtain

n(RΣ − εn) ≤H(sn1 ) +H(yn1 |sn1 ) +H(yn2 |sn2 )−H(yn2 |sn2 ,xn2 ). (3.63)

Now, consider H(sn1 )−H(yn2 |sn2 ,xn2 ). This expression can be rewritten as follows

H(sn1 )−H(yn2 |sn2 ,xn2 )

= H(Sq−nc1xn1 ⊕ Sq−(nd3−nd1+nc1)+
xn3 )−H(Sq−nc1xn1 ⊕ Sq−nc3xn3 ). (3.64)

By using Lemma 6 similar to the proof of (3.46), we can write

H(Sq−nc1xn1 ⊕ Sq−(nd3−nd1+nc1)+
xn3 )−H(Sq−nc1xn1 ⊕ Sq−nc3xn3 ) ≤ 0, (3.65)

as long as the condition of (3.47) is satisfied. Therefore, we upper bound the expres-
sion in (3.63) as follows

n(RΣ − εn) ≤ H(yn1 |Sq−nc1xn1 ⊕ Sq−(nd3−nd1+nc1)+
xn3 ) +H(yn2 |Sq−nc2xn2 ). (3.66)
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Next, by proceeding similar to the proof of (3.46), we can upper bound the expression
in (3.66) as follows

n(RΣ − εn) ≤ n(nd1 − nc1 + max{nd2 − nc2, nc3}). (3.67)

By dividing this inequality by n and letting n → ∞, we get the upper bound in
(3.47) which concludes the proof of Lemma 7.

An upper bound on the sum-capacity of the LD-PIMAC is still required for the
special case when nd3 − nc3 = nd1 − nc1. This is presented in the following lemma.

Lemma 8. The sum-capacity of the LD-PIMAC with nd3−nc3 = nd1−nc1 is upper
bounded by

Cdet,Σ ≤ max{nd1 − nc1, nc2}+ max{nc1, nc3, nd2 − nc2}. (3.68)

Proof. To establish this upper bound, we give sn1 = Sq−nc1xn1 ⊕ Sq−nc3xn3 and
sn2 = Sq−nc2xn2 to Rx1 and Rx2, respectively. Obviously, The sum-capacity of the
generated setup (after providing the side information) provides an upper bound for
the sum-capacity of the original LD-PIMAC. Now, we use the Fano’s inequality to
write

n(RΣ − εn) ≤I(xn1 ,x
n
3 ;yn1 , s

n
1 ) + I(xn2 ;yn2 , s

n
2 )

(a)
=I(xn1 ,x

n
3 ; sn1 ) + I(xn1 ,x

n
3 ;yn1 |sn1 ) + I(xn2 ; sn2 ) + I(xn2 ;yn2 |sn2 )

(b)
=H(yn1 |sn1 ) +H(yn2 |sn2 ),

where in (a), we used the chain rule and in (b), we used the fact that H(sn1 |xn1 ,xn3 ) =
0, H(yn1 |sn1 ,xn1 ,xn3 ) = H(sn2 ), H(sn2 |xn2 ) = 0, and H(yn2 |sn2 ,xn2 ) = H(sn1 ). Now,
notice that sn1 appears in the top-most max{nc1, nc3} bits of signal vector yn1 . This
is due to the condition nd1 − nc1 = nd3 − nc3. Hence, knowing sn1 , the randomness
of the top-most nc1 bits of xn1 and the top-most nc3 bits of xn3 can be removed from
yn1 . Hence, we can write

n(RΣ − εn) ≤ n(max{nd1 − nc1, nd3 − nc3, nc2}+ max{nc1, nc3, nd2 − nc2}).

By dividing the expression by n letting n→∞ and keeping in mind that nd1−nc1 =
nd3 − nc3, we obtain (3.68).

3.2.3 Optimality and Suboptimality of TIN

Now, we are ready to assess the capacity optimality of TIN in the LD-PIMAC. For
the sake of simplicity and clear presentation of the results, we split the channel
parameters into several regimes which are presented in the following subsection.
Next, we discuss in which regimes TIN performs optimally. Finally, by showing
the suboptimality of TIN in the remaining regimes we conclude our analysis on the
performance of TIN in the LD-PIMAC.
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3.2.3.1 Regimes under Consideration in LD-PIMAC

In this section, we introduce three regimes of the LD-PIMAC which satisfies (3.15).
These regimes are determined based on the operational meaning.

Definition 4. For an LD-PIMAC with nc1 +nc2 ≤ min{nd1, nd2}, we define regimes
1 to 3 (shown in Fig. 3.7) as follows:

• Regime 1 (Tx3-off):

nd3 ≤ nd1 − nc1 or nd3 − (nd1 − 2nc1) ≤ nc3 ≤ nd2 − nc2 (3.69)

• Regime 2 (Tx1-off):

min{nc3, nc1}+ nd1 − nc1 ≤ nd3 − nc3 (3.70)

• Regime 3 (All Tx’s active): All remaining cases excluding the special case
nd3 − nc3 = nd1 − nc1.

Remark 3. The case nd3−nc3 = nd1−nc1 is not included in the considered regimes.
This is due to some special properties of the LD-PIMAC in this case. Hence, we study
it separately.

Before, we proceed, it is worth to describe these regimes intuitively. In regime
1, the desired channel of Tx3 to Rx1 is weak while the interference caused by this
transmitter to Rx2 might be very strong. Hence, in regime 1, it is optimal to switch
Tx3 off. This regime is divided into following sub-regimes as shown in Fig. 3.7

• Sub-regime 1A: nd3 ≤ nd1 − nc1 and nc3 ≤ nc1,

• Sub-regime 1B: nd3 ≤ nd1 − nc1 and nc3 > nc1,

• Sub-regime 1C: nd3 > nd1−nc1, nc3 ≤ nd2−nc2 and nd3−nc3 ≤ nd1− 2nc1.

In Regime 2, the difference between the strength of the desired and interference
channels of Tx3 is so larger than that of the Tx1 that it is optimal to switch Tx1 off.
This regime consists of following sub-regimes which are illustrated in Fig. 3.7

• Sub-regime 2A: nd3 − nc3 ≥ nd1 and nc1 ≤ nc3 ≤ nd2 − nc2,

• Sub-regime 2B: nd3 − nc3 ≥ nd1 and nc3 < nc1,

• Sub-regime 2C: nd3 − 2nc3 ≥ nd1 − nc1 and nd3 − nc3 < nd1,

• Sub-regime 2D: nd3 − nc3 ≥ nd1 and nc3 > nd2 − nc2.

In remaining case (regime 3), it is suboptimal to switch a transmitter off. This regime
is divided into several sub-regimes (shown in Fig. 3.7) given as follows

• Sub-regime 3A: nd1 − nc1 < nd3 < nc3 + nd1 − nc1 and nd2 − nc2 < nc3,
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Figure 3.7: The (nd3, nc3)-plane of the parameter space of the LD-PIMAC with nc1 +
nc2 ≤ min{nd1, nd2} divided into 10 sub-regimes.

• Sub-regime 3B: nc3 + nd1 − nc1 < nd3 < nd1 + nc3 and nd2 − nc2 < nc3,

• Sub-regime 3C: max{nd1 − nc1, nd1 − 2nc1 + nc3} < nd3 < min{nd1 − nc1 +
2nc3, nc3 + nd1} and nc3 ≤ nd2 − nc2 and nd3 − nc3 6= nd1 − nc1.

In the following section, we present the optimality of different variants of TIN over
these sub-regimes in details.

3.2.3.2 Optimality of TIN

Here, we study the optimality of TDMA-TIN and naive-TIN. First, we show that
TDMA-TIN is sum-capacity optimal in regimes 1 and 2. The following theorem
characterizes the sum-capacity of the LD-PIMAC in regimes where TDMA-TIN is
optimal.

Theorem 1. TDMA-TIN is capacity optimal for the LD-PIMAC in regimes 1 and
2 defined in Definition 4 (shown in Fig. 3.7). In these regimes the sum-capacity is
given by

Cdet,Σ =


nd1 − nc1 + nd2 − nc2, regime 1
nd3 − nc3 + nd2 − nc2, sub-regimes 2A, 2B, and 2C
nd3, sub-regime 2D.

(3.71)

Proof. In order to prove this theorem, we need to show that (3.71) is both achievable
and optimal. The achievable sum-rate of TIN is studied in Section 3.2.1. The sum-
capacity expression given in Theorem 1 can be achieved by using the TDMA-TIN
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scheme as follows. We start with regime 1. By calculating (3.17) while taking
the conditions of regime 1 (given in Definition 4) into account, it can be easily
verified that the TDMA-TIN scheme can achieve RΣ = (nd1 − nc2) + (nd2 − nc1)
in this regime. This achievable sum-rate coincides with (3.71) in regime 1. For
sub-regimes 2A, 2B, and 2C, by calculating (3.17) and taking the conditions of
these sub-regimes given in Definition 4 into account, TDMA-TIN achieves RΣ =
(nd3−nc2)+ +(nd2−nc3)+ which is equal to nd3−nc2 +nd2−nc3 in these sub-regime.
This achievable sum-rate also coincides with (3.71) in sub-regimes 2A, 2B, and 2C.
Finally, by calculating (3.17) while taking the conditions of sub-regime 2D (given in
Definition 4) into account, we obtain the achievable sum-rate RΣ = nd3 by using
TDMA-TIN. This coincides with (3.71) for sub-regime 2D.
In conclusion, TDMA-TIN achieves the sum-capacity expression given in Theo-

rem 1 in regimes 1 and 2. This concludes the proof of the achievability.
Now, we need to show the converse of Theorem 1. The converse is based on

Lemmas 4, 5, 7 presented in Section 3.2.2. It can be easily checked that the upper
bound of Lemma 4 reduces to (nd1 − nc1) + (nd2 − nc2) in sub-regimes 1A and
1B. Therefore, this lemma proves Theorem 1 for these sub-regimes. By examining
the upper bound in Lemma 5 for the sub-regimes 2A, 2B, and 2D, it can be easily
verified that the upper bound of Lemma 5 reduces to nd3−nc3 +max{nd2−nc2, nc3}.
Therefore, Lemma 5 proves Theorem 1 for the sub-regimes 2A, 2B, and 2D. It remains
to prove Theorem 1 for the sub-regimes 1C and 2C. To do this, we consider Lemma 7.
The upper bound presented in this lemma reduces to (nd1 − nc1) + (nd2 − nc2)
and (nd3 − nc3) + (nd2 − nc2) in sub-regimes 1C and 2C. Therefore, this lemma
proves Theorem 1 for these sub-regimes. This concludes the proof of the converse of
Theorem 1 for regimes 1 and 2.

Interestingly, we can notice that TDMA-TIN is optimal in the case that one MAC
transmitter causes noisy interference nc1 ≤ min{nd1, nd2}−nc2, and the other causes
strong interference nc3 > max{nd1, nd3}. This can be seen in regime 1. The intuition
here is that Tx3 in this case causes strong interference to Rx2, but has a weak channel
to its desired receiver Rx1. In this case, Tx3 harms Rx2 while not increasing the
achievable sum-rate of the MAC, and hence, it is better to switch it off. The resulting
channel is an IC with noisy interference where TIN is optimal.

Corollary 1. Naive-TIN is capacity optimal for the LD-PIMAC is sub-regimes 1A
and 2A.

Proof. Since the performance of TDMA-TIN and naive-TIN is the same in sub-
regimes 1A and 2A , naive-TIN is sum-capacity optimal in these two sub-regimes.

At this point, it is worth to remark that naive-TIN can achieve the sum-capacity
in (3.71) only in sub-regimes 1A and 2A. This can be verified by evaluating (3.16)
in regimes 1 and 2 using the conditions given in Definition 4. By doing so, it can be
verified that
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• RΣ,Naive−TIN < nd1 − nc1 + nd2 − nc2 in sub-regimes 1B and 1C,

• RΣ,Naive−TIN < nd3 − nc3 + nd2 − nc2 in sub-regimes 2B and 2C,

• RΣ,Naive−TIN < nd3 in sub-regime 2D,

• RΣ,Naive−TIN = nd1 − nc1 + nd2 − nc2 in sub-regime 1A, and

• RΣ,Naive−TIN = nd3 − nc3 + nd2 − nc2 in sub-regime 2A.

This shows the inferiority of the naive-TIN scheme in comparison to the smarter
TDMA-TIN which is sum-capacity optimal for a wider range of channel parameters.
Now, we need to assess TIN for the special case given in Remark 3, i.e, nd3−nc3 =

nd1−nc1. The optimality of TIN in this case is summarized in the following theorem.

Theorem 2. On the whole line nd3 − nc3 = nd1 − nc1, TDMA-TIN achieves the
sum-capacity of the LD-PIMAC which is

Cdet,Σ = nd3 − nc3 + max{nc3, nd2 − nc2}. (3.72)

Naive-TIN achieves this sum-capacity only if nc3 ≤ nd2 − nc2.

Proof. First consider the converse. The upper bound given in Lemma 8 reduces to
(3.72) by applying the conditions (3.15) and nd3−nc3 = nd1−nc1. Now, we need to
show that (3.72) is achievable by using TDMA-TIN. By taking the condition (3.15)
and nd3−nc3 = nd1−nc1 into account, it can be verified that the achievable sum-rate
of TDMA-TIN in (3.17) coincides with the sum-capacity (3.72). Hence, we conclude
that TDMA-TIN is optimal when nd3 − nc3 = nd1 − nc1 holds. Now, consider the
achievable sum-rate using naive-TIN in (3.16). This reduces to

RΣ,Naive−TIN = nd3 − nc2 + (nd2 − nc3)+ if nd3 − nc3 = nd1 − nc1. (3.73)

The expression (3.73) coincides with (3.72) as long as nc3 ≤ nd2 − nc2. This shows
the optimality of naive-TIN in this case. For the case that nc3 > nd2 − nc2, the
sum-capacity in (3.72) is nd3 which is strictly larger than the achievable sum-rate of
naive-TIN in (3.73). This shows the suboptimality of naive-TIN in this case.

Consequently, with this, the optimality of TDMA-TIN in the LD-PIMAC for
regimes 1, 2 and the special case nd3 − nc3 = nd1 − nc1 is shown. To complete
the analysis, we need to still evaluate the performance of TDMA-TIN in regime 3.
In this regime, TDMA-TIN is not optimal. In fact, in this regime, a combination of
common signaling and interference alignment achieves higher rates. This is discussed
in the next sub-section.
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3.2.3.3 Suboptimality of TIN

Both naive-TIN and TDMA-TIN are suboptimal in regime 3. In order to show this,
we propose an alternative scheme which outperforms the presented TIN schemes.
The proposed scheme which is called IA-CP, is based on private and common sig-
nalling with interference alignment [CJ08]. The following proposition summarizes
the achievable sum-rate using the proposed scheme.

Proposition 3. The following sum-rate is achievable by using IA-CP in a PIMAC
with nc1 + nc2 ≤ min{nd1, nd2}.

RΣ = min{nd3 + (nd2 − nc2), nc3 + (nd1 − nc1)} regime 3A (3.74)
RΣ = min{nd1 + nc3, (2nd3 − nc3)− (nd1 − nc1)} regime 3B (3.75)
RΣ = min

{
2µ− ν, nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+

}
+ (nd2 − nc2) regime 3C (3.76)

where µ = max{nd3 − nc3, nd1 − nc1} and ν = min{nd3 − nc3, nd1 − nc1}.

Now we describe the scheme that achieves the sum-rate given in this proposition.

Remark 4. A more sophisticated interference alignment scheme which achieves
higher rates for the PIMAC was given in [BW12]. Since our aim here is to show the
suboptimality of TIN, the following simple alignment scheme suffices.

Interference alignment with common and private signaling (IA-CP scheme)

We construct x1, x2, and x3 as follows

x1 =


0`1
u1,a

0nc1−`1−Ra

u1,p

0q−nc−R1,p

 , x2 =


0nc2

u2,p1

0Ra

u2,p2

0q−nc2−R2,p1−R2,p2−Ra

 , x3 =



u3,c

0`3
u3,a

0nc3−R3,c−`3−Ra

u3,p

0q−nc3−R3,p

 ,
(3.77)

where Ra is the length of vectors u1,a and u3,a and the sub-script a refers to the
alignment signals, and R1,p, R2,p1, R2,p2, and R3,p are the lengths of the vectors u1,p,
u2,p1, u2,p2, and u3,p and the sub-script p refers to private signals. The common
signal vector u3,c has a length of

R3,c = min{[nd3 − (nd1 − nc1)]+, [nc3 − (nd2 − nc2)]+}. (3.78)

For sake of simplicity, the value of R3,c is given in Table 3.1.
The `1 and `3 zeros introduced in x1 and x3 are used to shift u1,a and u3,a down

appropriately (power allocation). We fix these parameters as follows

`1 = (nc1 − nc3)+, `3 = (nc3 − nc1 −R3,c)
+. (3.79)
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R3,c Nd31 < nd3 ≤ Nd32 Nd32 < nd3 < Nd33 Nd33 < nd3 < Nd34

nd2 − nc2 < nc3 min

{
nd3 − (nd1 − nc1)
nc3 − (nd2 − nc2)

}
nc3 − (nd2 − nc2) nc3 − (nd2 − nc2)

nc3 ≤ nd2 − nc2 Out of regime 3 0 0

Table 3.1: Nd31 = min{nd1−nc1, nc3+nd1−2nc1}, Nd32 = max{nd1−nc1, nc3+nd1−
2nc1}, Nd33 = nc3 +nd1−nc1, and Nd34 = min{nc3 +nd1, nd1−nc1 +2nc3}.
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Figure 3.8: A graphical illustration of the received signals at receivers 1 and 2 for the
case that nd1 − nc1 < nd3 − nc3 and nd2 − nc2 < nc3 when the transmit
signals are constructed as in (3.77).

A graphical illustration of the received signals at both receivers is shown in Fig.
3.8 for the case when nd2 − nc2 < nc3. As it is shown in this figure, the private
signals are not received at undesired receivers. This can be guaranteed, since the
private signals of Tx1 and Tx3 are not allocated to the top most nc1 bits of x1 and
the top-most nc3 bits of x3. Hence, Rx1 can obtain at most nd1 − nc1 private bits
from Tx1 and nd3 − nc3 private bits from Tx3. Therefore, the private signals of the
MAC transmitters are received at the lower-most max{nd3 − nc3, nd1 − nc1} bits of
y1. Since the private signals from Tx1 and Tx3 are treated as in a multiple access
channel at Rx1, their sum-rate is fixed by

R1,p +R3,p = max{nd3 − nc3, nd1 − nc1}. (3.80)

Moreover, the private signal of Tx2 must not be received at Rx1, thus it must be
sent at the lowest q − nc2 bits of x2.
The main idea of the scheme is to align the vectors u1,a and u3,a at Rx2 while

they are received without any overlap at Rx1. To align these vectors at Rx2, the
condition

nc1 − `1 = nc3 −R3,c − `3 (3.81)
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must be satisfied. This condition is indeed satisfied by our choice of R3,c in (3.78)
and `1, `3 in (3.79). Moreover, the aligned signal u1,a and u3,a must not have an
overlap with private signal of Tx2 at Rx2. Due to this, the private signal of Tx2 is
split into two parts, u2,p1, and u2,p2 with sum-rate

R2,p1 +R2,p2 = nd2 − nc2 −Ra. (3.82)

Now, we are ready to discuss the reliability of decoding at the receivers. First,
consider Rx2. Since R3,c in (3.78) is chosen such that u3,c does not overlap the private
and alignment signals at Rx2, Rx2 is able to decode u3,c. Due to the condition in
(3.82), Rx2 is able to decode u2,p1, u1,a ⊕ u3,a, and u2,p2 as long as

Ra ≤ nc1 − `1. (3.83)

Notice that since Ra ≤ nc1 ≤ nd2−nc2, the sum R2,p1+R2,p2 in (3.82) is non-negative.
Now, consider Rx1. In order to guarantee that the common signal vector u3,c is

decodable at Rx1, an overlap between u3,c and the alignment signal vectors (u1,a,
u3,a) and private signal vectors (u1,p, u3,p) at Rx1 needs to be avoided. An overlap
between u3,c and private signal vectors is avoided by the choice of R3,c in (3.78).
While an overlap between u3,c and u3,a is avoided by the alignment condition in
(3.81), the following condition has to be satisfied

R3,c ≤ (nd3 − (nd1 − `1))+ if 0 < Ra, (3.84)

to guarantee that u3,c does not overlap u1,a at Rx1. Now, we need to guarantee that
Rx1 decodes u3,a and u1,a reliably. For decoding these signal vectors, we address a
decoding order. The order of decoding these signal vectors depends on the sign of
S = (nd3 − nc3) − (nd1 − nc1). If S is positive (see Fig. 3.8), u3,a is received on
the top of u1,a at Rx1 and hence, Rx1 decodes u1,a first after decoding u3,a and
vice verse.4 An example for the case when S is negative is illustrated in Fig. 3.9.
Regardless of the order of decoding, an overlap between vectors u1,a and u3,a at Rx1
has to be avoided. To this end, we have following conditions

Ra ≤

{
nd3 − (`3 +R3,c)− (nd1 − `1) if S > 0

(nd1 − `1)− (nd3 − (`3 +R3,c)) if S < 0
. (3.85)

By substituting `1, `3 in (3.79) and R3,c in (3.78) into (3.85), and setting µ =
max{nd3 − nc3, nd1 − nc1} and ν = min{nd3 − nc3, nd1 − nc1}, we can rewrite the
conditions in (3.85) as

Ra ≤ µ− ν. (3.86)

4The decoding order in the deterministic case is not important. However, it is important in
the Gaussian setup. In order to have the same decoding procedure for both models, we use the
decoding order also in the deterministic case.
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Figure 3.9: A graphical illustration of the received signals at receivers 1 and 2 for the
case that nd1 − nc1 > nd3 − nc3 and nd2 − nc2 > nc3 when the transmit
signals are constructed as in (3.77).

In addition to this, vectors u1,a and u3,a must not have any overlap with private
vectors u1,p and u3,p. Due to this, the following condition has to be satisfied

Ra ≤ (min{nd1 − `1, nd3 − (`3 +R3,c)} −max{nd3 − nc3, nd1 − nc1}︸ ︷︷ ︸
R1,p+R3,p

)+. (3.87)

By using (3.78), (3.79), and definition of µ and ν, we rewrite (3.87) as

Ra ≤ (min{nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+} − µ)+. (3.88)

Combining the condition in (3.83), (3.86) and (3.88), we obtain

Ra ≤ (min{nc1 − `1 + µ, 2µ− ν, nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+} − µ)+.
(3.89)

The rate of the aligned signals Ra is given in Table 3.2. Note that both conditions
(3.84) and (3.89) are satisfied by chosen Ra and R3,c in Table 3.1 and 3.2.

Ra Nd31 < nd3 ≤ Nd32 Nd32 < nd3 < Nd33 Nd33 < nd3 < Nd34

nd2 − nc2 < nc3 0 0 min

{
nd1 − µ
µ− ν

}
nc1 < nc3 ≤ nd2 − nc2 Out of regime 3 min

{
ν − µ+ nc1

µ− ν

}
min

{
nd1 − µ
µ− ν

}
nc3 ≤ nc1 Out of regime 3 min

{
nd3 − µ
µ− ν

}
min

{
ν − µ+ nc3

µ− ν

}
Table 3.2: Nd31 = min{nd1−nc1, nc3+nd1−2nc1}, Nd32 = max{nd1−nc1, nc3+nd1−

2nc1}, Nd33 = nc3 +nd1−nc1, and Nd34 = min{nc3 +nd1, nd1−nc1 +2nc3}

Remark 5. One can improve the proposed scheme by choosing a non-zero Ra for
the case that nd2−nc2 < nc3 and nd1− 2nc1 < nd3−nc3 < nd1−nc1. Since our goal
is to outperform TDMA-TIN, we avoided using an alignment signal in this case to
decrease the complexity of the scheme.
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RΣ Nd31 < nd3 ≤ Nd32 Nd32 < nd3 < Nd33 Nd33 < nd3 < Nd34

nd2 − nc2 < nc3 min

{
nd3 + (nd2 − nc2)
nc3 + (nd1 − nc1)

}
min

{
nd1 + nc3

(2nd3 − nc3)− (nd1 − nc1)

}
nc3 ≤ nd2 − nc2 Out of regime 3 (nd2 − nc2) + min


2µ− ν

nd1 − (nc1 − nc3)
+

nd3 − (nc3 − nc1)
+


Table 3.3: Nd31 = min{nd1−nc1, nc3+nd1−2nc1}, Nd32 = max{nd1−nc1, nc3+nd1−

2nc1}, Nd33 = nc3 +nd1−nc1, and Nd34 = min{nc3 +nd1, nd1−nc1 +2nc3}

Using this scheme, we achieve

RΣ = R1,p +R3,p +R2,p1 +R2,p2 + 2Ra +R3,c. (3.90)

By substituting (3.80) and (3.82) into (3.90), we obtain

RΣ = max{nd3 − nc3, nd1 − nc1}+ (nd2 − nc2) +Ra +R3,c. (3.91)

Now, by using the chosen Ra and R3,c in Table 3.1 and 3.2, we obtain the achievable
sum-rate. This is given in Table 3.3, which completes the proof of Proposition 3.

Comparison with TDMA-TIN

Now, we need to show that the sum-rate in Proposition 3 is higher than the achievable
sum-rate using the TDMA-TIN given in (3.17) for regime 3. We show this for sub-
regimes 3A, 3B, and 3C separately.
First, consider sub-regime 3A. In this sub-regime, TDMA-TIN achieves

RΣ,TDMA-TIN = max{nd3, (nd1 − nc1) + (nd2 − nc2), (nd3 − nc2)+ + (nd2 − nc3)+}
= max{nd3, (nd1 − nc1) + (nd2 − nc2), nd3 − nc2 + (nd2 − nc3)+}
(a)
= max{nd3, nd1 − nc1 + nd2 − nc2}, (3.92)

where step (a) follows since in regime 3A, nd2 − nc2 < nc3. Using the definition of
sub-regime 3A and the condition in (3.15), we upper bound the expression in (3.92)
by

RΣ,TDMA-TIN < min{nd3 + (nd2 − nc2), nc3 + (nd1 − nc1)}. (3.93)

Note that (3.93) is the achievable sum-rate given in Proposition 3 for sub-regime 3A.
Therefore, the scheme IA-CP outperforms TDMA-TIN and consequently naive-TIN
in this sub-regime. Now, consider sub-regime 3B. Doing similar steps as in (3.92),
we can write the achievable sum-rate using the TDMA-TIN scheme for sub-regime
3B as

RΣ,TDMA-TIN = max{nd3, nd1 − nc1 + nd2 − nc2}. (3.94)
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Due to the conditions of sub-regime 3B, we have (nd2 − nc2) + (nd1 − nc1) < nc3 +
(nd1 − nc1) < nd3. Hence, we rewrite (3.94) as

RΣ,TDMA-TIN = nd3. (3.95)

Since in sub-regime 3B, nc3 + (nd1−nc1) < nd3 < nd1 +nc3, the achievable sum-rate
in (3.95) is bounded by

RΣ,TDMA-TIN < min{nd1 + nc3, (2nd3 − nc3)− (nd1 − nc1)}. (3.96)

The expression in (3.96) coincides with the achievable sum-rate in Proposition 3 for
sub-regime 3B. Hence, we conclude that the scheme IA-CP outperforms TDMA-
TIN and naive-TIN in sub-regime 3B. Finally, we consider sub-regime 3C. In this
sub-regime TDMA-TIN achieves

RΣ,TDMA-TIN = (nd2 − nc2) + max{nd3 − nc3, nd1 − nc1}. (3.97)

In sub-regimes 3C, the achievable sum-rate of IA-CP is

RΣ = (nd2 − nc2) + min
{

2µ− ν, nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+
}
, (3.98)

where µ = max{nd3 − nc3, nd1 − nc1} and ν = min{nd3 − nc3, nd1 − nc1}. This can
be rewritten as

RΣ = (nd2 − nc2) + µ+ min
{
µ− ν, nd1 − (nc1 − nc3)+ − µ, nd3 − (nc3 − nc1)+ − µ

}
= RΣ,TDMA−TIN + min

{
µ− ν, nd1 − (nc1 − nc3)+ − µ, nd3 − (nc3 − nc1)+ − µ

}
.

(3.99)

The min expression above is the rate of the aligned signal vector which is given in
Table 3.2. Notice that in sub-regime 3C, this min expression is positive. Hence,
the sum-rate in (3.99) is higher than the achievable sum-rate using TDMA-TIN in
sub-regime 3C. Thus, both TDMA-TIN and naive-TIN are suboptimal in regime 3.

Remark 6. The expression µ − ν is equal to zero, when nd3 − nc3 = nd1 − nc1.
Note that this is the case which is excluded from regime 3 (cf. Remark 3). In
this case, IA-CP achieves the same sum-rate as TDMA-TIN. This is due to the
fact that in this special case, the LD-PIMAC can be modelled as an IC with inputs
x̃1 = Sq−nd1x1 ⊕ Sq−nd3x3 and x2 and outputs y1 = x̃1 ⊕ Sq−nc2x2 and y2 =
Snd1−nc1x̃1⊕Sq−nd2x2. Obviously, aligning the interference signals at the undesired
receiver while they are separable at the desired receiver is not doable in the 2-user IC.
Hence, IA-CP cannot outperform TDMA-TIN.

3.3 TIN in the Gaussian PIMAC

For the linear deterministic PIMAC, we have shown that the naive-TIN scheme is
optimal only in sub-regimes 1A and 2A, while TDMA-TIN is optimal in regimes 1
and 2. In this section, we assess the optimality of naive-TIN and TDMA-TIN in
the Gaussian case by finding the gap between the upper bound and the achievable
sum-rates in the regimes where this gap can be upper bounded by a constant.
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Regimes under Consideration in Gaussian PIMAC

Similar to the LD-PIMAC, in the Gaussian counterpart, we restrict the analysis to
the case where TIN achieves the capacity of the IC consisting Tx1, Rx1 and Tx2, Rx2
[ETW08] within a constant gap. Hence, the following condition is always satisfied

min{P |hd1|2, P |hd2|2} ≥ Ph2
c1Ph

2
c2. (3.100)

Using Definition 1, this condition can be rewritten as follows

min{αd1, αd2} ≥ αc1 + αc2. (3.101)

We divide the parameter space of the Gaussian PIMAC (which satisfies (3.101))
into several regimes defined similar to the deterministic case (Definition 4) with
nk replaced by αk for k ∈ {d1, c1, d2, c2, d3, c3}. The channel parameters in the
Gaussian PIMAC are summarized in Table 3.4.

LD-PIMAC Gaussian PIMAC
nd1 αd1

nc1 αc1
nd2 αd2

nc2 αc2
nd3 αd3

nc3 αc3

Table 3.4: Related channel parameters in the Gaussian and linear deterministic PI-
MAC.

3.3.1 Achievable Lower Bounds using TIN

In this section, we present the lower bounds which can be achieved by using different
variants of TIN in the Gaussian PIMAC. First, we present the achievable sum-
rate using TIN. Next, we formulate the achievable GDoF of TIN from the sum-rate
expressions.

3.3.1.1 Achievable Sum-rate using TIN

Here, we study the achievable sum-rate of different types of TIN in the Gaussian
PIMAC.

Naive-TIN

In naive-TIN, all transmitters encode their messages using Gaussian codebook with
full power. This causes interference at the undesired receivers. At the receiver side,
the strategy is the same as if there is no interference. Therefore, the receivers decode
their desired signals while the interference is treated as noise. Hence, Rx1 decodes
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3.3 TIN in the Gaussian PIMAC

W1 and W3 as in a multiple access channel (successive decoding) with noise variance
1 + |hc2|2P , and Rx2 decodes W2 as in a point-to-point channel with noise variance
1 + |hc1|2P + |hc3|2P . Hence, we obtain the following achievable rate.

Proposition 4. In the Gaussian PIMAC, naive-TIN achieves any sum-rate RΣ ≤
RΣ,Naive−TIN, where

RΣ,Naive−TIN = log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
. (3.102)

TDMA-TIN

In contrast to naive-TIN, in TDMA-TIN not all transmitters are active at the same
time. In this scheme, we divide the transmission time into three fractions, i.e, τ1,
τ2, and τ3, where τ1 + τ2 + τ3 = 1. While in τ1 fraction of time only Tx3 is active
and hence, we have a point-to-point channel, in the remaining (1 − τ1) fraction of
time, we have two types of 2-user IC’s. The active transmitters in the first type are
Tx1 and Tx2. In total, τ2 fraction of time is assigned to this IC. In the other type
of IC, Tx3 and Tx2 are active. We assign τ3 fraction of time to this type. In this
scheme, all transmitters send such that they consume their maximum power P in
the whole transmission. In other words, Tx1, Tx2, and Tx3 send X1 ∼ CN (0, Pτ2 ),
X2 ∼ CN (0, P

(1−τ1)), and X3 ∼ CN (0, P
τ1+τ3

) in τ2, (1 − τ1), and (τ1 + τ3) fraction
of time, respectively. The achievable sum-rate using TDMA-TIN is presented in the
following proposition.

Proposition 5. In the Gaussian PIMAC, TDMA-TIN achieves any sum-rate RΣ ≤
RΣ,TDMA−TIN, where

RΣ,TDMA−TIN = max
τ1,τ2,τ3∈[0,1]

τ1 log2

(
1 +

ραd3

τ1 + τ3

)
(3.103)

+τ2

log2

1 +

ραd1

τ2

1 +
ραc2

(1− τ1)

+ log2

1 +

ραd2

(1− τ1)

1 +
ραc1

τ2




+τ3

log2

1 +

ραd3

τ1 + τ3

1 +
ραc2

(1− τ1)

+ log2

1 +

ραd2

(1− τ1)

1 +
ραc3

τ1 + τ3




subject to τ1 + τ2 + τ3 = 1.

Naive-TIN versus TDMA-TIN

The difference between TDMA-TIN and naive-TIN is that while all transmitters
are simultaneously active in the latter, the same is not true in the former which
orthogonalizes the users in time. As we have seen in the LD-PIMAC, naive-TIN
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can never outperform TDMA-TIN. It is shown in [CS12] that a simpler variant of
TDMA-TIN in which only the time sharing between the two 2-user IC’s of PIMAC
is allowed, leads to a larger sum-rate than that of naive-TIN as long as αd3 − αc3 6=
αd1 − αc1. Since the considered TDMA-TIN in this work is more general than the
one in [CS12], our proposed TDMA-TIN can also outperform naive-TIN as long as
αd3 − αc3 6= αd1 − αc1. Note that the excluded case corresponds to the special case
discussed in Remark 3. We study this case later in details.

Remark 7. A similar behaviour that keeping one or two transmitters silent can
improve the achievable sum-rate of TIN, has been also observed in the K-user IC
in [GNAJ15, Example 2].

3.3.1.2 Achievable GDoF using TIN

Since for constant gap optimality, the GDoF optimality is required, it is worth to
convert the achievable sum-rate of Naive-TIN and TDMA-TIN into the GDoF ex-
pression (cf. (3.11)).

Naive-TIN

Consider the achievable sum-rate of naive-TIN given in (3.102). At high SNR, this
sum-rate can be written as follows

RΣ,Naive−TIN ≈ log2

(
1 +

ραd1 + ραd3

ραc2

)
+ log2

(
1 +

ραd2

ραc1 + ραc3

)
= log2

(
ρ0 + ραd1−αc2 + ραd3−αc2

)
+ log2 (ραc1 + ραc3 + ραd2)

− log2(ραc1 + ραc3)

≈ log2 ρ[max{0, αd1 − αc2, αd3 − αc2}+ max{αc1, αc3, αd2}
−max{αc1, αc3}]

(a)
≈ log2 ρ[max{αd1, αd3} − αc2 + (αd2 −max{αc1, αc3})+]

The step (a) follows due to the condition in (3.101). Now, by dividing the sum-rate
by log2 ρ and letting ρ → ∞, we obtain the GDoF which is given in the following
proposition.

Proposition 6. Naive-TIN achieves any dΣ ≤ dΣ,Naive−TIN, where

dΣ,Naive−TIN(α) = max{αd1, αd3} − αc2 + (αd2 −max{αc1, αc3})+. (3.104)
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TDMA-TIN

We identify first the achievable sum-rate of TDMA-TIN in (3.103) at high SNR

RΣ,TDMA−TIN

(a)
≈ max

τ1,τ2,τ3∈[0,1]
τ1 log2

(
ραd3

τ1 + τ3

)

+ τ2

log2


ραd1

τ2

ραc2

(1− τ1)

+ log2


ραd2

(1− τ1)
ραc1

τ2




+ τ3

log2


ραd3

τ1 + τ3

ραc2

(1− τ1)

+ log2


ραd2

(1− τ1)
ραc3

τ1 + τ3




= max
τ1,τ2,τ3∈[0,1]

log2 ρ[τ1αd3 + τ2(αd1 − αc2 + αd2 − αc1)

+ τ3[(αd3 − αc2)+ + (αd2 − αc3)+]] + τ1 log2

(
1

τ1 + τ3

)
,

where τ1 + τ2 + τ3 = 1. Note that (a) is due to the high SNR approximation. Now,
by dividing the sum-rate by log2 ρ and letting ρ → ∞ and keeping the condition
αc1 + αc2 ≤ min{αd1, αd2} in mind, we obtain the following achievable GDoF using
TDMA-TIN

dΣ,TDMA-TIN(α) = max
τ1,τ2,τ3∈[0,1]

τ1αd3 + τ2(αd1 − αc2 + αd2 − αc1)

+ τ3[(αd3 − αc2)+ + (αd2 − αc3)+]

subject to τ1 + τ2 + τ3 = 1.

Since this maximization is linear in τ1, τ2, and τ3, we obtain the optimal solution by
assigning the whole transmission time to the type which achieves the highest GDoF.
Hence, the achievable GDoF of TDMA-TIN can be presented as in the following
proposition.

Proposition 7. TDMA-TIN achieves any dΣ ≤ dΣ,TDMA−TIN, where

dΣ,TDMA−TIN(α) = max


αd3

(αd1 − αc2) + (αd2 − αc1)
(αd3 − αc2)+ + (αd2 − αc3)+

 . (3.105)

As we have shown for the LD-PIMAC, as long as receivers treat interference as
noise, the best power allocation at the transmitter side cannot achieve higher sum-
rate than TDMA-TIN. In the following lemma, we extend this result to the Gaussian
PIMAC.

Lemma 9. The achievable GDoF by using TIN at the receiver side alongside power
control at the transmitter side is upper bounded by the GDoF achieved by TDMA-TIN
given in (3.105).
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Proof. First, we write the achievable GDoF of using TIN at the receiver side with
power control at the transmitter side. Suppose that Txi transmits xi which is a real-
ization of random variable Xi ∼ CN (0, Pi) with Pi ≤ P . Doing this, the maximum
achievable sum-rate using TIN is given by

RΣ,TIN = log2

(
1 +

P1|hd1|2 + P3|hd3|2

1 + P2|hc2|2

)
+ log2

(
1 +

P2|hd2|2

1 + P1|hc1|2 + P3|hc3|2

)
.

(3.106)

Now, we define

α11 =

(
log2(P1|hd1|2)

log2 ρ

)+

, α21 =

(
log2(P1|hc1|2)

log2 ρ

)+

,

α22 =

(
log2(P2|hd2|2)

log2 ρ

)+

, α12 =

(
log2(P2|hc2|2)

log2 ρ

)+

,

α13 =

(
log2(P3|hd3|2)

log2 ρ

)+

, α23 =

(
log2(P3|hc3|2)

log2 ρ

)+

,

where given the condition (3.101), they satisfy

α21 = (α11 − (αd1 − αc1))+

α12 = (α22 − (αd2 − αc2))+

α23 = (α13 − (αd3 − αc3))+ if αc3 ≤ αd3

α13 = (α23 − (αc3 − αd3))+ if αd3 < αc3.

and α11 ∈ [0, αd1], α21 ∈ [0, αc1], α22 ∈ [0, αd2], α12 ∈ [0, αc2], α13 ∈ [0, αd3], and
α23 ∈ [0, αc3]. Moreover, for any arbitrary P1, P2, and P3, the following conditions
are satisfied

α11 − α21 ≤ αd1 − αc1
α22 − α12 ≤ αd2 − αc2
α13 − α23 ≤ (αd3 − αc3)+.

Now, we can convert the achievable sum-rate in (3.106) to the GDoF expression and
write

dΣ,TIN(α) = (max{α11, α13} − α12)+ + (α22 −max{α21, α23})+. (3.107)

Now, similar to proof of Lemma 3, we can show that the GDoF in (3.107) is outper-
formed by (3.105).

Remark 8. Notice that the achievable GDoF of TDMA-TIN in the Gaussian PI-
MAC is equal to that of binary power control (i.e., transmitters either send with full
power or are completely inactive) alongside TIN. Hence, from Lemma 9, we conclude
that the general power allocation problem for maximizing the GDoF in the Gaussian
PIMAC while the receivers use TIN is reduced to the binary power allocation problem.
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The rest of this section is dedicated to performance analysis of TDMA-TIN and
naive-TIN in the Gaussian PIMAC. To do this, we use the upper bounds on the
sum-capacity which are presented in the following sub-section, as the benchmark.

3.3.2 Upper Bounds

Here, we use the insights from linear deterministic PIMAC, in order to establish the
upper bounds for the Gaussian case. To do this, the following lemmata are required.

Lemma 10. Consider two observations

Y n = f1A
n + f2B

n + Zny (3.108)

Sn = g1A
n + Zns , (3.109)

where f1, f2, and g1 are complex deterministic variables. Moreover, A, B, Zy ∼
CN (0, 1), and Zs ∼ CN (0, 1) are four independent complex random variables. Ad-
ditionally, suppose that the variance of A[t] and B[t] with t = 1, . . . , n are PA[t] and
PB[t], respectively, where

PA =
1

n

n∑
t=1

PA[t] ≤ P̄A (3.110)

PB =
1

n

n∑
t=1

PB[t] ≤ P̄B. (3.111)

Then, we can bound

1

n

[
h(Y n|Sn)− h(Zny )

]
≤ log2

(
1 + |f2|2P̄B +

|f1|2P̄A
1 + |g1|2P̄A

)
. (3.112)

Proof. We start the proof by bounding h(Y n|Sn)− h(Zny ) as follows

h(Y n|Sn)− h(Zny )
(a)
=

n∑
t=1

h(Y [t]|Sn, Y t−1)−
n∑
t=1

h(Zy[t]|Zt−1
y )

(b)
=

n∑
t=1

h(Y [t]|S[t])−
n∑
t=1

h(Zy[t]), (3.113)

where in step (a), we used the chain rule. Step (b), follows since conditioning does
not increase the entropy and Zy is i.i.d.. Since the Gaussian input maximizes the
conditional differential entropy given a covariance constraint [Tho87], we can write

h(Y n|Sn)− h(Zny ) =

n∑
t=1

h(YG[t]|SG[t])−
n∑
t=1

h(Zy[t])

=
n∑
t=1

∆[t], (3.114)
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where the subscript G indicates that the inputs are i.i.d. and Gaussian distributed,
i.e., A[t] ∼ CN (0, PA[t]) andB[t] ∼ CN (0, PB[t]). Additionally, ∆[t] = h(YG[t]|SG[t])−
h(Zy[t]). Now, we proceed by computing ∆[t] as follows

∆[t] = h(YG[t], SG[t])− h(SG[t])− h(Zy[t])

= log2


∣∣∣∣|f1|2PA[t] + |f2|2PB[t] + 1 f1g

∗
1PA[t]

g1f
∗
1PA[t] |g1|2PA[t] + 1

∣∣∣∣
1 + |g1|2PA[t]


= log2

(
1 + |f1|2PA[t] + |f2|2PB[t]− |f1|2|g1|2PA[t]2

1 + |g1|2PA[t]

)
= log2

(
1 + |f2|2PB[t] +

|f1|2PA[t]

1 + |g1|2PA[t]

)
. (3.115)

Due to the fact that the expression in (3.115) is concave, we can write that

1

n

n∑
t=1

∆[t] ≤ log2

(
1 + |f2|2PB +

|f1|2PA
1 + |g1|2PA

)
. (3.116)

Now, since the function (3.116) is an increasing function with respect to PA and PB
and PA ≤ P̄A, PB ≤ P̄B, we have

1

n

n∑
t=1

∆[t] ≤ log2

(
1 + |f2|2P̄B +

|f1|2P̄A
1 + |g1|2P̄A

)
. (3.117)

This completes the proof of the lemma.

In the following lemma, we bound the difference between the entropies of two
(noisy) linearly independent linear combinations of two random variables under some
conditions.

Lemma 11. Let A and B be independent random variables satisfying

1

n

n∑
t=1

E[|A[t]|2] ≤ P, 1

n

n∑
t=1

E[|B[t]|2] ≤ P,

and let Zi, i ∈ {A,B}, be distributed as CN (0, 1). Define YA and YB as the outputs
of the following noisy channels,

YA = h1A+ h2B + ZA

YB = h1A+ h3B + ZB,

where the constants h1, h2, and h3 are complex-valued. If the conditions

P |h2|2 ≤
(
|h3|
|h1|

)2

, (3.118)

1 < P |h1|2. (3.119)
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are satisfied, then the difference between the entropies of Y n
A and Y n

B satisfies

h(Y n
A )− h(Y n

B ) ≤ n. (3.120)

Proof. We start by upper bounding the expression h(Y n
A )− h(Y n

B ) as follows

h(Y n
A )− h(Y n

B )

= h(Y n
A )− h(Y n

B )− h(ZnA) + h(ZnB)

= I(An, Bn;Y n
A )− I(An, Bn;Y n

B )

(a)
= I(An;Y n

A ) + I(Bn;Y n
A |An)− I(Bn;Y n

B )− I(An;Y n
B |Bn)

(b)

≤ I(An;Y n
A ) + I(Bn;Y n

A |An)− I(Bn;Y n
B )− I(An;Y n

B |Bn) + I(An;Bn|Y n
A )

(c)
= I(An;Y n

A , B
n) + I(Bn;Y n

A |An)− I(Bn;Y n
B )− I(An;Y n

B |Bn), (3.121)

where in (a) and (c), we used the chain rule and in (b), we used the non-negativity
of mutual information. We proceed by using the chain rule and the independence of
A and B, to get

h(Y n
A )− h(Y n

B )

≤ I(An;Y n
A |Bn) + I(Bn;Y n

A |An)− I(Bn;Y n
B )− I(An;Y n

B |Bn)

= I(An;h1A
n + ZnA) + I(Bn;h2B

n + ZnA|An)− I(Bn;Y n
B )− I(An;h1A

n + ZnB)

(a)
= I(Bn;h2B

n + ZnA)− I(Bn;h1A
n + h3B

n + ZnB), (3.122)

where (a) follows since I(An;h1A
n + ZnA) = I(An;h1A

n + ZnB) since ZA and ZB
have the same distribution. By defining the random variable Ã = A√

P
which satisfies

1
n

∑n
t=1 E[|Ã[t]|2] ≤ 1, we obtain

h(Y n
A )− h(Y n

B )

≤ I(Bn;h2B
n + ZnA)− I(Bn; Ãn +

h3√
Ph1

Bn +
1√
Ph1

ZnB),

(a)

≤ I(Bn;h2B
n + ZnA)− I(Bn; Ãn +

h3√
Ph1

Bn + ZnB)

= I(Bn;h2B
n + ZnA)− h(Ãn +

h3√
Ph1

Bn + ZnB) + h(Ãn + ZnB), (3.123)

where step (a) is due to the fact that increasing the noise variance (by 1− 1
P |h1|2 > 0,

cf. (3.119)) leads to a degraded channel, and hence, decreases the mutual informa-
tion. Now, since conditioning does not increase the differential entropy, we bound
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(3.123) as follows

h(Y n
A )− h(Y n

B )

≤ I(Bn;h2B
n + ZnA)− h(Ãn +

h3√
Ph1

Bn + ZnB|Ãn) + h(Ãn + ZnB)

= I(Bn;h2B
n + ZnA)− h(

h3√
Ph1

Bn + ZnB) + h(Ãn + ZnB)− h(ZnA) + h(ZnB)

= I(Bn;h2B
n + ZnA)− I(Bn;

h3√
Ph1

Bn + ZnB) + h(Ãn + ZnB)− h(ZnA)

= I(Bn;Bn +
1

h2
ZnA)− I(Bn;Bn +

√
Ph1

h3
ZnB) + h(Ãn + ZnB)− h(ZnA). (3.124)

Now by increasing the noise variance in the second mutual information term in
(3.124) (by 1

|h2|2 −
P |h1|2
|h3|2 ≥ 0, cf. (3.118)), we obtain a degraded channel, and hence

this mutual information term decreases. This leads to the following upper bound

h(Y n
A )− h(Y n

B )

≤ I(Bn;Bn +
1

h2
ZnA)− I(Bn;Bn +

1

h2
ZnB) + h(Ãn + ZnB)− h(ZnA)

= h(Ãn + ZnB)− h(ZnA)

= I(Ãn; Ãn + ZnB) + h(ZnB)− h(ZnA)

(b)

≤ n, (3.125)

where step (b) follows since the capacity of the Gaussian channel with input Ã and
output Ã+ ZB is upper bounded by 1 (since Ã has power 1).

3.3.2.1 Sum-capacity Upper Bounds

In the following lemma, we establish an upper bound on the sum-capacity of the
Gaussian PIMAC. The main idea of this bound is to reduce the PIMAC to an IC
and then to bound the sum-capacity of the IC. To do this, we provide the interference
caused by Tx3 to Rx2. This cannot decrease the sum-capacity. The sum-capacity of
the obtained channel will be further bound as in [ETW08].

Lemma 12. The sum-capacity of the Gaussian PIMAC is upper bounded by

CG,Σ ≤ log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
. (3.126)

Proof. In order to establish this upper bound, Sn1 = hc1X
n
1 + Zn2 is given to Rx1 as

side information, and Sn2 = hc2X
n
2 +Zn1 and Xn

3 are given to Rx2 as side information.
Then, by Fano’s inequality, we have

n(RΣ − εn) ≤ I(Xn
1 , X

n
3 ;Y n

1 , S
n
1 ) + I(Xn

2 ;Y n
2 , S

n
2 , X

n
3 ),
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where εn → 0 as n→∞. Then, we proceed by using the chain rule to write

n(RΣ − εn) ≤I(Xn
1 , X

n
3 ;Sn1 ) + I(Xn

1 , X
n
3 ;Y n

1 |Sn1 )

+ I(Xn
2 ;Xn

3 ) + I(Xn
2 ;Sn2 |Xn

3 ) + I(Xn
2 ;Y n

2 |Sn2 , Xn
3 ). (3.127)

Since X2 and X3 are independent, I(Xn
2 ;Xn

3 ) = 0 and we obtain

n(RΣ − εn) ≤h(Sn1 )− h(Sn1 |Xn
1 , X

n
3 ) + h(Y n

1 |Sn1 )− h(Y n
1 |Xn

1 , X
n
3 , S

n
1 )

+ h(Sn2 |Xn
3 )− h(Sn2 |Xn

3 , X
n
2 ) + h(Y n

2 |Sn2 , Xn
3 )− h(Y n

2 |Sn2 , Xn
2 , X

n
3 )

(a)
=h(Sn1 )− h(Zn2 ) + h(Y n

1 |Sn1 )− h(Sn2 ) + h(Sn2 )− h(Zn1 )

+ h(hd2X
n
2 + hc1X

n
1 + Zn2 |Sn2 )− h(Sn1 )

=h(Y n
1 |Sn1 ) + h(hd2X

n
2 + hc1X

n
1 + Zn2 |Sn2 )− h(Zn1 )− h(Zn2 ), (3.128)

where step (a) follows since the random variables X1, X2, X3, Z1, and Z2 are in-
dependent from each other. Now, by dividing (3.128) by n and letting n → ∞ and
applying Lemma 10, we can bound (3.128) as follows

RΣ ≤ log2

(
1 + |hc2|2P + |hd3|2P +

|hd1|2P
1 + |hc1|2P

)
+ log2

(
1 + P |hc1|2 +

P |hd2|2

1 + P |hc2|2

)
= log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
(3.129)

which concludes the proof of (3.126).

Similarly, we can establish another upper bound by providing the interference
caused by Tx1 to Rx2. The obtained upper bound is given in the following lemma.

Lemma 13. The sum-capacity of the Gaussian PIMAC is upper bounded by

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log2

(
1 + ραc3 +

ραd2

1 + ραc2

)
(3.130)

Proof. For establishing this upper bound, we provide Sn1 = hc3X
n
3 + Zn2 to Rx1

and Sn2 = hc2X
n
2 + Zn1 , Xn

1 to Rx2. Then, by proceeding with similar steps as we
have already mentioned in the proof of Lemma 12, we obtain the upper bound in
(3.130).

We still need to introduce two upper bounds. In compared to the bounds in
Lemmata 12 and 13, in these bounds Rx2 observes both interference signals from
Tx1, Tx3. Moreover, the side information provided to Rx1 is a noisy superposition
of X1 and X3. Additionally, we use Lemma 11 to make these bounds tighter. In the
following lemma, the first bound is presented.
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Lemma 14. The sum-capacity of the Gaussian PIMAC is upper bounded by

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd3 − αd1 ≤ αc3 − 2αc1, (3.131)

Proof. In order to establish the upper bound (3.131), the side information Sn1 =
hc1
hd1

(hd1X
n
1 +hd3X

n
3 )+Zn is given to Rx1 and the side information Sn2 = hc2X

n
2 +Zn1

is given to Rx2, where Zn ∼ CN (0, 1) denotes an AWGN which is independent from
Zn1 and Zn2 and i.i.d. over time. Using Fano’s inequality, we obtain

n(RΣ − εn) ≤ I(Xn
1 , X

n
3 ;Y n

1 , S
n
1 ) + I(Xn

2 ;Y n
2 , S

n
2 ), (3.132)

where εn →∞ as n→∞. Then, using the chain rule, we have

n(RΣ − εn) ≤I(Xn
1 , X

n
3 ;Sn1 ) + I(Xn

1 , X
n
3 ;Y n

1 |Sn1 ) + I(Xn
2 ;Sn2 ) + I(Xn

2 ;Y n
2 |Sn2 )

=h(Sn1 )− h(Sn1 |Xn
1 , X

n
3 ) + h(Y n

1 |Sn1 )− h(Y n
1 |Sn1 , Xn

1 , X
n
3 )

+ h(Sn2 )− h(Sn2 |Xn
2 ) + h(Y n

2 |Sn2 )− h(Y n
2 |Sn2 , Xn

2 )

(a)
=h(Sn1 )− h(Zn) + h(Y n

1 |Sn1 )− h(Sn2 ) + h(Sn2 )− h(Zn1 )

+ h(Y n
2 |Sn2 )− h(Y n

2 |Sn2 , Xn
2 )

(b)
=h(hc1X

n
1 +

hc1
hd1

hd3X
n
3 + Zn)− h(Zn) + h(Y n

1 |Sn1 )− h(Zn1 )

+ h(Y n
2 |Sn2 )− h(hc1X

n
1 + hc3X

n
3 + Zn2 )

(c)

≤h(Y n
1 |Sn1 )− h(Zn) + h(Y n

2 |Sn2 )− h(Zn1 ) + n, (3.133)

where (a) and (b) follow from the fact that the transmitted signals from different
Tx’s and the additive noise signals are all independent from each other, and (c)
follows from Lemma 11. Note that the first condition of Lemma 11 is satisfied given

the condition of bound (3.131) which is equivalent to P
(
|hc1|
|hd1|

)2
|hd3|2 ≤

(
|hc3|
|hc1|

)2
.

This condition corresponds to nd3 − nc3 < nd1 − 2nc1 in the linear deterministic
model which also defines a border of regime 3. The second condition of Lemma 11
(1 < P |hc1|2) holds, since we consider the interference limited scenario (3.9).
In order to bound (3.133), we define first two new variables V [t] = hd1X1[t] +

hd3X3[t] and U [t] = hc3X3[t] + hc1X1[t] to write

n(RΣ − εn) ≤h(V n + hc2X
n
2 + Zn1 |

hc1
hd1

V n + Zn)− h(Zn)

+ h(hd2X
n
2 + Un + Z2|hc2Xn

2 + Zn1 )− h(Zn1 ) + n. (3.134)
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Now, by using Lemma 10, and considering the fact that

1

n

n∑
t=1

E
[
|V [t]|2

]
≤ (|hd1|2 + |hd3|2)P (3.135)

1

n

n∑
t=1

E
[
|U [t]|2

]
≤ (|hc3|2 + |hc1|2)P, (3.136)

we bound (3.134) as follows

n(RΣ − εn) ≤n

log2

1 + |hc2|2P +
(|hd1|2 + |hd3|2)P

1 + |hc1|2
|hd1|2

(|hd1|2 + |hd3|2)P


+ log2

(
1 + |hc3|2P + |hc1|2P +

|hd2|2P
1 + |hc2|2P

)
+ 1

]
(3.137)

Now, by dividing (3.137) by n, letting n→∞, and using Definition (1), we obtain

RΣ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1, (3.138)

which completes the proof.

Similarly, we establish the last upper bound in following lemma.

Lemma 15. The sum-capacity of the Gaussian PIMAC is upper bounded by

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc3−αd3(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd1 − αd3 ≤ αc1 − 2αc3. (3.139)

Proof. For establishing the bound (3.139), the side information Sn1 = hc3
hd3

(hd1X
n
1 +

hd3X
n
3 ) + Zn is given to Rx1, and the side information Sn2 = hc2X

n
2 + Zn1 is given

to Rx2, where Z ∼ CN (0, 1) denotes an AWGN which is independent from all other
random variables and i.i.d. over time. Then by proceeding with similar steps as we
have already mentioned in the proof of Lemma 14, we obtain the bound given in
(3.139).

3.3.2.2 GDoF Upper Bounds

Here, we want to translate the sum-capacity upper bounds of the Gaussian PIMAC
presented in Subsection 3.3.2.1 into the GDoF upper bounds. To do this, we use the
definition of the GDoF given in Definition 1. The GDoF upper bounds are presented
in the following lemma.
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Lemma 16. The GDoF of the Gaussian PIMAC is upper bounded by

dΣ ≤ max{αc2, αd3, αd1 − αc1}+ max{αc1, αd2 − αc2} (3.140)
dΣ ≤ max{αc2, αd1, αd3 − αc3}+ max{αc3, αd2 − αc2} (3.141)
dΣ ≤ αd1 − αc1 + max{αc3, αd2 − αc2} if αd3 − αd1 ≤ αc3 − 2αc1 (3.142)
dΣ ≤ αd3 − αc3 + max{αc3, αd2 − αc2} if αd1 − αd3 ≤ αc1 − 2αc3 (3.143)

Proof. We start with proving the upper bound in (3.140). To do this, consider
(3.126). By dividing this expression by ρ and letting ρ → ∞, and keeping in mind
that the α-parameters are non-negative (due to the condition in (3.9)), we obtain

dΣ ≤ lim
ρ→∞

1

log2 ρ

[
log2

(
ραc2 + ραd3 +

ραd1

ραc1

)
+ log2

(
ραc1 +

ραd2

ραc2

)]
(3.144)

= max{αc2, αd3, αd1 − αc1}+ max{αc1, αd2 − αc2}. (3.145)

Similarly, we can establish the upper bounds in (3.141), (3.142), and (3.143) from
(3.130), (3.131), and (3.139), respectively.

3.3.3 Optimality and Suboptimality of TIN

Now, we are ready to evaluate the optimality of different variants of TIN in the Gaus-
sian PIMAC. By dividing the parameter space of the Gaussian PIMAC into different
regimes as done in the LD-PIMAC (Definition 4), the optimality and suboptimality
of TIN are presented in the following subsections.

3.3.3.1 Optimality of TIN

First, we present the GDoF optimality of different types of TIN in the Gaussian
PIMAC. To this end, we need to compare the achievable GDoF of naive-TIN (in
(3.104)) and TDMA-TIN (in (3.105)) with the upper bounds on the GDoF of the
Gaussian PIMAC in (3.140)-(3.143). In regimes, where the achievable GDoF of TIN
coincides with a GDoF upper bound, TIN performs GDoF optimally.
Notice that by replacing nk in the capacity bounds of the LD-PIMAC by αk

for k ∈ {d1, c1, d2, c2, d3, c3}, we obtain the valid bounds for the Gaussian PIMAC
(except for the special case αd1−αc1 = αd3−αc3). This can be verified by comparing
the achievable GDoF of naive-TIN and TDMA-TIN in the Gaussian PIMAC given in
(3.104) and (3.105) with the achievable capacity of these schemes in the LD-PIMAC
(given in (3.16) and (3.17)). Moreover, by replacing the n-parameters in the upper
bounds on the capacity of the LD-PIMAC (given in (3.29), (3.36), (3.46), and (3.47))
with the α-parameters, we obtain the GDoF upper bounds in (3.140)-(3.142). Hence,
we conclude that in sub-regimes 1A and 2A, in which naive-TIN performs optimally
from the capacity point of view in the LD-PIMAC (cf. Corollary 1), it performs
also GDoF optimally in the Gaussian counterpart. Moreover, since TDMA-TIN is
capacity optimal in regimes 1 and 2 for the LD-PIMAC, it performs also GDoF
optimally in the Gaussian PIMAC. Therefore, TIN performs optimally in regimes 1
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and 2. The GDoF of the Gaussian PIMAC in regime 1 and 2 is summarized in the
following theorem.

Theorem 3. In regimes 1 and 2, the GDoF of the Gaussian PIMAC is given by

dΣ =


αd1 − αc1 + αd2 − αc2, regime 1
αd3 − αc3 + αd2 − αc2, sub-regimes 2A, 2B, and 2C
αd3, sub-regime 2D.

(3.146)

Proof. The TDMA-TIN scheme achieves the GDoF upper bounds of the Gaussian
PIMAC in regimes 1 and 2. By taking the conditions of regimes 1 and 2 into account,
we can verify that the achievable GDoF of TDMA-TIN in (3.105) reduces to (3.146).
This completes the proof if this theorem.

The next step after the GDoF characterization of a network is the capacity analysis.
A scheme achieves the capacity of a network if there is an upper bound on the sum-
capacity which coincides with the achievable sum-rate of that scheme. If the gap
between the upper bound and the achievable sum-rate is bounded by a constant
which does not scale with the SNR, we know the capacity of the network within a
constant gap. A scheme might be suboptimal although it achieves the sum-capacity
within a constant gap. For instance, while naive-TIN is always outperformed by
TDMA-TIN, it achieves the capacity of the Gaussian PIMAC in sub-regimes 1A
and 2A within a constant gap. This result is presented in details in the following
corollary.

Corollary 2. The achievable sum-rate of naive-TIN is within a gap of 3 + 2 log2 3
bits of the sum-capacity of the Gaussian PIMAC in sub-regimes 1A and 2A.

Proof. Here, we focus on sub-regimes 1A and 2B. In sub-regime 1A where αd3 ≤
αd1 − αc1 and αc3 ≤ αc1, the upper bound given in (3.126) can be further upper
bounded as follows

CG,Σ ≤ log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
< log2

(
1 + ραc2 + ραd3 +

ραd1

ραc1

)
+ log2

(
1 + ραc1 +

ραd2

ραc2

)
< log2

(
4ραd1−αc1

)
+ log2

(
3ραd2−αc2

)
= [αd1 − αc1 + αd2 − αc2] log2 ρ+ 2 + log2 3, (3.147)

where we used the fact that in sub-regime 1A, max{0, αc2, αd3, αd1−αc1} = αd1−αc1,
max{0, αc1, αd2 − αc2} = αd2 − αc2, and ραd1−αc1 , ραd2−αc2 > 1 due to (3.9).
On the other hand, for the achievable rate of naive-TIN, we have

RΣ,Naive−TIN = log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
> log2

(
ραd1

2ραc2

)
+ log2

(
ραd2

3ραc1

)
= [αd1 − αc1 + αd2 − αc2] log2 ρ− 1− log2 3, (3.148)
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where we used ραc1 , ραc2 > 1 (cf. (3.9)).
Comparing (3.147) with (3.148) in this regime, we see that naive-TIN is within a

gap of GNaive−TIN,1A = 3 + 2 log2 3 bits to the sum-capacity.
Similarly, for sub-regime 2A where αd3 − αc3 ≥ αd1 and αc1 ≤ αc3 ≤ αd2 − αc2,

the upper bound (3.130) can be upper bounded as

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log2

(
1 + ραc3 +

ραd2

1 + ραc2

)
< [αd3 − αc3 + αd2 − αc2] log2 ρ+ 2 + log2 3, (3.149)

which follows since αd3 − αc3 ≥ αd1 and αc3 ≤ αd2 − αc2 in this regime, whereas for
the achievable sum-rate of the naive-TIN scheme in this regime, we have

RΣ,Naive−TIN = log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
.

> [αd3 − αc3 + αd2 − αc2] log2 ρ− 1− log2 3,

which follows since αc1 < αc3 in this regime. Therefore, naive-TIN is within a
constant gap GNaive−TIN,2A = 3 + 2 log2 3 bits to the sum-capacity.

Now, consider TDMA-TIN. This scheme can achieve the capacity of the Gaussian
PIMAC within a constant gap in regimes 1 and 2. This is presented in more details
in the following corollary.

Corollary 3. The gap between the achievable sum-rate of TDMA-TIN and the sum-
capacity of the Gaussian PIMAC is bounded by 4+log2 3 bits in sub-regimes 1A, 1B,
2A and 2B, and by 7 bits in sub-regimes 1C and 2C and 2 + log2 3 bits in sub-regime
2D.

Proof. First consider sub-regimes 1A, 1B, and 1C. In these sub-regimes, by setting
τ2 = 1 and τ1 = τ3 = 0, the achievable rate of TDMA-TIN in (3.103) satisfies

RΣ,TDMA−TIN ≥ log2

(
1 +

ραd1

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1

)
> log2

(
ραd1

2ραc2

)
+ log2

(
ραd2

2ραc1

)
= [(αd1 − αc2) + (αd2 − αc1)] log2(ρ)− 2. (3.150)

Similar to sub-regime 1A (see (3.147)), it can be shown that the upper bound for
the capacity in sub-regime 1B is upper bounded by the expression in (3.147). By
comparing (3.147) with (3.150), we see that TDMA-TIN is within a constant gap of
GTDMA−TIN,1A,1B = 4 + log2 3 bits to the sum-capacity in sub-regimes 1A and 1B.
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In sub-regime 1C, we relax the upper bound in (3.131) as follows

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1

< log2

(
2ραc2 +

2ρmax{αd1,αd3}

ρmax{αc1,αc1−αd1+αd3}

)
+ log2

(
3ραc3 +

ραd2

ραc2

)
+ 1

< log2

(
4ραd1−αc1

)
+ log2

(
4ραd2−αc2

)
+ 1

=(αd1 − αc1 + αd2 − αc2) log2 ρ+ 5, (3.151)

where we used the fact that in sub-regime 1C, αc3 > αc1 and max{0, αc1, αc3, αd2 −
αc2} = αd2 − αc2. Comparing (3.151) and (3.150), we conclude that TDMA-TIN is
within a constant gap of GTDMA−TIN,1C = 7 bits to the sum-capacity in sub-regime
1C.
For sub-regimes 2A, 2B, and 2C, by setting τ3 = 1 and τ1 = τ2 = 0, the achievable

sum-rate of TDMA-TIN in (3.103) satisfies

RΣ,TDMA−TIN > log2

(
1 +

ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc3

)
> (αd3 − αc2 + αd2 − αc3) log2 ρ− 2. (3.152)

Similar to sub-regime 2A (see (3.149)), the upper bound for the capacity can be
relaxed in sub-regime 2B. Doing this, we can show that the capacity in sub-regime 2B
is upper bounded by the expression in (3.149). Comparing (3.149) and (3.152), we see
that TDMA-TIN achieves a sum-rate within a constant gap of GTDMA−TIN,2A,2B =
4 + log2 3 bits to the sum-capacity in sub-regimes 2A and 2B.
For sub-regime 2C, we relax the upper bound given in (3.139) as follows

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc3−αd3(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1

< log2

(
2ραc2 +

2ρmax{αd1,αd3}

ρmax{αc3−αd3+αd1,αc3}

)
+ log2

(
3ραc1 +

ραd2

ραc2

)
+ 1

= log2

(
2ραc2 + 2ραd3−αc3

)
+ log2

(
3ραc1 + ραd2−αc2

)
+ 1

< log2

(
4ραd3−αc3

)
+ log2

(
4ραd2−αc2

)
+ 1

=(αd3 − αc3 + αd2 − αc2) log2 ρ+ 5, (3.153)

where we used the facts that in sub-regime 2C, αc1 > αc3 and max{αd1−αc1, αc2, 0} =
αd1 − αc1 ≤ αd3 − αc3. By comparing (3.152) and (3.153), we see that the rate ob-
tained with TDMA-TIN is within a constant gap of GTDMA−TIN,2C = 7 bits to the
sum capacity in sub-regime 2C.
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Finally, we consider the sub-regime 2D. In this sub-regime, we set in (3.103) τ1 = 1
and τ2 = τ3 = 0 to obtain

RΣ,TDMA-TIN ≥ log2 (1 + ραd3)

>αd3 log2 ρ. (3.154)

Now, we relax the sum-capacity in (3.130) as follows

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log2

(
1 + ραc3 +

ραd2

1 + ραc2

)
< log2

(
3ραd1 +

ραd3

ραc3

)
+ log2

(
2ραc3 +

ραd2

ραc2

)
< log2

(
3ραd1 + ραd3−αc3

)
+ log2

(
2ραc3 + ραd2−αc2

)
< log2

(
4ραd3−αc3

)
+ log2 (3ραc3)

=αd3 log2 ρ+ 2 + log2 3 (3.155)

where we used the facts that in regime 2D, αd1 ≤ αd3 − αc3 and αd2 − αc2 < αc3.
By comparing (3.154) and (3.155), we see that the rate obtained by TDMA-TIN is
within a constant gap of GTDMA−TIN,2D = 2 + log2 3 bits to the sum-capacity in
sub-regime 2D.

3.3.3.2 Suboptimality of TIN

Although TDMA-TIN always outperforms naive-TIN, it is suboptimal in regime 3.
As discussed in Subsection 3.2.3.3, a combination of common and private signaling
with interference alignment outperforms TDMA-TIN in regime 3 and hence, TDMA-
TIN cannot achieve the capacity of the LD-PIMAC. In this section, we show that
TDMA-TIN cannot achieve the capacity of the Gaussian PIMAC within a constant
gap in regime 3. To do this, first we show that TDMA-TIN is suboptimal in terms
of GDoF. This is shown by proposing the so-called IA-CP (interference alignment
with common and private signaling) scheme which achieves a higher GDoF than
TDMA-TIN in regime 3. Next, we show that the gap between the achievable sum-
rate of TDMA-TIN and capacity increases with SNR. In the following proposition,
we present the achievable GDoF of IA-CP.

Proposition 8. The following GDoF is achievable in regime 3 of the the Gaussian
PIMAC using IA-CP

dΣ,IA−CP = d3,c + 2da + d1,p + d2,p1 + d2,p2 + d3,p, (3.156)
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where

d3,c ≤ min

{
[αd3 + r3,c −max{C1, αd1 + r1,a, αd3 + r3,a, αc2 + r2,p1}]+
[αc3 + r3,c −max{C2, αc1 + r1,a, αc3 + r3,a, αd2 + r2,p1}]+

}
,

d1,p ≤ [αd1 + r1,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,
d3,p ≤ [αd3 + r3,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,

d3,p + d1,p ≤ [max{αd3 + r3,p, αd1 + r1,p} −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,
d2,p1 ≤ [αd2 + r2,p1 −max{C2, αc1 + r1,a, αc3 + r3,a}]+,
d2,p2 ≤ [αd2 + r2,p2 −max{0, αc1 + r1,p, αc3 + r3,p}]+,

da ≤

{
A1 if |hd3|

|hc3| <
|hd1|
|hc1|

A2 if |hd3|
|hc3| >

|hd1|
|hc1|

,

with

C1 = max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p2},
C2 = max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2},

A1 = min


[αc1 + r1,a − C2]+

[αd1 + r1,a −max{C1, αd3 + r3,a, αc2 + r2,p1}]+
[αd3 + r3,a −max{C1, αc2 + r2,p1}]+}

 ,

A2 = min


[αc1 + r1,a − C2]+

[αd3 + r3,a −max{C1, αd1 + r1,a, αc2 + r2,p1}]+
[αd1 + r1,a −max{C1, αc2 + r2,p1}]+

 ,

and for i ∈ {1, 3}, ri,a, ri,p, r2,p1, r2,p2, r3,c ≤ 0, ρr1,a + ρr1,p ≤ 1, ρr2,p1 + ρr2,p2 ≤ 1,
ρr3,c + ρr3,a + ρr3,p ≤ 1 and αc1 + r1,a = αc3 + r3,a.

In what follows, we present the IA-CP scheme and the achievability of (3.156).

IA-CP scheme in Gaussian PIMAC

Similar to the presented IA-CP scheme for the LD-PIMAC, this scheme is also in the
Gaussian setup based on common and private signaling with interference alignment.
First, the transmitters split their messages as follows:

• Tx1 splits its message W1 into W1,p and W1,a with rates R1,p and Ra, respec-
tively.

• Tx2 splits its message W2 into W2,p1 and W2,p2 with rates R2,p1 and R2,p2,
respectively.

• Tx3 splits its message W3 into W3,c, W3,a, and W3,p with rates R3,c, Ra, and
R3,p respectively.
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3 TIN in the PIMAC

The alignment message W1,a is further split into WR
1,a and W I

1,a with rates RRa and
RIa, with RRa + RIa = Ra. Similarly, W3,a is split into WC

3,a, C = {R, I}, with rate
RCa . The superscript C = {R, I} determines as whether the message is intended
for the real part or the imaginary part of the channel. Encoding: The alignment
messages WC

1,a and WC
3,a are encoded into xC,n1,a and xC,n3,a using nested-lattice codes.

Note that Tx1 and Tx3 use the same nested-lattice codebook (Λf ,Λc) with rate
Ra and power 1, where Λc and Λf denote the coarse and fine lattices, respectively.
Txi, i ∈ {1, 3}, encodes its message WC

i,a into a length-n codeword λCi,a from the
nested-lattice codebook (Λf ,Λc). Then, it constructs the following signal

xC,ni,a =

√
Pi,a
2

[(λCi,a − dCi,a) mod Λc], C = {R, I},

where Pi,a/2 is the power of the alignment signal xC,ni,a and dCi,a is an n-dimensional
random dither vector known also at the receivers. Since the length of all sequences
in this section is n, we drop the superscript n for the sake of simplicity.
Additionally, the messagesWi,p,W2,p1,W2,p2, andW3,c are encoded into xi,p, x2,p1,

x2,p2, and x3,c with powers Pi,p, P2,p1, P2,p2, and P3,c, respectively, using Gaussian
random codebooks. Then the transmitters send the signals

x3 = x3,c + e−jϕc3(xR3,a + jxI3,a︸ ︷︷ ︸
x3,a

) + x3,p,

x1 = e−jϕc1(xR1,a + jxI1,a︸ ︷︷ ︸
x1,a

) + x1,p,

x2 = x2,p1 + x2,p2,

where ϕk represents the phase of the channel hk, where k ∈ {d1, c1, d2, c2, d3, c3}.
Note that the assigned powers must fulfill the given power constraints, hence,

P3,c + P3,a + P3,p = P3 ≤ P,
P1,a + P1,p = P1 ≤ P,

P2,p1 + P2,p2 = P2 ≤ P.

Using (3.7) and (3.8), we can write the received signals of the receivers as follows

y1 = hd1(e−jϕc1x1,a + x1,p) + hd3(x3,c + e−jϕc3x3,a + x3,p) + hc2(x2,p1 + x2,p2) + z1,

y2 = hd2(x2,p1 + x2,p2) + hc1(e−jϕc1x1,a + x1,p) + hc3(x3,c + e−jϕc3x3,a + x3,p) + z2.

Recall from our discussion in Subsection 3.2.3.3 that the signals x1,a and x3,a must
be aligned at Rx2. Therefore, the powers of these two signals must be adjusted such
that

|hc1|2P1,a = |hc3|2P3,a, (3.157)
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which guarantees that the two alignment signals are received at Rx2 at the same
power. Namely, the alignment signals are received at Rx2 as

hc1e−jϕc1x1,a + hc3e−jϕc3x3,a

= |hc1|
√
P1,a

2

[
(λR1,a − dR1,a) mod Λc + j

[
(λI1,a − dI1,a) mod Λc

]]
+ |hc3|

√
P3,a

2

[
(λR3,a − dR3,a) mod Λc + j

[
(λI3,a − dI3,a) mod Λc

]]
= |hc1|

√
P1,a

2

[
(λR1,a − dR1,a) mod Λc + (λR3,a − dR3,a) mod Λc

+ j
[
(λI1,a − dI1,a) mod Λc + (λI3,a − dI3,a) mod Λc

]]
.

Decoding: Since the PIMAC is not symmetric, the decoding process is not the same
for both receives. Therefore, we discuss the decoding at the two receivers separately.
First consder Rx1. This receiver decodes first x3,c while all other signals are treated

as noise. To do this reliably, the following constraint needs to be satisfied

R3,c ≤ log2

(
1 +

|hd3|2P3,c

1 + |hd1|2P1 + |hd3|2(P3,a + P3,p) + |hc2|2P2

)
. (3.158)

As long as (3.158) is satisfied, Rx1 is able to decode W3,c and hence, it is able to
reconstruct and remove x3,c from the received signal y1. Further decoding process at
Rx1 depends on the channel strength. In what follows, we distinguish between two
different cases.

• |hd1|
|hc1| <

|hd3|
|hc3| : In this case, Rx1 proceeds the decoding in the following or-

der W3,a → W1,a → {W1,p,W3,p}. The receiver decodes each of these signals
while treating the other signals as noise, then it subtracts the contribution of
the decoded signal, and proceeds with decoding the next one. Note that Rx1
multiplies the received signal with ej(ϕci−ϕdi) before decoding the alignment
messages WC

i,a. Then after removing the contribution of WC
i,a from the received

signal, Rx1 multiplies the resulting signal with e−j(ϕci−ϕdi). Since nested-lattice
codes achieve the capacity of the point-to-point AWGN channel, the rate con-
straints for successive decoding of messages W3,a and W1,a at Rx1 are given
by

RRa = RIa ≤
1

2
log2

(
1 +

|hd3|2 P3,a

2
1
2(1 + |hd1|2P1 + |hd3|2P3,p + |hc2|2P2)

)
, (3.159)

RRa = RIa ≤
1

2
log2

(
1 +

|hd1|2 P1,a

2
1
2(1 + |hd1|2P1,p + |hd3|2P3,p + |hc2|2P2)

)
. (3.160)

Note the term 1
2 in the denominator is needed to obtain the fraction of the noise
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and interference power in the real or the imaginary part. Thus, we obtain

Ra ≤ log2

(
1 +

|hd3|2P3,a

1 + |hd1|2P1 + |hd3|2P3,p + |hc2|2P2

)
, (3.161)

Ra ≤ log2

(
1 +

|hd1|2P1,a

1 + |hd1|2P1,p + |hd3|2P3,p + |hc2|2P2

)
. (3.162)

• |hd3|
|hc3| <

|hd1|
|hc1| : In this case, the decoding order at Rx1 is W1,a → W3,a →

{W1,p,W3,p}. Similar to the previous case, we obtain the following rate con-
straints

Ra ≤ log2

(
1 +

|hd1|2P1,a

1 + |hd1|2P1,p + |hd3|2(P3,a + P3,p) + |hc2|2P2

)
, (3.163)

Ra ≤ log2

(
1 +

|hd3|2P3,a

1 + |hd1|2P1,p + |hd3|2P3,p + |hc2|2P2

)
. (3.164)

The remaining signals x1,p and x3,p are treated in the same way in both cases. Rx1
decodesW1,p andW3,p as in a multiple access channel while treatingW2,p1 andW2,p2

as noise. Rx1 can decode W1,p and W3,p successfully if the following conditions are
satisfied

R1,p ≤ log2

(
1 +

|hd1|2P1,p

1 + |hc2|2P2

)
, (3.165)

R3,p ≤ log2

(
1 +

|hd3|2P3,p

1 + |hc2|2P2

)
, (3.166)

R3,p +R1,p ≤ log2

(
1 +
|hd3|2P3,p + |hd1|2P1,p

1 + |hc2|2P2

)
. (3.167)

Now consiser Rx2. The decoding order at Rx2 isW3,c →W2,p1 → f(W1,a,W3,a)→
W2,p2, where f(W1,a,W3,a) is a function of W1,a and W3,a. Namely, Rx2 decodes the
sum of the lattice codewords corresponding toWR

1,a andWR
3,a and also the sum of the

lattice codewords corresponding to W I
1,a and W I

3,a. First, Rx2 decodes W3,c while
the other signals are treated as noise. For reliable decoding of W3,c the following
constraint needs to be satisfied

R3,c ≤ log2

(
1 +

|hc3|2P3,c

1 + |hc1|2P1 + |hc3|2(P3,a + P3,p) + |hd2|2P2

)
. (3.168)

Next, Rx2 reconstructs x3,c fromW3,c and it removes the interference caused by x3,c.
Then, it decodes W2,p1 while treating the other signals as noise. Therefore, the rate
of W2,p1 needs to satisfy

R2,p1 ≤ log2

(
1 +

|hd2|2P2,p1

1 + |hc1|2P1 + |hc3|2(P3,a + P3,p) + |hd2|2P2,p2

)
. (3.169)
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Next the receiver decodes the sums (|hc1|λR1,a + |hc3|λR3,a) mod Λc and (|hc1|λI1,a +

|hc3|λI3,a) mod Λc. Decoding these sums is possible as long as

RRa = RIa ≤
1

2

[
log2

(
1

2
+

|hc1|2 P1,a

2
1
2(1 + |hc1|2P1,p + |hc3|2P3,p + |hd2|2P2,p2)

)]+

. (3.170)

Since RRa = RIa and Ra = RRa +RIa, we obtain

Ra ≤
[
log2

(
1

2
+

|hc1|2P1,a

1 + |hc1|2P1,p + |hc3|2P3,p + |hd2|2P2,p2

)]+

. (3.171)

The receiver can then construct the received sum of alignment signals |hc1|x1,a +
|hc3|x3,a from the decoded sums of codewords (|hc1|λR1,a + |hc3|λR3,a) mod Λc and
(|hc1|λC1,a + |hc3|λC3,a) mod Λc. After reconstructing the sum of alignment signals,
its contribution is removed from the received signal and then W2,p2 is decoded. De-
coding W2,p2 is possible reliably as long as

R2,p2 ≤ log2

(
1 +

|hd2|2P2,p2

1 + |hc1|2P1,p + |hc3|2P3,p

)
. (3.172)

As a result of this decoding process, the following sum-rate is achievable

RΣ,IA-CP = R3,c + 2Ra +R1,p +R2,p1 +R2,p2 +R3,p, (3.173)

where the terms above satisfy (3.158)-(3.172). Since, we are interested in an approx-
imation of the sum-rate at high SNR, we translate the achievable sum-rate into the
achievable GDoF as follows

dΣ,IA-CP(α) ≤ d3,c + 2da + d1,p + d2,p1 + d2,p2 + d3,p, (3.174)

where

d3,c =
R3,c

log2 ρ
, da =

Ra
log2 ρ

, d1,p =
R1,p

log2 ρ
,

d3,p =
R3,p

log2 ρ
, d2,p1 =

R2,p2

log2 ρ
, d2,p2 =

R2,p2

log2 ρ
,

and ρ→∞. We start by defining

r3,c =
log2

(
P3,c

P

)
log2 ρ

, r1,a =
log2

(
P1,a

P

)
log2 ρ

, r3,a =
log2

(
P3,a

P

)
log2 ρ

, r1,p =
log2

(
P1,p

P

)
log2 ρ

,

r3,p =
log2

(
P3,p

P

)
log2 ρ

, r2,p1 =
log2

(
P2,p1

P

)
log2 ρ

, r2,p2 =
log2

(
P2,p2

P

)
log2 ρ

.

Note that since Pi,a, Pi,p, P2,p1, P2,p2, P3,c ≤ P and 1 < ρ, then we have

ri,a, ri,p, r2,p1, r2,p2, r3,c ≤ 0.

77



3 TIN in the PIMAC

Furthermore, we impose the constraints

ρr1,a + ρr1,p ≤ 1, ρr2,p1 + ρr2,p2 ≤ 1, ρr3,c + ρr3,a + ρr3,p ≤ 1,

in order to satisfy the power constraints, and

αc1 + r1,a = αc3 + r3,a

in order to satisfy (3.157). Now, we substitute these parameters in the rate con-
straints (3.158)-(3.172) and approximate the expression in the high SNR regime.
Consider the constraint (3.158). This can be written as

R3,c ≤ log2

(
1 +

|hd3|2P3,c

1 + |hd1|2P1 + |hd3|2(P3,a + P3,p) + |hc2|2P2

)
= log2

(
1 +

|hd3|2P P3,c

P

1 + |hd1|2P P1
P + |hd3|2P (P3,a+P3,p)

P + |hc2|2P P2
P

)

= log2

(
1 +

|hd3|2P P3,c

P

1 + |hd1|2P P1,a+P1,p

P + |hd3|2P (P3,a+P3,p)
P + |hc2|2P P2,p1+P2,p2

P

)

= log2

(
1 +

ραd3+r3,c

1 + ραd1(ρr1,a + ρr1,p) + ραd3(ρr3,a + ρr3,p) + ραc2(ρr2,p1 + ρr2,p2)

)
≈ log2

(
ραd3+r3,c

1 + ραd1(ρr1,a + ρr1,p) + ραd3(ρr3,a + ρr3,p) + ραc2(ρr2,p1 + ρr2,p2)

)
≈ log2(ρ)[αd3 + r3,c −max{0, αd1 + r1,a, αd1 + r1,p, αd3 + r3,a,

αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+,

where the approximation follows by considering SNR high enough so that the additive
constants can be neglected. By following a similar procedure, we can show that the
rate constraints (3.158)-(3.172) translate to

d3,c ≤ min{[αd3 + r3,c −max{0, αd1 + r1,a, αd1 + r1,p, αd3 + r3,a, αd3 + r3,p,

αc2 + r2,p1, αc2 + r2,p2}]+,
[αc3 + r3,c −max{0, αc1 + r1,a, αc1 + r1,p, αc3 + r3,a, αc3 + r3,p,

αd2 + r2,p1, αd2 + r2,p2}]+},

d1,p ≤ [αd1 + r1,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,
d3,p ≤ [αd3 + r3,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,

d3,p + d1,p ≤ [max{αd3 + r3,p, αd1 + r1,p} −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,
d2,p1 ≤ [αd2 + r2,p1 −max{0, αc1 + r1,p, αc1 + r1,a, αc3 + r3,p,

αc3 + r3,a, αd2 + r2,p2}]+,
d2,p2 ≤ [αd2 + r2,p2 −max{0, αc1 + r1,p, αc3 + r3,p}]+,
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3.3 TIN in the Gaussian PIMAC

and

da ≤ min{[αc1 + r1,a −max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2}]+,
[αd3 + r3,a −max{0, αd1 + r1,p, αd1 + r1,a, αd3 + r3,p, αc2 + r2,p1,

αc2 + r2,p2}]+,
[αd1 + r1,a −max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+},

if |hd1|
|hc1| <

|hd3|
|hc3| , and

da ≤ min{[αc1 + r1,a −max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2}]+,
[αd1 + r1,a −max{0, αd1 + r1,p, αd3 + r3,p, αd3 + r3,a, αc2 + r2,p1,

αc2 + r2,p2}]+,
[αd3 + r3,a −max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+},

if |hd3|
|hc3| <

|hd1|
|hc1| . This shows the achievability of the rate given in Proposition 8.

IA-CP versus TDMA-TIN

In order to show the suboptimality of TDMA-TIN in regime 3, we need to show
that the achievable GDoF of IA-CP is strictly larger than that of TDMA-TIN. By
varying the power allocation parameters (r’s) in the IA-CP scheme, different GDoF
can be achieved. In order to obtain the highest achievable GDoF of the scheme, one
has to optimize over the various power allocations. Next, we show that there exist
power allocations that lead to higher achievable GDoF than that of TDMA-TIN in
regime 3.

Corollary 4. TDMA-TIN cannot achieve the GDoF of the Gaussian PIMAC in
regime 3.

Proof. To prove this corollary, we need to find power allocations for the IA-CP
scheme (presented in Proposition 8) which lead to higher GDoF than (3.105) in
regime 3. First, we fix the power allocation parameters of IA-CP for sub-regime 3A
as follows

r1,p = −αc1, r2,p2 = −αc2, r3,c = 0, r1,a = r2,p1 = r3,a = r3,p = −∞.

This is equivalent to setting the powers of the private, common, and alignment
signals to P1,p = 1

|hc1|2 P2,p2 = 1
|hc2|2 (note that 1

|hc1|2 ,
1

|hc2|2 < P according to (3.9)),
P3,c = P , and P1,a = P2,p1 = P3,a = P3,p = 0. This satisfies the power constraint.
Next, we substitute these parameters in Proposition 8 to obtain

d3c ≤ min{αd3 − (αd1 − αc1), αc3 − (αd2 − αc2)},
d1,p ≤ αd1 − αc1,
d2,p2 ≤ αd2 − αc2,

d3,p, da, d2,p1 ≤ 0,
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for an achievable GDoF of

dΣ,IA−CP,3A(α) = min{αd3 + (αd2 − αc2), αc3 + (αd1 − αc1)}. (3.175)

Now, similar to the analysis for the LD-PIMAC, by comparing (3.175) with (3.105),
we can show that the achievable GDoF using IA-CP is higher than that of the
TDMA-TIN in sub-regime 3A.
Now, we prove Corollary 4 for sub-regime 3B. In this sub-regime, we choose the

power allocation parameters of IA-CP as follows 5

r1,a =
−2

log2 ρ
, r3,a = αc1 − αc3 −

2

log2 ρ
, r3,c =

−2

log2 ρ

r3,p =
−2

log2 ρ
− αc3, r2,p1 = −αc2 −

2

log2 ρ
, r1,p =

−2

log2 ρ
− αc1,

r2,p2 = max{(αd3 − αc3)− (αd1 − αc1), αd1 − (αd3 − αc3)} − αd2 −
2

log2 ρ
.

which corresponds to setting

P1,a =
P

4
, P3,a =

|hc1|2

|hc3|2
P

4
, P3,c =

P

4
,

P3,p =
1

4|hc3|2
, P2,p1 =

1

4|hc2|2
, P1,p =

1

4|hc1|2

P2,p2 = max

{
|hd3|2|hc1|2

4|hc3|2|hd1|2|hd2|2
,
P |hd1|2|hc3|2

4|hd3|2|hd2|2

}
.

This power allocation can satisfy the power constraint and the alignment constraint.
By applying this power allocation to Proposition 8 and letting ρ→∞, we obtain

da = min{αd1 − αd3 + αc3, (αd3 − αc3)− (αd1 − αc1)},
d3,c = αc3 − (αd2 − αc2),

d3,p ≤ αd3 − αc3,
d2,p1 = αd2 − αc2 − αc1,
d2,p2 = max{αd1 − αd3 + αc3, (αd3 − αc3)− (αd1 − αc1)},
d1,p ≤ αd1 − αc1,

d1,p + d3,p = αd3 − αc3.

Hence, we achieve the following GDoF

dΣ,IA−CP,3B(α) = (αd3 − αc3) + (αd2 − αc2) + d3,c + da. (3.176)

5In Appendix 3.A, it is explained how we choose the power allocation using the insight obtained
from LD-PIMAC.
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Due to the fact that in sub-regime 3B, d3,c + da is always positive, the achievable
GDoF is strictly larger than (αd3 − αc3) + (αd2 − αc2). Moreover, by substituting
d3,c into (3.176), we obtain dΣ,IA−CP,3B(α) = αd3 +da which is larger than αd3 since
in sub-regime 3B, da is positive. Hence, we conclude that the achievable GDoF of
IA-CP is larger than that of TDMA-TIN given in (3.105) in sub-regime 3B.
Finally, we show Corollary 4 for sub-regime 3C. To this end, we choose the power

allocation parameters of IA-CP accordingly. The following power allocation param-
eters can be used to show that IA-CP outperforms TDMA-TIN in terms of GDoF
in sub-regime 3C, and thus prove Corollary 4 in this sub-regime.

r1,a = −(αc1 − αc3)+ − 1

log2 ρ
, r1,p = −αc1 −

1

log2 ρ
,

r2,p1 = −αc2 −
1

log2 ρ
, r2,p2 = max{d(1)

a , d(2)
a } − αd2 −

1

log2 ρ
,

r3,p = −αc3 −
1

log2 ρ
, r3,a = −(αc3 − αc1)+ − 1

log2 ρ
, r3,c = −∞,

where d(1)
a and d(2)

a are defined in Table 3.5. These correspond to setting

Cases d
(1)
a d

(2)
a

αd3 − αc3 > αd1 − αc1
αc3 < αc1 αd3 − αc3 − αd1 + αc1 αd1 − αc1 − αd3 + 2αc3

αc1 ≤ αc3 αd3 − αc3 − αd1 + αc1 αd1 − αd3 + αc3

αd3 − αc3 < αd1 − αc1
αc3 < αc1 αd1 − αc1 − αd3 + αc3 αd3 − αd1 + αc1

αc1 ≤ αc3 αd1 − αc1 − αd3 + αc3 αd3 − αc3 − αd1 + 2αc1

Table 3.5: The values of d(1)
a and d(2)

a .

P1,a = P3,a
|hc3|2

|hc1|2
, P3,p =

1

2|hc3|2
, P1,p =

1

2|hc1|2
, P2,p1 =

1

2|hc2|2
, P3,c = 0.

The remaining parameters are given in Table 3.6.

P3,a P2,p2

|hd3|
|hc3| >

|hd1|
|hc1|

|hc3|2 < |hc1|2 P
2 max

{
|hd3|2|hc1|2

2|hd1|2|hd2|2|hc3|2
, P |hd1|2|hc3|4

2|hd3|2|hc1|2|hd2|2

}
|hc1|2 ≤ |hc3|2 P

2
|hc1|2
|hc3|2 max

{
|hd3|2|hc1|2

2|hd1|2|hd2|2|hc3|2
, P |hd1|2|hc3|2

2|hd3|2|hd2|2

}
|hd3|
|hc3| <

|hd1|
|hc1|

|hc3|2 < |hc1|2 P
2 max

{
|hd1|2|hc3|2

2|hc1|2|hd3|2|hd2|2
, P |hd3|2|hc1|2

2|hd1|2|hd2|2

}
|hc1|2 ≤ |hc3|2 P

2
|hc1|2
|hc3|2 max

{
|hd1|2|hc3|2

2|hc1|2|hd3|2|hd2|2
, P |hd3|2|hc1|4

2|hc3|2|hd1|2|hd2|2

}
Table 3.6: Power allocation parameters (P3,a and P2,p2) for IA-CP in sub-regime 3C.

The given power allocation parameters satisfy the power constraint and the align-
ment constraint. By substituting these power allocation parameters in the con-
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3 TIN in the PIMAC

straints in Proposition 8 and letting ρ→∞, we obtain

d3,c = 0

d1,p ≤ αd1 − αc1
d3,p ≤ αd3 − αc3

d1,p + d3,p = max{αd1 − αc1, αd3 − αc3}
d2,p1 = αd2 − αc2 −min{αc1, αc3}
d2,p2 = max{d(1)

a , d(2)
a }

da = min{d(1)
a , d(2)

a },

where d(1)
a and d(2)

a are provided in Table 3.5. Hence, the proposed scheme achieves

dΣ,IA−CP,3C(α) = 2da + d1,p + d3,p + d2,p1 + d2,p2 + d3,c

= da + max{αd3 − αc3, αd1 − αc1}+ αd2 − αc2︸ ︷︷ ︸
dΣ,TDMA-TIN,3C(α)

> dΣ,TDMA-TIN,3C(α),

since in sub-regime 3C, da is positive.
Therefore, TDMA-TIN is outperformed by IA-CP in regime 3, in terms of GDoF.

This shows that TDMA-TIN cannot achieve the GDoF of the Gaussian PIMAC in
regime 3 which completes the proof of corollary 4.

Remark 9. Similar to the LD-PIMAC, in the Gaussian case the proposed IA-CP
scheme cannot outperform TDMA-TIN in terms of GDoF when αd3−αc3 = αd1−αc1.
Surprisingly, while TDMA-TIN achieves the sum-capacity of the LD-PIMAC when
nd3 − nc3 = nd1 − nc1, it cannot achieve the GDoF of the Gaussian PIMAC in the
equivalent case, i.e., αd3−αc3 = αd1−αc1, except over a subset of channel coefficient
values of measure 0. Moreover, naive-TIN is also GDoF suboptimal in this case. We
show this by introducing a scheme which outperforms TDMA-TIN and naive-TIN in
terms of GDoF. Interestingly, in this scheme phase alignment [CJW10] is required.
The scheme and its achievable GDoF are presented in Appendix 3.B in details.

As we have shown, TDMA-TIN is not GDoF optimal in regime 3 and for the
special case αd3 − αc3 = αd1 − αc1. Now, we are ready to extend this result and
show suboptimality of TDMA-TIN in these ceases. This result is presented in the
following Corollary.

Corollary 5. TIN cannot achieve the sum-capacity of Gaussian PIMAC within a
constant gap in regime 3 and for the case αd3 − αc3 = αd1 − αc1.

Proof. As we have shown in Lemma 9, the achieved GDoF using TIN at the receiver
side alongside power control at the transmitter side is upper bounded by the GDoF
of TDMA-TIN. Moreover, we have shown that TDMA-TIN is outperformed in terms
of GDoF by better schemes in regime 3 and for the case when αd3−αc3 = αd1−αc1.
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3.3 TIN in the Gaussian PIMAC

Hence, in these cases, TDMA-TIN and subsequently TIN with power control cannot
achieve the GDoF of the Gaussian PIMAC, i.e., dΣ(α). Therefore, the gap between
the achievable GDoF of TIN and the GDoF of the Gaussian PIMAC is lower bounded
by a positive value a. This can be written as

dΣ(α)− dΣ,TIN(α) ≥ a > 0.

Now, by using the definition of the GDoF, we can write the capacity of Gaussian
PIMAC and achievable sum-rate of TIN as follows

CG,Σ(ρ,α) = dΣ(α) log2(ρ)− o(log2(ρ))

RΣ,TIN(ρ,α) = dΣ,TIN(α) log2(ρ)− oTIN(log2(ρ)).

Now, by obtaining the difference between the sum-capacity and the achievable sum-
rate, we can write

CG,Σ(ρ,α)−RΣ,TIN(ρ,α) ≥ a log2(ρ)−oIA-CP(log2(ρ))− oTIN(log2(ρ))︸ ︷︷ ︸
−os(log2(ρ))

.

While the term −os(log2(ρ)) does not scale with ρ as ρ→∞, the first term a log2(ρ)
increases by ρ. This shows that the gap between the sum-capacity of the Gaussian
PIMAC and the achievable sum-rate of TIN grows as a function of ρ. Hence, TIN
cannot achieve the sum-capacity of Gaussian PIMAC within a constant gap.

3.3.4 Discussion and Numerical Analysis

Discussion

Our analysis shows two interesting results about the GDoF optimality of TIN. Firstly,
there are some regimes where TIN is suboptimal, although we have very-weak in-
terference, in the sense that the strongest interference caused by a user plus the
strongest interference it receives is less than or equal to the strongest desired chan-
nel parameter, i.e.,

max{αc3, αc1}+ αc2 ≤ αd2 (3.177)
max{αc3, αc1}+ αc2 ≤ max{αd1, αd3}. (3.178)

Secondly, there are some regimes where interference is not very-weak (according to
(3.177) and (3.178)), but still TIN is optimal.
Regarding the first point, IA-CP (in regime 3) leads to a better performance

than using plain TIN. This conclusion is particularly interesting in regimes where
both receivers experience very-weak interference according to conditions (3.177) and
(3.178). Note that the 2-user IC which consists of Tx1, Tx2, Rx1, and Rx2, operates
in the noisy interference regime (αc1 + αc2 ≤ min{αd1, αd2}). By adding to this
setup a transmitter which has a strong channel to its desired receiver (αd1 < αd3)
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Figure 3.10: Normalized achievable sum-rate as a function of αd3 for a PIMAC
with αd1 = αd2 = 1, αc3 = 0.45, αc1 = αc2 = 0.5. Moreover,
ᾱd3 = αd1 − αc1 + αc3, αd3,l = max{αd1 − αc1, αd1 + αc3 − 2αc1}, and
αd3,u = min{αd1 + αc3, αd1 − αc1 + 2αc3}

and which causes very weak interference to the undesired Rx (αc3 < αc1), we ob-
tain a PIMAC which satisfies (3.177) and (3.178). One would expect that TIN is
optimal in this case. However, even in this case interference alignment might out-
perform TIN although the channel parameters satisfy (3.177) and (3.178). For in-
stance, if (αd1, αc1, αd2, αc2, αd3, αc3) = (8, 4, 7, 2, 9, 3), then while conditions (3.177)
and (3.178) are satisfied, the channel is in sub-regime 3C where IA-CP outperforms
TDMA-TIN.
Regarding the second point, it can be seen that the interference in the parts of

regimes 1, 2 (for instance when αc3 > αd2−αc2) cannot be characterized as very-weak
(according to (3.177) and (3.178)). However, TDMA-TIN is still GDoF optimal in
this regime. It is worth mentioning that the GDoF optimality of TIN in this case
(αc3 > αd2 −αc2) is mainly due to the structure of the PIMAC. For instance, if Tx2
and Tx3 were allowed to communicate with Rx1 and Rx2, respectively, then TIN
would not be optimal in whole sub-regime αc3 > αd2 − αc2. On the other hand, the
GDoF optimality of TIN in regimes 1C is mainly due to our new lemma (Lemma
11) and upper bounds developed in Lemmata 14 and 15.

Numerical Analysis

Here, we present some numerical comparison of the achievable rates of the TIN
schemes with a sum-rate upper bounds. Fig. 3.10 shows the normalized achievable
sum-rate RΣ/ log2 ρ as a function of αd3 for a PIMAC with αd1 = αd2 = 1, αc3 = 0.45
and αc1 = αc2 = 0.5. While in Fig. 3.10a, ρ = 40dB, in Fig. 3.10b, ρ = 100dB.
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3.4 Summary

Notice that the 2-user IC consists of Tx1, Tx2, Rx1, and Rx2 operates in very weak
interference regime. As it is shown in both figures, for αd3 ≤ αd3,l, the slopes of
the achievable sum-rate of TDMA-TIN and Naive-TIN are the same as that of the
upper bound. This indicates that these schemes are asymptotically optimal (within a
constant gap). However, this optimality will be lost if the link from Tx3 to Rx1 gets
stronger. Interestingly, although the receivers of PIMAC still experience very-weak
interference, neither naive-TIN nor TDMA-TIN can be optimal in some subsets of
sub-regime 3C corresponds to αd3 ∈ [αd3,l, αd3,u], where

αd3,l = max{αd1 − αc1, αd1 + αc3 − 2αc1}
αd3,u = min{αd1 + αc3, αd1 − αc1 + 2αc3}.

The better performance of IA-CP than TDMA-TIN at asymptotically high SNR in
sub-regime 3C can be seen in Fig3.10b. Now, consider the normalized gap between
the upper bound and the achievable sum-rate of TIN and TDMA-TIN (with respect
to log2 ρ) in regimes where these schemes are GDoF-optimal, i.e., αd3 ≤ αd3,l and
αd3 ≥ αd3,u. It can be seen that this gap in Fig. 3.10a is larger than the one
observed in Fig. 3.10b. This observation visualizes the statement that the impact of
the constant gap is negligible compared to the capacity for high SNR values.

3.4 Summary

We examined the optimality of the simple scheme of treating interference as noise
(TIN) in a network consisting of a P2P channel interfering with a MAC (PIMAC).
We derived some upper bounds on the sum-rate for both the deterministic PIMAC
and the Gaussian PIMAC. Then, we characterized regimes of channel parameters
where TIN is sum-capacity optimal for the deterministic PIMAC, and sum-capacity
optimal within a constant gap for the Gaussian one. It turns out that one has to
combine TIN with TDMA in order to improve the performance of TIN, and make
it optimal for a wider range of parameters. This combination, denoted TDMA-TIN,
strictly outperforms naive-TIN in the Gaussian PIMAC. This leads to the following
conclusion: The naive-TIN scheme where all transmitters transmit simultaneously
and all receivers treat interference as noise is always a suboptimal scheme in the
PIMAC (except for a special case). This conclusion is in contrast to the 2-user
interference channel where naive-TIN is sum-capacity optimal in the so-called noisy
interference regime. We have also shown that TDMA-TIN is outperformed by a
combination of private and common signaling with interference alignment in some
cases. Interestingly, this includes cases where both receivers experience very-weak
interference.
Surprisingly, although TIN is optimal (within a constant gap) in some regimes

of the Gaussian PIMAC with very-weak interference, there exists regimes also with
very-weak interference where TIN is not optimal. In these regimes, interference
alignment leads to rate improvement. Furthermore, there exist regimes where not
all interference is very-weak, but still TIN is optimal.
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3 TIN in the PIMAC

3.A An Example for Choosing Power Allocation
Parameters

Here, we explain how to use the insight of the linear deterministic case, for choos-
ing the power allocation parameters for the Gaussian case. To do this, we explain
the power allocation IA-CP for sub-regime 3B. First, we recall the graphical illus-
tration of the received signal in the LD-PIMAC for this sub-regime. This is shown
in Fig. 3.8. Now, we need to replace the bit levels in the deterministic setup
with the power levels in the Gaussian setup. To do this, we replace nk by αk for all
k ∈ {d1, c1, d2, c2, d3, c3}. Doing this, we get Fig. 3.11. Notice that, while the length
of each block in Fig. 3.8 (for the LD-PIMAC) represents the rate of the correspond-
ing signal, in the Gaussian case it represents the DoF achieved by each signal. As an
example, the length of the block which represents x3,c is given by d3,c in Fig. 3.11.
Notice that the length of the blocks which represent x1,a and x3,a are the same and
d1,a = d3,a = da.

0 Tx1 Tx2 Tx3 Tx1 Tx2 Tx3
Rx1 Rx2

αd3
x3,c

0

x3,a

0

x3,p

0αc2
0

αd1
x1,a

0

x1,p

αc1
x1,a

0

da

αd2, αc3
0

x2,p1

0

x2,p2

x3,c

0

x3,a

0

Figure 3.11: A graphical illustration showing the received signals at receivers 1 and
2 of the Gaussian PIMAC for sub-regime 3B.

Now, we are ready to choose the power allocation parameters. In what follows,
first we choose the power allocation parameters of the common signal, next alignment
signals and finally we deal with private signals. First, consider x3,c. As it is shown
in Figure 3.11, this signal is received at Rx1 at power level αd3. Roughly speaking,
this power level is a logarithmic representation of P |hd3|2. By dividing this received
power by |hd3|2 which represents the channel from Tx3 to Rx1, we obtain the transmit
power of x3,c. Hence, at the moment we set the power of x3,c to P . Similarly, we
can set the power of x1,a to P . Since x3,a and x1,a have to be aligned at Rx2, the
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3.A An Example for Choosing Power Allocation Parameters

alignment condition
P3,a|hc3|2

!
= P1,a|hc1|2

has to be satisfied. Hence, we set the power of x3,a to P |hc1|2
|hc3|2 . Now, we need to

choose the power of the private signals. First consider x1,p, x2,p1, and x3,p. All these
signals are received at the noise level at the undesired Rx. Hence, we set the power
of x1,p, x2,p1, and x3,p to 1

|hc1|2 ,
1

|hc2|2 , and
1

|hc3|2 , respectively. Finally, we set the
power of x2,p2. This signal is received at Rx2 at power level αc1−da. We can obtain
da easily from

Ra = min{(nd3 − nc3)− (nd1 − nc1), nd1 + nc3 − nd3}

(given for the linear deterministic case). To obtain da, we replace the n-parameters
in Ra with the α-parameters. Hence, we write

da = min{(αd3 − αc3)− (αd1 − αc1), αd1 + αc3 − αd3}.

Hence, x2,p2 is received at Rx2 at power level

αc1 − da = max{(αd3 − αc3)− (αd1 − αc1), αd1 − (αd3 − αc3)}.

Writing this power level in linear scale, we obtain

max

{
P |hd3|2P |hc1|2

P |hc3|2P |hd1|2
,
P |hd1|2P |hc3|2

P |hd3|2

}
.

Note that this is the received power of x2,p2 at Rx2. To obtain the transmit power
of x2,p2, we divide this expression by |hd2|2. Doing this, the allocated power to x2,p2

is

max

{
P |hd3|2P |hc1|2

P |hc3|2P |hd1|2|hd2|2
,
P |hd1|2P |hc3|2

P |hd3|2|hd2|2

}
.

It is obvious that the chosen powers violate the power constraint P . To fix this, we
scale the allocated powers by a constant such that the power constraints are satisfied.
Hence, we write

P1,a = aP, P1,p = a
1

|hc1|2
, P2,p1 = a

1

|hc2|2
,

P3,c = aP, P3,a = a
P |hc1|2

|hc3|2
, P3,p = a

1

|hc3|2

P2,p2 = amax

{
|hd3|2|hc1|2

|hc3|2|hd1|2|hd2|2
,
P |hd1|2|hc3|2

|hd3|2|hd2|2

}
with 

P1,a + P1,p

!
≤ P,

P2,p1 + P2,p2

!
≤ P

P3,c + P3,a + P3,p

!
≤ P

.
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3 TIN in the PIMAC

All three power constraints will be satisfied if a ≤ 1
3 . For sake of simplicity, we

choose a such that its binary logarithm is integer. Hence, here we use a = 1
4 . Notice

that since a does not grow with ρ, this scaling does not have any impact on the
GDoF. Now, we want to obtain the power allocation parameter r for each signal.
For instance, consider signal x3,c with power P3,c = P

4 . Then, we can write

r3,c =
log2

(
P3,c

P

)
log2 ρ

=
−2

log2 ρ

Similarly, for all other signals, we can write

r1,a =
−2

log2 ρ
, r1,p =

−2

log2 ρ
− αc1, r2,p1 = − 2

log2 ρ
− αc2,

r3,c =
−2

log2 ρ
, r3,a = − 2

log2 ρ
+ αc1 − αc3, r3,p =

−2

log2 ρ
− αc3,

r2,p2 = max{(αd3 − αc3)− (αd1 − αc1), αd1 − (αd3 − αc3)} − αd2 −
2

log2 ρ
.
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3.B Suboptimality of TIN when αd3 − αc3 = αd1 − αc1
Here, we show the suboptimality of TDMA-TIN when αd3 − αc3 = αd1 − αc1 holds.
To do this, we propose a scheme which outperforms TDMA-TIN in term of GDoF.
This scheme is similar to IA-CP (proposed in subsection 3.3.3.2) from this aspect
that both schemes are based on common and private signaling with interference
alignment. The difference of the schemes is that while in IA-CP the interference
alignment is done in the signal level space, in this scheme, the phase alignment is
required [CJW10]. This scheme is called PA-CP (phase alignment with common and
private signaling).
Before we present the scheme in details, we simplify our model as follows. In

Gaussian PIMAC, the received signals of two receivers are given by

y1 = |hd1|ejϕd1x1 + |hc2|ejϕc2x2 + |hd3|ejϕd3x3 + z1

y2 = |hc1|ejϕc1x1 + |hd2|ejϕd2x2 + |hc3|ejϕc3x3 + z2.

Now, by defining x̃1 = ejϕd1x1, x̃3 = ejϕd3x3, ỹ2 = e−j(ϕc1−ϕd1)y2, and z̃2 = e−j(ϕc1−ϕd1)z2,
we write

y1 = |hd1|x̃1 + |hc2|ejϕc2x2 + |hd3|x̃3 + z1

ỹ2 = |hc1|x̃1 + |hd2|ej(ϕd2−ϕc1+ϕd1)x2 + |hc3|ej(ϕc3−ϕd3−ϕc1+ϕd1)x̃3 + z̃2.

We proceed by defining x̃2 = ej(ϕd2−ϕc1+ϕd1)x2, θ = ϕc2 − ϕd2 + ϕc1 − ϕd1, and
ϕ = ϕc3 − ϕd3 − ϕc1 + ϕd1. Doing this, we obtain

y1 = |hd1|x̃1 + |hc2|ejθx̃2 + |hd3|x̃3 + z1

ỹ2 = |hc1|x̃1 + |hd2|x̃2 + |hc3|ejϕx̃3 + z̃2.

As it is shown above the input-output relationship of any PIMAC can be rewritten
such that all channels except two of them are real. Hence, without loss of generality,
we present the transmission scheme for a simplified PIMAC with the input output
relationship given as follows

y1 = |hd1|x1 + |hc2|ejθx2 + |hd3|x3 + z1 (3.179)

y2 = |hc1|x1 + |hd2|x2 + |hc3|ejϕx3 + z2. (3.180)

Note that all input and output signals in (3.179) and (3.180) are complex. Now, by
writing the complex numbers in an alternative vector form with real entries (as in
[CJW10]), we obtain[

yR1
yI1

]
= |hd1|

[
xR1
xI1

]
+ |hc2|

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
xR2
xI2

]
+ |hd3|

[
xR3
xI3

]
+

[
zR1
zI1

]
(3.181)[

yR2
yI2

]
= |hc1|

[
xR1
xI1

]
+ |hd2|

[
xR2
xI2

]
+ |hc3|

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
xR3
xI3

]
+

[
zR2
zI2

]
, (3.182)
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where xR and xI represent the real and imaginary part of signal x, respectively.
Now, we are ready to present the transmission scheme. The transmitters split their
messages as follows:

• Tx1 splits its message W1 into WR
1,p, W I

1,p, and W I
1,a with rates RR1,p, RI1,p, and

RI1,a, respectively.

• Tx2 splits its messageW2 intoWR
2,p andW I

2,p with rates RR2,p, RI2,p, respectively.

• Tx3 splits its message W3 into WR
3,c, W I

3,c, and WR
3,a with rates RR3,c, RI3,c, and

RR,n3,a , respectively.

Note that in what follows we set RI1,a = RR3,a = Ra.
Encoding: Similar to the scheme presented in subsection 3.3.3.2, while the align-

ment messages are encoded using nested-lattice codes (Λf ,Λc) with power 1 and rate
Ra, other messages are encoded using Gaussian random codebooks. Encoding the
alignment signals is done in the same way as discussed in subsection 3.3.3.2 for IA-
CP. For example, the message W I

1,a is encoded into a length-n codeword λI1,a using
the nested-lattice codebook (Λf ,Λc). Then, the signal

xI,n1,a =
√
P I1,a

[(
λI1,a − dI1,a

)
mod Λc

]
is constructed, where P I1,a is the power allocated to this signal and dI1,a is an n-
dimensional random dither vector which is also known at the receivers. Similarly,
Tx3 generates xR3,a. The generated signals and their powers are summarized in Table
3.7.
Then, each transmitter generates its signal as follows6[
xR1
xI1

]
=

[
xR1,p
xI1,p

]
+

[
0
xI1,a

]
,

[
xR2
xI2

]
=

[
xR2,p
xI2,p

]
,

[
xR3
xI3

]
=

[
xR3,c
xI3,c

]
+ xR3,a

[
sin(ϕ)
cos(ϕ)

]
.

(3.183)

Note that the assigned powers given in Table 3.7 satisfy the power constraint.
Decoding: First, we present the decoding at Rx1. By using (3.183), we rewrite the

received signal (3.181) as follows[
yR1
yI1

]
=|hd1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hc2|

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
xR2,p
xI2,p

]
+ |hd3|

([
xR3,c
xI3,c

]
+ xR3,a

[
sin(ϕ)
cos(ϕ)

])
+

[
zR1
zI1

]
.

Note that yR1 and yI1 are received over two orthogonal dimensions, i.e., real and
imaginary part of the received signal y1. Hence, Rx1 can decode each dimension

6We drop the superscript n since all sequences have the length n.
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Encoded Generated Power Encoding
Message Signal

WR
1,p xR,n1,p PR1,p = 1

4
1

|hc1|2 Gaussian random codebook

W I
1,p xI,n1,p P I1,p = 1

4
1

|hc1|2 Gaussian random codebook

W I
1,a xI,n1,a P I1,a = P

4 min
{

1, |hc3|
2

|hc1|2

}
nested-lattice codebook

WR
2,p xR,n2,p PR2,p = 1

4
1

|hc2|2 Gaussian random codebook

W I
2,p xI,n2,p P I2,p = 1

4
1

|hc2|2 Gaussian random codebook

WR
3,c xR,n3,c PR3,c =

{
P
4 if |hd2|2

|hc2|2 ≤ P |hc3|
2

0 otherwise
Gaussian random codebook

W I
3,c xI,n3,c P I3,c =

{
P
4 if |hd2|2

|hc2|2 ≤ P |hc3|
2

0 otherwise
Gaussian random codebook

WR
3,a xR,n3,a PR3,a = P

4 min
{

1, |hc1|
2

|hc3|2

}
nested-lattice codebook

Table 3.7: The message encoding and the allocated power to each signal are given in
this table.

without suffering from any interference caused by the other dimension. Here, Rx1
decodes first yR1 and then yI1 . Rx1 decodes yR1 in the following order: WR

3,c →WR
3,a →

WR
1,p. The receiver decodes each of these signals while the remaining signals in yR1 are

treated as noise, then it removes the contribution of the decoded signal, and proceeds
with the decoding. Similar to subection 3.3.3.2, we can write the conditions for the
reliable decoding of xR3,c, xR3,a, and xR1,p as follows

RR3,c ≤
1

2
log2

(
1 +
|hd3|2PR3,c
1
2 + I

R,(1)
3,c

)
(3.184)

Ra ≤
1

2
log2

(
1 +

|hd3|2PR3,a sin2(ϕ)
1
2 + |hd1|2PR1,p + |hc2|2(cos2(θ)PR2,p + sin2(θ)P I2,p)

)
(3.185)

RR1,p ≤
1

2
log2

(
1 +

|hd1|2PR1,p
1
2 + |hc2|2(cos2(θ)PR2,p + sin2(θ)P I2,p)

)
, (3.186)

where

I
R,(1)
3,c = |hd3|2PR3,a sin2(ϕ) + |hd1|2PR1,p + |hc2|2(cos2(θ)PR2,p + sin2(θ)P I2,p).

As long as the rates of the messages satisfy the conditions (3.184)-(3.186), Rx1 is
able to decode xR3,c, xR3,a, and xR1,p successfully. Hence, Rx1 is able to remove the
interference caused by xR3,a before decoding yI1 . Doing this, Rx1 obtains

yI1 − cos(ϕ)xR3,a = |hd1|(xI1,p + xI1,a) + |hc2|(sin(θ)xR2,p + cos(θ)xI2,p) + |hd3|xI3,c + zI1 .
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3 TIN in the PIMAC

Next, Rx1 decodes in the following order: W I
3,c → W I

1,a → W I
1,p. This successive

decoding is done similar to above. The successful decoding can be accomplished as
long as

RI3,c ≤
1

2
log2

(
1 +
|hd3|2P I3,c
1
2 + I

I,(1)
3,c

)
(3.187)

Ra ≤
1

2
log2

(
1 +

|hd1|2P I1,a
1
2 + |hd1|2P I1,p + |hc2|2(sin2(θ)PR2,p + cos2(θ)P I2,p)

)
(3.188)

RI1,p ≤
1

2
log2

(
1 +

|hd1|2P I1,p
1
2 + |hc2|2(sin2(θ)PR2,p + cos2(θ)P I2,p)

)
, (3.189)

where

I
I,(1)
3,c = |hd1|2(P I1,p + P I1,a) + |hc2|2(sin2(θ)PR2,p + cos2(θ)P I2,p).

Now, we explain the decoding at Rx2. The received signal at Rx2 in (3.182) can be
rewritten as[

yR2
yI2

]
=|hc1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hd2|

[
xR2,p
xI2,p

]

+ |hc3|


[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
︸ ︷︷ ︸

U

[
xR3,c
xI3,c

]
+

[
0
xR3,a

]+

[
zR2
zI2

]
.

Note that due to the rotation matrix U , signals xR3,c and xI3,c are received in both
components yR2 and yI2 . In order to separate these two signals in two orthogonal
dimensions, we rotate the vector

[
yR2 yI2

]T by multiplying UT from right hand side
to it. Note that UTU = I2. Hence, we have

UT

[
yR2
yI2

]
=UT

(
|hc1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hd2|

[
xR2,p
xI2,p

]
+ |hc3|

[
0
xR3,a

]
+

[
zR1
zI1

])
+ |hc3|

[
xR3,c
xI3,c

]
. (3.190)

Now, Rx2 decodes WR
3,c and W I

3,c separately. This can be done successfully as long
as

RR3,c ≤
1

2
log2

(
1 +
|hc3|2PR3,c
1
2 + I

R,(2)
3,c

)
(3.191)

RI3,c ≤
1

2
log2

(
1 +
|hc3|2P I3,c
1
2 + I

I,(2)
3,c

)
, (3.192)
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where

I
R,(2)
3,c = cos2(ϕ)[|hc1|2PR1,p + |hd2|2PR2,p]

+ sin2(ϕ)[|hc1|2(P I1,p + P I1,a) + |hd2|2P I2,p + |hc3|2PR3,a],

I
I,(2)
3,c = sin2(ϕ)[|hc1|2PR1,p + |hd2|2PR2,p]

+ cos2(ϕ)[|hc1|2(P I1,p + P I1,a) + |hd2|2P I2,p + |hc3|2PR3,a].

After successful decoding of xR3,c and xI3,c, Rx2 rotates the vector in (3.190) back to[
yR2 yI2

]T by multiplying U from right hand side to (3.190). Next, it removes the
interference caused by xR3,c and xI3,c and obtains

[
ỹR2 ỹI2

]T given by[
ỹR2
ỹI2

]
= |hc1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hd2|

[
xR2,p
xI2,p

]
+ |hc3|

[
0
xR3,a

]
+

[
zR1
zI1

]
.

Now, Rx2 proceeds by decoding xR2,p while xR1,p is treated as noise. Notice that all
signals which are contained in ỹI2 do not cause any interference during decoding xR2,p.
Reliable decoding of xR2,p is possible as long as

RR2,p ≤
1

2
log2

(
1 +

|hd2|2PR2,p
1
2 + |hc1|2PR1,p

)
. (3.193)

Next, Rx2 decodesW I
2,p → f(WR

3,a,W
I
1,a), where f(WR

3,a,W
I
1,a) is the sum

(
λR3,a + λI1,a

)
mod Λc. Rx2 can decode W I

2,p successfully if

RI2,p ≤
1

2
log2

(
1 +

|hd2|2P I2,p
1
2 + |hc1|2P I1,p + |hc1|2P I1,a + |hc3|2PR3,a

)
. (3.194)

Next, Rx2 removes the interference caused by xI2,p and decodes f(WR
3,a,W

I
1,a). Note

that xR3,a and xI1,a are aligned at Rx2 since the transmit power of xR3,a and xI1,a satisfy

|hc1|2P I1,a = |hc3|2PR3,a.

The decoding of f(WR
3,a,W

I
1,a) is done successfully as long as

Ra ≤
1

2

[
log2

(
1

2
+

|hc1|2P I1,a
1
2 + |hc1|2P I1,p

)]+

. (3.195)

This schemes achieves

RΣ,PA-CP = RR1,p +RI1,p +Ra +RR2,p +RI2,p +RR3,c +RI3,c +Ra, (3.196)

where all rates above satisfy (3.184)-(3.189) and (3.191)-(3.195). By dividing the
sum-rate in (3.196) by log2 ρ and letting ρ→∞, we write the achievable GDoF

dΣ,PA-CP(α) = dR1,p + dI1,p + da + dR2,p + dI2,p + dR3,c + dI3,c + da, (3.197)
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3 TIN in the PIMAC

where

dC1,p =
RC1,p

log2 ρ
, da =

Ra
log2 ρ

, dC2,p =
RC2,p

log2 ρ
, dC3,c =

RC3,c
log2 ρ

, C ∈ {R, I}

as ρ → ∞. The terms above can be obtained by substituting the powers of each
signal given in Table 3.7 into the rate constraints in (3.184)-(3.189) and (3.191)-
(3.195). Hence, we write

dR1,p = dI1,p =
1

2
(αd1 − αc1) (3.198)

da =
1

2
min{αc1, αc3} if ϕ mod π 6= 0 (3.199)

dR2,p =
1

2
(αd2 − αc2) (3.200)

dI2,p =
1

2
[(αd2 − αc2)−min{αc1, αc3}] (3.201)

dR3,c = dI3,c =
1

2
(αc3 − (αd2 − αc2))+. (3.202)

Now, by substituting (3.198)-(3.202) into (3.197), we see that this schemes achieves
a GDoF of

dΣ,PA-CP(α) =αd1 − αc1 + αd2 − αc2 + (αc3 − [αd2 − αc2)]+︸ ︷︷ ︸
dΣ,TDMA-TIN(α)

+
1

2
min{αc1, αc3} if ϕ mod π 6= 0. (3.203)

Since PA-CP achieves a higher GDoF than TDMA-TIN as long as ϕ mod π 6= 0, we
conclude that TDMA-TIN cannot achieve the GDoF of PIMAC when αd3 − αc3 =
αd1 − αc1 except over a subset of channel coefficient values of measure 0.
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In the previous chapter, we have studied the optimality of treating interference as
noise (TIN) in the PIMAC. As it is shown, switching some transmitters off can
expand the GDoF optimal regime of TIN in PIMAC. Apart from this, the new
established upper bounds on the capacity of the PIMAC has shown the optimality
of TIN with respect to the GDoF in some regimes which are outside the traditional
definition of very-weak interference regime based on [GNAJ15, GSJ15]. The question
which arises is whether this observation on optimality of TIN is only caused from
the structure of the PIMAC or it might be partially extendable to a more general
networks. To answer this question, we generalize the system model of the PIMAC by
increasing the number of transmitters to M and considering independent messages
between each transmitter to each receiver. The generated setup is known as anM×2
X-channel. Obviously, all achievable sum-rates in PIMAC are also achievable in the
M × 2 X-channel. However, evaluating the optimality of TIN in this channel based
on the results in the PIMAC is not so trivial. The goal of this chapter is to study
the performance of TIN in the M × 2 X-channel from the GDoF perspective. To do
this, we borrow the key ideas in establishing the bounds on the capacity from the
analysis in PIMAC in order to extend them to the X-channel. Hence, here we do
not study the linear deterministic model of the X-channel as an approximation but
we will directly consider the Gaussian setup. In what follows, we present first the
system model in details.

4.1 System Model of the M × 2 Gaussian X-channel

The system we consider is an M × 2 Gaussian X-channel which consists of M trans-
mitters and two receivers (Fig. 4.1). Each transmitter wants to communicate with
both receivers. Namely, transmitter i (Txi) wants to send the messages Wji to
receiver j (Rxj), where i ∈ {1, . . . ,M} and j ∈ {1, 2}.
The message Wji is a random variable, uniformly distributed over the message set

Wji =
{

1, . . . ,
⌊
2nRji

⌋}
, (4.1)

where Rji denotes the rate of the message. Txi uses an encoding function fi to
encode its message (W1i,W2i) into a length n complex-valued symbols

Xn
i = fi(W1i,W2i). (4.2)
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...

h11

h21

h12

h2M

h22

h1M

(
W11,W21

)
→ Xn

1

(
W12,W22

)
→ Xn

2

(
W1M ,W2M

)
→ Xn

M

⊕

⊕

Zn1

Zn2

→ Y n
1 →

(
Ŵ11, Ŵ12, . . . , Ŵ1M

)

→ Y n
2 →

(
Ŵ21, Ŵ22, . . . , Ŵ2M

)

Figure 4.1: System model of the M × 2 Gaussian X-channel.

The codeword Xn
i satisfies the power constraint of Txi, which is given by

1

n

n∑
t=1

E[|Xi[t]|2] = Pi ≤ P. (4.3)

Now, consider the received signal. At time instant t ∈ {1, · · · , n}, Rxj receives1

yj [t] =

M∑
i=1

hjixi[t] + zj [t], (4.4)

where zj [t], j ∈ {1, 2} is a realization of a random variable Zj ∼ CN (0, 1) which is
independent from all other random variables and independent and identically dis-
tributed (i.i.d.) over time, and the constant hji represents the complex (static)
channel coefficient between Txi and Rxj which is assumed to be known at all nodes.
Here, we are interested in the interference limited scenario and thus, we have the
following assumption

P min{|hji|2} > 1, ∀ i ∈ {1, . . . ,M}, j ∈ {1, 2}. (4.5)

After n transmissions, Rxj obtains Y n
j and uses the decoding function gj to decode

Wji, i ∈ {1, . . . ,M}. Hence, we have

(Ŵj1, . . . , ŴjM ) = gj(Y
n
j ). (4.6)

The messages sets, encoding functions, and decoding functions constitute a code for
the channel which is denoted by an

((
2nR11 , 2nR12 , . . . , 2nR2M

)
, n
)
code.

1The time index t will be suppressed henceforth for clarity unless necessary.
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4.2 TIN in the M × 2 X-Channel

An error Eji occurs if for some i ∈ {1, . . . ,M} and j ∈ {1, 2}, Ŵji 6= Wji. We
assume that the message tuple (W11,W12, . . . ,W2M ) is uniformly distributed over
[1 : 2nR11 ]× [1 : 2nR12 ]× . . .× [1 : 2nR2M ]. The average error probability P(n) defined
as

P(n) = Prob
(

(Ŵ11, Ŵ12, . . . , Ŵ2M ) 6= (W11,W12, . . . ,W2M )
)
. (4.7)

Reliable communication takes place if the error probability can be made arbitrarily
small by increasing n. A rate tuple (R11, R12, . . . , R2M ) is said to be achievable if
there exists a sequence of

((
2nR11 , 2nR12 , . . . , 2nR2M

)
, n
)
codes such that P(n) → 0

as n→∞. The set of all achievable rate tuples is the capacity region of the M × 2
X-channel denoted by C. Further, the sum-capacity is defined as the maximum
achievable sum-rate, i.e.,

CΣ = max
(R11,R21,...,R2M )∈C

RΣ, (4.8)

where RΣ =
∑M

i=1

∑2
j=1Rji. The sum-capacity CΣ is the maximum achievable

sum-rate for all rate tuples in the capacity region C. Furthermore, we define

αji =
log2(P |hji|2)

log2(ρ)
, (4.9)

where ρ denotes the received SNR for a reference point-to-point (P2P) channel.
Using the α-parameter, we define the generalized degrees-of-freedom (GDoF) of the
channel as in the previous chapter

dΣ(α) = lim
ρ→∞

CΣ(ρ,α)

log2(ρ)
, (4.10)

where α is a vector which contains all αji.
The focus of this chapter is studying GDoF optimality of TIN for the M × 2

Gaussian X-channel. Next, we introduce the transmission strategy.

4.2 TIN in the M × 2 X-Channel

In this section, we want to study the performance of TIN in the M × 2 X-channel.
After a brief discussion on the achievable sum-rate of TIN, we restrict ourself to its
achievable GDoF in the M × 2 X-channel. Based on the achievable GDoF, we will
classify TIN into two groups which will be introduced at the end of this section.

4.2.1 Achievable sum-rate of TIN

Here, we want to find the achievable sum-rate using TIN at the receiver side and
Gaussian encoding at the transmitter side. Suppose that Txi (1 ≤ i ≤ M) encodes
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its message Wji, j = {1, 2}, into Xn
ji using a Gaussian codebook with power Pji and

rate Rji and sends the sum of the codewords. Hence, we can write

Xn
i =

2∑
j=1

Xn
ji, Pi =

2∑
j=1

Pji. (4.11)

Rxj decodes its desired messages Wj1, . . . ,WjM as in a multiple access channel
(MAC) by treating the undesired signals, i.e., Xn

j′1, . . . , X
n
j′M (j′ ∈ {1, 2}, j′ 6= j), as

noise. Doing this, we can write the achievable sum-rate as follows

RΣ,TIN(P ) = log2

(
1 +

∑M
i=1 P1i|h1i|2

1 +
∑M

i=1 P2i|h1i|2

)
+ log2

(
1 +

∑M
i=1 P2i|h2i|2

1 +
∑M

i=1 P1i|h2i|2

)
,

(4.12)

where P is a vector which contains all Pji. All achievable sum-rates of TIN is given
in the following proposition.

Proposition 9. Any sum-rate

RΣ ≤max
P

RΣ,TIN(P ) (4.13)

subject to
2∑
j=1

Pji ≤ P, ∀i ∈ {1, . . . ,M}

is achievable by using TIN at the receivers and Gaussian codebook at the transmitters.

Since our goal is to study the GDoF optimality of TIN, we present next its maxi-
mum achievable GDoF.

4.2.2 Achievable GDoF of TIN

Here, we establish the achievable GDoF in anM×2 X-channel if the decoding strat-
egy at the receiver side is restricted to TIN and the transmitters use only Gaussian
encoding. Further, power allocation at the transmitter side is utilized to maximize
the achievable GDoF. In the following lemma, we present the achievable GDoF using
TIN.

Lemma 17. The maximum achievable GDoF in an M × 2 X-channel using TIN at
the receiver side and Gaussian encoding at the transmitter side is given by

dΣ,TIN(α) = max
i1,i2

max{α1i1 , α2i2 , (α1i1 − α1i2)+ + (α2i2 − α2i1)+}. (4.14)

Proof. To find the maximum achievable GDoF using TIN at the receiver side and
Gaussian encoding at the transmitter side, we need to first translate the achiev-
able sum-rate in (4.12) into the achievable GDoF. To do this, we use the following
definitions

βji =
log2(Pji|hji|2)

log2 ρ
γji =

log2(Pj′i|hji|2)

log2 ρ
. (4.15)
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In words, while βji indicates the strength of the desired signal received at Rxj from
Txi, γji indicates the strength of the interference signal received at Rxj from Txi.
Using these definitions and that of the GDoF, we obtain

dΣ,TIN =

[
max
i
{β1i} −

(
max
i
{γ1i}

)+
]+

+

[
max
i
{β2i} −

(
max
i
{γ2i}

)+
]+

(4.16)

from the achievable sum-rate in (4.12). Let maxi{β1i} = β1i1 , maxi{β2i} = β2i2 ,
maxi{γ1i} = γ1i3 , and maxi{γ2i} = γ2i4 . Now, consider the case that Txi1 sends
only to receiver 1 and Txi2 sends only to receiver 2 and the remaining transmitters
are silent. In this case, we achieve

dΣ,TIN =
[
β1i1 − (γ1i2)+]+ +

[
β2i2 − (γ2i1)+]+ , (4.17)

which is larger than the achievable GDoF in (4.16) since γ1i2 ≤ γ1i3 and γ2i1 ≤ γ2i4

by assumption. Hence, we conclude that as long as the decoding is restricted to TIN
and Gaussian codebooks are used at the Tx’s, we do not gain from the GDoF point
of view, if more than one Tx communicates with one receiver or one transmitter
communicates with more than one receiver in an M × 2 X-channel. Hence, the
optimal scheme is to have maximum two active transmitter while the receivers use
TIN. Now, from the definitions in (4.15), we have

β1i1 =
log2

(
P1i1 |h1i1 |2

)
log2 ρ

=
log2

(
P1i1

P |h1i1
|2

P

)
log2 ρ

= α1i1 +
log2

(
P1i1
P

)
log2 ρ

. (4.18)

Similarly, we can write

γ2i1 = α2i1 +
log2

(
P1i1
P

)
log2 ρ

. (4.19)

Hence, we have γ2i1 = β1i1 + (α2i1 −α1i1). Similarly, we obtain γ1i2 = β2i2 + (α1i2 −
α2i2). Therefore, we can rewrite (4.17) as follows

dΣ,TIN =
[
β1i1 − (β2i2 + (α1i2 − α2i2))+]+ +

[
β2i2 − (β1i1 + (α2i1 − α1i1))+]+ .

(4.20)

Now, we want to choose the β-parameters such that we obtain the maximum achiev-
able GDoF. Notice that since 0 < P1i1 , P2i2 ≤ P (cf. (4.3)), the β-parameters satisfy
−∞ < β1i1 ≤ α1i1 and −∞ < β2i2 ≤ α2i2 . Hence, we have the following optimization
problem

max
β1i1

,β2i2

[
β1i1 − (β2i2 + k1)+]+ +

[
β2i2 − (β1i1 + k2)+]+ (4.21)

subject to β1i1 ≤ α1i1 , β2i2 ≤ α2i2 ,
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4 TIN in the X-channel

where k1 = α1i2−α2i2 and k2 = α2i1−α1i1 are both constants and independent of the
optimization parameters β1i1 , β2i2 . In what follows, we want to show that choosing
(β1i1 , β2i2) = (βopt

1i1
, βopt

2i2
), with βopt

1i1
∈ {−∞, α1i1} and β

opt
2i2
∈ {−∞, α2i2}, maximizes

the objective function of optimization problem (4.21). In other words, the optimal
power control at the transmitter side is simply binary, in which transmitters either
send with full power or they are inactive. To prove this statement, we need to show
that the GDoF obtained by setting (β1i1 , β2i2) = (β1, β2), where β1 ∈ (−∞, α1i1)
and β2 ∈ (−∞, α2i2), i.e.,

dΣ,TIN(β1, β2) =

β1 −

β2 + k1︸ ︷︷ ︸
Λ1

+

︸ ︷︷ ︸
Γ1


+

+

β2 −

β1 + k2︸ ︷︷ ︸
Λ2

+

︸ ︷︷ ︸
Γ2


+

(4.22)

is less than or equal to dopt
TIN, where

dopt
Σ,TIN = max{dTIN(−∞, α2i2), dTIN(α1i1 ,∞), dTIN(α1i1 , α2i2)}. (4.23)

To this end, we fix the parameters β1i1 and β2i2 to arbitrary values. Next, we show
that by either increasing or decreasing only one of these parameter (β1i1 or β2i2),
the GDoF cannot deteriorate. Suppose that (β1i1 , β2i2) = (β1, β2) is one possible
optimal solution for the optimization problem (4.21), where β1 ∈ (−∞, α1i1) and
β2 ∈ (−∞, α2i2). Depending on the values of β1 and β2, one can distinguish between
two cases: Γ1 ≥ 0 or Γ1 < 0 which will be discussed in what follows.

• Γ1 ≥ 0: If Γ1 and Γ2 are nonnegative, then increasing β1 does not change the
objective value. If at some value of β1, Γ2 becomes negative, then increasing
β1 further increases the objective function. Therefore, for all (β1, β2) where
Γ1 ≥ 0, setting β1 = α1i1 maximizes the objective function.

• Γ1 < 0: For (β1, β2) for which Γ1 < 0, decreasing β1 does not decrease the
objective function. Hence, setting β1 = −∞ leads to either the same value or
a larger one for the objective function.

From the discussion above, we conclude that for any β2i2 = β2, the optimal value
of β1i1 (for problem (4.21)) is at α1i1 or −∞. Similarly, we can show that for any
β1 the optimal value of β2i2 is from the set {α2i2 ,−∞}. Hence, one solution for the
optimization problem (4.21) is given by

max
{
α1i1 , α2i2 , (α1i1 − α1i2)+ + (α2i2 − α2i1)+} . (4.24)

Now, in order to write the maximum achievable GDoF using TIN in an M × 2 X-
channel, we need to choose i1, i2 such that the expression in (4.24) is maximized.
Hence, we write

dTIN(α) = max
i1,i2

max{α1i1 , α2i2 , (α1i1 − α1i2)+ + (α2i2 − α2i1)+}. (4.25)

This completes the proof.
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4.2 TIN in the M × 2 X-Channel

Variants of TIN

Now, we are ready to introduce the different variants of TIN in the M ×2 X-channel
based on the achievable GDoF presented in Lemma 17. In this lemma, it is shown
that the GDoF optimal transmission strategy combined with TIN at the receivers is
to let at most two transmitters to be active. Moreover, each transmitter should serve
only one receiver. It means that, it is GDoF optimal to reduce an M × 2 X-channel
to either a 2-user IC or a P2P channel when the receivers use TIN for decoding.
Henceforth, based on Lemma 17, we consider two different variants of TIN. While
in the first variant, the M × 2 X-channel is reduced to a P2P channel, in the second
variant, the X-channel is decomposed to a 2-user IC. In what follows, the achievable
sum-rates of these two variants are presented.

• P2P-TIN2 (M × 2 X-channel → P2P channel): In this variant, M − 1 Tx’s
are inactive while only one Tx communicates with one Rx. Here, one has
to consider 2M different P2P channels and pick the one which provides the
highest GDoF. Hence, we obtain

dΣ,P2P−TIN(α) = max
i1,j1
{αj1i1}. (4.26)

• 2-IC-TIN (M × 2 X-channel→ 2-user IC with TIN): In this variant, we switch
M − 2 users off and we dedicate only one Tx to each receiver. Doing this, the
M × 2 X-channel is decomposed into a 2-user IC. Here, one has to consider
M(M − 1) different 2-user IC’s in an M × 2 X-channel. Among all these IC’s,
the one which achieves the highest GDoF determines the maximum achievable
GDoF. Hence, the following GDoF is achievable by using TIN in an M × 2
X-channel

dΣ,2-IC-TIN = max
i1,i2

{
(α1i1 − α1i2)+ + (α2i2 − α2i1)+

}
. (4.27)

While the optimality of the IC-TIN, has been studied in [GSJ15], the optimality of
the other type, i.e., P2P-TIN, has not been considered. However, there are cases in
which P2P-TIN outperforms 2-IC-TIN. As an example, suppose M = 3 and

(α11, α12, α13, α21, α22, α23) = (5, 2, 3, 2, 3, 3).

In this case, the index of the active transmitter and receiver for the best P2P channel
is i1 = 1 and j1 = 1. Moreover, the index of the transmitters and receivers of the
best 2-user IC is i1, j1 = 1 and i2, j2 = 2. Hence, dΣ,2-IC-TIN = 4 which is less than
the achievable GDoF of the P2P channel between Tx1 to Rx1, i.e., dΣ,P2P-TIN = 5.

2Similar to PIMAC in X-channel, we cannot exclude P2P-TIN from the variants of TIN, since
here the decoding strategy at the receiver is as in a P2P channel without taking the impact of
interference into account.
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4 TIN in the X-channel

4.3 Sum-capacity Upper Bounds

To show the GDoF optimality of TIN, we need to establish some upper bounds
which coincide with the achievable GDoF. To do this, we need to first bound the
capacity of theM×2 X-channel. In the following, we present some upper bounds on
the sum-capacity of the M × 2 X-channel. All these upper bounds are genie-aided
bounds. It means that to establish them, some side information is provided to some
users. Notice that providing extra information to the users can not decrease the
sum-capacity of this network. Hence, the capacity of the enhanced channel (i.e.,
the channel after providing the side information) serves as an upper bound for the
original channel. The following lemma presents the first upper bound.

Lemma 18. Suppose j′, j ∈ {1, 2}, j 6= j′, and W̃j = {Wj1,Wj2, . . . ,WjM}. The
sum-capacity of the Gaussian M × 2 X-channel is upper bounded by

CΣ ≤ log2

(
1 +

M∑
i=1

|hji|2P

)
+ lim
n→∞

1

n
Θj (4.28)

where

Θj = h

(
M∑
i=1

hj′iX
n
i + Znj′ |W̃j

)
− h

(
M∑
i=1

hjiX
n
i + Znj |W̃j

)
. (4.29)

Proof. In order to obtain the upper bound in (4.28), we provide W̃j as side informa-
tion to Rxj′, where j, j′ ∈ {1, 2}, j 6= j′, and W̃j = {Wj1,Wj2, . . . ,WjM}. In words,
W̃j is the set of messages desired at Rxj. Now, we use Fano’s inequality to write

n(RΣ − εn) ≤ I(W̃j ;Y
n
j ) + I(W̃j′ ;Y

n
j′ , W̃j), (4.30)

where εn → 0 as n→∞. For the sake of simplicity suppose that j = 1, the similar
upper bound can be established for the case that j = 2. Next, by using the chain
rule and the fact that the messages are independent from each other, we obtain

n(RΣ − εn) ≤I(W̃1;Y n
1 ) + I(W̃2;Y n

2 |W̃1)

=h(Y n
1 )− h

(
M∑
i=1

h1iX
n
i + Zn1 |W̃1

)

+ h

(
M∑
i=1

h2iX
n
i + Zn2 |W̃1

)
− h

(
M∑
i=1

h2iX
n
i + Zn2 |W̃1, W̃2

)
(a)
=h(Y n

1 )− h

(
M∑
i=1

h1iX
n
i + Zn1 |W̃1

)

+ h

(
M∑
i=1

h2iX
n
i + Zn2 |W̃1

)
− h

(
Zn2 |W̃1, W̃2

)
, (4.31)
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4.3 Sum-capacity Upper Bounds

where step (a) follows since knowing W̃1 and W̃2, Xi, i = 1, . . . ,M is known and can
be removed. To get an upper bound on (4.31), we bound first h(Y n

1 )−h(Zn2 |W̃1, W̃2)
as follows

h(Y n
1 )− h(Zn2 |W̃1,W2)

(b)

≤ n[h(Y1G)− h(Z2)]

= n log2

(
1 +

M∑
i=1

|h1i|2Pi

)
(c)

≤ n log2

(
1 +

M∑
i=1

|h1i|2P

)
, (4.32)

where the subscript G indicates that the inputs are i.i.d. and Gaussian distributed
i.e., for all i ∈ {1, . . . ,M}, XiG ∼ CN (0, P ). Here, step (b) holds since Z2 is i.i.d. and
independent of all other random variables, and we used [CT06, corllary to Theorem
8.6.2] and the fact that the Gaussian distribution maximizes the differential entropy
for a fixed variance [CT06, Therorem 8.6.5], i.e.,

E

( M∑
i=1

h1iXiG + Z1

)2
 =

M∑
i=1

|h1i|2Pi + 1. (4.33)

Moreover, step (c) follows since Pi ≤ P (cf. (4.3)). Now, by substituting (4.32) into
(4.31), we obtain the following upper bound for the sum-rate

n(RΣ − εn) ≤n

[
log2

(
1 +

M∑
i=1

|h1i|2P

)
+ Θ1

]
, (4.34)

where Θj with j ∈ {1, 2} is defined as in (4.29). By applying the similar steps as
above to (4.30) for j = 2, we obtain

n(RΣ − εn) ≤ n

[
log2

(
1 +

M∑
i=1

|h2i|2P

)
+ Θ2

]
. (4.35)

Dividing (4.34), (4.35) by n and letting n → ∞, we obtain the bound given in
(4.28).

Notice that we can show the optimality of reducing an M × 2 X-channel to a P2P
channel, if we can bound the expression Θj in (4.28) by a constant. Before doing
this, we will present the upper bounds which are required for showing the optimality
of 2-IC-TIN.

Lemma 19. LetM = {1, 2, ...,M}. Furthermore, let {i1, i2}, I1, I2, and Iw be four
arbitrarily chosen but disjoint subsets of M, such that {i1, i2} ∪ I1 ∪ I2 ∪ Iw =M
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4 TIN in the X-channel

and 2 + |I1|+ |I2|+ |Iw| = M . Then it holds that the sum-capacity of the Gaussian
M × 2 X-channel is upper bounded by

CΣ ≤
2∑
j=1

log2

1 + P |hjij′ |
2 +

∑
k∈{Ij′ ,Iw}

P |hjk|2 +
|hjij |2

|hj′ij |2

+ lim
n→∞

1

n

2∑
j=1

∆j ,

(4.36)

where j′ ∈ {1, 2}, j 6= j′, and

∆j =h

hj′ijXn
ij +

∑
k∈Ij

hj′ijhjk

hjij
Xn
k +Nn

j |Wj′ij ,Wj′Ij


− h

hj′ijXn
ij +

∑
k∈Ij

hj′kX
n
k + Znj′ |Wj′ij ,Wj′Ij

 .

Proof. In this upper bound, we split the transmitters {1, . . . ,M} arbitrarily into
four non-intersecting sets, i.e., {i1, i2}, I1, I2, Iw. We provide (V1, S

n
1 ) and (V2, S

n
2 )

as side information to Rx1 and Rx2, respectively, where V1 = {W2i1 ,W2I1}, V2 =
{W1i2 ,W1I2}, and for j = 1, 2

Snj = cj

hjijXn
ij +

∑
k∈Ij

hjkX
n
k

+Nn
j , (4.37)

cj =


h2i1
h1i1

if j = 1
h1i2
h2i2

if j = 2
, (4.38)

where N1, N2 ∼ CN (0, 1) are independent of all other random variables and each
other and are i.i.d. over time. Suppose that W̃j is the set of messages desired at
Rxj, i.e., {Wj1, . . . ,WjM}. Notice that for j = 1, 2, Vj ∩ W̃j = ∅, and hence Vj and
W̃j are independent from each other. The generated channel after providing the side
information to Rx’s is shown in Fig. 4.2. Now, by using Fano’s inequality we obtain

n(RΣ − εn) ≤
2∑
j=1

I(W̃j ;Y
n
j , S

n
j , Vj), (4.39)
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4.3 Sum-capacity Upper Bounds

W̃1

W1i1

W1I1

V2

W1i2

W1I2

W1Iw

W̃2

V1

W2i1

W2I1

W2i2

W2I2

W2Iw

→ Xn
i1

→ Xn
I1

→ Xn
i2

→ Xn
I2

→ XIw

⊕

⊕

⊕

⊕

Zn1

Zn2

→ Y n
1 → Rx1

→ Y n
2 → Rx2

�c1 ⊕

Nn
1

Sn1

V1

�c2 ⊕

Nn
2

Sn2

V2

Figure 4.2: This figure shows the obtained channel after providing (Vj , S
n
j ) to the

jth receiver of the M × 2 X-channel. The capacity of this channel serves
as an upper bound on the capacity of the original channel, i.e., an M × 2
X-channel. Note that I1, I2, and Iw are non-intersecting and I1 ∪ I2 ∪
Iw ∪ {i1, i2} = {1, . . . ,M} (cf. Lemma 19).

where εn → 0 as n→∞. Now, by using the chain rule, we write

n(RΣ − εn)

=
2∑
j=1

I(W̃j ;Vj) + I(W̃j ;S
n
j |Vj) + I(W̃j ;Y

n
j |Snj , Vj)

(a)
=

2∑
j=1

I(W̃j ;S
n
j |Vj) + I(W̃j ;Y

n
j |Snj , Vj)

=
2∑
j=1

h(Snj |Vj)− h(Snj |Vj , W̃j) + h(Y n
j |Snj , Vj)− h(Y n

j |Snj , Vj , W̃j)

(b)
=

2∑
j=1

h(Snj |Vj)− h(Snj |Vj , W̃j , X
n
ij , X

n
Ij ) + h(Y n

j |Snj , Vj)− h(Y n
j |Snj , Vj , W̃j)

(c)
=

2∑
j=1

h(Snj |Vj)− h(Nn
j ) + h(Y n

j |Snj , Vj)− h(Y n
j |Snj , Vj , W̃j), (4.40)

where (a) follows from the fact that W̃j and Vj are independent from each other, (b)
follows since knowing Vj and W̃j , the signals Xn

ij
and Xn

Ij can be reconstructed, and
(c) follows since knowing Xn

ij
and Xn

Ij , the only randomness remaining in Snj is that
originating from Nn

j . In order to bound (4.40), we will bound first

Tj = h(Y n
j |Snj , Vj)− h(Nn

j )
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4 TIN in the X-channel

as follows.

Tj = h(Y n
j |Snj , Vj)− h(Nn

j )

(d)
= h

(
Y n
j −

1

cj
Snj |Snj , Vj

)
− h(Nn

j )

(e)

≤ h

(
Y n
j −

1

cj
Snj

)
− h(Nn

j )

(f)
= h

hjij′Xn
ij′

+
∑

k∈{Ij′ ,Iw}

hjkX
n
k + Znj −

1

cj
Nn
j

− h(Nn
j )

(g)

≤ h

hjij′Xij′G +
∑

k∈{Ij′ ,Iw}

hjkXkG + Zj −
1

cj
Nj

− h(Nj)

≤ nC

Pij′ |hjij′ |2 +
∑

k∈{Ij′ ,Iw}

Pk|hjk|2 +
1

|cj |2


(h)

≤ nC

P |hjij′ |2 +
∑

k∈{Ij′ ,Iw}

P |hjk|2 +
|hjij |2

|hj′ij |2

 , (4.41)

where j′ ∈ {1, 2}, j′ 6= j and the subscript G indicates that the inputs are i.i.d. and
Gaussian distributed. Moreover, step (d) follows since h(A|B) = h(A−cB|B), where
c is a constant, in step (e) we used the fact that conditioning does not increase the
entropy, step (f) hold since

Y n
j = hji1X

n
i1 + hji2X

n
i2 +

∑
k∈{I1,I2,Iw}

hjkX
n
k + Zn1 ,

and in step (g), we used [CT06, Theorem 8.6.2], the fact that N1 is i.i.d. over
the time, and Gaussian distribution maximizes the differential entropy for a fixed
variance,

E

hjij′Xij′ +
∑

k∈{Ij′ ,Iw}

hjkXk + Zj −
1

cj
Nj

2
= Pij′ |hjij′ |

2 +
∑

k∈{Ij′ ,Iw}

Pk|hjk|2 + 1 +
1

|cj |2
, (4.42)

finally step (h) is due to the power constraint in (4.3). Now, consider the remaining
terms in (4.40) i.e.,

∆1 + ∆2 = h(Sn1 |V1)− h(Y n
1 |Sn1 , V1, W̃1) + h(Sn2 |V2)− h(Y n

2 |Sn2 , V2, W̃2), (4.43)
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4.3 Sum-capacity Upper Bounds

where ∆j = h(Snj |Vj) − h(Y n
j′ |Snj′ , Vj′ , W̃j′). To bound this expression, we consider

the following upper bound on ∆j

∆j =h(Snj |Vj)− h(Y n
j′ |Snj′ , Vj′ , W̃j′)

(i)

≤h(Snj |Vj)− h(Y n
j′ |Snj′ , Vj′ , W̃j′ ,WjIw)

where step (i) follows since conditioning does not increase the entropy. Now, by
keeping in mind that

{Vj′ , W̃j′ ,WjIw} = {Wjij′ ,WjIj′ ,Wj′i1 ,Wj′i2 ,Wj′I1 ,Wj′I2 ,Wj′Iw ,WjIw},

we proceed

∆j

(j)

≤h(Snj |Vj)− h

 ∑
k∈{ij ,Ij}

hj′kX
n
k + Znj′ |Nn

j′ , Vj′ , W̃j′ ,WjIw ,WjIw


(k)
=h(Snj |Vj)− h

 ∑
k∈{ij ,Ij}

hj′kX
n
k + Znj′ |Wj′ij ,Wj′Ij


where step (j) follows since knowing Wjij′ ,Wj′i1 ,Wj′i2 , we know Xn

ij′
and from

WjIj′ , Wj′I1 , Wj′I2 , we can reconstruct Xn
Ij′ . Knowing WjIw , Wj′Iw , we know

Xn
Iw . Additionally, knowing Xn

ij′
, Xn
Ij′ , and X

n
Iw , the remaining randomness of Snj′

and Y n
j′ is originating from Nn

j′ and
∑

k∈{ij ,Ij} hj′kX
n
k +Znj′ , respectively. Moreover,

step (k) holds since Xij and XIj are independent from Nj′ and the messages of Txk,
k ∈ {ij′ , Ij

′
, Iw}. Now, due to the definition of Sj given in (4.37), we obtain

∆j ≤h

hj′ijXn
ij +

∑
k∈Ij

hj′ijhjk

hjij
Xn
k +Nn

j |Wj′ij ,Wj′Ij


− h

hj′ijXn
ij +

∑
k∈Ij

hj′kX
n
k + Znj′ |Wj′ij ,Wj′Ij

 . (4.44)

By substituting (4.41) and (4.44) into (4.40) and dividing the expression by n and
letting n→∞, we obtain the upper bound given in (4.36).

We still need an upper bound for showing the optimality of 2-IC-TIN. This is
presented in the following lemma.

Lemma 20. The sum-capacity of the Gaussian M × 2 X-channel is upper bounded
by

CΣ ≤ log2

1 +

M∑
i=1
i 6=i1

P |h1i|2 +
|h1i1 |2

|h2i1 |2

+ log2

1 +

M∑
i=1
i 6=i2

P |h2i|2 +
|h2i2 |2

|h1i2 |2

 . (4.45)

107



4 TIN in the X-channel

Proof. This upper bound is established in a similar way as in [ETW08, HCJ12].
To establish this bound, we provide (Sn1 ,W2i1) and (Sn2 ,W1i2) to Rx1 and Rx2,
respectively, where i1, i2 ∈ {1, . . .M}, i1 6= i2. Moreover,

Sn1 = h2i1X
n
i1 +Nn

1

Sn2 = h1i2X
n
i2 +N2,

where N1, N2 ∼ CN (0, 1) are i.i.d over the time and independent of other random
variables and each other. Hence, we bound the sum-rate as follows

n(RΣ − εn) ≤ I(W̃1;Y n
1 , S

n
1 ,W2i1) + I(W2;Y n

2 , S
n
2 ,W1i2), (4.46)

where W̃j = {Wj1,Wj2, . . . ,WjM}. By using the chain rule and the fact that the
messages are independent, we obtain

n(RΣ − εn) ≤I(W̃1;Sn1 |W2i1) + I(W̃1;Y n
1 |Sn1 ,W2i1)

+ I(W̃2;Sn2 |W1i2) + I(W̃2;Y n
2 |Sn2 ,W1i2). (4.47)

In what follows, we bound each term in (4.47) separately. Now, consider the first
term

I(W̃1;Sn1 |W2i1) = h(Sn1 |W2i1)− h(Sn1 |W2i1 , W̃1)

(a)
= h(Sn1 |W2i1)− h(Nn

1 ). (4.48)

In step (a), we used the fact that knowing W2i1 and W1i1 , the signal Xn
i1

can be
reconstructed and its contribution can be removed from Sn1 . Similarly, we bound the
third term in (4.47) as follows

I(W̃2;Sn2 |W1i2) = h(Sn2 |W1i2)− h(Nn
2 ). (4.49)

Now, we bound the second term in (4.47)

I(W̃1;Y n
1 |Sn1 ,W2i1) = h(Y n

1 |Sn1 ,W2i1)− h(Y n
1 |Sn1 ,W2i1 , W̃1)

(b)

≤ h(Y n
1 |Sn1 )− h(Y n

1 |Sn1 ,W2i1 , W̃1, X
n
M\{i2})

(c)
= h(Y n

1 |Sn1 )− h(h1i2X
n
i2 + Zn1 |W1i2), (4.50)

where M = {1, . . . ,M}. Step (b) follows since conditioning does not increase the
entropy [CT06]. Notice that in step (c), we used the condition that i2 6= i1. Similarly,
by bounding the fourth term in (4.47) we obtain

I(W̃2;Y n
2 |Sn2 ,W1i2) ≤ h(Y n

2 |Sn2 )− h(h2i1X
n
i1 + Zn2 |W2i1). (4.51)

Now, by substituting (4.48)-(4.51) into (4.47) and considering the fact that h(Sn1 |W2i1)−
h(h2i1X

n
i1

+ Zn2 |W2i1) = 0 and h(Sn2 |W1i2)− h(h1i2X
n
i2

+ Zn1 |W1i2) = 0, we write

n(RΣ − εn) ≤ h(Y n
1 |Sn1 )− h(Nn

1 ) + h(Y n
2 |Sn2 )− h(Nn

2 ). (4.52)
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Next, we bound the difference of the first two terms in (4.52) as follows

h(Y n
1 |Sn1 )− h(Nn

1 )
(d)

≤
n∑
t=1

h(Y1[t]|S1[t])− h(N1[t])

(e)

≤ n [h(Y1G|S1G)− h(N1)]

= n

[
h

(
Y1G −

h1i1

h2i1

S1G|S1G

)
− h(N1)

]

≤ n

h
 M∑
i=1
i 6=i1

h1iXi + Z1 −
h1i1

h2i1

N1

− h(N1)


(f)
= n log2

1 +

M∑
i=1
i 6=i1

Pi|h1i|2 +
|h1i1 |2

|h2i1 |2


(g)

≤ n log2

1 +
M∑
i=1
i 6=i1

P |h1i|2 +
|h1i1 |2

|h2i1 |2

 , (4.53)

where the subscript G indicates that the inputs are i.i.d. and Gaussian distributed,
i.e., for all i ∈ {1, . . . , i1}, XiG ∼ CN (0, P ). In step (d), we used the chain rule, the
fact that conditioning does not increase entropy and N1 is i.i.d.. In step (e), we used
[AV09, Lemma 1] which shows that a circularly symmetric complex Gaussian distri-
bution maximizes the conditional differential entropy under a covariance constraint.
Step (f) follows since the signals sent by different transmitters are independent of
each other. Moreover, step (g) is due to the fact that log2(1 + x) is a monotonically
increasing function with respect to x.
Similarly, we can upper bound the difference of the last two terms in (4.52) as

follows

h(Y n
2 |Sn2 )− h(Nn

2 ) ≤ n log2

1 +
M∑
i=1
i 6=i2

P |h2i|2 +
|h2i2 |2

|h1i2 |2

 . (4.54)

By substituting (4.53) and (4.54) into (4.52), and dividing the obtained expression
by n and letting n→∞, we complete the proof of Lemma 20.

At this point, it is worth mentioning that we need to modify the presented upper
bounds to show the GDoF optimality of TIN. These modifications are listed bellow.

• Bounding some terms: In order to obtain tight upper bounds on the GDoF
which coincide with the achievable GDoF of TIN, we need to bound the second
terms in (4.28) and (4.36) (Θ1, Θ2 ∆1, ∆2) by a constant independent of P .
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4 TIN in the X-channel

• Fixing the parameter: While all the upper bounds in Lemmata 18, 19, and
20 are upper bounds on the sum-capacity of the Gaussian M × 2 X-channel,
only an appropriate choice of the parameters, i.e., i1, i2, I1, I2, Iw can lead
to a tight and useful bound.

To bound the expressions Θ1, Θ2, ∆1, and ∆2 in (4.28) and (4.36), we introduce
here a novel lemma which bounds the difference of two entropy terms. Fixing the
parameters i1, i2, I1, I2, Iw for obtaining useful upper bounds for showing the
optimality of TIN will be discussed in the next Section. Using this lemma, we are
able to tighten the upper bounds in (4.28) and (4.36) under certain conditions.

Lemma 21. Consider two signals

Sn1 =

L∑
`=1

g`A
n
` +Nn

1 and Sn2 =
L∑
`=1

f`A
n
` +Nn

2 ,

where An` with ` = 1, . . . , L is the sequence of complex random variables and An`1 is
independent of An`2 as long as `1 6= `2. The variance of An` satisfies

1

n

n∑
t=1

E
[
|A`[t]|2

]
≤ P.

Moreover, Nn
1 , N

n
2 are the noise sequences with distribution CN (0, 1), independent of

all other random variables, and i.i.d. over time. Moreover, suppose thatW1,W2, . . . ,WL

are independent messages, where Ai is independent of Wj as long as i 6= j. Further-
more, we define Wc = {W1,W2, . . . ,WL} and the parameters

β` =
log2(P |g`|2)

log2 ρ
, γ` =

log2(P |f`|2)

log2 ρ
, (4.55)

where for all ` ∈ {1 . . . , L}, γ` and β` are non-negative. As long as, the following
constraint is satisfied

γ` − γ`−1 ≥ β`, for all ` ∈ {1, . . . , L}, (4.56)

where γ0 = 0, the difference between the differential entropies of random variables
Sn1 and Sn2 conditioned on Wc is upper bounded by

h(Sn1 |Wc)− h(Sn2 |Wc) ≤ n log2 L!. (4.57)

Proof. Supposing that ∆ = h(Sn1 |Wc)− h(Sn2 |Wc), we write

∆
(a)
=h(Sn1 |Wc)− h(Sn2 |Wc)− h(Nn

1 |Wc, A
n
1 , . . . , A

n
L) + h(Nn

2 |Wc, A
n
1 , . . . , A

n
L)

=I(An1 , . . . , A
n
L;Sn1 |Wc)− I(An1 , . . . , A

n
L;Sn2 |Wc),

where in step (a), we used the fact that Nn
1 and Nn

2 are independent of all other
random variables, i.i.d over time and they have the same distribution. Now, by using
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4.3 Sum-capacity Upper Bounds

the chain rule and the fact that the mutual information is non-negative [CT06], we
bound ∆ as follow

∆ ≤
L∑
l=1

I(Anl ;Sn1 |Wc, A
n
l+1, . . . , A

n
L)−

L∑
l=1

I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L)

+

L∑
l=1

I(Anl ;An1 , . . . , A
n
l−1|Wc, S

n
1 , A

n
l+1, . . . , A

n
L).

Now, by using the chain rule, we obtain

∆ ≤
L∑
l=1

I(Anl ;Sn1 , A
n
1 , . . . , A

n
l−1|Wc, A

n
l+1, . . . , A

n
L)−

L∑
l=1

I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L).

Now, by using the chain rule and the fact that Anl and (An1 , ..., A
n
l−1) are conditionally

independent given (Anl+1, ..., A
n
L), we write

∆ ≤
L∑
l=1

I(Anl ;Sn1 |Wc, A
n
1 , . . . , A

n
l−1, A

n
l+1, . . . , A

n
L)−

L∑
l=1

I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L)

=

L∑
l=1

h(Sn1 |Wc, A
n
1 , . . . , A

n
l−1, A

n
l+1, . . . , A

n
L)−

L∑
l=1

h(Sn1 |Wc, A
n
1 , . . . , A

n
L)

−
L∑
l=1

I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L)

(b)
=

L∑
l=1

h(glA
n
l +Nn

1 |Wl)−
L∑
l=1

h(Nn
1 |Wl)−

L∑
l=1

I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L)

≤
L∑
l=1

I(Anl ; glA
n
l +Nn

1 |Wl)− I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L), (4.58)

where in (b), we used the fact that knowing (An1 , . . . , A
n
l−1, A

n
l+1, . . . , A

n
L), the ran-

domness of Sn1 is caused from Anl and Nn
1 and that glAl + N1 is independent of

A1, . . . , Al−1, Al+1, . . . , AL given Wl. To upper bound the expression in (4.58), we
lower bound

Tl = I(Anl ;Sn2 |Wc, A
n
l+1, . . . , A

n
L) (4.59)
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4 TIN in the X-channel

for all l = 1, . . . , L as follows

Tl = h

(
L∑
i=1

fiA
n
i +Nn

2 |Wc, A
n
l+1, . . . , A

n
L

)
− h

(
L∑
i=1

fiA
n
i +Nn

2 |Wc, A
n
l , . . . , A

n
L

)
(c)
= h

(
l∑

i=1

fiA
n
i +Nn

2 |Wc

)
− h

(
l∑

i=1

fiA
n
i +Nn

2 |Wc, A
n
l

)

= I

(
Anl ;

l∑
i=1

fiA
n
i +Nn

2 |Wc

)
. (4.60)

In (c), we removed the randomness of the known signals and used the fact that
the signals An1 , . . . , AnL, N

n
2 are independent of each other. Now, using the fact that

scaling does not affect mutual information, we can write

Tl = I

(
Anl ;

(
l∑

i=1

fiA
n
i +Nn

2

)
1√

P |fl−1|

∣∣∣∣∣Wc

)
, (4.61)

where we define f0 = 1√
P
. Due to the assumption in Lemma 21, the γ-parameters

are non-negative and hence,
√
P |fl−1| ≥ 1. Therefore, we obtain a lower bound for

(4.61) by increasing the variance of the noise Nn
2 from 1 to P |fl−1|2. Thus,

Tl ≥I

(
Anl ;

1√
P |fl−1|

l∑
i=1

fiA
n
i +Nn

2 |Wc

)

=h

(
1√

P |fl−1|

l∑
i=1

fiA
n
i +Nn

2 |Wc

)
− h

(
1√

P |fl−1|

l∑
i=1

fiA
n
i +Nn

2 |Wc, A
n
l

)
(d)

≥h

(
1√

P |fl−1|

l∑
i=1

fiA
n
i +Nn

2 |Wc, A
n
1 , . . . , A

n
l−1

)

− h

(
1√

P |fl−1|

l∑
i=1

fiA
n
i +Nn

2 |Wc, A
n
l

)
(e)
=h

(
fl√

P |fl−1|
Anl +Nn

2 |Wl

)
− h

(
1√

P |fl−1|

l−1∑
i=1

fiA
n
i +Nn

2 |Wc

)
− h(Nn

2 |Wl, A
n
l ) + h(Nn

2 |Wc, A
n
1 , . . . , A

n
l−1)

=I

(
Anl ;

fl√
P |fl−1|

Anl +Nn
2 |Wl

)
− cl, (4.62)

where

cl = I

(
An1 , . . . , A

n
l−1;

1√
P |fl−1|

l−1∑
i=1

fiA
n
i +Nn

2 |Wc

)
. (4.63)
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4.3 Sum-capacity Upper Bounds

In step (d), we used the fact that conditioning does not increase the entropy. Step (e)
follows since variables A1, . . . , Al, N2 are all independent of each other. Moreover,
we dropped the conditions on Wj , (j 6= l) in the first entropy term of step (e), since
these messages are all independent of Al and N2. Now, by substituting (4.62) into
the second term of (4.58), the expression h(Sn1 |Wc)−h(Sn2 |Wc) is upper bounded as
follows

∆ ≤
L∑
l=1

I(Anl ; glA
n
l +Nn

1 |Wl)− I
(
Anl ;

fl√
P |fl−1|

Anl +Nn
2 |Wl

)
+ cl. (4.64)

Due to the condition in (4.56), we know that for all l = 1, . . . , L, |fl|2
|gl|2P |fl−1|2

≥ 1.
Hence, we obtain an upper bound for the expression in (4.64), by increasing the
variance of the noise in the second mutual information term in (4.64) from 1 to

|fl|2
|gl|2P |fl−1|2

and write

∆ ≤
L∑
l=1

I(Anl ; glA
n
l +Nn

1 |Wl)− I
(
Anl ;

fl√
P |fl−1|

Anl +
|fl|

|gl|
√
P |fl−1|

Nn
2 |Wl

)
+ cl

(f)
=

L∑
l=1

I(Anl ; glA
n
l +Nn

1 |Wl)

− I

(
Anl ;

(
fl√

P |fl−1|
Anl +

|fl|
|gl|
√
P |fl−1|

Nn
2

)
gl
√
P |fl−1|
fl

|Wl

)
+ cl

=
L∑
l=1

I(Anl ; glA
n
l +Nn

1 |Wl)− I
(
Anl ; glA

n
l + Ñn

2 |Wl

)
+ cl

(g)
=

L∑
l=1

cl, (4.65)

where Ñ2 ∼ CN (0, 1) is i.i.d. over time and independent of all other random variables
except N2. In second term of step (f), we used the fact that scaling does not affect
mutual information and step (g) follows since the expressions I(Anl ; glA

n
l +Nn

1 ) and
I
(
Anl ; glA

n
l + Ñn

2

)
are equal since they are the mutual information between input

and output of statistically identical P2P channels.
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4 TIN in the X-channel

Now, we need to upper bound cl given in (4.63). To do this, we write

cl =I

(
An1 , . . . , A

n
l−1;

1√
P |fl−1|

l−1∑
i=1

fiA
n
i +Nn

2 |Wc

)

=h

(
1√

P |fl−1|

l−1∑
i=1

fiA
n
i +Nn

2 |Wc

)
− h

(
Nn

2 |Wc, A
n
1 , . . . , A

n
l−1

)
(h)

≤h

(
1√

P |fl−1|

l−1∑
i=1

fiA
n
i +Nn

2

)
− h (Nn

2 )

(i)

≤n

[
h

(
1√

P |fl−1|

l−1∑
i=1

fiAiG +N2

)
− h (N2)

]
, (4.66)

where the subscript G indicates that the random variable is i.i.d. and Gaussian
distributed, i.e., AiG ∼ CN (0, P ). Step (h) follows since conditioning does not
increase the entropy and N2 is independent from all other random variables. In step
(i), we used [CT06, corollary to Theorem 8.6.2], the fact that Nn

2 is i.i.d. over time,
and choosing Gaussian distribution with maximum variance for the random variables
A1, . . . , Al−1, maximizes the differential entropy [CT06]. Hence, cl is bounded as
follows

cl ≤ n log2

(
1 +

l−1∑
i=1

|fi|2

|fl−1|2

)
. (4.67)

Due to the condition in (4.56), we can write γ1 ≤ γ2 ≤ . . . ≤ γl−1, which is equivalent
to |f1|2 ≤ |f2|2 ≤ . . . ≤ |fl−1|2. Hence, for all i = 1, . . . , l − 1, we have |fi|2

|fl−1|2
≤ 1.

Therefore, we can upper bound the expression (4.67) as follows

cl ≤ n log2 l. (4.68)

By substituting (4.68) into (4.65), we obtain the following upper bound for h(Sn1 |Wc)−
h(Sn2 |Wc)

∆ ≤ n
L∑
l=1

log2 l

= n log2 L! (4.69)

which completes the proof.

4.4 GDoF Optimality of TIN in an M × 2 X-channel

In this section, we want to introduce the regimes in which TIN is GDoF optimal.
As it is discussed before, the maximum achievable GDoF using TIN in an M × 2
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X-channel is achieved when the setup is reduced to a P2P channel or a 2-user IC.
In what follows, we show the optimality of these two schemes separately. To do
this, we use the established upper bounds on the capacity of the M × 2 X-channel
presented in Section 4.3. We translate these upper bounds into the GDoF upper
bounds. Depending on the scheme whose optimality needs to be shown, we fix the
parameters i1, i2, I1, I2, Iw. Furthermore, we tighten the upper bounds on the
GDoF by using Lemma 21. Finally, by comparing the achievable GDoF of TIN with
the obtained upper bound on the GDoF, we characterize the regime in which TIN is
GDoF optimal.

4.4.1 Optimality of P2P-TIN

Here, we want to establish the conditions for the GDoF optimality of reducing an
M × 2 X-channel to a P2P channel. In other words, we want to find the conditions
for the optimality of the GDoF expression given in (4.26). Without loss of generality,
suppose that the optimal j1 for (4.26) is j1 = 1. Hence, we achieve the following
GDoF by considering a P2P channel between Txi1 to Rx1

dΣ,P2P−TIN(α) = max
i1
{α1i1}. (4.70)

Before presenting the optimality conditions mathematically, some intuitive comments
on the optimality of P2P-TIN might be useful. In fact, one can distinguish between
the following cases in which P2P-TIN (with GDoF in (4.70)) is optimal:

• Dominant MAC: The M × 2 X-channel can be reduced to two different
multiple access channels (MAC1, MAC2), where in MACj with j = 1, 2, all
transmitters want to communicate with Rxj. Without loss of generality, con-
sider the case that the GDoF of MAC1 is significantly larger than MAC2 such
that we do not benefit from an active MAC2 in terms of GDoF. Hence, in this
case the GDoF optimal strategy is that all transmitters serve only Rx1, i.e., a
multiple access channel.

• Dominant BC: Here, we consider M different broadcast channels (BC1, . . .
BCM), where in BCi with i = 1, . . . ,M , Txi serves both receivers. Suppose
that the GDoF of BC1 is sufficiently larger than the GDoF of all remaining
BC’s such that we cannot obtain any GDoF gain by letting Tx2, . . ., TxM be
active. Therefore, in this case, it is GDoF optimal to let only Tx1 serve all
receivers, which decomposes the X-channel to a broadcast channel.

Note that, the GDoF resulting in a MAC and BC are achievable by reducing these
setups to a P2P channel. Hence, both aforementioned cases lead to optimality of
P2P-TIN. The following theorems summarize the conditions for the optimality of
P2P-TIN. While the first theorem considers optimality of P2P-TIN for a dominant
MAC, the second theorem presents the optimality of P2P-TIN based on a dominant
BC.
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Theorem 4. Let π = (π1, . . . , πM ) be a permutation of (1, . . . ,M). Then, it is
GDoF optimal to reduce the M×2 X-channel to a P2P channel between Txπ1 to Rxj
with j ∈ {1, 2} if

αjπi − αjπi+1 ≥ αj′πi (4.71)

for all i = 1, . . . ,M , where αjπM+1 = 0 and j′ 6= j.

Proof. To prove this theorem, we use Lemma 21 for bounding Θj in (4.28). Doing
this, we obtain a tight upper bound if (4.71) is satisfied. The details of the proof are
as follows. Suppose that we have a permutation of transmitters π = (π1, π2, . . . , πM )
which satisfies the condition (4.71). Hence, we have

αjπi − αjπi+1 ≥ αj′πi , (4.72)

where αjπM+1 = 0. In what follows, we focus on j = 1 and a specific permutation
of π which is π = (1, 2, ...,M), since all other cases follow similarly. Hence, the
condition in (4.72) can be rewritten as follows

α11 − α12 ≥ α21

α12 − α13 ≥ α22

...
α1M ≥ α2M .

Therefore, the best achievable GDoF using P2P-TIN is α11. In what follows, we
show that as long as (4.71) is satisfied, α11 is the best achievable GDoF. To this end,
we use the upper bound on the capacity ofM×2 X-channel given in (4.28) for j = 1.
However, first we need to bound the expression Θ1. To do this, we use Lemma 21.
For the sake of simplicity, we substitute the parameters of Θ1 into the parameters
given in Lemma 21 as follows

L ,M, Wc , W̃1 A` , Xm, f` , h1m,

γ` , α1m, g` , h2m, β` , α2m, N1 , Z2, N2 , Z1,

where the relationship between ` and m is given in in Table 4.1. Moreover, γ0 ,
α1(M+1) = 0. Hence, we can write the expression h(Sn1 |Wc) − h(Sn2 |Wc) in Lemma

` L L− 1 . . . 2 1

m 1 2 . . . M − 1 M

Table 4.1: The relationship between the parameters ` (used in Lemma 21) and m.

21 as follows

h(Sn1 |Wc)− h(Sn2 |Wc) , h

(
M∑
i=1

h2iX
n
i + Zn2 |W̃1

)
− h

(
M∑
i=1

h1iX
n
i + Zn1 |W̃1

)
,

(4.73)
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which is Θ1 in (4.28). Moreover the condition (4.56) can be rewritten as

α1k − α1(k+1) ≥ α2k, ∀k ∈ {1, . . . ,M}. (4.74)

Notice that this condition is satisfied in Theorem 4. Since we can use Lemma 21 to
bound the expression Θ1 by n log2M !, we rewrite the upper bound (4.28) with j = 1
as follows

CΣ ≤ log2

(
1 +

M∑
i=1

|h1i|2P

)
+ log2M !. (4.75)

Now, by using (4.9), we obtain

CΣ ≤ log2

(
1 +

M∑
i=1

ρα1i

)
+ log2M !. (4.76)

Dividing this expression by log2 ρ, we translate this upper bound to a GDoF upper
bound. Hence, we write

d(α) ≤ max
{

0, α1i|Mi=1

} (a)
= α11, (4.77)

where in (a), we used the condition in (4.71). The upper bound in (4.77) coincides
with the achievable GDoF in (4.70) for i1 = 1.

Theorem 5. Let i1 ∈ {1, · · · ,M}, j, j′ ∈ {1, 2}, j 6= j′, and define

i2 = argmax
i∈{1,...,M}\{i1}

αj′i.

Then, it is GDoF optimal to reduce the M × 2 X-channel to a P2P channel between
Txi1 and Rxj if

αji1 − αj′i1 ≥ max
i∈{1,··· ,M}\{i1}

αji (4.78)

αj′i1 ≥ max{αj′i2 − αji2 , max
i∈{1,··· ,M}\{i1,i2}

αj′i}. (4.79)

Proof. To prove Theorem 5, we focus on the case that j = 1. The other case can
be shown similarly. By using the upper bound given in (4.45) and the definition in
(4.9), we can rewrite this upper bound as follows

CΣ ≤ log2

1 +
M∑
i=1
i 6=i1

ρα1i + ρα1i1
−α2i1

+ log2

1 +

M∑
i=1
i 6=i2

ρα2i + ρα2i2
−α1i2

 , (4.80)
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where i1, i2 ∈ {1, . . . ,M} and i1 6= i2. Now, by dividing (4.80) by log2 ρ and letting
ρ→∞, we can bound the GDoF of the M × 2 X-channel as follows

d(α) ≤max

{
(α1i1 − α2i1)+, max

i∈{1,...,M}\{i1}
α1i

}
+ max

{
(α2i2 − α1i2)+, max

i∈{1,...,M}\{i2}
α2i

}
. (4.81)

Now, if there exist distinct i1 and i2 = arg maxi∈{1,··· ,M}\{i1} α2i which satisfy (4.78)
and (4.79) for j = 1, we have

α1i1 − α2i1 ≥ max
i∈{1,··· ,M}\{i1}

α1i (4.82)

α2i1 ≥ max{α2i2 − α1i2 , max
i∈{1,··· ,M}\{i1,i2}

α2i}. (4.83)

Hence, we can write the upper bound in (4.81) as follows

d(α) ≤ α1i1 . (4.84)

This coincides with the achievable GDoF for the case that Txi1 communicates with
Rx1.

Example 1. Based on Theorem 4, 5, it is GDoF optimal to reduce the 3 × 2 X-
channels shown in Fig. 4.3a and 4.3b to a P2P channel between Tx1 to Rx1. In
more details, while the GDoF optimality of P2P-TIN for the setup in Fig. 4.3a can
be shown using Theorem 4, we need Theorem 5 to show the optimality of P2P-TIN
for setup in Fig. 4.3b. As shown in Fig. 4.3a, the channels to Rx1 are stronger
than the channels to Rx2 and thus we cannot obtain any GDoF gain by letting Rx2
be active. Moreover, in Fig. 4.3b, the channels from Tx1 are so strong that we can
switch the other transmitters off without any loss in the GDoF.

4.4.2 Optimality of 2-IC-TIN

Here, we study the GDoF optimality of reducing an M × 2 X-channel to a 2-user IC
where the receivers use TIN. Before we present the conditions on the optimality of
this variant of TIN, we need to discuss the scheme in more details and introduce some
definitions. Consider using TIN in a 2-user IC in which Txi1 and Txi2 communicate
with Rx1 and Rx2, respectively.

Remark 10. Notice that if α1i1 < α1i2 or α2i2 < α2i1 , P2P-TIN achieves

max{α1i1 , α2i2}

which is larger than the achievable GDoF using 2-IC-TIN (cf. 4.14). Hence, in
this case, the 2-IC-TIN (in which Txi1 and Txi2 communicate with Rx1 and Rx2,
respectively) is suboptimal. Therefore, in what follows, we exclude this case, and
assume that α1i1 ≥ α1i2 and α2i2 ≥ α2i1.
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7
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Tx2

Tx3
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Rx2

(a) There is no GDoF gain if the transmitters
communicate with Rx2.

7
3

2

2

4

3

Tx1

Tx2

Tx3

Rx1

Rx2

(b) We cannot obtain any GDoF gain by let-
ting Tx2 and Tx3 be active.

Figure 4.3: P2P-TIN (from Tx1 to Rx1) is optimal in both setups.

In the following, the interference observed at Rx1 and Rx2 from each Tx excluding
Txi1 and Txi2 is compared with a threshold called GNAJ-level inspired by [GNAJ15].
This threshold is called after the initials of the authors of [GNAJ15]. The applied
thresholds are

α
(1)
GNAJ-level = (α1i1 − α2i1)+ and α

(2)
GNAJ-level = (α2i2 − α1i2)+

at Rx1 and Rx2, respectively. Based on this comparison, we classify the remaining
Tx’s which are not part of the 2-user IC (i.e., Txi i ∈ {1, 2, . . . ,M} \ {i1, i2}) into
four groups as follow.

• I1(i1, i2) = {i |i ∈M \ {i1, i2}, α2i ≤ (α2i2 − α1i2)+, α1i > (α1i1 − α2i1)+ }

• I2(i1, i2) = {i |i ∈M \ {i1, i2}, α2i > (α2i2 − α1i2)+, α1i ≤ (α1i1 − α2i1)+ }

• Iw(i1, i2) = {i |i ∈M \ {i1, i2}, α2i ≤ (α2i2 − α1i2)+, α1i ≤ (α1i1 − α2i1)+ }

• Is(i1, i2) = {i |i ∈M \ {i1, i2}, α2i > (α2i2 − α1i2)+, α1i > (α1i1 − α2i1)+ }

whereM = {1, 2, . . . ,M}. Roughly speaking, Ij with j = 1, 2 is the set of Tx’s with
a strong link to Rxj and a weak link to the other Rx. Moreover, Iw and Is are the
sets of the Tx’s with weak and strong interference to both Rx’s, respectively. It is
worth mentioning that these sets are defined such that I1(i1, i2), I2(i1, i2), Iw(i1, i2),
Is(i1, i2) together with {i1, i2} are complementary, which means that

I1(i1, i2) ∪ I2(i1, i2) ∪ Iw(i1, i2) ∪ Is(i1, i2) ∪ {i1, i2} = {1, 2, . . . ,M}
|I1(i1, i2)|+ |I2(i1, i2)|+ |Iw(i1, i2)|+ |Is(i1, i2)|+ 2 = M.

Without loss of generality, we fix i1 = 1 and i2 = 2 for further discussions and we
focus on the optimality of TIN in the 2-user IC consists of Tx1, Tx2 and Rx1, Rx2.
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4 TIN in the X-channel

Therefore, since the input of the functions Ij , Iw, and Is will be always (1, 2), we
drop the input unless it is required. In the following, we study the conditions on
optimality of decomposing M × 2 X-channel to a 2-user IC and using TIN which
achieves

dΣ,2-IC-TIN(α) = α11 − α12 + α22 − α21. (4.85)

Before going into further details, it is worthy to recall the known results on op-
timality of this type of TIN. By applying the conditions on optimality of TIN in
[GSJ15] to our setup, we conclude that the achievable GDoF in (4.85) is optimal as
long as I1 = I2 = Is = ∅. In what follows, we study the GDoF optimality of TIN
when this condition is not necessarily satisfied. To this end, we use first the following
lemma to exclude an important case in which 2-IC-TIN is suboptimal.

Lemma 22. Reducing an M × 2 X-channel to a 2-user IC in which Tx1 and Tx2
communicate with Rx1 and Rx2, respectively while the Rx’s use TIN is GDoF sub-
optimal, if there exists an i ∈ {3, . . . ,M} such that

α1i ≥ (α11 − α21)+, (4.86)
α2i ≥ (α22 − α12)+. (4.87)

Proof. To prove suboptimality of a scheme, we need to show that this scheme can
be outperformed by another scheme. In Appendix 4.A, we present a scheme which
achieves a GDoF larger than that achieved by 2-IC-TIN (given in (4.85)) if there
exists an i ∈ {1, . . . ,M} that satisfies (4.86) and (4.87).

From Lemma 22, we conclude that if the set Is is not empty, then TIN is subop-
timal. Hence, in order to characterize the GDoF optimal regime of TIN, we focus
on the remaining case, i.e., Is = ∅. The following theorem introduces the complete
GDoF optimal regime of 2-IC-TIN.

Theorem 6. Reducing an M × 2 X-channel to a 2-user IC in which Tx1 and Tx2
communicate with Rx1 and Rx2, respectively while the Rx’s use TIN achieves (4.85)
and performs GDoF optimally if and only if there is a permutation of senders in
which I1 = {3, . . . , 2 + |I1|}, I2 = {3 + |I1|, . . . , 2 + |I1| + |I2|}, and Iw = {3 +
|I1|+ |I2|, . . . ,M}, where

∀i ∈ I1, α11 − α21 < α1i, α22 − α12 ≥ α2i, α2(i+1) ≥ α2i, α23 ≥ α21, (4.88)

∀i ∈ I2, α11 − α21 ≥ α1i, α22 − α12 < α2i, α1,(i+1) ≥ α1i, α1(3+|I1|) ≥ α12, (4.89)

∀i ∈ Iw, α11 − α21 ≥ α1i, α22 − α12 ≥ α2i, (4.90)
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and the following conditions are satisfied

α11 − α21 ≥ max


α12

α13 − (α23 − α21)
max

i∈{4,...,2+|I1|}
α1i − (α2i − α2(i−1))

 (4.91)

α22 − α12 ≥ max


α21

α2(3+|I1|) − (α1(3+|I1|) − α12)

max
i∈{3+|I1|,...,2+|I1|+|I2|}

α2i − (α1i − α1(i−1))

 . (4.92)

Proof. The proof of this theorem is done in two steps. First, we need to show that
the presented conditions are sufficient for the optimality of (4.85). To do this, we
show that the upper bound in (4.36) coincides with (4.85) as long as the given
conditions are satisfied. The details of this is given in Appendix 4.B. Next, we show
that these conditions are not only sufficient but also necessary. To do this, we show
that there exists a scheme which achieves a GDoF larger than (4.85), if one of the
given optimality conditions in this theorem is violated. The details of this step, is
presented in Appendix 4.C.

Example 2. In Fig. 4.4, the received signals at receivers are illustrated for a per-
mutation of transmitters of a 7× 2 X-channel. In this figure, the length of the blocks
represent the strength of the corresponding link (α-parameters). As shown in this
figure, the received signals at Rx1 from Tx3 and Tx4 are stronger than α11 − α21.
On the other hand, the signals received at Rx2 from Tx5 and Tx6 are stronger than
α22 − α12. Hence, we have I1 = {3, 4} and I2 = {5, 6}. Moreover, Iw = {7}.
Notice that this channel satisfies the condition given in Theorem 6 and hence, it is
optimal to reduce this X-channel to a 2-user IC where the receivers treat interference
as noise.

4.4.3 Discussion

Suppose that in an M × 2 X-channel the sets I1 and I2 are both empty. Then the
conditions on the GDoF optimality of TIN in Theorem 6 are reduced to α11−α21 ≥
α12 and α22 − α12 ≥ α21. These are equivalent to the conditions of the GDoF
optimality of TIN in [GSJ15]. Notice that based on the results in [GSJ15], if the
set I1 or I2 is not empty, we cannot judge about the optimality of TIN. However,
from Theorem 6, we know that there are cases in which although I1 and I2 are not
empty, TIN still performs optimally.
In the following, we explain the required conditions for the optimality of 2-IC-

TIN based on the blockwise representation of the channels as in example 2. To this
end, consider Txi, i ∈ I1. For this transmitter, the condition given in Theorem 6
can be explained as follows. The top-most part of the signal from Txi which goes
beyond the threshold α(1)

GNAJ-level needs to appear at Rx2 without any overlap with
the signals from all Tx’s in {1, I1} \ {i} which cause interference at Rx2 lower than
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0 0

Rx1

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7

α
(1)
GNAJ-level

α12

α15

Rx2

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7

α
(2)
GNAJ-level

α21

α23

Figure 4.4: The received signal at both receivers are illustrated for a network with 7
transmitters and two receivers. Notice that in this example I1 = {3, 4},
I2 = {5, 6}, and Iw = {7}. In this example, the conditions given in The-
orem 6 are satisfied and hence the GDoF expression in (4.27) is optimal.

α2i. A similar condition needs to be also satisfied for all Tx’s in I2 for the optimality
of 2-IC-TIN in an M × 2 X-channel.
In Fig. 4.5a, the GDoF optimal regime of 2-IC-TIN is visualized for a 3 × 2 X-

channel with α11 = α22 = 1, α13 = α23 = β, where β is larger than 0.5 and smaller
than 1. In the considered 2-IC-TIN, Tx1 and Tx2 communicate with Rx1 and Rx2,
respectively, while the receivers use TIN. The obtained GDoF optimal regime of 2-IC-
TIN from Theorem 6 is given by the union of the rectangle defined by (α21, α12) ∈
[0, 0.5] × [0, 1 − β] and the rectangle defined by (α21, α12) ∈ [0, 1 − β] × [0, 0.5].
Moreover, we know that the proposed 2-IC-TIN is suboptimal if we are outside this
regime. On the other hand, by applying the conditions on optimality of TIN given
in [GSJ15], we obtain the intersection of these two rectangles. Obviously, the new
GDoF optimal regime of TIN does not only subsume the previously known regime
from [GSJ15] but also extends it. Note that if the channel gains from Tx3 to the
receivers decrease, then the intersection of the two rectangles increases. At the point
β = 1/2, both regimes will coincide and the regime becomes a rectangle with width
and height of 1/2. Now, consider Fig. 4.5b. The channel strengths of the 3 × 2 X-
channel considered in this figure are given as follows: α11 = α22 = 1, α12 = α21 = γ,
where γ ≤ 0.5. By applying the result of [GSJ15] to this setup, we know that the
2-IC-TIN is optimal if max{α13, α23} − (1 − γ) ≤ 0. By using Theorem 6, this
condition is relaxed to max{α13, α23}− (1−γ) ≤ (min{α13, α23}−γ)+ ≤ 1−2γ. As
it is also shown in this figure, the GDoF optimal regime of 2-IC-TIN obtained from
Theorem 6 subsumes and extends that of [GSJ15]. It is worth mentioning that the
extended regime gets larger by decreasing the parameter γ.
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0 1− β 0.5
0

1− β

0.5

2-IC-TIN:
GDoF suboptimal

α21

α
1
2

GDoF opt. reg. of 2-IC-TIN [GSJ15]
GDoF opt. reg. of 2-IC-TIN (Theorem 6 )

(a) α11 = α22 = 1, and α13 = α23 = β, where
0.5 < β < 1

γ 1− γ 2− 3γ

γ

1− γ

2− 3γ

2-IC-TIN:
GDoF suboptimal

α13

α
23

GDoF opt. reg. of 2-IC-TIN [GSJ15]
GDoF opt. reg. of 2-IC-TIN (Theorem 6 )

(b) α11 = α22 = 1, α12 = α21 = γ, where γ ≤
0.5

Figure 4.5: The GDoF optimal regime of 2-IC-TIN for 3 × 2 X-channel. Here, we
focus on the optimality of using TIN in a 2-user IC in which Tx1 and
Tx2 communicate with Rx1 and Rx2, respectively. It means that when
the X-channel operates outside the GDoF optimal regime of 2-IC-TIN
(shown in these figures), it might be the case that TIN performs GDoF
optimally in another 2-user IC.

Remark 11. As it can be seen in Fig. 4.5, the GDoF optimal regime of 2-IC-TIN in
which Tx1 and Tx2 communicate with Rx1 and Rx2, respectively, and the receivers
use TIN is in general a non-convex regime.

4.5 Summary

The optimality of treating interference as noise (TIN) in M × 2 X-channel is studied
from the generalized degrees of freedom (GDoF) point of view. It turns out that the
best transmission scheme alongside TIN is to let at most two transmitters send with
full power while other transmitters are silent. Furthermore, it is shown that the best
achievable GDoF of TIN is achieved by assigning at most one desired transmitter
to each receiver. This leads us to two variants of TIN: P2P-TIN and 2-IC-TIN.
While in P2P-TIN the setup is reduced to a point-to-point (P2P) channel, in 2-IC-
TIN, the X-channel is decomposed into 2-user IC in which the receivers use TIN.
The GDoF performance of these schemes are compared with new upper bounds
provided in this chapter. It turned out that P2P-TIN performs GDoF optimally as
long as either the channels to one receiver or from one transmitter are significantly
large. Moreover, the sufficient conditions for the GDoF optimality of 2-IC-TIN were
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4 TIN in the X-channel

introduced. The presented conditions relax the optimality conditions derived from
[GSJ15] and thus our obtained GDoF optimal regime of TIN subsumes and expands
the known optimality regime of TIN. Moreover, it is shown that each particular 2-
IC-TIN is outperformed by a better scheme from the GDoF point of view as long
as we are outside its optimality regime. This proves the necessity of the optimality
conditions.
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4.A Proof of Lemma 22

Suppose that Tx1 and Tx2 communicate with Rx1 and Rx2, respectively. By using
TIN at the receiver side, the achievable GDoF is given by (4.85). Now, suppose that
there exists a user (e.g. Tx3) which satisfies the following conditions

(α11 − α21)+ < α13 (4.93)
(α22 − α12)+ < α23. (4.94)

To show that the achievable GDoF in (4.85) is suboptimal, we propose a transmission
scheme which achieves a higher GDoF. In this scheme, Tx1 and Tx3 send W11 and
W13 to Rx1 and Tx2 sends W22 to Rx2. While W13 is a common message which
is decoded by both Rx’s, W11 and W22 are the private messages which are decoded
only at the desired receivers. The messages W11, W22, W13 are encoded into xn1 , xn2 ,
xn3 using random Gaussian codebooks with powers P1 = 1

|h21|2 , P2 = 1
|h12|2 , P3 = P ,

and rates R11, R12, R13, respectively. Note that P1, P2, and P3 satisfy the power
constraint due to the condition in (4.5). In time slot t, Txi, i ∈ {1, 2, 3} sends xi[t]
and Rxj, j ∈ {1, 2} receives

yj [t] = hj1x1[t] + hj2x2[t] + hj3x3[t] + zj [t]. (4.95)

At the end of the nth channel use, both Rx’s decode first W13 by treating the
remaining signals as noise. This can be done reliably as long as

R13 ≤min
j

log2

(
1 +

P3|hj3|2

P2|hj2|2 + P1|hj1|2 + 1

)

= min

log2

1 +
P |h13|2

2 + |h11|2
|h21|2

 , log2

1 +
P |h23|2

2 + |h22|2
|h12|2

 . (4.96)

Then, Rxj reconstructs xn3 and removes its contribution from (4.95). Next, it decodes
Wjj reliably as long as

Rjj ≤ log2

(
1 +

Pj |hjj |2

1 + Pj′ |hjj′ |2

)
,

where j = 1, 2, j′ = 1, 2, and j 6= j′. Note that Pj′ |hjj′ |2 = 1. Therefore, we obtain

R11 ≤ log2

(
1 +

|h11|2

2|h21|2

)
, R22 ≤ log2

(
1 +

|h22|2

2|h12|2

)
. (4.97)

Transforming the achievable rate in (4.96), and (4.97) into achievable GDoF we
obtain

d = min{(α13 − (α11 − α21)+)+, (α23 − (α22 − α12)+)+}
+ (α11 − α21)+ + (α22 − α12)+

> dTIN,2-IC. (4.98)

As it is shown, our proposed transmission scheme outperforms (4.85) which completes
the proof of Lemma 22.
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4.B Poof of Theorem 6: Sufficient Optimality Conditions
of 2-IC-TIN

Here, we want to show the optimality of reducing an M × 2 X-channel to a 2-user
IC where the receivers use TIN. Now, suppose that there exists a permutation as
mentioned in Theorem 6. The goal is to show that the achievable GDoF in (4.85) is
optimal. To do this, we use the upper bound in (4.36) by substituting i1 = 1, i2 = 2,
and the sets I1, I2, Iw as in (4.88)-(4.90). First, we need to bound the expressions
for ∆1 and ∆2. In what follows, we bound ∆1 which is given by

∆1 =h

h21X
n
1 +

∑
k∈I1

h21h1k

h11
Xn
k +Nn

1 |W21,W2I1


− h

h21X
n
1 +

∑
k∈I1

h2kX
n
k + Zn2 |W21,W2I1

 . (4.99)

Notice that ∆1 is the difference of two entropy terms, which can be bounded using
the result of Lemma 21, as long as the required conditions are satisfied. In order to
apply Lemma 21, we substitute first the parameters of (4.99) into the parameters
given in Lemma 21 as follows

A1 , X1, A` , Xm

f1 , h21, f` , h2m γ1 = α21, γ` , α2m,

g1 , h21, g` ,
h21h1m

h11
, β1 , α21, β` , α21 + α1m − α11,

N1 , N1, N2 , Z2, Wc , {W21,W2I1}

where the relationship between ` and m for ` ≥ 2 is given by m = ` + 1 and
γ0 , 0. Now, we need to show that the conditions given in Lemma 21, i.e. for all
` ∈ {1, . . . , L}, γ` − γ`−1 ≥ β` are satisfied. To do this, consider the following cases

` = 1 : γ1 − γ0 ≥ β1 ⇒ α21 ≥ α21 (4.100)
` = 2 : γ2 − γ1 ≥ β2 ⇒ α23 − α21 ≥ α21 + α13 − α11 (4.101)
` ≥ 3 : γ` − γ`−1 ≥ β` ⇒ α2m − α2(m−1) ≥ α21 + α1m − α11 (4.102)

Notice that given the condition (4.91) in Theorem 6, all the conditions (4.100)-(4.102)
are satisfied. Hence, we can write

∆1 ≤ n log2((1 + |I1|)!). (4.103)

Similarly, the expression ∆2 is bounded by

∆2 ≤ n log”((1 + |I2|)!). (4.104)
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Now, we can write the upper bound in (4.36) as follows

CΣ ≤ log2((1 + |I1|)!) + log2

1 + P |h12|2 +
∑

k∈{I2,Iw}

P |h1k|2 +
|h11|2

|h21|2


+ log2((1 + |I2|)!) + log2

1 + P |h21|2 +
∑

k∈{I1,Iw}

P |h2k|2 +
|h22|2

|h12|2

 .

Now, by using the definition of the parameter α in (4.9), we can write

CΣ ≤ log2((1 + |I1|)!) + log2

1 + ρα12 +
∑

k∈{I2,Iw}

ρα1k + ρα11−α21


+ log2((1 + |I2|)!) + log2

1 + ρα21 +
∑

k∈{I1,Iw}

ρα2k + ρα22−α12

 .

Further, by dividing the upper bound expression by log2 ρ and letting ρ → ∞, we
obtain the following upper bound for the GDoF

d(α) ≤max

{
α12, (α11 − α21)+, max

i∈{I2,Iw}
α1i

}
+ max

{
α21, (α22 − α12)+, max

i∈{I1,Iw}
α2i

}
. (4.105)

Now, due to the conditions (4.88)-(4.90), and (4.91), (4.92) and the fact that the
all parameters α are non-negative, we can write the following upper bound on the
GDoF

d(α) ≤ α11 − α21 + α22 − α12. (4.106)

This coincides with (4.85) which completes the proof.
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4.C Proof of Theorem 6: Necessary Optimality
Conditions of 2-IC-TIN

Here, we want to show that the conditions on the GDoF optimality of 2-IC TIN
in Theorem 6 are necessary. Notice that here the focus is on the 2-IC-TIN which
is defined in Theorem 6. In this scheme, the M × 2 X-channel is reduced to the
2-user IC in which Tx1 and Tx2 serve Rx1 and Rx2, respectively and the receivers
use TIN. More precisely, we show that if only one of the conditions in (4.88)-(4.92)
is not satisfied, then the achievable GDoF in (4.85) is suboptimal. Notice that as
it is justified in Remark 10, here we assume that α11 ≥ α21 and α22 ≥ α12. Notice
that if it is not the case, P2P-TIN outperforms the proposed 2-IC-TIN (cf. (4.14)).
We know from Lemma 22 that if there exists a transmitter with channels to Rx1

and Rx2 larger that α11−α21 and α22−α12, respectively, then the achievable GDoF
in (4.85) is suboptimal. Hence, in all M × 2 X-channels in which the proposed 2-IC-
TIN performs GDoF optimally, Txi with i ∈ {3, . . . ,M} has to be either a member
of I1 or I2 or Iw. This justifies the necessity of splitting of Txi with i ∈ {3, . . . ,M}
into these three groups for optimality of 2-IC-TIN (as in (4.88)-(4.90)). Notice that
the third condition in (4.88) and (4.89) represent the order of the transmitters which
can be satisfied by the permutation.
Now, we need to justify the necessity of the fourth condition in (4.88) and (4.89)

and the conditions in (4.91), (4.92). Consider the first condition in (4.91), i.e.,
α11 − α21 ≥ α12. Notice that if this condition is violated, the P2P channel between
Tx2 and Rx2 achieves α22 which is larger than the achievable GDoF of 2-IC-TIN in
(4.85) (since α11 − α21 < α12). The necessity of the first condition in (4.92) can be
shown similarly.
Now, we show the necessity of the fourth condition in (4.88), (4.89) and the second

condition in (4.91) and (4.92) as follows. Consider a 3×2 X-channel consisting of Tx1,
Tx2, Tx3 and Rx1, Rx2 which is illustrated in Fig. 4.6a. Obviously, all achievable
rates in this 3 × 2 X-channel are also achievable in the original M × 2 X-channel.
Suppose that Tx3 ∈ I1 and the channel parameters of the 3 × 2 X-channel satisfy
the (so far known) necessary conditions for optimality of 2-IC-TIN. Hence, we have

α11 − α21 ≥ α12, α22 − α12 ≥ α21, α13 > α11 − α21, α23 ≤ α22 − α12.

In Fig. 4.6b, the dotted area illustrates the allowed parameters for α13 and α23.
From Theorem 6, we know that 2-IC-TIN performs GDoF optimally in a part of the
dotted area which is given as follows

α13 ≤ α11 − 2α21 + α23. (4.107)

This area is separated by a solid line in Fig. 4.6b. In what follows, we need to show
the suboptimality of 2-IC-TIN for the remaining area which is given by

α13 > max{α11 − 2α21 + α23, α11 − α21}, and α23 ≤ α22 − α12. (4.108)
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(a) 3× 2 X-channel.

α12 α11 − α21 ∆− α21

α21

α22 − α12

∆− α12

Not to be considered,
since here Tx3 /∈ I1.

2-IC-TIN
opt.

α13

α
2
3

GDoF opt. reg. of 2-IC-TIN (Theorem 6 )

(b) The GDoF (sub)-optimal regimes of 2-IC-
TIN.

Figure 4.6: The GDoF (sub)-optimal regimes of 2-IC-TIN for 3×2 X-channel, where
∆ = α11 − α21 + α22 − α12.

As it is also shown in this figure, this area includes all cases where α23 < α21. Hence,
by showing the suboptimality of 2-IC-TIN in the area defined by (4.108), we do not
only show the necessity of the second condition in (4.91) but also the fourth condition
in (4.88). By setting the rate of messagesW12, W21, W23 to zero, the 3×2 X-channel
in Fig. 4.6a is reduced to the PIMAC which is a P2P channel interfered with a MAC.
The system model of the PIMAC is shown in Fig.4.7. Notice that the capacity of

α11

α21

α12
α22

α23

α13

W11 →Tx1

W22 →Tx2

W13 →Tx3

Rx1 →
(
Ŵ11, Ŵ13

)

Rx2 → Ŵ22

Figure 4.7: The system model of the PIMAC.

the 3×2 X-channel is an upper for the capacity of the PIMAC. Hence, all achievable
rates in the PIMAC are also achievable in the 3 × 2 X-channel. Therefore, if the
proposed 2-IC-TIN performs GDoF suboptimally in PIMAC, it is also suboptimal
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in the original X-channel. The optimality of TIN in PIMAC whose channels satisfy
α11 − α21 ≥ α12 and α22 − α12 ≥ α21 was studied in Chapter 3. It turned out
that reducing the PIMAC to the 2-user IC in which Tx1 and Tx2 communicate with
Rx1 and Rx2, respectively, and the receivers use TIN is GDoF suboptimal if (4.108)
(this corresponds to regimes 3C, 2A, 2B, and 2C in Fig 3.7) is satisfied. Hence, we
conclude that the proposed 2-IC-TIN is also GDoF suboptimal in the 3×2 X-channel
if (4.108) holds. Similarly, we can show the GDoF suboptimality of the 2-IC-TIN in
the X-channel if the second condition in (4.92) or the fourth condition in (4.89) is
not satisfied.
In order to complete the proof, we need to also show the necessity of the third

condition in (4.91) and (4.92). Without loss of generality, suppose that with i = 4,
the third condition in (4.91) is violated. Now, consider the 4×2 X-channel consisting
of Tx1, Tx2, Tx3, Tx4 and Rx1, Rx2, where

min{α13, α14} > α11 − α21 ≥ max{α12, α13 − (α23 − α21)}, (4.109)
α22 − α12 ≥ α24 ≥ α23 ≥ α21. (4.110)

Notice that the necessity of these conditions for the optimality of 2-IC-TIN has been
already shown. Now, we want to show that if in this 4× 2 X-channel,

α11 − α21 < α14 − (α24 − α23) (4.111)

holds, 2-IC-TIN is GDoF suboptimal. The following lemma, summarizes the achiev-
able GDoF in this X-channel.

Lemma 23. As long as (4.109)- (4.111) are satisfied in a 4×2 X-channel consisting
Tx1, Tx2, Tx3, Tx4 and Rx1, Rx2, the following GDoF

d(α) = α11 − α21 + α22 − α12 + `, (4.112)

with ` = min{µ − ν, ν − (α11 − α21), α23}, µ = max{α14 − (α24 − α23), α13}, and
ν = min{α14 − (α24 − α23), α13} is achievable.

Proof. To achieve this GDoF, we propose a scheme which is a combination of private
signaling with alignment. The details of the proof can be found in Appendix 4.D.

Due to the condition in (4.109) and (4.111), ` is positive excluding the special case
that α14 − α13 = α24 − α23. Hence, the achievable GDoF in (4.112) is almost surely
strictly larger than that of the proposed 2-IC-TIN given in (4.85). Similarly, we can
show the suboptimality of 2-IC-TIN if the third condition in (4.91) is violated by any
Txi with 5 ≤ i ≤ 2 + |I1|. In that case, we reduce the M × 2 X-channel to a 4 × 2
X-channel consists of Tx1 , Tx2, Tx(i − 1), Txi, Rx1, and Rx2. Next, we use the
transmission scheme introduced in Appendix 4.D with a slight difference that Tx3
and Tx4 in this scheme needs to be replaced by Tx(i−1) and Txi, respectively. This
shows the necessity of the third condition in (4.91). Similarly, we can also show the
necessity of the third condition in (4.92). This completes the necessity of conditions
in (4.88)-(4.92) for the optimality of the proposed 2-IC-TIN in Theorem 6.
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4.D Proof of Lemma 23

Here, we propose a scheme which achieves (4.112) as long as (4.109)- (4.111) hold. In
this scheme, Tx1, Tx3, and Tx4 communicate with Rx1 while only Tx2 communicates
with Rx2. The messages of Tx1 and Tx2 are private messages, which are denoted by
W1,p andW2,p. The messages of Tx3 and Tx4 are alignment message and represented
by W3,a and W4,a. The rates of messages Wip,p and Wia,a with ip ∈ {1, 2} and
ia ∈ {3, 4}, are denoted by Rip,p and Ria,a, respectively. In what follows, we suppose
that R3,a = R4,a = Ra. In this scheme, Tx2 splits its message W2,p into two sub-
messages W2,p1 and W2,p2 with rates R2,p1 and R2,p2, where R2,p1 +R2,p2 = R2,p.
Encoding: Tx1 and Tx2 use Gaussian random codebooks to encode their messages

W1,p and W2,p1, W2,p2 into complex-valued symbols xn1,p and xn2,p1, xn2,p2 with powers

P1,p =
1

|h21|2
, P2,p1 =

1

2|h12|2
, P2p2 =

ρ(α23−`)

2|h22|2
, (4.113)

respectively, where

` = min{µ− ν, ν − (α11 − α21), α23}, (4.114)
µ = max{α14 − (α24 − α23), α13}, (4.115)
ν = min{α14 − (α24 − α23), α13}. (4.116)

Tx3 and Tx4 use the same nested-lattice codebook (Λf ,Λc) with rate Ra and power
1 to encode their messages.

Remark 12. Notice that since α23 ≤ α22 − α12 (cf. (4.109)), and ` ≥ 0 (due to
(4.109) and (4.111)), P2,p2 ≤ P2,p1.

Λc and Λf denote the coarse and fine lattices, respectively. In more details, Txia
with ia ∈ {3, 4} uses (Λf ,Λc) to encode Wia,a into length-n codeword λia with rate
Ra. Then, Txia constructs the following complex-valued signal

xnia,a =
√
Pia,a [(λia − dia) mod Λc] ,

where dia is an n-dimensional random dither vector [NG11] known also at the re-
ceivers. Moreover,

P3,a = P, P4,a =
P |h23|2

|h24|2
. (4.117)

Since the length of all sequences in this section is n, we drop the superscript n in
the rest of the section. Then the transmitters send the signals

x1 = x1,p, x2 = x2,p1 + x2,p2, x3 = e−jϕ23x3,a x4 = e−jϕ24x4,a

where j =
√
−1 and ϕji represents the phase of the channel hji. Notice that since

we consider interference limited scenario and (α24 ≥ α23) (cf. (4.110)), the assigned
powers in (4.113) and (4.117) fulfill the power constraints, i.e.,

P1 = P1,p ≤ P, P2 = P2,p1 + P2,p2

(a)

≤ 2P2,p1 ≤ P, P3 = P3,a ≤ P, P4 = P4,a ≤ P,
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where (a) follows from Remark 12.
Decoding: Now, we write the received signals at the receivers as follows

yj = hj1x1,p + hj2(x2,p1 + x2,p2) + hj3e−jϕ23x3,a + hj4e−jϕ24x4,a + zj .

in what follows, we explain the decoding process at each receiver separately.
First, consider Rx1. The decoding order at Rx1 depends on the channel strength.

If the parameter µ = α14 − (α24 − α23), Rx1 decodes first W4,a otherwise it decodes
first W3a.
Consider first the case that µ = α14−(α24−α23). Then, Rx1 decodesW4,a while it

treats x1, x2, and x3 as noise. It is shown in [EZ04] that nested-lattice codes achieve
the capacity of the point-to-point AWGN channel. Therefore, the rate constraint for
reliable decoding of W4,a is given by

R4,a = Ra ≤ log2

(
1 +

P4|h14|2

P1|h11|2 + P2|h12|2 + P3|h13|2 + 1

)
if µ = α14 − (α24 − α23).

(4.118)

After decoding W4,a, Rx1 removes the interference caused by x4 from the received
signal. Then it decodes x3a reliably as long as

R3,a = Ra ≤ log2

(
1 +

P3|h13|2

P1|h11|2 + P2|h12|2 + 1

)
if µ = α14 − (α24 − α23). (4.119)

Decoding W3,a, W4,a can be done similarly if µ = α13. For this case, the rate
constraints can be written as follows

R3,a = Ra ≤ log2

(
1 +

P3|h13|2

P1|h11|2 + P2|h12|2 + P4|h14|2 + 1

)
if µ = α13 (4.120)

R4,a = Ra ≤ log2

(
1 +

P4|h14|2

P1|h11|2 + P2|h12|2 + 1

)
if µ = α13. (4.121)

Next, Rx1 decodes W1,p by treating W2,p as noise. This can be done reliably, as long
as

R1,p ≤ log2

(
1 +

P1|h11|2

P2|h12|2 + 1

)
. (4.122)

Now, consider the decoding at the second receiver. Rx2 decodes the messages in
following orders W2,p1 → f(W3,a,W4,a) → W2,p2, where f(W3,a,W4,a) is a function
of W3,a, W4,a. The reliable decoding of W2,p1 is possible as long as

R2,p1 ≤ log2

(
1 +

P2,p1|h22|2

P3|h23|2 + P4|h24|2 + P2,p2|h22|2 + P1|h21|2 + 1

)
. (4.123)

Rx2 proceeds with decoding (|h23|λ3,a+|h24|λ4,a) mod Λc. Notice that P3,a and P4,a

are chosen in a way such that λ3,a and λ4,a are received aligned at Rx2. Reliable
decoding of (|h23|λ3,a + |h24|λ4,a) mod Λc is possible as long as

Ra ≤
[
log2

(
1 +

P3|h23|2

P2,p2|h22|2 + P1|h21|2 + 1
− 1

2

)]+

. (4.124)
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Next, Rx2 reconstructs |h23|x3 + |h24|x4 from the decoded sum (|h23|λ3,a+ |h24|λ4,a)
mod Λc and removes the interference caused by it. Doing this, Rx2 observes x2,p2

interference-free. The reliable decoding of W2,p2 is possible as long as

R2,p2 ≤ log2

(
1 +

P2,p2|h22|2

P1|h21|2 + 1

)
. (4.125)

This scheme achieves

RΣ = R3,a +R4,a +R1,p +R2,p1 +R2,p2, (4.126)

as long as the constraints in (4.118)-(4.125) are satisfied. In order to complete the
prove, we need to translate all rate constraints and the achievable rate to GDoF
constraints and achievable GDoF, respectively. To do this, consider first (4.118). By
substituting the powers (4.113) and (4.117) into (4.118) and keeping in mind that
P2,p2 ≤ P2,p1 (cf. Remark 12), we can write that all rates

Ra ≤ log2

(
1 +

ρα14+α23−α24

ρα11−α21 + 1
|h12|2 |h12|2 + ρα13 + 1

)
if µ = α14 − (α24 − α23).

(4.127)

are achievable. By dividing (4.127) with log2 ρ and letting ρ → ∞, we conclude
that the achievable GDoF using the alignment message needs to satisfy the following
condition

da ≤ (α14 + α23 − α24 −max{α11 − α21, α13, 0})+

(b)
= α14 + α23 − α24 − α13, if µ = α14 − (α24 − α23), (4.128)

where step (b) follows since Tx3 ∈ I1 (cf. (4.109)) and in this case µ = α14− (α24−
α23). Similarly, we can write (4.119) as a GDoF constraint as follows

da ≤ α13 − (α11 − α21), if µ = α14 − (α24 − α23). (4.129)

One can combine the conditions (4.128) and (4.129) as follows

da ≤ min {α14 + α23 − α24 − α13, α13 − (α11 − α21)} , if µ = α14 − (α24 − α23)
(4.130)

Similarly, we can write the constraints (4.120) and (4.121) as the following constraints
on the GDoF

da ≤ α13 −max{α11 − α21, α14 + α23 − α24}
(c)
= α13 − α14 − α23 + α24, if µ = α13, (4.131)

da ≤ α14 + α23 − α24 − (α11 − α21), if µ = α13, (4.132)
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where step (c) follows from the condition in (4.111). By combining the conditions
(4.131) and (4.132), we obtain

da ≤ min{α13 − α14 − α23 + α24, α14 + α23 − α24 − (α11 − α21)}, if µ = α13.
(4.133)

The conditions in (4.129) and (4.133) can be summarized as follows

da ≤ min{µ− ν, ν − (α11 − α21)}. (4.134)

Now, consider (4.122). This constraint can be converted to the following GDoF
condition

d1,p ≤ α11 − α21. (4.135)

Now, we use the fact that P2,p2|h22|2 ≤ P3|h23|2 = P4|h24|2, we write the rate
constraint in (4.123) as the following GDoF constraint

d2,p1 ≤ α22 − α12 − α23. (4.136)

Consider the constraint in (4.124). This constraint can be converted to following
GDoF constraint

da ≤ α23 − (α23 − `)+ (d)
= `, (4.137)

where step (d) follows since ` ≤ α23. Notice that given (4.137), the condition in
(4.134) is always satisfied. Finally, we convert (4.125) into the following GDoF
constraint

d2,p2 ≤ α23 − `. (4.138)

Now, we can write the achievable GDoF as follows

d(α) = 2da + d1,p + d2,p1 + d2,p2, (4.139)

where the achievable GDoF of private and alignment messages need to satisfy the
conditions in (4.135)-(4.138). In order to achieve the maximum GDoF, these con-
straints need to be fulfilled with equality. Hence, using the proposed scheme, the
following GDoF is achievable

d(α) = α11 − α21 + α22 − α12 + `. (4.140)

This completes the proof of Lemma 23.
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5 Conclusion

In this chapter, we summarize the contribution and provide some new problems as
extension of this thesis.

5.1 Summary of Contributions

In this thesis, the optimality of employing treating interference as noise (TIN) at
receivers together with Gaussian encoding at transmitters was studied for elemental
networks; namely a point-to-point channel interfering with a multiple access channel
(PIMAC) and M × 2 X-channel. The main focus was on characterizing the optimal
regime of TIN from the generalized degrees of freedom (GDoF) point of view. Our
approach towards finding the GDoF optimal regime of TIN for the PIMAC has
been initiated with the capacity analysis of the linear deterministic model of PIMAC
(LD-PIMAC). The capacity optimal regime of TIN for the LD-PIMAC has been
completely characterized. Furthermore, the capacity results obtained for the LD-
PIMAC have been translated to the the GDoF results for the Gaussian counterpart.
The capacity optimal regime of TIN for the LD-PIMAC corresponded completely to
the GDoF optimal regime of TIN for the Gaussian PIMAC.
Interestingly, it turned out that in some regimes TIN is suboptimal although all

the undesired links are very weak. The main reason of this fact is that in PIMAC,
in contrast to the interference channel (IC), more than one transmitter can serve
a single receiver. However by using TIN, no GDoF gain is attained by dedicating
multiple transmitters to a receiver. Therefore, as it is also shown in Chapter 3 that
the desired links which correspond to the inactive transmitters need to be consid-
ered as interference links in the optimality condition of TIN. On the other hand, it
is shown that the intuitive condition which restricts the optimality of TIN to the
regimes with very weak interference links compared to the desired links is generally
not necessary. These insights obtained on the optimality of TIN in the Gaussian
PIMAC have been further extended to the M × 2 X-channel. In order to obtain a
complete characterization of the GDoF optimal regime of TIN, the following issues
were considered individually for PIMAC and M × 2 X-channel.
Different variants of TIN: The achievable performance of using TIN at the

receiver side has been studied while the transmitters were allowed to use Gaussian
encoding with arbitrary power control. Depending on the transmit power, different
sum-rates were achievable. Interestingly, it has been shown that in PIMAC and
M × 2 X-channel as long as the receivers use TIN, the GDoF optimal power control
is a binary power control in which the transmitters either send with full power or
are completely inactive. Moreover, it turned out that no additional GDoF gain can
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be attained by allowing more than one desired transmitter for a single receiver or
multiple desired receivers for a single transmitter, as long as the receivers employ
TIN. These facts led us to consider different variants of TIN for each setup. While in
all those variants, the decoding strategy was restricted to simple TIN, their difference
was mainly originated from different message flows in those variants in a sense that
the original channel was reduced to different interference channels (IC) or point-to-
point (P2P) channels. Obviously, by increasing the variants of TIN the achievable
sum-rate increases and subsequently the regime where TIN is GDoF-optimal.
Tighter upper bounds: Different upper bounds on the GDoF performance of

each channel have been established. All of the bounds were genie-aided in which
additional information were provided to the receivers. Some of them were inspired
from the upper bound presented in [ETW08] for the 2-user IC in which the noisy
version of the interference signal caused by each transmitter is provided to the de-
sired receiver. In this thesis, a more general type of upper bound has been also
established in which a linear combinations of signals was given as side information to
a receiver. Additionally, in order to tighten the obtained upper bounds, we proposed
a novel lemma on the maximum difference between differential entropies of noisy lin-
ear combinations of signals under power constraints. This difference is bounded by a
constant independent of power and hence does not appear in the GDoF expression.
Due to our new upper bound, the obtained GDoF optimal regime of TIN does not
only subsume the known regime in the literature but also extends them significantly.
Suboptimality of TIN: It was shown for all variants of TIN in PIMAC and

M × 2 X-channel (excluding P2P-TIN in which the M × 2 X-channel is reduced to
a P2P channel) that the characterized GDoF optimal regime of TIN is complete. In
other words, the suboptimality of TIN has been shown for the cases that the channel
operates outside the GDoF optimal regime of TIN. To do this, transmission schemes
based on interference alignment combined with common and private signaling which
required interference decoding have been introduced. It turned out that TIN can be
outperformed by such schemes from the GDoF perspective as long as the channel
performs outside of the proposed GDoF optimal regime of TIN.

5.2 Future Work

There are still some further interesting open problems on the optimality of TIN and
different directions to extend the result of this thesis. For instance, the complete
GDoF optimal regime of P2P-TIN in the M × 2 X-channel remained still open. It
is interesting to know whether there exists a tighter GDoF upper bound than the
bounds introduced in this work for showing the optimality of P2P-TIN. If this is
the case, then one can relax the proposed conditions on optimality of P2P-TIN and
extend the GDoF optimal regime of TIN for the M × 2 X-channel. On the other
hand, to show that the proposed conditions on GDoF optimality of TIN are not only
sufficient but also necessary, the suboptimality of TIN needs to be shown from the
GDoF point of view.

136



5.2 Future Work

Another interesting direction to extend the results of the thesis is to know whether
TIN performs GDoF optimally in the X-channel if the role of transmitters and re-
ceivers will be swapped. Notice that based on the proposed GDoF optimal regime
of TIN in [GSJ15], if TIN is GDoF optimal in an M × 2 X-channel, it performs also
optimally in the 2 ×M X-channel. It is interesting to know whether our extended
GDoF optimal regime of TIN for the M × 2 X-channel is also valid for the backward
channel. To get some insight knowledge on this problem, one need to study the
GDoF optimality of TIN in a 2×M X-channel. We do believe that this study pro-
vides interesting insights on the duality of the GDoF optimality conditions of TIN
in the X-channel.
The GDoF result is an intermediate step towards characterizing the capacity of a

channel. For instance, the optimality of TIN for the 2-user IC operating in very weak
interference regime has been initially shown in [ETW08] with respect to the GDoF.
Knowing this approximated result, a capacity optimal regime of TIN has been found
in [MK09, AV09, SKC09]. Similarly, we know a capacity optimal regime of TIN for
the 2 × 2 X-channel from [HCJ12] which is also found through studying the GDoF
optimality of TIN. It is interesting to extend the results on the GDoF optimal regime
of TIN for the M × 2 X-channel to the capacity optimal regime of TIN. This exten-
sion becomes more interesting by focusing on the new characterized GDoF optimal
regime of TIN. The question is whether any sub-regime of our extended GDoF op-
timal regime might appear in the capacity optimal regime of TIN. To answer this
question, our proposed lemma (Lemma 21) needs to be refined. This lemma bounds
the difference between differential entropies of noisy linear combinations of random
variables under some constraints by a constant. Obviously, since this constant does
not scale with transmit power, it does not have any impact on the GDoF analysis.
However, for the capacity analysis, we need to be able to bound the difference of the
entropy terms by zero to obtain a tight upper bound.
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