532

A New Criterion of Delay-Dependent Asymptotic Stability
for Hopfield Neural Networks With Time Delay

Shaoshuai Mou, Huijun Gao, James Lam, and Wenyi Qiang

Abstract—In this brief, the problem of global asymptotic stability for
delayed Hopfield neural networks (HNNs) is investigated. A new criterion
of asymptotic stability is derived by introducing a new kind of Lya-
punov-Krasovskii functional and is formulated in terms of a linear matrix
inequality (LMI), which can be readily solved via standard software. This
new criterion based on a delay fractioning approach proves to be much less
conservative and the conservatism could be notably reduced by thinning
the delay fractioning. An example is provided to show the effectiveness
and the advantage of the proposed result.

Index Terms—Global asymptotic stability, Hopfield neural network
(HNN), linear matrix inequality (LMI), Lyapunov functional.

I. INTRODUCTION

In recent years, Hopfield neural networks (HNNs) have found many
applications in a broad range of areas such as associative memory,
repetitive learning, classification of patterns, and optimization prob-
lems. Thus, considerable attention has been devoted to the research on
HNNGs [2], [6]. In particular, the stability analysis of HNNs has become
atopic of both theoretical and practical importance since stability is one
of the most important issues related to their dynamic behaviors. There
have been extensive results on global asymptotic stability in the litera-
ture (see [3], [12]-[14], [20], and the references therein).

In practice, due to the finite switching speed of amplifiers or finite
speed of information processing, time delays are often encountered
in hardware implementation [1], [8], [9], which may be a source of
oscillation, divergence, and instability in HNNs. Therefore, the sta-
bility problems of HNNs with time delay have gained great research
interest. Based on different assumptions and different approaches, a
great number of stability criteria for delayed HNN's have been proposed
(see [16], [17], [19], and [23]-[25]). Among these results, Xu and Lam
obtained an improved stability condition in [22] over the existing cri-
teria in [21] and [23].

In this brief, we revisit the problem of stability analysis for delayed
HNN:G. It is shown that the result in [22] can be further improved by
constructing a new Lyapunov—Krasovskii functional with the idea of
delay fractioning. The condition is formulated in the form of a linear
matrix inequality (LMI) and proves to be much less conservative,
shown via a numerical example. The rest of this brief is organized as
follows. In Section II, the problem of asymptotic stability analysis for
delayed HNNs is formulated. Section III presents our main result. A
numerical example is provided in Section IV, and we conclude the
brief in Section V.

Notation: The notation used throughout this brief is fairly stan-
dard. R" denotes the n-dimensional Euclidean space and the notation
P > 0(> 0) means that P is real symmetric and positive definite
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(semidefinite). I and O denote the identity matrix and zero matrix with
compatible dimensions, and diag{. . .} stands for a block-diagonal ma-
trix. Matrices are assumed to be compatible for algebraic operations if
their dimensions are not explicitly stated.

II. PROBLEM FORMULATION

Consider the following continuous HNN with time delay:

L,(f) = —(l‘il'i(f)—i—Zbi]'fj(éL'j(f— T))—I—C,Z' (1)

J=1
or, equivalently
#(t) = —Ax(t)+ Bf(x(t— 1)) + c. ?2)
Here, #(t) = [21(t), 22(t),...,2.(t)]T is the neural state vector;

Fa(t = 1)) = [fa(aa(t— 7)), falwa(t = 7))oy fulwalt — )]
denotes the activation function; ¢ = [c1, ¢2,. . ., ¢, ] is the constant ex-
ternal input; and A = diag{ay,az,...,a,} > 0 € R"*" is a positive
diagonal matrix. The scalar 7 > 0 is a constant time delay. The inter-
connection matrix B represents the delayed weight coefficients of the
neurons. Furthermore, we assume that f;, j = 1,2, ..., n, satisfies the
following assumption [22].

Assumption 1: The activation function f(x) is continuous and
bounded and it satisfies the following inequality:

0< fi(s1) = £i(s2) <1,

51 — 82

1=12....,n.

for all s1,s2 € R, 51 # s2.

It should be pointed out that Assumption 1 guarantees there is an
equilibrium point for HNN (2). This can be easily verified by em-
ploying the well-known Brouwer’s fixed point theorem. Let #* =
[z1,25,..., 2] be the equilibrium point. Then, in order to simplify
the equation, we make the following transformation by the change of
variables:

y(t) = 2(t) — 2".
Under this transformation, HNN (2) is rewritten as
y(t) = —Ay(t) + Bg(y(t — 7)) (3)
where
95 (wi(1) = fiy;(t) + 27) — fi(xF). ©)
By (4) and Assumption 1, it is not difficult to verify that

g0 =00< 8 <)

J

Vy; #0, i=12,...,n.

(&)

III. MAIN RESULT

In this section, we present our new delay-dependent asymptotic sta-
bility criterion for delayed HNNs.

Theorem 1: Given an integer m > 1, the origin of the delayed
HNN in (2) is the unique equilibrium point and it is globally asymptot-
ically stable, if there exist positive—definite matrices P € R">*", Q €
Rmxmt R e R**™, and S = diag{si, s2. ..., s, } such that

O =WEPWp + WARWR + WSQWo + WESWs <0 (6)
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where

_ [0 P ~ R 0
P__P 0 R_{o —R}
- [Q o] - [0 s
@=1lo —¢] °T|s -s
[ - ifl On,WLrL LB
_ m m
Wgr =
- ﬂIn 4 ﬁ[n On,mn
T v T
. [=A Opwn B
e A on}
o -On‘nzn 7L 017,
Ws = ! 2
_On,nzn On \/5[7,
[ Im,n Om,n n Onzn n
Wo = 2 2
@ Omn R Imn me,n :|

L =diag{lilo,.... 1. ).

Proof: The uniqueness of the equilibrium point can be proved by
the contradiction method similar in [22]. Now, we are in the position
to show that the equilibrium point is globally asymptotically stable. At
first, we choose a Lyapunov—Krasovskii functional candidate as

V(t) =Vi(t) + Va(t) + Va(e) @)
where
Vi(t) = y(t)" Py(t),
wo= [ [ i eriea
o= [ 1T
and

T(w) =

< m—1 >
ylw— T

m
The derivatives of V;(t),i = 1,2, 3, are given by

Vi(t) = 2y(t)" Pi(t)
o) = Tt (ORI = [ @ Ri)de

() = T(t)" vy (e- 1) _T
Va(t) = Y1) QY(t) = T (t ,m) QY (t m) ®)
From Jensen’s inequality, we can easily get

t
—/ §T () Rj(w)dw <~
t T T

X [y(t) -y (l‘— %)}TR [z/(t) -y (t— L)] G

m

™m

From (5), for any scalar s; > 0, it is clear that

23" 5,050t = Pyt = 7) = 9,0y (£ = )] 2 0
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or, equivalently
2g(y(t — 7)) SLy(t — 7) = 29(y(t — 7)) Sg(y(t — 7) > 0. (10)
Using (3), (8), (9), and (10), we have

V(1) <2y(1)" P~ Ay(t) + By(y(t = )]
+ 7%[_"4y(t)+Bg(y(t_T))]TB[—A,y(f)+Bg(y(t_7_))]

= [y (= 2)] R pttr—y (1= 1]
+YHTQY(MH) - T (f - ;_L)l QY (t - L)

m

+2g(y(t—1))" SLy(t—7)—2g(y(t—7))" Sg(y(t—T)

= o)
where
T(t)
ty=1 ylt—-1) (11)
g(y(t—1))

and © is defined in (6).
On the other hand, condition (6) implies that there exists a positive
¢ such that

O < diag{—=I,0,...,0,0}.

We pre- and postmultiply this inequality by ¢” () and ¢(t), respec-
tively. Then, one can easily achieve

V(t) <t ect) < —clly®)|’

which shows that the delayed HNN in (2) is asymptotically stable. This
completes the proof. O

Remark 1: Theorem 1 presents a new delay-dependent sta-
bility criterion for delayed HNNs by using a more general Lya-
punov—Krasovskii functional in (7). Note that, even for m = 1, the
proposed result still demonstrates superiority over the main classical
results in the literature. An illustrative example will be provided to
show this in Section IV.

Remark 2: The reduced conservatism of Theorem 1 benefits from
the construction of the new Lyapunov—Krasovskii functional in (7). The
main idea is to fraction the delay, which constitutes the major difference
from most existing results in the literature. Moreover, the conservatism
reduction increases as the delay fractioning becomes thinner.

Remark 3: The delay fractioning idea can be extended to the time-
varying delay case. We just need to modify our Lyapunov—Krasovskii
functional by replacing 7 with 7(¢)(0 < 7(t) < h,7 < p) to get
LMI-based sufficient condition for HNN with time-varying delay.

If we choose the Lyapunov—Krasovskii functional as

t

VO = s P+ [ T@ QY@ ()

t—
"

then it is easy to obtain the following delay-independent stability con-
dition.

Corollary 1: Given an integer m > 1, the origin of the delayed
HNN in (2) is the unique equilibrium point and it is delay-independent
globally asymptotically stable, if there exist positive—definite matrices
PeR"™" QeR™>™" and S = diag{si, 2, ..., 8, } such that

Q=WLPWp + W,QWq + WISWs <0 (13)
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where

- [0 P = 0
P=1lpr 0] Q:[g —Q}
5= g _SS} L = diag{l1,ls,...,1,},
e PR
L0nmn— On V21,
[ Imn  Omnn Omnon

Proof: The derivative of (12) is

i(6) = 200" P+ (0" QY- (1= =) QT (1= 1)
< 2y(t)" P[-Ay(t) + Bg(y(t — 7))]
+YHTQY() — T (t - %)T oY (t - l)

+2g(y(t—7))" SLy(t—7)—2g(y(t—7))" Sg(y(t—7))
<)

where ((t) is as defined in (11) and €2 in (13). Then, using similar
method in Theorem 1, we complete the proof. O

Remark 4: Though not in ordinary form of LMI, Theorem 1 and
Collary 1 are indeed in the standard LMI form, which can be easily
solved by the standard software. Moreover, this form simplified as
WEXW, + W YW, < 0 is more laconic. It expresses the LMI in
several parts, each of which has a symmetric structure with the matrix
variable to be determined in center.

IV. ILLUSTRATIVE EXAMPLES

In this section, an example is provided to illustrate the advantage
of Theorem 1 by comparing it with recently reported results on delay-
dependent asymptotic stability of delayed HNN.

Example 1: Consider the following third-order delayed HNN:

4.1989 0 0
A= 0 0.7160 0
0 0 1.9985
—0.1052 —-0.5069 -0.1121
B =]-0.0257 -0.2808 0.0212
0.1205 -0.2153 0.1315

with

L = diag{0.4129,3.8993,1.0160}.

Our purpose is to find the maximum allowable delay Tax such that
the delayed HNN in (2) is globally asymptotically stable. Computa-
tional results are shown in Table I, which summarizes the obtained
maximum allowable delays by using the previously published methods
and our new result for various fractionings.

Table 1 shows that for no fractioning (m = 1), the new criterion
given in Theorem 1 is still less conservative than the previous results,
which corresponds to Remark 1. Moreover, for m > 1, the conser-
vatism reduction proves to be more obvious. However, it should be
noted that although conservatism is reduced as the fractioning becomes
thinner, there is no significant improvement after m = 5.
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TABLE I
MAXIMUM ALLOWABLE DELAYS COMPARISON
Method Tmax
Ye and Michel, 1994, [23] | 0.4121
Xu and Lam, 2005, [21] 1.7484
Xu and Lam, 2006, [22] 1.7644
Theorem 1, m =1 2.14
Theorem 1, m =2 2.48
Theorem 1, m =3 2.54
Theorem 1, m =4 2.57
Theorem 1, m =5 2.581
Theorem 1, m =10 2.596
Theorem 1, m =15 2.597

V. CONCLUSION

By defining a new Lyapunov—Krasovskii functional, an improved
delay-dependent asymptotic stability criterion has been obtained for a
class of delayed HNNs. The proposed condition is given in terms of
LMISs and thus can be readily solved via standard numerical software.
The merit of the proposed condition lies in its reduced conservatism,
which is based on a time delay fractioning approach. The result proves
to become less conservative as the fractioning goes thinner. Finally, a
numerical example has been provided to demonstrate the effectiveness
of the proposed criterion. The method is expected to be further extended
to other neural networks or complex networks [4], [5], [7], [10], [11],
[15], [18], which is under our investigation.
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Energy Function and Energy Evolution
on Neuronal Populations

Rubin Wang, Zhikang Zhang, and Guanrong Chen

Abstract—Based on the principle of energy coding, an energy function of
a variety of electric potentials of a neural population in cerebral cortex is
formulated. The energy function is used to describe the energy evolution of
the neuronal population with time and the coupled relationship between
neurons at the subthreshold and the suprathreshold states. The Hamil-
tonian motion equation with the membrane potential is obtained from the
neuroelectrophysiological data contaminated by Gaussian white noise. The
results of this research show that the mean membrane potential is the exact
solution of the motion equation of the membrane potential developed in
a previously published paper. It also shows that the Hamiltonian energy
function derived in this brief is not only correct but also effective. Particu-
larly, based on the principle of energy coding, an interesting finding is that
in some subsets of neurons, firing action potentials at the suprathreshold
and some others simultaneously perform activities at the subthreshold level
in neural ensembles. Notably, this kind of coupling has not been found in
other models of biological neural networks.

Index Terms—Coupled neural population, energy coding, energy evolu-
tion, Hamiltonian function.

1. INTRODUCTION

Due to the limitations in current biophysical models of neural
coding, research into the mechanisms of neural information processing
remains a challenge [1]-[3], thereby the fundamental principles of
neural information processing underlying cognitive processes in the
brain are still not completely understood today.

Regarding neural information processing, the basic theory of energy
coding has received strong supports from many neuroelectrophysiolog-
ical experiments [4]-[11], [13]-[16], and a significant expansion on
energy coding appear in [7]. Two concerned issues pertaining to the
aforementioned research results are considered in this brief.

1) Neuronal activities at the subthreshold and the suprathreshold
states are separately described and discussed in their mathemat-
ical models. The fact is that most activities of neurons at both
of these threshold states are mutually coupled, so this separate
description does not agree with the real neuronal activities. For
this reason, the coupled relationship between neurons at the sub-
threshold and suprathreshold states is taken into account in this
brief, and under such coupling configuration some quantitative
expressions of energy coding are obtained.

2) The Hamiltonian energy function describing the collective activ-
ities of electric potentials of a whole neural population is derived
and analyzed, improving the previously published results devoted
only to a single neuron [5], [7]. Therefore, the results reported in
this brief are quite universal and significant.
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