Lompat ke isi

Persamaan diferensial biasa

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 18 September 2020 09.13 oleh Akuindo (bicara | kontrib)
Lintasan peluru yang ditembakkan dari meriam mengikuti kurva yang ditentukan lewat persamaan diferensial parsial yang diturunkan dari hukum kedua Newton

Persamaan diferensial biasa (bahasa Inggris: Ordinary differential equation singkatan ODE) adalah persamaan diferensial di mana fungsi yang tidak diketahui (variabel terikat) adalah fungsi dari variabel bebas tunggal. Dalam bentuk paling sederhana fungsi yang tidak diketahui ini adalah fungsi riil atau fungsi kompleks, tetapi secara umum bisa juga berupa fungsi vektor maupun matriks. Lebih jauh lagi, persamaan diferensial biasa digolongkan berdasarkan orde tertinggi dari turunan terhadap variabel terikat yang muncul dalam persamaan tersebut.

Contoh sederhana adalah hukum gerak kedua Newton, yang menghasilkan persamaan diferensial

untuk gerakan partikel dengan massa konstan m. Pada umumnya, gaya F tergantung kepada posisi partikel x(t) pada waktu t, dan demikian fungsi yang tidak diketahui x(t) muncul pada kedua ruas persamaan diferensial, seperti yang diindikasikan dalam notasi F(x(t)).

Persamaan diferensial biasa dibedakan dengan persamaan diferensial parsial, yang melibatkan turunan parsial dari beberapa variabel.

Persamaan diferensial biasa muncul dalam berbagai keadaan, termasuk geometri, mekanika, astronomi dan pemodelan populasi. Banyak matematikawan ternama telah mempelajari persamaan diferensial dan memberi sumbangan terhadap bidang studi ini, termasuk Isaac Newton, Gottfried Leibniz, keluarga Bernoulli, Riccati, Clairaut, d'Alembert dan Euler.

Dalam kasus persamaan tersebut linier, persamaan diferensial biasa dapat dipecahkan dengan metode analitik. Malangnya, kebanyakan persamaan diferensial nonlinier, dan kecuali sebagian kecil, tidak dapat dipecahkan secara eksak. Pemecahan hampiran dapat dicapai menggunakan komputer.

Persamaan diferensial

Persamaan diferensial linear adalah persamaan diferensial yang ditentukan oleh polinomial linear dalam fungsi yang tidak diketahui dan turunannya, hal ini adalah persamaan dari bentuk

dimana , ..., dan adalah nilai sembarang dari fungsi terdiferensiasi yang tidak perlu menggunakan linearr, dan adalah turunan berurutan dari fungsi yang tidak diketahui y variabel x.

Di antara persamaan diferensial biasa, persamaan diferensial linear memainkan peran penting karena beberapa alasan. Sebagian besar fungsi dasar dan khusus yang ditemukan dalam fisika dan matematika terapan adalah solusi persamaan diferensial linier (lihat Fungsi holonomik). Ketika fenomena fisik dimodelkan dengan persamaan non-linier, umumnya didekati dengan persamaan diferensial linier untuk solusi yang lebih mudah. Beberapa ODE non-linier yang dapat diselesaikan secara eksplisit umumnya diselesaikan dengan mengubah persamaan menjadi ODE linier ekuivalen (lihat, contohnya persamaan Riccati).


Definisi

Berikut ini, bila y menjadi variabel dependen dan x sebuah variabel independen, dan y = f(x) adalah fungsi yang tidak diketahui dari x. Notasi untuk diferensiasi bervariasi tergantung pada penulis dan notasi mana yang paling berguna untuk tugas yang sedang dikerjakan. Dalam konteks ini, notasi Leibniz (dy/dx,d2y/dx2,...,dny/dxn) lebih berguna untuk diferensiasi dan integrasi, sedangkan notasi Lagrange (y′,y′′, ..., y(n)) lebih berguna untuk merepresentasikan turunan dari urutan apa pun secara kompak, dan notasi Newton sering digunakan dalam fisika untuk mewakili turunan orde rendah sehubungan dengan waktu.

Definisi umum

biasanya F, fungsi dari x, y, dan turunan dari y. Kemudian persamaan bentuknya

disebut sebagai eksplisit persamaan diferensial biasa dari nilai order n.[1][2]

Lebih umum lagi, persamaan diferensial biasa implisit n mengambil bentuknya:[3]


Sistem ODE

Sejumlah persamaan diferensial berpasangan membentuk sistem persamaan. Jika y adalah vektor yang elemennya adalah fungsi; y(x) = [y1(x), y2(x),..., ym(x)], dan F adalah fungsi nilai vektor dari 'y' dan turunannya, maka

adalah sistem eksplisit persamaan diferensial biasa dari orde n dan dimensi m. Dalam bentuk vektor kolom:

Ini tidak selalu linier. Analog implisit adalah:

Dimana 0 = (0, 0, ..., 0) adalah vektor nol. Dalam bentuk matriks

Untuk sistem bentuk , beberapa sumber juga mengharuskan matriks Jacobian jadilah non-singular untuk menyebutnya sebagai [sistem] ODE implisit; sistem ODE implisit yang memenuhi kondisi non-singularitas Jacobian ini dapat diubah menjadi sistem ODE eksplisit. Dalam sumber yang sama, sistem ODE implisit dengan Jacobian tunggal disebut persamaan aljabar diferensial (DAE). Perbedaan ini bukan hanya salah satu terminologi; DAE memiliki karakteristik yang berbeda secara fundamental dan umumnya lebih terlibat untuk diselesaikan daripada sistem ODE (nonsingular).[4][5] Agaknya untuk turunan tambahan, matriks Hessian dan seterusnya juga diasumsikan non-singular menurut skema tersebut, [butuh rujukan] meskipun perhatikan bahwa ODE apa pun dengan urutan yang lebih besar dari satu dapat [dan biasanya] ditulis ulang sebagai sistem ODE urutan pertama,[6] yang membuat kriteria singularitas Jacobian cukup untuk taksonomi ini menjadi komprehensif di semua urutan.

Perilaku sistem ODE dapat divisualisasikan melalui penggunaan potret fase.

Solusi

Solusi dari persamaan diferensial

sebuah fungsi u: IRR, dimana I adalah interval, disebut solusi atau kurva integral untuk F, if u adalah n-kali dibedakan I, and

Given two solutions u: JRR and v: IRR, u is called an extension of v if IJ and

Solusi tunggal

Teori solusi tunggal s of biasa dan persamaan diferensial parsial adalah subjek penelitian dari zaman Leibniz, tetapi baru sejak pertengahan abad kesembilan belas hal itu mendapat perhatian khusus. Sebuah karya berharga tapi sedikit diketahui tentang masalah hal ini adalah karya Houtain (1854). Darboux (dari tahun 1873) adalah pemimpin dalam teori, dan dalam interpretasi geometris solusi ini ia membuka bidang yang dikerjakan oleh berbagai penulis, terutama Casorati. Untuk yang terakhir adalah karena (1872) teori solusi tunggal dari persamaan diferensial orde pertama yang diterima sekitar tahun 1900.

Pengurangan menjadi kuadrat

Upaya primitif dalam menangani persamaan diferensial telah melihat pengurangan ke kuadrat. Sebagaimana telah menjadi harapan para ahli aljabar abad kedelapan belas untuk menemukan metode untuk memecahkan persamaan umum dari n derajat, jadi analis berharap untuk menemukan metode umum untuk mengintegralkan persamaan diferensial. Gauss (1799) menunjukkan, bagaimanapun, persamaan diferensial yang kompleks. Oleh karena itu, analis mulai menggantikan studi fungsi, sehingga membuka bidang baru dan subur. Cauchy adalah orang pertama yang menghargai pentingnya pandangan ini. Setelah itu, pertanyaan sebenarnya bukan lagi apakah suatu solusi dimungkinkan melalui fungsi yang diketahui atau integral, tetapi apakah persamaan diferensial yang diberikan cukup untuk definisi fungsi dari variabel bebas atau variabel, dan, jika demikian, apa sifat karakteristiknya.

Teori

Teori Fuchsian

Dua memoar oleh Fuchs[7] mengilhami pendekatan baru, yang kemudian diuraikan oleh Thomé dan Frobenius. Collet adalah kontributor terkemuka mulai tahun 1869. Metodenya untuk mengintegrasikan sistem non-linier dikomunikasikan ke Bertrand pada tahun 1868. Clebsch (1873) menyerang teori sepanjang garis sejajar dengan teori Abelian integral. Karena yang terakhir dapat diklasifikasikan menurut sifat-sifat kurva fundamental yang tetap tidak berubah di bawah transformasi rasional, Clebsch mengusulkan untuk mengklasifikasikan fungsi transenden yang ditentukan oleh persamaan diferensial sesuai dengan sifat invarian dari permukaan yang sesuai f = 0 di bawah transformasi satu-ke-satu yang rasional.

Teori Lie

Dari tahun 1870, karya Sophus Lie menempatkan teori persamaan diferensial di atas fondasi yang lebih baik. Dia menunjukkan bahwa teori integrasi dari ahli matematika yang lebih tua bisa, menggunakan Lie grup, dirujuk ke sumber yang sama, dan persamaan diferensial biasa yang mengakui hal yang sama infinitesimal transformasi menghadirkan kesulitan integrasi yang sebanding. Dia juga menekankan subjek transformasi kontak.


Teori Sturm-Liouville

Teori Sturm-Liouville adalah teori jenis khusus dari persamaan diferensial biasa linier orde dua. Solusi mereka didasarkan pada eigenvalues dan korespondensi eigenfunctions operator linier yang ditentukan melalui orde kedua persamaan linier homogen.

Eksistensi dan keunikan solusinya

Ada beberapa teorema yang menetapkan keberadaan dan keunikan solusi untuk masalah nilai awal yang melibatkan ODE baik secara lokal maupun global. Dua teorema utama tersebut adalah

Dalil Anggapan Kesimpulan
Teorema keberadaan Peano F kontinu keberadaan lokal saja
Teorema Picard–Lindelöf F Lipschitz terus menerus keberadaan dan keunikan lokal

Dalam bentuk dasarnya, kedua teorema ini hanya menjamin hasil lokal, meskipun yang terakhir dapat diperpanjang untuk memberikan hasil global, misalnya, jika kondisi Pertidaksamaan Grönwall terpenuhi.

Selain itu, teorema keunikan seperti Lipschitz di atas tidak berlaku untuk sistem DAE, yang mungkin memiliki beberapa solusi yang berasal dari bagian aljabar (non-linear) saja.[8]

Eksistensi lokal dan teorema keunikan disederhanakan

Teorema dapat dinyatakan secara sederhana sebagai berikut.[9] Untuk persamaan dan masalah nilai awal:

bila F and ∂F/∂y bersambung dalam persegi panjang tertutup

dalam x-y bidang, dimana a dan b adalah real (secara simbolis: a, b ∈ ℝ) dan × menunjukkan produk kartesian, tanda kurung siku menunjukkan interval tertutup, lalu ada interval


Pengurangan pesanan

Persamaan diferensial biasanya dapat diselesaikan dengan lebih mudah jika urutan persamaan dapat dikurangi.

Pengurangan ke sistem orde pertama

Persamaan orde diferensial eksplisit apa pun n,

dapat ditulis sebagai sistem n persamaan diferensial orde pertama dengan mendefinisikan keluarga baru fungsi yang tidak diketahui

bagi i = 1, 2,..., n. Kemudian sistem dimensi n dari persamaan diferensial berpasangan orde satu

lebih kompak dalam notasi vektor:

dimana

Metode tebakan

Ketika semua metode lain untuk menyelesaikan ODE gagal, atau dalam kasus di mana kami memiliki beberapa intuisi tentang seperti apa solusi untuk DE, Terkadang mungkin untuk menyelesaikan DE hanya dengan menebak solusi dan memvalidasinya benar. Untuk menggunakan metode ini, kita cukup menebak solusi dari persamaan diferensial, lalu memasukkan solusi tersebut ke dalam persamaan diferensial untuk memvalidasi apakah solusi tersebut memenuhi persamaan tersebut. Jika benar, maka kami memiliki solusi khusus untuk DE, jika tidak, kami mulai lagi dan coba tebakan lain. Misalnya kita bisa menebak bahwa solusi untuk DE memiliki bentuk: karena ini adalah solusi yang sangat umum yang secara fisik berperilaku sinusoidal.

Dalam kasus ODE orde pertama yang tidak homogen, pertama-tama kita harus mencari solusi DE untuk bagian DE yang homogen, atau yang dikenal sebagai persamaan karakteristik.

Lihat pula

Catatan

  1. ^ (Harper 1976, hlm. 127)
  2. ^ (Kreyszig 1972, hlm. 2)
  3. ^ (Simmons 1972, hlm. 3)
  4. ^ Uri M. Ascher; Linda R. Petzold (1998). Metode Komputer untuk Persamaan Diferensial Biasa dan Persamaan Diferensial-Aljabar. SIAM. hlm. 12. ISBN 978-1-61197-139-2. 
  5. ^ Achim Ilchmann; Timo Reis (2014). Survei dalam Persamaan Aljabar-Diferensial II. Springer. hlm. 104–105. ISBN 978-3-319-11050-9. 
  6. ^ Uri M. Ascher; Linda R. Petzold (1998). Metode Komputer untuk Persamaan Diferensial Biasa dan Persamaan Diferensial-Aljabar. SIAM. hlm. 5. ISBN 978-1-61197-139-2. 
  7. ^ Crelle, 1866, 1868
  8. ^ Uri M. Ascher; Linda R. Petzold (1998). Metode Komputer untuk Persamaan Diferensial Biasa dan Persamaan Diferensial-Aljabar. SIAM. hlm. 13. ISBN 978-1-61197-139-2. 
  9. ^ Elementary Persamaan Diferensial dan Masalah Nilai Batas (Edisi ke-4), W.E. Boyce, R.C. Diprima, Wiley International, John Wiley & Sons, 1986, ISBN 0-471-83824-1

Referensi

Bibliografi

Tautan luar

Templat:Topik persamaan diferensial