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Abstract—We exhibit a natural function F , that can be
computed by just a linear sized decision list of ‘Equalities’,
but whose sign rank is exponentially large. This yields the
following two new unconditional complexity class separations.
The first is an exponential separation between the depth-two
threshold circuit classes Threshold-of-Majority and Threshold-
of-Threshold, answering an open question posed by Amano and
Maruoka [MFCS ’05] and Hansen and Podolskii [CCC ’10].
The second separation shows that the communication com-
plexity class PMA is not contained in UPP, strongly resolving
a recent open problem posed by Göös, Pitassi and Watson
[ICALP ’16]. In order to prove our main result, we view F as
an XOR function and develop a technique to lower bound the
sign rank of such functions. This requires novel approximation
theoretic arguments against polynomials of unrestricted degree.
Further, our work highlights for the first time the class ‘decision
lists of exact thresholds’ as a common frontier for making
progress on longstanding open problems in Threshold circuits
and communication complexity.

Keywords-sign rank; XOR functions; communication com-
plexity; circuit complexity; approximation theory

I. INTRODUCTION

Sign rank is a delicate but powerful notion, which has a

matrix rigidity-like flavor. It was introduced in the seminal

work of Paturi and Simon [41]. The sign rank of a {−1, 1}
valued matrix M is defined to be the minimum rank of

a real valued matrix each of whose entries agrees in sign

with the corresponding entry of M . Sign rank has found

numerous applications in computer science in areas like

communication complexity, boolean circuit complexity, and

computational learning theory. Paturi and Simon showed

that the logarithm of the sign rank of a (communication)

matrix is essentially equivalent to the unbounded-error 2-

party communication complexity of the underlying function.

Forster et al. [17] showed that proving lower bounds on

the sign rank of a function gives lower bounds on the

minimum size of any THR◦MAJ circuit computing it. Sign

rank is known to be equivalent to dimension complexity,

a geometric notion that is of fundamental importance in

computational learning theory. Unfortunately, even proving

lower bounds on the sign rank of a random function is

non-trivial and was first done by Alon et al. [3]. On the

other hand, proving strong lower bounds on the sign rank

of an explicit function, IP, was a breakthrough achieved

by Forster [16] fifteen years later. Since that work, there

have relatively been just a few results proving strong sign

rank lower bounds on explicit functions [48], [43], [10],

[8]. While many basic questions about sign rank remain

unanswered, new connections between it and other areas of

mathematics keep showing up (see, for example, [4]).

We consider the following easily describable function Fn:

The input, of length n = 2m�, is split into two disjoint parts,

X ∈ {−1, 1}m� and Y ∈ {−1, 1}m�. X and Y are each

further divided into � disjoint blocks X1, . . . , X�, Y1, . . . , Y�,

of length m each. The function Fn outputs −1 iff the largest

index i ∈ [�] for which Xi = Yi holds is an odd index. For

the purpose of this paper, we set m = �1/3 + log �. It is not

hard to see that Fn can be easily described as a decision list

of Equalities.

Our main theorem shows a strong lower bound on the

sign rank of MFn
, where the rows of MFn

are indexed by

the inputs X , the columns by Y , and the (x, y)th entry is

Fn(x, y). We overload notation and refer to the sign rank of

MFn
as the sign rank of Fn.

Theorem I.1 (Main). The function Fn has sign rank
2Ω(n1/4).

The building block of Fn is Equality, which is a very

simple function under various models of computation. It

turns out Fn can be computed by a depth-2 linear sized

threshold formula. This simplicity of Fn, mainly in its

depth complexity, enables us to settle two open problems.

The first is a twenty-five year old (open since the work

of Goldmann, Håstad and Razborov [18]) and very basic

problem of understanding the relative power of weights in

depth-2 threshold circuits. This application of our result is

outlined in Section I-A. The second problem, posed much

more recently by Göös, Pitassi and Watson [22], is a commu-

nication complexity class separation, outlined in Section I-B.

Interestingly, our resolution of these two problems also

serves to highlight an emerging barrier, that we call the ‘sign

rank barrier’, against proving new lower bounds against

depth-two threshold circuits and communication protocols

just above the first level of the polynomial hierarchy.

A. Application: bottom weights can matter

Linear threshold functions (LTF’s) form one of the most

central classes of Boolean functions that are studied. Every
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such function is the halfspace induced by a real weight vec-

tor w ∈ Rn+1 denoted by THRw in the following way1: For

each x ∈ {−1, 1}n, THRw

(
x
)
= sgn (w0 +

∑n
i=1 wixi).

It is well known [40] that for every threshold gate with n
inputs, there exists a threshold representation for it that uses

only integer weights of magnitude at most 2O(n logn). The

power of an LTF depends on the magnitude of the weights

allowed. For instance, the Boolean function GT(x, y) that

determines if the n-bit integer x is at least as large as the n-

bit integer y is an example of an LTF that has no representa-

tion as an LTF with sub-exponentially small weights. Indeed

in various areas, several questions and problems have been

solved when the LTF’s arising in the study are restricted

to have small weights, but extending them to unrestricted

weights are either open or have been solved after spending

much research efforts. Examples of such areas are learning

theory [33], [49], pseudorandom generators [46] , analysis of

Boolean functions [26] and Boolean circuit complexity [14].

Understanding the relative power of large weights vs. small

weights in the context of small-depth circuits having LTF’s

as gates has attracted attention by several works [5], [18],

[51], [24], [25], [42], [23], [29], [19].

In this section, we describe the applicability of our main

theorem in answering a longstanding open question that

completes the picture of the role weights play in depth-2

threshold circuits. The class of all Boolean functions that

can be computed by circuits of depth d and polynomial

size, comprising gates computing LTF’s (of polynomially

bounded weights), is denoted by LTd (L̂T d). The seminal

work of Minsky and Papert [38] showed that a simple

function, Parity, is not in LT1. While it is not very hard

to verify that Parity is in L̂T 2, an outstanding problem

is to exhibit an explicit function that is not in LT2. This

problem is now a well-identified frontier for research in

circuit complexity.

By contrast, the relatively early work of Hajnal et al. [23]

established the fact that the Inner-Product modulo 2 function

(denoted by IP), that is easily seen to be in L̂T 3, is not

in L̂T 2. It turns out that there is a natural class sitting

between L̂T 2 and LT2, denoted by THR ◦MAJ, where the

top THR gate has unrestricted weights, but the weights of

the bottom MAJ gates are restricted to be only polynomially

large. Goldmann et al. [18] proved several interesting results,

which implied the following structure.

L̂T 2
[18]
= MAJ ◦ THR

[18]

� THR ◦MAJ ⊆ LT2

[18]

⊆ L̂T 3.

In a breakthrough work, Forster [16] showed that IP has

sign rank 2Ω(n) for the natural partition of input variables.

This yielded an exponential separation between THR◦MAJ

1Throughout this paper, we consider the input and output domains to be
{−1, 1}n and {−1, 1}, rather than {0, 1}n and {0, 1} respectively. −1
is identified with ‘True’, and 1 with ‘False’.

and L̂T 3. This meant that at least one of the two contain-

ments THR ◦ MAJ ⊆ LT2 and LT2 ⊆ L̂T 3 is strict. One

might believe that the first containment is actually an equal-

ity, motivated by the fact that Goldmann et al. showed that

in a related setting, MAJ ◦MAJ = MAJ ◦THR. Alman and

Williams [2] recently showed interesting upper bounds on

the ‘probabilistic sign-rank’ for functions in LT2. In contrast,

Amano and Maruoka [5] and Hansen and Podolskii [24]

state that separating THR ◦MAJ from THR ◦ THR = LT2

would be an important step for shedding more light on the

structure of depth-2 boolean circuits. However, as far as we

know, there was no clear target function identified for the

purpose of separating the two classes. No progress on this

question was made until our work.

We show that indeed THR ◦ MAJ � THR ◦ THR and

the function Fn achieves the desired separation. To see

why it does, we first note that Fn can be conveniently

expressed as a composed function in the following way:

consider a simple adaptation of the well-known ODD-MAX-
BIT function, which we denote by OMB0

� . The function

OMB0
� outputs −1 precisely if the rightmost bit that is set

to 1 occurs at an odd index. It is simple to observe that it

is a linear threshold function:

OMB0
�

(
x
)
= −1 ⇐⇒

�∑
i=1

(−1)i+12i (1 + xi) ≥ 0.5.

Let fm ◦ gn : {−1, 1}m×n → {−1, 1} be the composed

function on mn input bits, where each of the m input bits

to the outer function f is obtained by applying the inner

function g to a block of n bits. It is not hard to verify that

Fn = OMB0
� ◦ OR�1/3+log � ◦ XOR2.

We first observe that Fn can be computed by linear

sized THR ◦ THR formulas. For each x ∈ {−1, 1}n, let

ETHRw(x) = −1 ⇐⇒ w0 + w1x1 + · · · + wnxn = 0.

Thus, ETHR gates are also called exact threshold gates. By

first observing that every function computed by a formula

of the form THR ◦ OR can also be computed by a formula

of the form THR ◦ AND with a linear blow-up in size, it

follows that Fn can be computed by linear size formulas of

the form THR◦AND◦XOR2. Note that each AND◦XOR2 is

computable by an ETHR gate. Hence, Fn is in THR◦ETHR,

a class that Hansen and Podolskii [24] showed is identical to

the class THR◦THR. Thus, our main theorem (Theorem I.1)

and the above observation yield the following circuit class

separation.

Theorem I.2. The function Fn can be computed by linear
sized THR ◦ THR formulas, but any THR ◦ MAJ circuit
computing it requires size 2Ω(n1/4).

The message of Theorem I.2 may be contrasted with

previous knowledge as follows: While weights at the bottom

do not matter if the top is light, they do matter if the top

is heavy. Further, Theorem I.2 also explains for the first
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time why current lower bound methods fail to get traction

with THR ◦ THR. Interestingly, it also suggests some new

paths along which progress can be made. This is discussed

in Section VIII.

B. Application: communication complexity

Göös [20] pointed out that Fn can be used to demon-

strate another complexity class separation, this time in

communication complexity. Complexity classes in commu-

nication complexity were first introduced in the seminal

work of Babai, Frankl and Simon [6] as an analogue to the

standard Turing complexity classes. While unconditionally
understanding the relative power of (non)determinism and

randomness in the context of Turing machines seems well

beyond current techniques, Babai et al. had hoped that mak-

ing progress in the mini-world of communication protocols

would be less difficult. Indeed, we understand a lot more

in the latter world. For instance, the class Pcc is strictly
contained in both BPPcc and NPcc, while BPPcc and NPcc2

are provably different. A major goal, set by Babai et al., is

to prove lower bounds against the polynomial hierarchy for

which the simple function IP has long been identified as

a target. Unfortunately, it even remains open to exhibit a

function that is not in the second level of the hierarchy. Our

result explains this lack of progress by showing that a total

function, conceivably well below the second level, has large

sign rank.

Functions whose communication matrix of dimension

2n×2n have sign rank upper bounded by a quasi-polynomial

in n were shown in [41] to correspond exactly to the

complexity class UPP. This is the strongest communication

complexity class against which we know how to prove

explicit lower bounds. Razborov and Sherstov [43] proved

that PH (in fact, Π2P) contains functions with large sign

rank, rendering the sign rank technique essentially useless

to prove lower bounds against the second level. A natural

question is to understand until where does the sign rank

method suffice to prove lower bounds.

Indeed, there is a rich landscape of communication com-

plexity classes below the second level as discussed in a

recent, almost exhaustive survey by Göös, Pitassi and Wat-

son [22]. To motivate our contributions, we informally define

MA protocols. Merlin, an all powerful prover, has access

to Alice and Bob’s inputs. He sends a (purported) proof

string to Alice and Bob, who then run a randomized protocol

to verify the proof. The protocol accepts an input iff the

verification goes through. We say the protocol computes a

function F if for all inputs to Alice and Bob, the probability

of outputting the correct answer is at least 2/3. The cost of

the protocol on an input is the sum of the length of Merlin’s

proof string and the number of bits communicated between

2Henceforth, we often drop cc from the superscript for convenience since
we deal exclusively with communication complexity classes.

Alice and Bob. A function is said to be in the complexity

class MA if there is such a protocol computing it with

polylogarithmic worst-case cost (in the size of the input).

For example, the function OR ◦ EQ can be seen to be in

MA as follows: Merlin sends Alice and Bob the index of

an input to the OR gate (if it exists) where EQ outputs −1,

and Alice and Bob run an efficient randomized protocol for

EQ to verify this. The class MA is a natural generalization

of NP, and has received a lot of attention, starting with the

work of [32]. It is known that MA is strictly contained in

UPP.

One could similarly define AM, but its power remains

much less understood. Göös et al. [22] conjectured that

the (potentially incomparable) classes AM∩ coAM and S2P
contain functions of large sign rank. In a very recent work,

Bouland et al. [8] showed that there is a partial function in

AM∩ coAM which has large sign rank, (partially) resolving

the first conjecture.3 We provide a strong confirmation of

the second conjecture.

In order to state our result, let us consider the complexity

class PMA that is contained in S2P. A function is in PMA

if it can be computed by deterministic protocols of poly-

logarithmic cost, where Alice and Bob have oracle access

to any function in MA. The function Fn under the natural

input partition (recall that it can be expressed as a decision

list of Equalities) can be efficiently solved by PMA protocols

by an appropriate binary search, and querying an OR ◦ EQ
oracle at each step.

We thus prove the following as a consequence of our main

theorem.

Theorem I.3. The function Fn witnesses the following
communication complexity class separation.

PMA � UPP.

Our result thus strongly confirms the second conjecture

of Göös et al. by exhibiting the first total function in a

complexity class contained, plausibly strictly, in Π2P, that

has large sign rank.

On the other hand, it is known that PNP � UPP and

MA � PP � UPP. These facts combined with Theorem I.3

shows that PMA is right on the frontier between what we

understand and what we do not. Thus, proving lower bounds

against PMA protocols emerges as a natural program for

advancing the set of currently known techniques, given our

work. Future directions are further discussed in Section VIII.

C. Related Work

Long after Forster [16] showed that upper bounding

the spectral norm of a {−1, 1} valued matrix suffices to

show sign rank lower bounds, Sherstov [48] introduced an

innovative method that designed a passage to a suitable

3It still remains unknown if there are total functions in AM∩coAM that
have large sign rank.
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approximation problem via LP duality. This basic framework

was again used to prove sign rank lower bounds, using

additional tools from approximation theory, by Razborov

and Sherstov [43], and subsequently by Bun and Thaler [10]

and Bouland et al. [8]. All of these works [48], [43],

[10], [8] rely on the passage, invented by Sherstov [48]

to an approximation theoretic problem involving low-degree
polynomials. This passage is made possible by exploiting

the elegant spectral properties of communication matrices

of the target functions, following the basic pattern matrix

method of Sherstov [47].

Unfortunately, it seems difficult to embed a pattern matrix

in a function in THR◦THR. Consequently, we come up with

a different type of function, Fn, that is an XOR function.

Proving lower bounds on communication complexity of

XOR functions, in general, has received a lot of attention

recently [39], [53], [52], [27], [31]. However, there seem

to be just two previous works that prove a lower bound

on the sign rank of an XOR function, due to Hatami and

Qian [28] and subsequently but independently by Ada et

al. [1]. This result characterizes the sign rank of functions

of the form f ◦ XOR when f is symmetric. In contrast,

our target function Fn is not a symmetric XOR function.

Moreover, both the works [28] and [1] obtain their result

using neat reductions from pattern matrices of symmetric

functions, which had been analyzed by Sherstov [48]. Such

a reduction for a function in THR ◦ THR is unknown, and

plausibly impossible. This forces us to use a first-principle

based argument for bounding the sign rank of an XOR
function. Such functions also have nice spectral properties

that are however different from those of pattern matrices.

More specifically, the approximation-theoretic problem that

one is led to in this case involves polynomials with unre-
stricted degree but low Fourier weight. A similar flavored

but simpler problem had been tackled in a recent work

of the authors [12], which characterized the discrepancy
of XOR functions. Roughly speaking, in that work, the

primal program constrained a distribution μ such that f
correlates poorly with all parities w.r.t μ. However, there

was no smoothness constraint imposed on μ in [12], which

is what we are constrained to have in this work. Analyzing

this combination of high degree parity constraints and the

smoothness constraints is the main new technical challenge

that our work addresses.

Our function Fn is simpler than the earlier functions in

other ways. It is just a decision list of ‘Equalities’ that is

therefore, both in the boolean circuit class THR ◦THR and

the communication complexity class PMA. It is precisely this

property of Fn that allows us to simultaneously answer two

open questions.

D. Our Techniques

We strive to prove a lower bound on the sign rank

of a function F ∈ THR ◦ THR. We are guided by a

communication complexity theoretic interpretation of sign

rank, due to Paturi and Simon [41]. They introduced a

model of two-party randomized communication, called the

unbounded error model. In this model, Alice and Bob are

only required to give the right answer with probability

strictly greater than 1/2 on every input. Paturi and Simon

showed that the sign rank of the communication matrix of

F essentially characterizes its unbounded error complexity.

Why should some function F ∈ THR ◦ THR have large

unbounded error complexity? The natural protocol one is

tempted to use is the following. Sample a sub-circuit of the

top gate with a probability proportional to its weight. Then,

use the best protocol for the sampled bottom THR gate. Note

that for any given input x, with probability 1/2 + ε, one

samples a bottom gate that agrees with the value of F (x).
Here, ε can be exponentially small in the input size. Thus,

if we had a small cost randomized protocol for the bottom

THR gate that errs with probability significantly less than

ε we would have a small cost unbounded error protocol for

F . Fortunately for us (the lower bound prover), there does

not seem to exist any such efficient randomized protocol for

THR, when ε = 1/2n
Ω(1)

.

Taking this a step further, one could hope that the bottom

gates could be any function that is hard to compute with

such tiny error ε. The simplest such canonical function is

Equality (denoted by EQ). Therefore, a plausible target is

THR ◦ EQ. This still turns out to be in THR ◦ THR as

EQ ∈ ETHR. Moreover, EQ has a nice composed structure.

It is just AND ◦XOR, which lets us re-express our target as

F = THR◦AND◦XOR, for some top THR that is ‘suitably’

hard. At this point, we view F as an XOR function whose

outer function, f , needs to have sufficiently good analytic

properties for us to prove that f ◦ XOR has high sign rank.

We are naturally drawn to the work of Razborov and

Sherstov [43] for inspiration as they bound the sign rank

of a three-level composed function as well. They showed

that AND ◦OR ◦ AND2 has high sign rank. They exploited

the fact that this function embeds a pattern matrix inside it,

which has nice convenient spectral properties as observed

in [47]. These spectral properties dictate them to look for

an approximately smooth orthogonalizing distribution w.r.t

which the outer function f = AND◦OR has zero correlation

with small degree parities. This naturally gives rise to a

linear program, that seeks to maximize the smoothness of

the distribution under the constraints of low-degree orthog-

onality. The main technical challenge that Razborov and

Sherstov overcome is the analysis of the dual of this LP

using and building appropriate approximation theoretic tools.

We follow this general framework of analyzing the dual of

a suitable LP. However, as we are forced to work with an

XOR function, there are new challenges that crop up. This

is understandable, for if we take the same outer function of

AND ◦OR, then the resulting XOR function has small sign

rank. Indeed, this remains true even if one were to harden
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sr(f ◦ XOR) large

f correlates poorly

with all parities

under approximately

smooth distribution μ

Spectral properties

of XOR functions

(Lemma II.9)

Modified Forster’s theorem

[43] (Theorem II.14)

f has no

low weight, good

‘mixed margin’

representation

LP duality LP1, LP2

Figure 1. Approximation theoretic hardness of f implies large sign rank
of f ◦ XOR (Theorem III.1).

the outer function to MAJ ◦ OR. This is simply because

OR ◦ XOR is non-equality (NEQ), and a simple efficient

UPP protocol for MAJ ◦ NEQ exists.

Figure 1 describes a general passage from the problem of

lower bounding the sign rank of a function f ◦XOR to a suf-

ficient problem of proving an approximation-theoretic hard-

ness property of f , namely f has no good ‘mixed margin’

representation by low-weight polynomials. Theorem III.1

states the precise connection between the approximation-

theoretic property of f and the sign rank of f ◦ XOR.

This passage is made possible by using well-known spectral

properties of XOR functions and LP duality. This is similar

to earlier works [43], [48], [10], [8], where the spectral

properties of pattern matrices were analyzed. The key dif-

ference between our work and theirs is in the nature of the

approximation-theoretic problem that we end up with. While

all these previous works had to rule out good low-degree
representations, our Theorem III.1 stipulates us to rule out

good low-weight representations of otherwise unrestricted
degree.

Our main technical contribution is Theorem IV.1 which

shows that the function OMB0 ◦ OR is inapproximable by

low-weight polynomials of unrestricted degree, in a sense

which we elaborate on below. We prove this by a novel com-

bination of ideas, sketched in Figure 2, that differs entirely

from analysis in earlier works. One may view this result as a

hardness amplification result, albeit specific to the function

OMB0. We start with the function OMB0 which has no low

weight ‘worst-case margin’ representation when the degree

of the approximating polynomial is bounded [7]. We show

that on composition with large fan-in OR gates, the function

OMB0 ◦ OR becomes ‘mixed-margin’ inapproximable by

low-weight polynomials, even with unrestricted degree. We

believe this result to be of independent interest in the area

of analysis of Boolean functions and approximation theory.

The first step in our method is to borrow an averaging idea

from Krause and Pudlák [36] to show the following: A low-

weight good approximation of g ◦ ORm by a polynomial p
over the parity (Fourier) basis implies that there exists a low-

weight polynomial q over the OR basis which approximates

g as well as p approximates g◦ORm, save an additive loss of

at most 2−m. This transformation to q is very useful because

although it is still unrestricted in degree, it is over the OR
basis, that is vulnerable to random restrictions. Indeed, in

the next step, we hit q with random restrictions to reduce

its degree. At this point, we extract a low weight and
low-degree polynomial r that still approximates grest, the

restriction of g. We now appeal to interesting properties of

the ODD-MAX-BIT function by setting g = OMB0. First,

we observe that OMB0 on l bits, under random restrictions,

retains its hardness as it contains OMB0 on l/8 bits with

high probability. Next, we show that OMB0 does not have

good low-degree approximations by appealing to classical

approximation-theoretic tools, suitably modifying the argu-

ments of Buhrman et al. [9] and Beigel [7]. This provides

us with the required contradiction. Figure 2 provides an

overview of the steps in our proof of Theorem IV.1.

II. PRELIMINARIES

In this section, we provide some necessary preliminaries.

Definition II.1 (Decision lists). A decision list of length k,
is a sequence D = (L1, a1), (L2, a2), . . . , (Lk, ak), where
each ai ∈ {−1, 1}, and Lk is the constant −1 function. The
decision list computes a function f : {−1, 1}n → {−1, 1}
as follows. If L1(x) = −1, then f(x) = a1; elseif L2(x) =
−1, then f(x) = a2, elseif . . . , elseif Lk(x) = −1, then
f(x) = ak.

Definition II.2 (Threshold functions). A function f :
{−1, 1}n → {−1, 1} is called a linear threshold function

if there exist integer weights a0, a1, . . . , an such that for all
inputs x ∈ {−1, 1}n, f(x) = sgn(a0 +

∑n
i=1 aixi). Let

THR denote the class of all such functions.

Definition II.3 (Exact threshold functions). A function
f : {−1, 1}n → {−1, 1} is called an exact threshold

function if there exist reals w1, . . . , wn, t such that f(x) =
−1 ⇐⇒ ∑n

i=1 wixi = t. Let ETHR denote the class of
exact threshold functions.

Hansen and Podolskii [24] showed the following.

Theorem II.4 (Hansen and Podolskii [24]). If a function f :
{−1, 1}n → {−1, 1} can be represented by a THR ◦ETHR
formula of size s, then it can be represented by a THR◦THR
formula of size 2s.

One may refer to the full version of this paper [13] for

a proof. In fact, Hansen and Podolskii [24] showed that the

circuit class THR◦THR is identical to the circuit class THR◦
ETHR. However, we do not require the full generality of

their result.
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Unrestricted degree, low weight

good approximation

over ⊕ basis, for g ◦ ∨

Unrestricted degree, low weight

good approximation

over ∨ basis, for gImplicit ideas in [36]

Low degree, low weight

good approximation

over ∨ basis, for grest

Random restriction

OMB0 has a low degree, low weight

good approximation over ∨ basis

Contradiction!

Approximation theory

g = OMB0

Lemma IV.2 + Lemma IV.3

Lemma IV.5

Lemma IV.4

Figure 2. Approximation theoretic analysis (Theorem IV.1)

The next lemma states that any function computable by

a THR ◦ OR formula can be computed by a THR ◦ AND
formula without a blowup in the size.

Lemma II.5. Suppose f : {−1, 1}n → {−1, 1} can be
computed by a THR ◦OR formula of size s. Then, f can be
computed by a THR ◦ AND formula of size s.

Refer to the full version of this paper [13] for a proof of

Lemma II.5, and for basics of Fourier analysis.

Lemma II.6 (Folklore). For any function f : {−1, 1}n →
R,

Ex∈{−1,1}n [|f(x)|] ≥ max
S⊆[n]

∣∣∣f̂(S)∣∣∣.
Fact II.7 (Plancherel’s identity). For any functions f, g :
{−1, 1}n → R,

Ex∈{−1,1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

Definition II.8 (Signed monomial complexity). The signed

monomial complexity of a boolean function f : {−1, 1}n →
{−1, 1}, denoted by mon±(f), is the minimum number of
monomials required by a polynomial p to sign represent f
on all inputs.

Note that the signed monomial complexity of a function

f exactly corresponds to the minimum size Threshold of

Parity circuit computing f .

The following lemma characterizes the spectral norm of

the communication matrix of XOR functions.

Lemma II.9 (Folklore). Let f : {−1, 1}n → R be any real
valued function and let M denote the communication matrix
of f ◦ XOR. Then,

||M || = 2n · max
S⊆[n]

∣∣∣f̂(S)∣∣∣,
where ||M || denotes the operator (spectral) norm of M .

We require the following well-known lemma by Minsky

and Papert [38].

Lemma II.10 (Minsky and Papert [38]). Let p : {−1, 1}n →
R be any symmetric real polynomial of degree d. Then, there

exists a univariate polynomial q of degree at most d, such
that for all x ∈ {−1, 1}n,

p(x) = q(#1(x))

where #1(x) = |{i ∈ [n] : xi = 1}|.
We require the following approximation-theoretic lemma

by Ehlich and Zeller [15] and Rivlin and Cheney [45].

Lemma II.11 ([15], [45]). The following holds true for any
real valued α > 0 and integer k > 0. Let p : R → R
be a univariate polynomial of degree d <

√
k/4, such that

p(0) ≥ α, and p(i) ≤ 0 for all i ∈ [k]. Then, there exists
i ∈ [k] such that p(i) < −2α.

Definition II.12 (OR polynomials). Define a function p :
{−1, 1}n → R of the form p(x) =

∑
S⊆[n] aS

∨
i∈S xi to be

an OR polynomial. Define the weight of p (in the OR basis)
to be

∑
S⊆[n] |aS |, and its degree to be maxS⊆[n]{|S| :

aS 
= 0}.
Remark II.13. In the above definition, ‘OR monomials’ are
defined as follows.∨

i∈S
xi =

{
1 xi = 1 ∀i ∈ S

−1 otherwise.

Unless mentioned otherwise, all polynomials we consider
will be over the parity basis.

Define the sign rank of a real valued matrix A = [Aij ],
denoted by sr(A) to be the least rank of a real matrix B =
[Bij ] such that AijBij > 0 for all (i, j) such that Aij 
= 0.

We require the following generalization of Forster’s the-

orem [16] by Razborov and Sherstov [43].

Theorem II.14 (Razborov and Sherstov [43]). Let A =
[Axy]x∈X,y∈Y be a real valued matrix with s = |X||Y |
entries, such that A 
= 0. For arbitrary parameters h, γ > 0,
if all but h of the entries of A satisfy |Axy| ≥ γ, then

sr(A) ≥ γs

||A||√s+ γh
.

Forster et al. [17] showed that functions with efficient

THR ◦MAJ representations have small sign rank.
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Lemma II.15 (Forster et al. [17]). Let F : {−1, 1}n ×
{−1, 1}n → {−1, 1} be a boolean function computed by a
THR ◦MAJ circuit of size s. Then,

sr(MF ) ≤ sn,

where MF denotes the communication matrix of F .

For the purpose of this paper, we abuse notation, and use

sr(F ) and sr(MF ) interchangeably, to denote the sign rank

of MF .

In the model of communication we consider, two players,

say Alice and Bob, are given inputs X ∈ X and Y ∈ Y
for some finite input sets X ,Y . They are given access to

private randomness and wish to compute a given function

F : X × Y → {−1, 1}. We will use X = Y = {−1, 1}n
for the purposes of this paper. Alice and Bob communicate

using a randomized protocol which has been agreed upon in

advance. The cost of the protocol is the maximum number

of bits communicated in the worst-case input and coin toss

outcomes. A protocol Π computes F with advantage ε if

the probability of F agreeing with Π is at least 1/2 + ε for

all inputs. We denote the cost of the best such protocol to

be Rε(F ). Note here that we deviate from standard notation

(used in [37], for example). Unbounded-error communica-

tion complexity was introduced by Paturi and Simon [41],

and is defined as UPP(F ) = infε>0(Rε(F )). This mea-

sure gives rise to the natural communication complexity

class UPPcc, defined as UPPcc(F ) ≡ {F : UPP(F ) =
polylog(n)}.

Paturi and Simon [41] showed an equivalence between

UPP(F ) and the sign rank of MF .

Theorem II.16 (Paturi and Simon [41]). For any function
F : {−1, 1}n × {−1, 1}n → {−1, 1},

UPP(F ) = log sr(MF )±O(1).

III. SIGN RANK TO POLYNOMIAL APPROXIMATION

In this section, we prove how a certain approximation-

theoretic hardness property of f implies that the sign rank

of f ◦ XOR is large, as outlined in Figure 1.

Let f : {−1, 1}n → {−1, 1} be any function, δ > 0 be a

parameter, and X be any subset of {−1, 1}n. We consider

the following linear program, which has exactly the same

structure as in (LP1) in [48] except for one crucial difference

described below:

(LP1)

Variables ε, {μx : x ∈ {−1, 1}n}
Minimize ε

s.t.

∣∣∣∣∑
x
μ(x)f(x)χS(x)

∣∣∣∣ ≤ ε ∀S ⊆ [n]∑
x
μ(x) = 1

ε ≥ 0
μ(x) ≥ δ

2n ∀x ∈ X
μ(x) ≥ 0 ∀x ∈ {−1, 1}n

The first constraint in (LP1) specifies that correlation of

f against all parities need to be small w.r.t a distribution

μ. Note that in [48], this constraint was only imposed for

low degree parities. This difference between the two linear

programs forces us to entirely change the analysis of the dual

from the one in [48]. As discussed earlier in Section I-D,

this analysis is one of our main technical innovations. The

second last constraint enforces the fact that μ is ‘δ-smooth’

over the set X . As we had indicated earlier in Section I-D,

these constraints make analyzing the LP challenging.

Standard manipulations (as in [12], for example) and

strong linear programming duality reveal that the optimum

of (LP1) equals the optimum of (LP2). Let OPT denote the

optima of these programs.

(LP2)
Variables Δ, {αS : S ⊆ [n]}, {ξx : x ∈ X}
Maximize Δ+ δ

2n

∑
x∈X

ξx

s.t. f(x)
∑

S⊆[n]

αSχS(x) ≥ Δ ∀x ∈ {−1, 1}n

f(x)
∑

S⊆[n]

αSχS(x) ≥ Δ+ ξx ∀x ∈ X∑
S⊆[n]

|αS | ≤ 1

Δ ∈ R
αS ∈ R ∀S ⊆ [n]
ξx ≥ 0 ∀x ∈ X

The first constraint of (LP2) indicates that the variable Δ
represents the worst margin guaranteed to exist at all points.

The second constraint says that at each point x over the

smooth set X , the dual polynomial has to better the worst

margin by at least ξx. If OPT is large, then it means that

on average, the dual polynomial did significantly better than

the worst margin. It is for this reason we call the optimum

the ‘mixed margin’ as mentioned in Section I-D.

We now show that upper bounding OPT for any function

f yields sign rank lower bounds against f ◦XOR. The proof

idea is depicted in Figure 1. The reader may refer to the

appendix for boolean Fourier analysis basics.

Theorem III.1. Let f : {−1, 1}n → R be any function. For
any δ > 0 and X ⊆ {−1, 1}n, suppose the value of the
optimum of (LP2) (and hence (LP1)) is at most OPT. Then,

sr(f ◦ XOR) ≥ δ

OPT + δ · |Xc|
2n

.

Proof:
By (LP1), there exists a distribution μ on {−1, 1}n such

that μ(x) ≥ δ
2n for all x ∈ X , and max

S⊆[n]
|f̂μ(S)| ≤ OPT

2n .

By Lemma II.9,

||Mfμ◦XOR|| = 2n · max
S⊆[n]

∣∣∣f̂μ(S)∣∣∣ ≤ OPT.

Each x ∈ X contributes to 2n entries of Mfμ◦XOR whose ab-

solute value is at least δ. Plugging values in Theorem II.14,
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we obtain

sr(f ◦ XOR) ≥ sr(fμ ◦ XOR)

≥
δ
2n · 22n

OPT · 2n + δ
2n · 2n · |Xc| =

δ

OPT + δ · |Xc|
2n

,

which proves the desired sign rank lower bound.

IV. HARDNESS OF APPROXIMATING OMB0
� ◦ ORm

Below is our main technical result, capturing the essence

of Figure 2, which says that no dual polynomial exists

with a large optimum value for (LP2) when f = OMB0
� ◦∨

�1/3+log � : {−1, 1}�4/3+� log � → {−1, 1}, even when the

smoothness parameter δ is as high as 1/4.

Theorem IV.1. Let f = OMB0
� ◦ ∨

�1/3+log � :

{−1, 1}�4/3+� log � → {−1, 1}, δ = 1/4 and X = {x ∈
{−1, 1}�4/3+� log � :

∨
(x) = −1�}. Then for sufficiently

large values of �, the optimal value, OPT, of (LP2) is less
than 2−

�1/3

81 .

Theorem IV.1 can be viewed as a hardness amplification

theorem as follows. Our base function is OMB0, which

is known to be hard to approximate in the worst case

by low-degree sign-representing polynomials [7], [9]. We

show that a lifted version of this function, OMB0
� ◦ ORm,

cannot be approximated well under a significantly weaker

notion of approximation where we permit any approximating

polynomial to have the following additional power.

• Unrestricted degree but low weight.

• It need not sign represent OMB0
� ◦ORm, but a certain

linear combination of their worst-case and average-case

margin is small (see (LP2)).

We prove Theorem IV.1 towards the end of this section. In

the remaining part of this section, we outline the various

tools that go into proving Theorem IV.1, following the

schematic in Figure 2. The proofs of all lemmas and claims

in this section can be found in the full version of this

paper [13].

We first use an idea from Krause and Pudlák [36] which

enables us to work with polynomial approximations for g,

given a polynomial approximation for g ◦∨m. We use the

following notation for the following two lemmas. For any

set I ⊆ [�] × [m], define J ⊆ [�] to be the projection

of I on [�]; i ∈ J ⇐⇒ ∃j, xi,j ∈ I . For any

y ∈ {−1, 1}�, let μy denote the uniform distribution over all

inputs x ∈ {−1, 1}m� such that
∨

m(x) = y. Lemma IV.2

and Lemma IV.3 represent the first implication in Figure 2.

The first tool we use is an approximation of monomials (in

the parity basis) by OR functions, with a small error.

Lemma IV.2. Let �,m be positive integers such that m >
log �. For any set I ⊆ [�]× [m], y ∈ {−1, 1}�,∣∣∣∣∣∣Eμy

⎡⎣ ⊕
(i,j)∈I

xi,j

⎤⎦− 1

2
− 1

2

∨
i∈J

yi

∣∣∣∣∣∣ ≤ 2�2−m.

The proof of Lemma IV.2 appears in the proof of Lemma

2.3 in [36].

The next lemma states that g can be approximated well

over the OR basis, given a good approximation for g ◦ ∨
over the parity basis.

Lemma IV.3. Let �,m be positive integers such that m >
log �, and g : {−1, 1}� → {−1, 1} be any function. Define
f = g ◦∨m : {−1, 1}m� → {−1, 1},Δ ∈ R, ex ≥ 0 ∀x ∈
X , where X denotes the set of all inputs x in {−1, 1}m�

such that
∨

m(x) = −1�, and let p be a real polynomial
such that

∀x ∈ {−1, 1}m�, f(x)p(x) ≥ Δ,

∀x ∈ X, f(x)p(x) ≥ Δ+ ex.

Then, there exists an OR polynomial q, of weight at most
wt(p), such that for all y ∈ {−1, 1}�, q(y)g(y) ≥ Δ −
wt(p) (2� · 2−m) and q(−1�)g(−1�) ≥ Δ +

∑
x∈X ex
|X| −

wt(p) (2� · 2−m).

Next, we use random restrictions which reduces the degree

of the approximating OR polynomial, at the cost of a small

error. In particular, we consider the case when g = OMB0
l .

This represents the dashed implication in Figure 2.

Lemma IV.4. Let �,m be any positive integers such that
m > log �. Let g� = OMB0

� : {−1, 1}� → {−1, 1}, f =
g� ◦

∨
m, and Δ, {ex ≥ 0 : x ∈ X} (where X is defined as

in Lemma IV.3), and p be a real polynomial such that

∀x ∈ {−1, 1}m�, f(x)p(x) ≥ Δ

∀x ∈ X, p(x) ≥ Δ+ ex.

Then, for any integer d > 0, there exists an OR polynomial
r : {−1, 1}�/8 → R, of degree d and weight at most
wt(p), such that for all y ∈ {−1, 1}�/8, r(y)g�/8(y) ≥
Δ − wt(p)

(
2� · 2−m + 2−(d−1)

)
and r(−1�/8) ≥ Δ +

∑
x∈X ex
|X| − wt(p)

(
2� · 2−m + 2−(d−1)

)
.

A. Hardness of OMB0

The following lemma states that approximating OMB0

well by a low-weight polynomial p is not possible unless

the degree of p is large. This captures the last implication

in Figure 2.

Lemma IV.5. Suppose p : {−1, 1}n → R is a polynomial
of degree d <

√
n/4 and a > 0, b ∈ R be reals such that

p(−1n) ≥ a and OMB0
n(x)p(x) ≥ b for all x ∈ {−1, 1}n.

Define pmax = maxi∈{0,...,�n/10d2�}{2ia +
(
3 · 2i − 3

)
b}.

Then, there exists x ∈ {−1, 1}n such that |p(x)| ≥ pmax.
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A simple consequence of the above lemma is that the

weight of a polynomial p (in either the OR basis, or the

parity basis) satisfying the assumptions of Lemma IV.5 is at

least pmax. This property of p suffices for our need.

The proof of Lemma IV.5 follows an iterative argument,

making repeated use of Lemma II.11, inspired by the argu-

ments of Beigel [7] and Buhrman et al. [9].

Remark IV.6. We remark here that this strengthens the re-
sult of Beigel [7], who proved that any good approximation
by a low-degree sign-representing polynomial for OMB0

must have large weight. Our approximating polynomial is
not constrained to be sign representing (b might be negative
in Lemma IV.5). In fact, it might disagree in sign on all
points but −1n.

We now prove our main technical result, following the

schematic depicted in Figure 2.

Proof of Theorem IV.1:
Let p be a polynomial of weight 1, for which (LP2)

attains its optimum. Denote the values taken by the variables

at the optimum by ΔOPT, {ξx,OPT : x ∈ X}. Towards a

contradiction, assume OPT ≥ 2−
�1/3

81 .

Lemma IV.4 (set m = �1/3 + log �) shows the

existence of an OR polynomial r, on �/8 variables,

of degree �1/3 and weight 1, such that for all y ∈
{−1, 1}�/8, r(y)OMB0

�/8(y) ≥ ΔOPT−2·2−�1/3−2·2−�1/3

and r(−1�/8) ≥ Δ+
∑

x∈X ξx,OPT

|X| − 2 · 2−�1/3 − 2 · 2−�1/3 .

Observe that

OPT ≥ 2−
�1/3

81 =⇒ ΔOPT ≥ 2−
�1/3

81 − δ

∑
x∈X ξx,OPT

2n
.

(1)

r satisfies the assumptions of Lemma IV.5 with d =
deg(r) = �1/3 <

√
�/32 (since any OR polynomial of

degree d can be represented by a polynomial of degree

at most d), a = ΔOPT +
∑

x∈X ξx,OPT

|X| − 4 · 2−�1/3 , and

b = ΔOPT − 4 · 2−�1/3 . Note that a is non-negative because

a = ΔOPT+
∑

x∈X ξx,OPT

|X| −4 ·2−�1/3 ≥ 2−
�1/3

81 −4 ·2−�1/3 ≥
0.

Set k = �1/3/80 for the remaining of this proof. By

Lemma IV.5, there exists an x ∈ {−1, 1}�/8 such that

|r(x)| ≥ 2ka+
(
3 · 2k − 3

)
b ≥ ΔOPT(4 · 2k − 3)

+ 2k
∑

x∈X ξx,OPT

|X| − 4 · 2−80k(4 · 2k − 3)

≥ (
4 · 2k − 3

)(
2−

�1/3

81 − δ

∑
x∈X ξx,OPT

2n

)
+ 2k

∑
x∈X ξx,OPT

|X| − 4 · 2−80k(4 · 2k − 3)

(Using Equation 1)

≥ (
4 · 2k − 3

) (
2−80k/81 − 4 · 2−80k

)
> 1.

(Since δ = 1/4, and assuming k ≥ 1)

This yields a contradiction, since r was a polynomial of

weight (in the OR basis) at most 1.

V. PROOF OF MAIN THEOREM

We are now ready to prove our sign rank lower bound.

Theorem V.1 (Restatement of Theorem I.1). Let f =
OMB0

� ◦
∨

�1/3+log � : {−1, 1}�4/3+� log � → {−1, 1}. Then,

for sufficiently large values of �, sr(f ◦ XOR) ≥ 2
�1/3

81 −3.

Proof: Let n = �4/3 + � log �. Theorem IV.1 says that

the optimum of (LP2) (and hence (LP1), by duality) is at

most 2−
�1/3

81 , when f = OMB0
� ◦

∨
�1/3+log �, δ = 1/4, and

X = {x ∈ {−1, 1}�4/3+� log � :
∨
(x) = −1�}. We now

estimate the size of Xc. The probability (over the uniform

distribution on the inputs) of a particular OR gate firing a 1

is 1

2�
1/3+log �

. By a union bound, the probability of any OR

gate firing a 1 is at most 1

2�
1/3 , hence |Xc| ≤ 2n · 1

2�
1/3 .

Plugging these values in Theorem III.1, we obtain

sr(f ◦ XOR) ≥ 1/4

2−
�1/3

81 + 2−�1/3−2
≥ 2

�1/3

81 −3.

VI. APPLICATIONS

In this section, we list a few applications of Theorem I.1.

A. A separation of depth-2 threshold circuit classes

We are now ready to prove Theorem I.2, which gives us a

lower bound on the size of THR ◦MAJ circuits computing

Fn = OMB0
� ◦

∨
�1/3+log � ◦XOR2, and resolving an open

question posed in [5], [24] by yielding an exponential

separation between the circuit classes THR ◦ MAJ and

THR ◦ THR.

Proof of Theorem I.2.: First, we show that Fn

is computable by linear-sized THR ◦ THR formulas. Let

n = 2�4/3 + 2� log � denote the number of input bits to

Fn = OMB0
� ◦

∨
�1/3+log � ◦XOR2. By Lemma II.5, Fn can

be computed by a THR ◦ AND ◦ XOR2 formula of size

2�4/3 + 2� log �. Hence Fn ∈ THR ◦ ETHR = THR ◦ THR,

by Theorem II.4.

Next, we show a lower bound on the size of any

THR ◦ MAJ circuit computing Fn. Suppose OMB0
l ◦∨

l1/3+log l ◦XOR2 could be represented by a THR ◦ MAJ
circuit of size s. By Lemma II.15 and Theorem V.1,

s
(
2�4/3 + 2� log �

)
≥ sr(f) ≥ 2

�1/3

81 −3.

Thus, s = 2Ω(n
1/4).
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B. Communication complexity class separations

In this section, we show explicit separations between

certain communication complexity classes, resolving an

open question posed in [22]. This application of our main

result was brought to our attention by Göös [20]. Formal

definitions of communication complexity classes of interest

may be found in the full version of this paper [13].

Theorem VI.1. Let f = OMB0
� ◦ ∨

�1/3+log � :

{−1, 1}�4/3+� log � → {−1, 1}, and let n = �4/3 + � log �
denote the number of input variables. Then, for sufficiently
large values of n, UPP(f ◦ XOR) = Ω

(
n1/4

)
.

Proof: It follows from Theorem V.1 and Theorem II.16.

Note that Fn = OMB� ◦ EQ�1/3+log �, where OMB�

outputs −1 iff the rightmost bit of the input set to −1 occurs

at an odd index.

It is not hard to see that there is an MA protocol for∨
� ◦EQ�1/3+log � of cost polylogarithmic in �. Using this,

and a binary search, one can obtain a PMA upper bound

for Fn (see the full version of this paper [13] for a formal

description of the protocol).

Along with Theorem VI.1, this yields the following result.

Theorem VI.2.
PMA � UPP.

It is known that PMA ⊆ S2P, and PMA ⊆ BPPNP

(see, e.g., [22] for references for such containments, and

an excellent overview on the landscape of communication

complexity classes).

Thus, Theorem VI.2 yields

S2P � UPP and BPPNP � UPP.

The first non-inclusion resolves an open question posed

in [22]. To the best of our knowledge, ours is the first

explicit total function to witness the second non-inclusion.

We remark here that Bouland et al. [8] used a partial function

to witness the same separation.

VII. AN UPPER BOUND

In this section, we observe that the function Fn has sign

rank 2O(n1/4), showing that our lower bound in Theorem I.1

is essentially tight for Fn.

Theorem VII.1. The function Fn has sign rank 2O(n1/4).

Proof: As noted in the previous section, Fn is express-

ible as a circuit of the form THR� ◦ EQ�1/3+log �. A natural

unbounded error protocol for Fn is to sample an input to

the top threshold with probability proportional to its weight,

and solve the corresponding Equality deterministically. The

cost associated with sampling an input to the threshold is

log �, and the cost of solving an Equality deterministically

is �1/3 + log �, which is at most 2�1/3 for large enough

values of �. Since n = �4/3 + � log � > �4/3, the cost of the

unbounded error protocol is O(n1/4). By Theorem II.16, Fn

has sign rank 2O(n1/4).

VIII. CONCLUSION

We exhibit the first function known to be computable

efficiently (in fact in linear size) by depth-2 Threshold

circuits, but which has exponentially large sign rank. This

result solves two open problems in one go: the first is a

basic and old open problem, arising from the classical work

of Goldmann, Håstad and Razborov [18] from the early

nineties, of determining the power of weights in depth-2

Threshold circuits. Can such circuits be efficiently simulated

by depth-2 circuits in which the bottom gates are restricted

to have small weights? Goldmann et al. showed that they can

be if we allow only small weights to appear at the top gate

in the circuit we want to simulate. We prove that in general,

such efficient simulations are impossible. This, along with

previous work, yields the following fine structure of depth-2

Threshold circuit classes.

L̂T 2
[18]
= MAJ ◦ THR

[18]

� THR ◦MAJ � LT2︸ ︷︷ ︸
This work

[18]

⊆ L̂T 3.

Our work provides the first formal explanation of why

current techniques have failed so far to prove lower bounds

against THR◦THR circuits. It also suggests following direc-

tions along which progress can be made on this longstanding

problem:

Our function is just a short decision list of Equalities.

While it is not hard to show that decision lists of Equalities

cannot compute IP,4 can we prove strong lower bounds on

the size of decision lists of exact thresholds for computing

an explicit function in NP? This class of circuits is a sub-

class of THR◦THR that is arguably natural. Our main result

shows that this sub-class already inherits the curse of large

sign rank. This raises the challenge of proving lower bounds

on their size as a natural next step.

On a second front, our main result shows that the commu-

nication complexity class PMA has functions with large sign

rank, strongly resolving an open problem posed recently by

Göös et al. [22]. This is in contrast to the known facts that

every function in PNP and MA have small sign rank. As

the sign rank lower bound technique remains the strongest

known technique for proving lower bounds against commu-

nication protocols (including quantum protocols), it suggests

that new techniques need to be developed for proving bounds

against PMA. Indeed, there are specialized techniques for

proving lower bounds against the class PNP (see [30], [21]).

Can they be generalized to PMA? In particular, note that

every function expressible as a short decision list of exact

thresholds is in PMA. Proving lower bounds on the length of

such decision lists for computing an explicit function is also

4Since they are in AC0 for instance.
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a natural first step for proving lower bounds against PMA

communication protocols.

Our work puts the spotlight on the basic and simple

computational model of ‘decision lists of exact thresholds’

that is capable of very efficiently computing a function

of large sign rank. Proving lower bounds on the size of

such decision lists is a necessary step for proving lower

bounds against both THR ◦ THR circuit size and PMA

communication cost.
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