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Abstract—The main objectives of neuromorphic engineering
are the research, modeling, and implementation of neural func-
tioning in the human brain. We provide a hardware solution
that can replicate such a nature-inspired system by merging
multiple scientific domains and is based on neural cell processes.
This work provides a modified version of the original Fitz-
Hugh Nagumo (FHN) neuron using a simple 2V term called
Hybrid Piece-Wised Base-2 Model (HPWBM), which accurately
reproduces numerous patterns of the original neuron model.
With reduced terms, we suggest modifying the original nonlinear
term to achieve high matching accuracy and little computing
error. Time domain and phase portraits are used to validate the
proposed model, which shows that it can reproduce all of the
FHN model’s properties with high accuracy and little mistake.
We provide an effective digital hardware approach for large-
scale neuron implementations based on resource-sharing and
pipelining strategies. The Hardware Description Language (HDL)
is used to construct the hardware on an FPGA as a proof of
concept. The recommended model hardly uses 0.48 percent of the
resources on a Virtex 4 FPGA board, according to the results of
the hardware implementation. The circuit can run at a maximum
frequency of 448.236 MHz, according to the static timing study.

Index Terms—Neuronal Models, FHN, FPGA, Digital Realiza-
tion.

I. INTRODUCTION

S INCE neural networks, which are composed of neurons
and synapses, are the basic components of the Central

Nervous System (CNS), learning more about them is necessary
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[1]-[4]. Numerous real-world applications of Spiking Neural
Networks (SNNs) research exist, including autonomous robots,
data processing, pattern recognition, and medical diagnosis.
CNS is made up of a complex network of neurons, synapses,
and calcium-based cells known as glia. Glia is important
for safeguarding and controlling the behavior of neurons as
well as synaptic connections [5], [6]. Mathematical modeling
of neuronal activity is crucial for comprehending the neural
network of the brain in its entirety. In order to understand and
interpret the activity of biological neural networks inside the
CNS, neural modeling and its processes have therefore become
essential tools.

Ordinary Differential Equations (ODEs) are typically used
to represent spiking neuron activities in mathematical models
[7]–[10]. To accurately reflect genuine neural actions, several
models of differing degrees of complexity have been created
[6]–[15]. Accuracy and computing complexity of a model
trade off each other, with more accurate models often needing
more processing power. Hodgkin-Huxley (HH) type models
[2] are appropriate if the objective is to comprehend the rela-
tionship between neuronal behavior and physiological factors,
but they can be computationally demanding and may not be
useful for simulations involving a high number of neurons.
Spike-based models are recommended as a superior option,
however, if the goal is to understand the temporal nature
of spike timing and how neurons process information [12].
With only one polynomial term and no need for a reset or
additional noise, the Fitz-Hugh Nagumo (FHN) neuron model
[16]–[18] is a two-coupled differential equation model. As all
nonlinear variables are basic states that can be transformed into
linear and inexpensive functions for hardware implementation,
it is regarded as one of the most effective dynamical models
in computational neuroscience for capturing neuronal spiking
characteristics.

Analog circuits and digital technologies are the two basic
strategies for putting neural models into practice [10]–[27].
The final neuromorphic system is created using electrical
components in the analog technique by simulating nonlinear
functions in the mathematical models [21]–[27]. Although this
method is said to be high-performance and well-developed,
creating new circuits can be difficult and time-consuming.
In contrast, it has been demonstrated that a digital method
is a good option in terms of flexibility and extensibility
[1]–[10]. For real-scale neural networks to function, a high-
frequency digital system is needed due to the rapid rate
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at which information is passed between neurons. Therefore,
compared to an analog design, the digital method may be
more appropriate given the high-speed needs. The digital
technique is also less affected by noise and is suitable for
computers and digital devices. It is also more flexible in
implementation and less vulnerable to observational issues like
parallax and approximation mistakes than the analog approach.
In the subject of neuromorphic engineering, the use of Field
Programmable Gate Arrays (FPGAs) for the digital design
and implementation of neural models is very appealing, and
several recent studies have been published in this area [11]-
[20]. After manufacture, an integrated circuit called an FPGA
can be modified by the client or the designer, usually with the
use of a Hardware Description Language (HDL). Large-scale
digital implementations of different CNS components may be
made using FPGA chips, which also offer flexibility and high
speed.

The Hybrid Piece-Wised Base-2 Model (HPWBM) of FHN
neuron is a modified version that is presented in this study.
The polynomial term V3 contained in the neuron model poses
the biggest obstacle to its low-cost digital implementation.
Using base-2 functions can be a viable and appropriate strategy
depending on how these nonlinear functions behave. However,
as compared to earlier efforts [6], [7], [14], and [16], the
HPWBM that is being provided is significantly more accurate
and does not have the identified flaws. The investigation shows
that the original forms and dynamics can be successfully recre-
ated using our modeling. Because all nonlinear components
are eliminated when employing base-2 functions, there is a
high matching similarity and multiplier-less implementation.
This results in the creation of a digital system that is quick,
inexpensive, and capable of large-scale digital realization.
Since this results in a multiplier-less low-cost system using
shifter-based realization, the specific novelty of our proposed
model is the presentation of reduced-number power-2-based
terms for nonlinear models, as well as the transformation
of this high-cost and low-speed model into a very low-cost
neuronal model (compared to other similar works and the
original model). The large-scale digital system offered by this
proposed model can recreate every part of the original FHN
model with low-cost and high-speed qualities.

The paper is divided into a number of sections. In Section II,
the Fitz-Hugh Nagumo model is presented. In Section III, the
model’s modifications and large-scale simulation testing are
covered. In Section IV, the hardware is evaluated. In Section
V, the paper is finally concluded.

II. FHN FORMULATION

Differential equations, which capture several facets of the
neuron’s response to stimuli, can be used to model and
characterize the activity of neurons. The FitzHugh-Nagumo
(FHN) model, a prototype of an excitable system, is one such
model [16]–[18]. As a relaxation oscillator, this model will
exhibit a distinctive excursion in phase space if the external
stimulus exceeds a predetermined threshold before reverting to
its resting values. This action is comparable to how spikes are
produced in neurons and then gradually reduced by a slower,

linear recovery variable following activation by an external
current.

The following equations present this dynamical system:

dV

dt
= V −W + ITrig −

H(V )

3
(1)

dW

dt
=

1

T
(a− bW + V ) (2)

where

H(V ) = V 3 (3)

The FHN model is, in fact, a simplified form of the
Hodgkin-Huxley (HH) neuron model, which simulates the
activation and deactivation dynamics of a spiking neuron in
great detail. The voltage variable V and the recovery variable
W in the FHN formulation are used to generate distinct
potential levels. The parameter ITrig in this system is the
stimulus current or trigger for the voltage equation. Finally,
the neuron has three fixed dimensionless parameters: a, b, and
T. These parameters can influence on the spiking frequency
and shapes of the output signals of FHN model. As can be
observed from the FHN neuron equations, some nonlinear
terms (polynomial states) may result in issues with the im-
plementation of hardware, including a decrease in hardware
speed, an increase in the total system resources, and a decrease
in performance and efficiency. To create a system with greater
efficiency and speed while maintaining cheap costs, it is,
therefore, preferable to optimize and change the underlying
model.

III. MODIFICATION METHOD

In this section, we provided the proposed HPWBM, error
computations, dynamic evaluations, and network behaviors.

A. HPWBM

There are a few methods for approximating calculations.
The neuron models and their nonlinear components influence
the choice of approximation techniques. Piece-Wised Linear
(PWL), Fast Dynamic Reduction, Trigonometry, Hyperbolic,
Power-2, LUT, and other techniques are examples. The total
overhead costs may be lower when employing the Piece-Wised
Linear (PWL) technique, but accuracy will also likely be
lower and there will be some error levels. The fast-dynamic-
reduced approach is used to remove one or more differential
equations. Although the overhead expenses are decreased in
this situation, accuracy may suffer as a result. Trigonomet-
ric approximation may be advantageous because to its high
precision, but it may increase final FPGA resources and
costs. The exponential terms are first converted to hyperbolic
functions in the hyperbolic-based approach, but after that, the
exponential terms are changed to power-2 based functions,
which might increase the base-2 terms and hence increase
the overall overhead costs. However, we have utilized only
phrases that can be translated to shifters in power-2 based
techniques. Every multiplication has been changed in this
approach to a digital shifter and adder in low-cost states.
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This method is appropriate since it benefits from PWL and
base-2 approximation, (low-cost and accurate). High levels of
accuracy and matching may be attained with this method at a
manageable resource cost, however our power-2-based method
performs better in terms of error, matching, and precision. In
our modification, we have applied the power-2 based method
leads to achieving the low-cost and high-speed implementa-
tion compared to other approaches. Moreover, this method
in presented in the hardware section in details. Numerous
approximation strategies may be applied in this case with high
precision and matching to the primary (original) model.

Specially, using the piece-wised linear method can lead
to an increase in matching by increasing the number of
approximation pieces, but there is an important point that
with this approach, the cost of hardware implementation will
also increase, and we have an implementation with high-cost
attributes. This issue can also lead to a decrease in system
speed. Therefore, if the number of segments of this method is
low, considering the low hardware cost, the desired adaptation
will also be low.

As a consequence, our goal in this paper is achieving the
high-accurate digital realization of FHN neuronal model with
acceptable precision and high-speed state. As can be seen
in Table I, a comparison between different approximation
methods is presented. The base-2 approach is selected in this
case to achieve a high-accurate and low-error implementation
compared with the original and other methods realization.
Moreover, by removing all multiplications, the high-speed
design can be achieved, significantly.

TABLE I
COMPARISON BETWEEN DIFFERENT MODIFICATION METHODS FOR

NEURONAL REALIZATION

Method Cost Precision Simplicity Matching Error
PWL Low Low Simple Low High

Hyperbolic-Based Middle High Middle High Middle
Trigonometric-Based High High Complex High Middle

Fast-Dynamic-Reduced Low Very Low Middle Very Low High
CORDIC High High Complex High Low

LUT-Based Low Middle Simple Middle Middle
Base-2 Low High Middle High Low

Based on equation (3), several approximations can be taken
into account. We must assess the benefits and drawbacks of
improving system performance while simultaneously lower-
ing hardware implementation costs (total hardware resource
savings) for each of these strategies. Consider the formal and
uncomplicated Piece-Wised Linear (PWL) method [5]. This
approach could be more affordable than others. On the other
hand, the base-2 approach can be applied for modification
[6], [7]. This problem may be resolved for the HPWBM of
the FHN by reducing the number of various base-2 functions,
which results in large-scale design due to the elimination of
the extra terms.

We reformulate the voltage equation of the original FHN
neuron model as follows to offer a thorough grasp of the
suggested approach:

dV

dt
= V −W + ITrig −

Z(V )

3
(4)
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Fig. 1. HPWBM approximation shape based on modified method presentation.
Modified method of function replacing H(V) = V3 by new piece-wised base-
2 term, Z(V).

where

Z(V ) =


−2−1.66V + 2 ;−2 < V < −0.5

0 ;−0.5 < V < 0.5

21.66V − 2 ; 0.5 < V < 2

(5)

The first stage in creating the new strategy is to create a new
function to replace the major nonlinear term of the previous
model, H(V ). Due to its symmetrical construction, as seen
in Fig. 1, this function strongly resembles a base-2 wave,
enabling us to approximate the polynomial nonlinear term with
a base-2 function. Based on equation (5), we have retrieved
optimized parameters using an exhaustive search technique.
In the approximation process, we have used the basic fitting
and curve fitting of the original nonlinear function to the
new proposed function. In this approach, an exhaustive search
algorithm is applied to the parameters to find their values with
an improved precision. This algorithm searches for the best
parameters among a set of solutions and determines the closest
answer with minimum error. The scaling factors were changed
to obtain a high degree of resemblance and matching between
the original polynomial term and the suggested HPWBM that
is shown in Fig. 2 (based on different input triggers and time
constants). We succeeded in producing a new HPWBM that
closely resembled the first FHN model by employing this
technique. On the other hand, all multiplications in the main
model may be approximated using this approximation to sim-
ple operators that are simple to implement. More information
about this is provided in the hardware section. The presentation
of this proposed model is a claim that needs to be investigated
and validated. In the sections that follow, we’ll use several
techniques to analyze and corroborate the suggested model
(HPWBM). It is noticeable that selecting the parameter sets
depends on evaluating all states of spiking patterns in the
original and proposed models. Indeed, to have a comprehend
validation process, it is essential that a range of parameter
sets are considered for acceptable validation of our proposed
modeling.
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Fig. 2. HPWBM approximation shape based on modified method presentation
(according to different input triggers and time constants). Modified method
of function replacing H(V) = V3 by new piece-wised base-2 term, Z(V).

B. Error and Dynamic Evaluations

The HPWBM successfully and precisely reproduces the
behavior of the original model, as seen in Fig. 2. To validate
the proposed model, it is essential that the basic error methods
are evaluated. When the proposed model is suggested, dif-
ferences between the original and this proposed model must
be calculated. In the neural networks, the timing process is
an essential issue. Thus, in the proposed model, the spike
timing must be occurred on exactly form. In this section, we
examined the numerical values of the error with four primary
approaches to test the correctness of the proposed model: Root
Mean Square Error (RMSE) (is a frequently used measure of
the differences between values (sample or population values)
predicted by a model or an estimator and the values ob-
served), Correlation (Corr) (is a criterion to evaluate statistical
relationship involving dependency between two set of data),
Mean Absolute Error (MAE) (is a measure of errors between
paired observations expressing the same phenomenon), and
Normalized Root Mean Square Error (NRMSE) [3]–[6]. These
errors are given as below:

MAE =
1

n

n∑
i=1

|VHPWBM − VFHN | (6)

Corr =
cov(VFHN , VHPWBM )

σFHNσHPWBM
(7)

RMSE =

√∑n
i=1(VHPWBM − VFHN )2

n
(8)

NRMSE =
1

Vmax − Vmin

√∑n
i=1(VHPWBMi

− VFHNi
)2

n
(9)

The four errors specified for the basic variable of FHN
modeling, V , is also given in Table II. Moreover, to have
a quantitatively compare between our proposed model (our
approximation method which leads to voltage signal accuracy
by the original model) and other similar models [16]-[19],
a comparison is presented based on the error levels. It is
clear from Table II’s error values that the suggested model
delivers the findings with excellent precision (leads to use
base-2 approximation approach).

TABLE II
ERROR VALUES COMPARISON BETWEEN OUR HPWBM AND OTHER

SIMILAR WORKS [16]-[19].

Variables MAE RMSE Corr% NRMSE % MRE %
V in HPWBM 0.0034 0.019 99.8 0.4 1.02

V in [16] - - - - -
V in [17] 0.03 0.45 84 1.15 1.27
V in [18] 0.04 0.32 - 3.42 -
V in [19] 0.015 0.057 - 1.43 1.52
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Fig. 3. Equilibrium points presentation of original and HPWBM based on
two different ITrig.

In case of dynamic consideration, when modeling the
change from the rest and spike states, the communication
between the two nullcline equations is particularly important
[10]-[14]. Equilibrium points appear where the equation null-
clines cross. For dynamic assessment, we consider a dynamic
system with two variables. Here, V and W are assessed using
a variable V , and the voltage signal (V) is regarded as a basic
and common variable. The equations of the original model
contain many nullclines:

dV

dt
= 0 =⇒ V = W − ITrig +

V 3

3
= 0 (10)

dW

dt
= 0 =⇒ W =

V + a

b
= 0 (11)

By inputting the fixed values from Table III, the following
points are generated to describe and explain the coupling of
the two variables V and W . S = dV

dt = V −W + ITrig − H(V )
3

N = dW
dt = 1

T (a− bW + V )

(12)

The bifurcation analysis of equilibrium points requires a
Jacobian matrix and eigenvalues:

J(V,W ) =

[
L O
P Y

]
(13)

where  L = ∂S
∂V , O = ∂S

∂W

P = ∂N
∂V , Y = ∂N

∂W

(14)

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3337335

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 5

TABLE III
THE TYPE OF EQUILIBRIUM POINTS AND THEIR COORDINATES. ALL

NODAL SINK POINT ARE STABLE.

Variables Original HPWBM
V and W Nodal sink(-0.78,-0.15)Nodal sink(-0.75,-0.12)
ITrig=0.5
V and W Nodal sink(0.53,1.18) Nodal sink(0.49,1.22)
ITrig=1

Fig. 4. Different patterns of phase portraits for the original and proposed
models (according to different input triggers and time constants).

Considering the stability of equilibrium points, the sign of
(L + Y ) must be analyzed. If (L + Y ) < 0, the system is
stable and otherwise, it is unstable.

For suggested model (HPWBM), Jacobian matrixe for vari-
able V and W is computed (similar to original model process).
Table III includes the coordinates and types of equilibrium.
Bifurcation theory and changes in model parameters can be
used to classify various modes. The stability or instability of
equilibrium points is dictated by the main diameter of the
Jacobin matrix’s parameters. When the total of the parameters
in the Jacobian matrix’s initial diameter is less than zero
(negative), an equilibrium point is said to be stable. If it
is higher than zero, it is said to be unstable (positive). The
original and proposed models dynamics are depicted in Fig.
3. As can be seen, the HPWBM follows the FHN model,
accurately. Also provided and contrasted in Fig. 4 are the
phase portraits of the original and suggested models (based on
various linked variables). As can be seen, the proposed model
can follow the original one in high-degree of matching.

C. Network Behavior

A network of 1000 randomly linked neurons is simulated
to implement the modified model at the network size. Taking
inspiration from the structure of a mammalian cortex, we opted
for a ratio of 4 to 1 between excitatory and inhibitory neurons,
and strengthened the inhibitory synaptic connections. In Fig.
5, the simulations’ raster plots are displayed. The modified
model and the original model in network behaviors have
a lot of structural similarities. Mean Relative Error (MRE)
is computed to compare the original and modified network
behavior models. Fig. 5 also displays this error parameter’s
value. According to Fig. 5 and the error values, another
indication of the suggested model’s correctness is the network
scale, where it is clear that the behavior of the original and
proposed models behave similarly to one another.
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Fig. 5. 1000 neurons’ activity for the original FHN and proposed HPWBM
models in a raster plot.

IV. HARDWARE REALIZATION

The digital implementation of HPWBM is shown in this
section. The bit width for a digital implementation must first be
chosen. The bit width must be selected in a way that prevents
overflow with left and right shifts, which is an essential
consideration. The overall architecture for the final system
produced in the second stage, which discretizes the differential
equations using the Euler technique. The third phase involves
the Hardware Description Language (HDL) evaluating this
architecture before they can be implemented on the Virtex-
4 FPGA device. Here are the specifics of these actions.

A. Equations Discretization

There are different methods for implementing approximate
equations in discretization domain. In the meantime, one of the
simplest and least expensive possible methods is to use Euler’s
method, which is very straightforward and simply performs
the discretization operation. In fact, because our goal is to
implement hardware with the lowest cost, we have chosen
Euler’s method. To be suitable for the FPGA board, discretized
equations make up the suggested model. The Euler technique
is used for this discretization. The Euler approach calls for a
solution to:

dK

dt
= E(t) (15)

we have

K[i+ 1]−K[i]

dt
= E(t) −→ K[i+1] = K[i]+dtE(t) (16)

Where K and E are two typical variables.
The time step, dt, which serves as a multiplier in equation

(12), has a value of 1
128 , or 7 right shifts. This eliminates the

parameter’s multiplication action. In a manner similar to this,
it is also feasible to acquire a multiplier-less implementation,
which is specifically covered in the parts that follow. It should
be noted that the original and suggested models’ time steps in
all simulations are 1

128 . There have been tests using various
time steps. This amount acts as a suitable time step for a good
match between the models. Selecting a lower time step makes
the system more complicated, but the accuracy does not alter
in a meaningful way.
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Fig. 6. Overall architecture of the proposed HPWBM.
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Fig. 7. Digital oscilloscope output of the proposed HPWBM on Virtex-4
FPGA.

B. Overall Architecture

Fig. 6 shows the overall architecture for HPWBM. As can
be seen in this architecture, the first unit, Input Unit (I. U.)
is responsible for generating required data for triggering the
neurons. On the other hand, the Pipelining Unit (Pip. U.)
provides the final signals of the proposed voltages (in the
HPWBM). The pipeline strategy will be used in this section to
enhance the frequency of the neurons. Two buffers (VBuff.
and WBuff.) are taken into consideration for a pipeline
implementation of the suggested HPWBM. In this diagram,
VS and WS stages, respectively, are used to actualize Vpip.
and Wpip. VBuff. and WBuff. are the storage blocks in
this illustration. The bit-width of each unit in the buffers is
the same as that in the Vpip. and Wpip. modules, which
are chosen based on the precision needed. As a result, the
following prerequisites must be met:

 N = VBuf−Size + VStage = WBuf−Size +WStage

VBuf−Size = WBuf−Size

VStage = WStage

(17)
Synchronization between the W and V structures is re-

quired for the pipeline structure to operate properly (and meet
the third equation). Moreover, the Output Unit (O. U.) is

responsible for generating the final target signals (for two
basic variables of HPWBM). Finally, the important parts of
this architecture is Control Unit (C. U.) which provides the
required signals for controlling the pipelining unit and also,
generating the necessary signals that help to produce the basic
voltage variable in the HPWBM. In this submodule, the basic
proposed term of the HPWBM (Z(V )), is calculated using the
base-2 module calculator.

C. Bit-Width Specification

In general, numbers are displayed in digital in both fixed-
point and floating-point forms. Floating-point display shows
numbers with much more precision than fixed-point, but at
the same time, in terms of implementation, it consumes more
digital resources and cause speed-down in the final circuit. In
practice and in most processing systems that are implemented
with FPGA, especially when speed is important and resources
are limited, the fixed-point method is used. Fixed-point repre-
sentation is applied for depicting the variables and parameters
in digital implementation. Thus, the range of all variables in
digital design is computed. With 5 bits for the integer, 15 bits
for the fraction, and 1 bit for the sign, our proposed model
has a final bit-width of 21 bits. This is based on the maximum
and lowest constant values, the number of bits (in terms of
the maximum left and right shift), overall architecture, and
the necessity to prevent any overflow. For more explanations,
in case of bit-width determination, we have applied the fixed-
point way. In this approach, at first, it should be determined
all maximum and minimum values of signals and variables in
the proposed model and second, the maximum shift must be
calculated for avoiding any overflows in data. In our proposed
model, the variable V range is between -2 to 2. Also, the
variable W range is between -0.5 to 1.5. The other parameters
are as: (a=0.8, b=0.7, T=13). Also, the maximum number of
T=80 (which write as 1

T that means shifts to right in fraction
part). The maximum number of ITrig = 3. Thus, based on the
maximum integer value of our proposed model (ITrig = 3),
we have selected 5 bits for integer with sign bit. On the other
hand, based on digital realization of model, the maximum
right shift also must be calculated (due to eliminating all
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multiplications). By this calculation, the bit-width of 15 is
considered for fraction part (due to converting time step dt to
digital shift to right). Indeed, the term 1

dt∗T requires 15 bit
right shift for validation. Finally, 21-bit is considered for all
parts of the digital system as fixed-point case. Consequently,
all parts of our digital system uses the fixed-point case.

All the components of the Fig. 6 have been realized based
on the fixed bit width of 21. According to Fig. 6, each part
that finishes its calculations produces an output corresponding
to the width of 21 bits and sends it to the next part. Similarly,
the rest of the sections work with 21 bit width. So since our
bit width is fixed, the effects of changing it have no effect on
it. In fact, we have a fixed bit width that is fixed in all digital
systems. Therefore, we do not need to adjust the bit width of
signals and parameters of the desired shape. All parts of this
architecture work with a fixed bit width of 21 bits.

D. Realization Results

Results of the hardware-digital HPWBM implementation
are shown in this section. The suggested model was developed
on the FPGA platform Virtex-4. The output of the digital oscil-
loscope demonstrates that the approximation model accurately
and closely reproduces the behavior of the original model. The
model was created using Verilog in the Xilinx ISE program.
The V and W signals’ digital oscilloscope output is shown
in Fig. 7. This figure demonstrates how closely the digital
oscilloscope’s output resembles the behavior of the original
device. An 8-bit DAC is applied for converting the digital data
to analog one for representing them on the digital oscilloscope.
The original model, as previously stated and according to
equations (1), (2), and (3), employs a significant number of
multiplication, division, and nonlinear functions. Due to the
FPGA’s powerful processing capabilities, the equations from
the original model may be implemented directly on the device
without any approximation. Yet, this results in a decrease in
processing frequency and a rise in the utilization of hardware
resources, making hardware implementation ineffective and
subpar. All of the previous model’s nonlinear parts and func-
tions, which are expensive to implement on hardware, have
been swapped out with functions in the proposed model that
are substantially less expensive to implement on hardware.
These high-precision alternative functions, which are well
described, provide a superior hardware implementation than
the original model. They also result in a decrease in the
number of hardware resources used and an increase in FPGA
operating frequency. Table IV shows the hardware resources
and frequency for the primary and suggested models of FHN
and other similar papers which implemented on the Virtex-4
and Virtex-2 reconfigurable boards (FPGA).
The comparison of resource use presented in Table IV amply
demonstrates the suggested model’s savings in the utilization
of hardware resources. Additionally, the HPWBM operating
frequency implies that the suggested model performs almost
3.77 times more quickly than the original model. The system’s
overall performance is enhanced in our recommended model
by substituting expensive modules like multipliers, divisions,
and polynomial terms, with approximation functions that have

TABLE IV
COMPARISON BETWEEN PROPOSED APPROACH AND PREVIOUSLY

PUBLISHED PAPERS

Ref. Slices % FFs % LUTs % Freq. (MHz)
Orig. (Virtex 4) 2 1 1 119

HPWBM (Virtex 4) 0.48 0.27 0.32 377
[16] (Virtex 2) 46 18 38 0
[17] (Virtex 2) 2.68 1.66 3.32 175
[18] (Virtex 2) 3 2 1 0
[19] (Virtex 4) 1 1 1 320

TABLE V
H-SE FOR VALIDATING THE IMPLEMENTATION ACCURACY

Applied Stimulus H− SE

I = 0.1 0.0061
I = 1 0.0044
I = 1.5 0.0065

a significantly lower cost, as evidenced by the aforementioned
justifications and Table IV. Additionally, by applying the
pipeline technique to HPWBM, the final overhead costs of
FPGA are reduced, significantly compared to other similar
papers. Also, the maximum frequency of our proposed model
is higher than the other works. The attributes of low-cost
approach help to achieve a large-scale digital system due to
reducing the FPGA resources costs compared to other FHN
works in this field. It is mentioned that, in Table IV, some
frequencies are fixed to 0 value due to no frequency reports
in the cited papers.

Moreover, for considering the accuracy of the digital im-
plementation, the other table (Table V), is presented. As can
be seen in this table, for three cases of stimulus currents, the
Hardware-Simulation Error (H-SE) is calculated to validate
the accuracy of realization. This H-SE is computed based on
the following formulation:

H− SE = |VSimulation − VHardware| (18)

The high-accuracy digital realization of the FHN neural
model with acceptable precision and high-speed state is what
we are aiming for in this study. Additionally, it is possible
to dramatically increase design speed by doing away with
all multiplications. The other efforts in this subject that may
be assessed, notably, in terms of FPGA implementation are
described in this strategy for neuromorphic realization and
implementation [28]-[39].

V. CONCLUSION

In this article, the HPWBM is digitally implemented. By
deleting the original FHN model’s nonlinear functions, which
are difficult to digital realization, we were able to create the
approximated model. By doing this, we were able to achieve
two characteristics of the ideal implementation: low hardware
cost and high frequency. In addition to the proposed model’s
acceptable accuracy, it is evident from a comparison of the
synthesis results between it and the primary model on the
FPGA board that the proposed model is superior to the original
model in terms of its efficient use of hardware resources,
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operating frequency, and energy consumption. In conclusion,
it can be concluded from the data that the suggested model
consumes fewer hardware resources, and roughly 3.77 times
as much frequency as the original model. Lastly, to handle
increasingly complicated models with more biological compo-
nents, the suggested model may be further enhanced in terms
of hardware capacity and speed as part of future studies. As a
result, this work (HPWBM) that has been described represents
a more efficient approach towards the digital implementation
of FHN compared to the previous works. The given results
can be used as inspiration to work with more intricate models
that produce great accuracy in biological neurons. To create
artificial organs, fully assess biological cell activity and associ-
ated disorders, cure diseases, run laboratory simulations, etc.,
it is necessary to improve outcomes and use more biological
models.
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