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Numerical Methods for Multiscale Problems

Assyr Abdulle

Consider uε, the solution of a (partial) differential equation

(1) Lεuε = fε,

where Lε is a linear differential operator for which ε indicates the small scales
in the coefficients. Due to the oscillations in these coefficients, uε will typically
exhibit small scale oscillations. The scale gap between the length of the oscillation
and the phenomena of interest (large scale behavior) makes direct simulation of
(1) with a standard numerical method often impossible. A common approach is
to compute an effective or homogenized operator L̄, in which the small scales have
been averaged out and to solve the corresponding homogenized equation (see [9]
and references therein)

(2) L̄ū = f̄ .

The problem (2) can be solved with standard methods. However, this procedure
has several drawbacks. First, restrictive assumptions on the data (periodicity, ho-
mogeneity) are needed to derive explicit equations for the homogenized problem 2 .
Second, the coefficients of the homogenized equation have usually to be computed
numerically so that a control of the overall procedure (i.e. the numerical dis-
cretization of the homogenized equations with numerically computed coefficients)
is difficult. Third, the fine scale behavior, i.e. the oscillations of the solution, is
lost in the homogenization process.

In this report we discuss several numerical methods for multiscale problems con-
structed within the framework of the Heterogeneous Multiscale Methods (HMM)
[1], [2], [3], [4], [5], [6], [7], [8]. These methods discretize the physical problem
directly by a “macroscopic numerical model” with a macroscopic discretization.
The input coefficients of the macroscopic numerical model are unknown, since
the macroscopic model is not supposed to be known (we do not precompute an
averaged equation as (2)). These coefficients are recovered on the fly by solv-
ing a “microscopic numerical model” on sampling domains within the macro dis-
cretization. A variety of micro-macro approaches based on iterative schemes, have
been proposed in the literature, mainly for elasticity problems, including nonlinear
problems (see [5] for a discussion and references). The iterative procedure in these
approaches increases the cost of the methods and makes a full error control of
these micro-macro schemes difficult even for linear problems.
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Heterogeneous multiscale methods for variational problems. We consider
the following elliptic model problem in the domain Ω ⊂ Rd

(3) −∇ · (aε∇uε) = f in Ω, uε = 0 on ∂Ω,

where we assume that the tensor aε(x) = a(x, xε ) = a(x, y) is symmetric, coercive

and periodic with respect to each component of y in the unit cube Y = (0, 1)d. We
further assume that f ∈ L2(Ω), aij(x, ·) ∈ L∞(Rd), that x → aij(x, ·) is smooth
from Ω̄ → L∞(Rd) and that Ω is a convex polygon. The FE-HMM for the elliptic
homogenization problem, based on the macro finite element (FE) space S1

0(Ω, TH)
(TH is the macro triangulation) is defined by a modified macro bilinear form [3],[8],

(4) B(uH , vH) =
∑

K∈TH

|K|

|Kε|

∫

Kε

∇uh a(xk, x/ε)(∇v
h)T dx,

whereKε = xk+ε[−1/2, 1/2]d is a sampling sub-domain centered at the barycenter
xk of the triangleK, where |K|, |Kε| denote the measure ofK andKε, respectively,
and where uh is the solution of the following micro problem: find uh such that
(uh − uH) ∈W 1

per(Kε) and

(5)

∫

Kε

∇uh a(xk, x/ε)(∇z
h)T dx = 0 ∀zh ∈ S1

per(Kε, Th).

For Kε ⊂ K ∈ TH , we consider the micro FE space S1
per(Kε, Th) ⊂ H1

per(Kε)/R
of piecewise linear polynomials on the micro triangulation Th, periodic on the
boundary ∂Kε. The meshsizes of the macro and micro spaces are denoted by H
and h, respectively. The following convergence estimates have been obtained in
[3] for the fully discrete FE-HMM

‖u0 − uH‖H1(Ω) ≤ C
(
H +

(h
ε

)2
)
, ‖u0 − uH‖L2(Ω) ≤ C

(
H2 +

(h
ε

)2
)
,(6)

‖uε − uεp‖H̄1(Ω) ≤ C
(
H + ε+

h

ε

)
,(7)

where uε is the solution of problem (3), u0 is the solution of the homogenized
problem corresponding to (3) and uεp is a reconstructed solution obtained from

uH with fine scale solution (u − uH) periodically extended on each element K
(see [8],[1]). For the estimate (7), the norm H̄ is mesh dependent since uεp can be
discontinuous across the macro elements K. Similar fully discrete estimates have
also be derived for the effective velocity in transport problems [4] and for elasticity
problems [5].
Heterogeneous multiscale methods for dynamic problems. Consider the
parabolic homogenization problem

∂uε

∂t
= ∇ · (aε∇uε) in (0, T )× Ω(8)

uε = 0 on (0, T )× ∂Ω, uε(0, x) = g(x) on Ω,(9)

where uε = uε(t, x), Ω ⊂ Rd is a bounded domain, and aε(x) is symmetric, uni-
formly coercive and bounded. We further assume that aε(x) and g(x) are regular
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enough in order to have a smooth solution of the above problem. In the sequel we
describe the algorithm in one dimension for simplicity (see [1] for generalizations).
A coarse model for (8) is given by ∂U

∂t = ∇· (a0∇U), where a0 (the homogenized
tensor) reflects the large scale impact of aε. As for the previous problem, we do not
assume that a0 is known. The finite difference heterogeneous multiscale method
(FD-HMM) [1] is defined by a macroscopic scheme on a coarse grid {xi}

N
i=0 of Ω

(10) Uk+1
i = Uki + ∆t

Jki+1/2 + Jki−1/2

∆x

with meshsize ∆x and evolved with a coarse time step ∆t. The unknown fluxes
Ji±1/2 = ±1

|Kε
xi±1/2

|
∫
Kε

xi±1/2

aε∇ûεdx are given by the average of micro solutions ûε

obtained by solving small scale problems on sampling domains Kε
xi±1/2

of size ε

centered around xi±1/2 for a small time [tk, tk + δ]

∂ûε

∂t
= ∇ · (aε∇ûε) (t, x) ∈ (tk, tk + δ) ×Kε

xi±1/2
,(11)

ûε − Uk(x) ε−periodic on (tk, tk + δ) × ∂Kε
xi±1/2

, û(tk, x) = Uk(x),(12)

where δ is a relaxation time (see [1]). The initial values at the cells Kε
xi±1/2

are

obtained by linear reconstruction of the known solution {Uki }
N
i=0 at time tk.

For the convergence analysis [1] we have to introduce an intermediate problem.
Let {Uki }

N
i=0 be the solution of the FD-HMM at time tk = t0 + k∆t and let

{Ūki }
N
i=0 be the solution of a finite difference method similar to (10) but with

fluxes J̄i±1/2 = (a0(Ūi±1/2 − Ūi))/∆x. Then it can be shown [1]

max
0≤i≤N

|Uki − Ūki | ≤ CT
ε

∆x
∀tk ∈ [0, T ].

{Ūki }
N
i=0 can be seen as a standard FD method for the homogenized problem, for

which standard convergence results, provided enough smoothness of the solution,
give maxi |U(tk, xi) − Ūki | ≤ CT (∆t + (∆x)2) ∀tk ∈ [0, T ]. Combining both re-
sults, we obtain the following error estimate for the FD-HMM when compared to
the homogenized solution of problem (8)

max
0≤i≤N

|U(tk, xi) − Uki | ≤ CT
(
∆t+ (∆x)2 +

ε

∆x

)
∀tk ∈ [0, T ].

Here, the exact solution for the micro problem (11) has been assumed. For a fully
discrete analysis, the discretization of this problem with a micro spatial mesh with
meshsize δξ has to be considered. The term δξ

ε is expected to appear [6].
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Structural Preserving Isospectral Flows for Quadratic Pencils

Moody T. Chu

(joint work with Nicoletta Del Buono)

The eigeninformation (λ,u) of the quadratic pencil,

(1) Q(λ) := Q(λ;M0, C0,K0) = λ2M0 + λC0 +K0,

is critical to the understanding of the dynamical system

(2) M0ẍ + C0ẋ +K0x = f(t),

which arises frequently in many important applications, including applied mechan-
ics, electrical oscillations, vibro-acoustics, fluid mechanics, and signal processing.
It is easy to see that the linear pencil,

(3) L(λ) := L(λ;M0, C0,K0) =

[
C0 M0

M0 0

]
λ+

[
K0 0
0 −M0

]
,

in the so called Lancaster structure, is equivalent to Q(λ). Recently, it has been
shown that for almost all quadratic pencils there exists real-valued 2n × 2n real
matrices Πℓ and Πr such that

(4) Π⊤
ℓ L(λ)Πr = L(λ;MD, CD,KD) =

[
CD MD

MD 0

]
λ+

[
KD 0
0 −MD

]
,

where MD, CD,KD are all real-valued n × n diagonal matrices [2, 3, 4]. Such a
transformation is significant in that it links the dynamical behavior of a multiple-
degree-of-freedom system directly to that of a system consisting of n independent
single-degree-of-freedom subsystems. It breaks down the interlocking connectiv-
ity in the original system into totally disconnected subsystems while preserving
the entire spectral properties. Thus it will be of great value in practice if the
transformations Πℓ and Πr can be found from any given pencil. The theory of
existence of Πℓ and Πr in [2, 3] was established on the basis of the complete spec-
tral information of L(λ). To construct Πℓ and Πr from the availability of spectral
information certainly is impractical. The emphasis of this talk is to construct Πℓ

and Πr numerically by structure preserving isospectral flows without knowing the
spectral information.




