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Abstract 

Introduction: Ceftolozane/tazobactam (C/T) is a new antibiotic resulting from the 

combination of a novel cephalosporin, structurally similar to ceftazidime, with tazobactam, a 

well-known beta-lactamase inhibitor. C/T remains active against extended-spectrum β-

lactamase (ESBL)-producing Enterobacteriaceae and multi-drug resistant (MDR) P. 

aeruginosa, and has been recently approved for the treatment of complicated intra-abdominal 

infections (cIAI) and complicated urinary infections (cUTI). A trial on hospital-acquired 

pneumonia is ongoing. 

Areas covered: The place in therapy of C/T is delineated by addressing the following main 

topics: (i) antimicrobial properties; (ii) pharmacological properties; (iii) results of clinical 

studies. 

Expert commentary: C/T is approved for cIAI and cUTI. However, the drug has a special 

value for clinicians in any kind of infectious localization for two main reasons. The first is 

that C/T is especially valuable in suspected or documented severe infections due to MDR P. 

aeruginosa, which is not a rare occurrence in many countries. The second is that C/T may 

provide an alternative to carbapenems for the treatment of infections caused by ESBL-

producers, thus allowing a carbapenem-sparing strategy. Reporting of off-label use is 

mandatory to increase the body of evidence and the clinicians’ confidence in using it for 

indications other than cIAI and cUTI. 

 

Key words: antimicrobial resistance; MDR; ceftolozane; tazobactam; carbapenem-sparing; 

ESBL; Pseudomonas; Enterobacteriaceae.  
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1. Introduction 

In the last decade, we have witnessed a dramatic increase worldwide in the number of 

multidrug resistant (MDR) Gram-negative bacteria, with extended-spectrum β-lactamase 

(ESBL)-producing Enterobacteriaceae and MDR-Pseudomonas aeruginosa among the main 

threats in clinical practice [1-4]. Due to resistance to third generation cephalosporins and, at 

least in part, to piperacillin-tazobactam, the most common antibiotics prescribed as empiric 

regimens, the presence of these MDR bacteria has forced many centers to shift to 

carbapenems as initial empirical therapy in critically ill patients, in order not to put the 

patient at risk of delaying the initiation of an active antibiotic therapy [5, 6]. This has 

probably contributed to the spread of carbapenem resistance, within a vicious circle of forced 

indiscriminate prescription of carbapenems and further resistance selection [5, 7, 8]. 

Carbapenem-sparing regimens have thus been advocated as a possible mean to decrease the 

spread of carbapenem resistance and possible to restitute activity to carbapenems [9].  

 Ceftolozane/tazobactam (C/T) is the combination of a novel cephalosporin, 

structurally similar to ceftazidime, with a well-known β-lactamase inhibitor [10]. C/T has 

shown activity against MDR P. aeruginosa and ESBL-producing Enterobacteriaceae, and has 

been recently approved for the treatment of complicated intra-abdominal infections (cIAI) 

and complicated urinary infections (cUTI), including pyelonephritis, by the U.S. Food and 

Drug Administration (FDA) and the European Medicines Agency (EMA) [11, 12]. In this 

article, we will review the pharmacological and antimicrobial features of this new antibiotic, 

and discuss both its current place in the antibiotic armamentarium and its possible future 

positioning in so far unapproved indications for suspected and proven infections due to MDR 

Gram-negative bacteria. 

2. Methods 
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In a round of discussions in May 2017, the following main topics were identified to be 

addressed in this narrative review: (i) antimicrobial properties; (ii) pharmacological 

properties; (iii) results of clinical studies. Subsequently, relevant publications were searched 

through the MEDLINE/PubMed database, using dedicated keywords for each topic. The next 

step was the production of separated preliminary drafts by different groups of authors, each 

addressing one of the topics. In October 2017, the preliminary drafts were merged and 

organized in a final manuscript, which was finally  reviewed by all authors. 

3. Antimicrobial properties 

3.1. Mechanism of action 

Ceftolozane (previously CXA-101 and FR-264205) is a novel expanded-spectrum 

cephalosporin with potent activity against Pseudomonas aeruginosa and other Gram-negative 

pathogens. As with all β-lactams, the antibacterial activity is due to inhibition of the 

penicillin-binding proteins (PBPs) involved in the final steps of peptidoglycan biosynthesis.  

 The ceftolozane molecule is an oxyimino-cephalosporin which differs from 

ceftazidime mostly by the presence of a bulkier side chain at the 3-position of the 

dihydrothiazine ring (Figure 1). This modification entails a higher affinity and a broader 

inhibition profile toward the essential PBPs of P. aeruginosa (e. g. PBP1b, PBP1c, PBP2 and 

PBP3) compared to ceftazidime, while the affinity to PBP4 remains lower than that of 

imipenem and thus unable to induce AmpC overexpression [13]. Due to this modification, 

ceftolozane is also more stable to the chromosomal AmpC β-lactamase of P. aeruginosa [14-

16] and is an overall poor substrate of the Mex efflux pumps found in this species [17]. 

Thanks to these features and to the fact that, unlike carbapenems, entry across the outer 

membrane of P. aeruginosa is not affected by functionality of the OprD porin [17, 18], 

ceftolozane exhibits an anti-Pseudomonas activity which is overall superior than that of other 
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anti-Pseudomonas β-lactams (see below, surveillance data), and was also demonstrated 

against strains grown in biofilms [19, 20]. 

 Similar to ceftazidime and other expanded-spectrum cephalosporins, ceftolozane is 

not stable to extended-spectrum β-lactamases (ESBLs). For this reason, the formulation for 

clinical use has been developed in combination with tazobactam, a mechanism-based β-

lactamase inhibitor which extends the activity of ceftolozane against many ESBL-producing 

Enterobacteriaceae and some Bacteroides spp. [21, 22].  

3.2 Spectrum of activity and surveillance data 

The spectrum of activity of C/T is mostly oriented toward Gram-negative pathogens, 

including Enterobacteriaceae and P. aeruginosa. In vitro activity has also been documented 

against  Haemophilus, and Moraxella, and also against some strains of Acinetobacter, 

Stenotrophomonas, Burkholderia and other nonfastidious Gram-negative nonfermenters, 

although the clinical utility for infections caused by these pathogens remains to be established 

[23-25]. Among Gram-positives, C/T is active against β-hemolytic streptococci 

(Streptococcus pyogenes and Streptococcus agalactiae), and also exhibits some activity 

against pneumococci, while it is not active against staphylococci and enterococci [25]. 

Finally, C/T has no activity against most anaerobic bacteria, including Clostridium difficile, 

with the possible exception of some Bacteroides spp strains. [25-27].  

 The activity of C/T against clinical isolates of Enterobacteriaceae and P. aeruginosa 

has been evaluated by several surveillance studies carried out in different settings. Results 

from a selection of recent surveillance studies are summarized in Table 1 [25, 28-38]. 

Altogether, in these studies, C/T was consistently found to be the most active β-lactam 

against P. aeruginosa, retaining remarkable activity also against MDR and extensively drug-

resistant (XDR) isolates, even when carbapenem-resistant in absence of carbapenemase 



Acc
ep

ted
 M

an
us

cri
pt

 7

production. Interestingly, outstanding anti-Pseudomonas activity of C/T was also observed 

against isolates from cystic fibrosis patients, for whom mucoid strains of P. aeruginosa 

represents a major problem. Concerning Enterobacteriaceae, the in vitro activity of C/T was 

consistently higher than that of ceftazidime and cefepime, and also of 

piperacillin/tazobactam, but lower than that of meropenem. Concerning ESBL producers, the 

activity of C/T was overall superior than that of piperacillin/tazobactam, and higher against 

Escherichia coli than against Klebsiella pneumoniae. On the other hand, C/T was 

consistently not active against carbapenem-resistant Enterobacteriaceae (CRE).  

3.3 Mechanisms of resistance 

Acquired resistance to C/T has been reported in clinical isolates of P. aeruginosa producing 

β-lactamases which degrade ceftolozane and are not efficiently inhibited by tazobactam (e. g. 

metallo-β-lactamases, GES-type enzymes, or OXA-type ESBLs) [25, 39, 40]. Mutations in 

the resident AmpC β-lactamase, possibly associated with overexpression of the enzyme, were 

also shown to be responsible for increased ceftolozane/tazobactam MICs following in vitro 

exposure to increasing drug concentrations [41] or even following clinical use, and some 

highly resistant strains have been described [42-44].  However, the propensity for selection of 

mutational resistance appears to be generally low, and significantly lower than that observed 

with other anti-Pseudomonas agents (e. g. meropenem, ceftazidime and ciprofloxacin) [41].  

 In Enterobacteriaceae, a major mechanism of acquired resistance to C/T is represented 

by the production of carbapenemases that can degrade ceftolozane and are not efficiently 

inhibited by tazobactam (e. g. metallo-β-lactamases [MBL], KPC, GES). In fact, 

carbapenemase-producing Enterobacteriaceae (CPE) are usually non-susceptible to 

ceftolozane/tazobactam (Table 1). However, OXA-48 producers may remain susceptible 

since ceftolozane is stable to this enzyme and co-produced ESBLs, if present, are inhibited by 
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tazobactam [25]. ESBL and AmpC producers are variably susceptible to C/T, depending on 

the bacterial species and enzyme types [21, 25]. 

3.4 Susceptibility testing 

Susceptibility testing of C/T is important since resistant isolates of P. aeruginosa and 

Enterobacteriaceae can be encountered due to various resistance mechanisms (see above).  

 Somewhat different clinical breakpoints have been released by the Clinical and 

Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST). CLSI breakpoints for P. aeruginosa are S≤4 and R>8 

mg/L, while EUCAST breakpoints for the same pathogen are S≤4 and R>4 mg/L [45, 46]. 

Breakpoints for Enterobacteriaceae are also different between CLSI and EUCAST (S≤2 and 

R>4 Vs. S≤1 and R>1 mg/L, respectively) [45, 46]. Of note, CLSI also provides specific 

breakpoints for viridans streptococci (S≤8, R>16 mg/L), while EUCAST considers the 

available evidence for setting breakpoints for streptococci insufficient despite the reported in 

vitro activity [45, 46]. However, EUCAST provides PK/PD breakpoints for C/T (S≤4, R>4 

mg/L), which, although less robustly than classical breakpoints, suggest that C/T might be 

useful also for treating infections due to microorganisms within its spectrum of activity other 

than P. aeruginosa and Enterobacteriaceae, provided their MIC is ≤4 mg/L [46]. 

 Broth microdilution (BMD) is the reference method for susceptibility testing, and 

commercial systems for C/T susceptibility testing by BMD are available from some 

manufacturers (e. g. Thermo Fisher Scientific, Merlin Diagnostika). Gradient diffusion tests 

have also been developed (Etest, bioMérieux; MIC test strips, Liofilchem) to facilitate 

susceptibility testing of C/T in clinical microbiology laboratories. A recent evaluation of 

Etest with a collection of meropenem-resistant P. aeruginosa isolates, however, revealed 
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high error rates in comparison with reference BMD, with very high rates of false 

susceptibilities among the C/T resistant isolates [47]. On the other hand, an evaluation of 

MIC test strips with a collection of MDR/XDR P. aeruginosa isolates revealed lower error 

rates in comparison with reference BMD, with no false susceptibilities [40]. Disk diffusion 

has been approved by FDA for C/T susceptibility testing, but its practical utility is limited 

since zone diameter clinical breakpoints are only available for P. aeruginosa and only from 

CLSI. However, a recent evaluation of a disk diffusion test (interpreted according to the 

CLSI breakpoints) with a collection of MDR/XDR P. aeruginosa isolates has revealed a 

good correlation with reference BMD (interpreted according to the EUCAST breakpoints), 

with no false susceptibilities [40].  

 Current evidence, therefore, would suggest the use of BMD for C/T susceptibility 

testing, while waiting for a broader experience with gradient and disk diffusion tests. The 

implementation of the drug in validated panels of semiautomated systems, which is currently 

underway, is highly desirable. 

4. Pharmacological properties 

4.1 Pharmacokinetics 

The pharmacokinetics of ceftolozane, alone and/or in combination with tazobactam, was 

assessed in healthy volunteers over a wide range of doses (ranging from 250 and 2000 mg for 

ceftolozane and from 250 and 1000 mg for tazobactam) [23, 48, 49]. After either single or 

multiple dose administration, the increases of Cmax and AUC were dose-proportional. The 

volume of distribution (Vd), ranged between 11 and 18 L and reflected a distribution limited 

to the extracellular milieu, similarly to what occurred with other cephalosporins. The plasma 

protein binding was approximately 20%, and the mean elimination half-life was 2-3h. 

Ceftolozane was almost completely cleared as unchanged moiety by the renal route (92%). 
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The pharmacokinetics of tazobactam are linear and not affected by co-administration with 

ceftolozane, which is different from what is observed during co-administration with 

piperacillin [23, 50].  

 The licensed dose of the C/T in patients with normal renal function is 1000/500 mg 

every 8h infused intravenously over 1 h. Dosages should be reduced in patients with impaired 

renal function (Table 2) [51]. The following dosages are recommended in relation to different 

classes of creatinine clearance (CLCr): 500/250 mg every 8 h in presence of CLCr 30-50 

mL/min; 250/125 mg every 8 h in presence of CLCr 15-29 mL/min; 100/50 mg every 8 h 

after an initial loading dose of 500/250 mg in presence of end stage renal disease (ESRD) or 

during intermittent hemodialysis (IHD). In the latter case, the dose of C/T should be given as 

soon as possible following completion of the hemodialytic procedure, because C/T can be 

removed by dialysis. No dosage adjustment is needed in presence of hepatic impairment. 

 Ceftolozane is not expected to have any clinically significant drug-drug interaction, 

since at therapeutic concentrations it is neither a substrate nor a modulator of the cytochrome 

P450 system [49, 52]. Tazobactam is a substrate of the organic anion transporters 1 (OAT1) 

and 3 (OAT3), and the co-administration of drugs that may inhibit these transporters (e.g., 

probenecid) may increase its plasma concentrations [49]. 

4.2 Pharmacokinetics in special patient populations 

The pharmacokinetics and tissue penetration of C/T 1000/500 mg every 8 h was assessed 

among 10 patients with diabetic foot infections and compared with healthy volunteers [53]. 

Tissue penetration was determined by means of microdialysis. The median (range) 

AUCtissue/AUCplasma ratio in patients with diabetic foot infection was 0.75 (0.35-1.00), 

with a mean (range) free time above 4 mg/L (namely the susceptibility breakpoint vs. P. 

aeruginosa) of 99.8% (87.5-100%). The penetration into subcutaneous tissues was similar in 
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both patients with diabetic foot infection and healthy volunteers, and the authors concluded 

that C/T at 1000/500 mg every 8h may achieve adequate exposure against susceptible 

pathogens in subcutaneous tissue of patients with diabetic foot infection. 

 The pharmacokinetics of C/T in patients receiving continuous venovenous 

hemodiafiltration (CVVHDF) was described in two different case reports [54, 55]. In both 

cases C/T was administered at 2000/1000 mg every 8h. Whereas in one case ceftolozane 

elimination half-life was significantly prolonged (13.3h) compared to healthy volunteers [53], 

in the other one it was much lower (4.7 h) [55]. C/T was significantly removed by this renal 

replacement therapy (CVVHDF clearance, 2.4 L/h) [54]. Even if these data are very 

preliminary, it would suggest that a standard dosage of 1000/500 mg every 8h should ensure 

appropriate exposure against pathogen with an MIC up to 8 mg/L for the treatment of 

pneumonia in patients undergoing CVVHDF [54].   

4.3 Pharmacodynamics  

The pharmacodynamic determinants of efficacy of ceftolozane, with and without tazobactam, 

were first tested against P. aeruginosa and Enterobacteriaceae in an experimental animal 

model in the thighs of neutropenic mice [56]. Similar to other beta-lactams, the percentage of 

time that the concentrations were maintained above the MIC (%T>MIC) was the best 

predictor of ceftolozane efficacy. The mean %T>MIC needed for bacterial stasis was 24.0% 

against P. aeruginosa, 26.3% against wild-type Enterobacteriaceae and 31.1% against ESBL-

producers. The mean %T>MIC needed for 1-log kill was 31.5% against P. aeruginosa, 

31.6% against wild-type Enterobacteriaceae, and 34.8% against ESBL-producers. 

Noteworthy, these values of %T>MIC were lower than those usually required by other 

cephalosporins, and the finding was attributed to a more rapid killing with ceftolozane. In the 

same study, it was shown that ceftolozane had faster rate of in vivo killing of P. aeruginosa 
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than ceftazidime, and that the most potent combination with tazobactam against ESBL-

producing Enterobacteriaceae could be obtained using a 2:1 ratio (2000 mg of ceftolozane 

and 1000 mg of tazobactam) [56]. Similar results were recently obtained in an in vitro 

pharmacokinetic model of infection, against both E. coli and P. aeruginosa [57]. The 

%T>MIC for 1-log and 2-log decrease in initial inoculum for E.coli were 33.0% and 39.6%, 

respectively, and CTX-M-15 production did not affect this pharmacodynamic index [57]. For 

P. aeruginosa, the %T>MIC for 1-log and 2-log decrease in initial inoculum were 26.6% and 

31.2%, respectively [57]. Concerning the desired drug exposure for ESBL producers, 

VanScoy et al. showed that, against CTX-M-15 producing E. coli, the mean %T>MIC values 

for tazobactam needed for achieving bacteriostasis and 1- and 2-log bacterial kill were of 

35.5 and 70%, respectively [58, 59]. Similar results were obtained by Soon et al. by testing 

C/T against four strains of E.coli with different β-lactamase expression [60]. In a neutropenic 

mouse model, the main pharmacodynamic index that correlated with efficacy against ESBL-

producing Enterobacteriaceae was the percentage of time above a tazobactam concentration 

threshold (T>CT) of 0.5 mg/L [61]. The mean %T>CT for static effect and 1-log kill was 

28.2% and 44.4%, respectively, at steady-state ceftolozane exposures maintaining 

concentration of 4 mg/L for 33.9 and 63.3% of a 24 h period [61]. 
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4.4 Monte Carlo simulation studies predicting efficacy in different patient populations  

A Monte Carlo simulation, based on data from a previously developed population 

pharmacokinetic model in which CLCr was a significant covariate [62], was performed in 

order to determine whether the currently recommended licensed dosages of C/T may be 

adequate for optimal pharmacodynamic efficacy in patients with various degrees of renal 

function, including those with augmented renal clearance (ARC) and with ESRD [63]. 

Predicted probability of target attainment (PTA) with the different licensed dosages of C/T 

for T>MIC 40% against Enterobacteriaceae and P. aeruginosa with an MIC for C/T up to 4 

mg/L were optimal (> 90%) in patients with normal renal function and with renal 

impairment, and acceptable (> 80%) in patients with ARC [63]. 

 A recent pharmacokinetic/pharmacodynamic study focused on identifying the most 

suitable C/T dose to be tested for phase 3 studies in patients with nosocomial pneumonia 

[64]. The rationale was based on the findings of a previous phase 1 study, which was carried 

out to assess the intrapulmonary penetration of C/T after the administration of three doses of 

1000/500 mg every 8 hours to healthy volunteers [65]. The study showed that the AUC in the 

epithelial lining fluid (ELF) was 48% of that observed in plasma [65]. Accordingly, Monte 

Carlo simulations with the licensed dosage of 1000/500 mg  every 8h and also with a double 

dosage of 2000/1000 mg  every 8h were performed in order to determine the PTA of 

adequate pharmacodynamic targets (T>MIC 24.8%, 32.2% and 40%) in the ELF predicting 

optimal treatment against key pathogens responsible for nosocomial pneumonia 

(Enterobacteriaceae and P. aeruginosa). It was shown that doubling of the currently approved 

dose may be appropriate in patients with normal renal function in order to achieve PTA > 

90% in ELF against P. aeruginosa with a MIC up to 8 mg/L for optimal treatment of 

nosocomial pneumonia [64].  
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 The population pharmacokinetics of C/T at 2000/1000 mg every 8h was also assessed 

in a prospective, multicenter, open-label study carried out among 20 adult patients with cystic 

fibrosis and acute pulmonary exacerbations [66]. The rationale for testing this double dosage 

was based on the fact that cystic fibrosis patients frequently have altered pharmacokinetics of 

antimicrobials, with augmented clearance. Monte Carlo simulation were performed to 

determine the PTA of achieving 60%T>MIC of C/T at either 1000/500 mg every 8h or 

2000/1000 mg every 8h against P. aeruginosa, a pathogen frequently associated with these 

underlying conditions. It was shown that C/T clearance estimates in cystic fibrosis were 

similar to those observed in non-cystic fibrosis patients. Monte Carlo simulation with 

1000/500 mg every 8h and 2000/1000 mg every 8h predicted optimal PTA (>90%), in terms 

of T>MIC 60%, against P. aeruginosa with MIC up to 4 and 8 mg/L, respectively [66]. 

4.5 Selection of resistance 

In an in vitro pharmacokinetic model of infection, the probability of emergence of resistance 

in E. coli was observed especially for low values of T>MIC ranging between 10 to 30% and 

between 10 to 60% for E. coli and P. aeruginosa, respectively, and increased in relation to 

time of exposure [57]. The potential for selection for P. aeruginosa resistance with C/T was 

also tested in a hollow-fiber infection model against two P. aeruginosa isolates (one wild-

type strain with an MIC of 0.5 mg/L and one clinical isolate with an MIC of 4 mg/L) across a 

wide dose range of 62.5/31.25 – 2000/1000 mg [67]. Whereas for the wild-type strain none of 

the dosing regimen selected for resistance, conversely for the clinical isolate, an inverted-U-

shaped relationship was found between drug dose and change in bacterial density of resistant 

subpopulations. The lower (62.5/31.25 mg) and the higher (2000/1000 mg) dosing regimens 

prevented the appearance of drug resistance, differently from the intermediate one (125/62.5 

mg up to 1000/500 mg). These findings supported the idea that a dosing regimen of 

2000/1000 mg of C/T may minimize the likelihood of drug-resistance selection for P. 
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aeruginosa during therapy. Different C/T dosing regimens (1000 or 2000 mg ceftolozane and 

1000/500 mg or 2000/1000 mg C/T) were also tested in a hollow-fiber infection model 

against four strains of E.coli with different β-lactamase expression (no expression, with an 

MIC for ceftolozane of 0.25 mg/L; Amp-C, with an MIC for C/T of 1 mg/L; CMY-10, with 

an MIC for C/T of 4 mg/L and CTX-M-15, with an MIC for C/T of 8 mg/L) [68]. All the 

combinations of C/T were bactericidal and completely suppressed the emergence of 

ceftolozane resistance against three of the four E.coli strains (those with no β-lactamase 

expression; with Amp-C and with CMY-10). However, against the CTX-M-15 β-lactamase 

strain with a MIC of 8 mg/L, even the 2g/1g C/T dosing regimen was unable to completely 

suppress bacterial growth and to prevent amplification of ceftolozane-resistant populations. 

4.6 Possible alternative dosing regimens 

Similarly to other beta-lactams, given its time-dependent antibacterial activity, it also likely 

for C/T that the application of alternative dosing regimens based on extended-infusion and/or 

continuous infusion may result in an improvement of the PTA for the treatment of infections 

due to P. aeruginosa with high MICs, above the clinical breakpoint. In a recent Monte Carlo 

simulation, a previously validated population pharmacokinetic model was used to identify the 

C/T dosing schemes that may optimize the PTA against infections due to P. aeruginosa with 

a MIC for C/T up to 32 mg/L across different levels of renal function [69]. Among the 512 

different scenarios tested, extended infusion of 4-5 h, by achieving higher PTA than shorter 

or continuous infusion, was shown to probably represent the best administration mode in 

presence of ARC across infections with MICs ranging between 4 and 32 mg/L, and should 

merit further investigation.   

4.7 Physical compatibility with other intravenous drugs 
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The physical compatibility of C/T with other 95 common intravenous drugs was examined by 

simulating Y-site administration [70]. All the drugs were prepared and reconstituted 

according to the manufacturers’ recommendations and diluted with 0.9% saline or 5% 

dextrose. C/T was compatible with 90.5% of the tested drugs (86/95) in both diluents, 

including metronidazole. It was incompatible with albumin, amphotericin B (both 

desoxycholate and lipid formulations), caspofungin, cyclosporin, nicardipine, phenitoin and 

propofol. 

5. Results of clinical studies 

5.1 Efficacy 

As mentioned before, C/T was approved both by the FDA (December 19th, 2014) and by 

EMA (September 18th, 2015) for the treatment of cIAI and cUTI, based on two phase 3 

randomized clinical trials (RCTs), called ASPECT-cIAI, and ASPECT-cUTI, respectively 

[71, 72].  

 The ASPECT-cIAI study was a multicenter, double-blind, non-inferiority RCT 

comparing C/T plus metronidazole Vs. meropenem for the treatment of complicated intra-

abdominal infections (cIAI) [71]. Metronidazole was added because of inactivity of C/T 

against most anaerobes. C/T (1000 mg of ceftolozane and 500 mg of tazobactam) and 

metronidazole (500 mg) were administered every 8 h. Meropenem was administered at 1000 

mg every 8 h. Both C/T and meropenem doses were adjusted according to renal function. 

Therapy could last from 4 to 10 days, and up to 14 days in case of multiple abscesses, non–

appendix-related peritonitis, failure of prior antimicrobial therapy, or hospital-acquired 

infection. The primary outcome measure was clinical cure, defined as complete resolution of 

infection or enough improvement requiring no further interventions. Non-inferiority was met 

both in the microbiological intention-to-treat (MITT) population, including all patients with 
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at least 1 baseline pathogen in peritoneal fluid or abscess, and in the microbiological 

evaluable (ME) population, including all clinically evaluable patients with at least 1 baseline 

pathogen susceptible to the study drug. In the MITT population, clinical cure rates were 

83.0% in patients receiving ceftolozane/tazobactam plus metronidazole (323/389) and 87.3% 

in those receiving meropenem (364/417), with a percentage difference of -4.2 (95% 

confidence intervals [CI] from −8.9 to 0.5). In the ME population, clinical cure rates were 

94.2% (259/275) and 94.7% (304/321) in C/T plus metronidazole- and in meropenem-treated 

patients, respectively, with a percentage difference of −1.0 (95% CI from −4.5 to 2.6) [71]. 

These results are in line with those of a previous multicenter, double-blind, phase II RCT, in 

which clinical cure of cIAI was reported in 88.7% (47/53) of ME patients receiving C/T plus 

metronidazole and in 95.8% (23/24) of ME patients receiving meropenem (percentage 

difference -7.1, 95% CI -30.7 to 16.9) [73].  

 In a post-hoc analysis of the ASPECT-cIAI trial conducted in ME patients with and 

without infections due to P. aeruginosa, clinical cure rates were similar between C/T plus 

metronidazole and meropenem (100% [26/26] for C/T vs. 93.1% [27/19] for meropenem in 

patients with P. aeruginosa infections, and 93.2% [262/281] for C/T vs. 93.0% [294/316] for 

meropenem in patients without P. aeruginosa infections) [73]. Of note, as many as 97.1% of 

P. aeruginosa isolates in the ASPECT-cIAI study were susceptible to C/T vs. 89.9% to 

meropenem [74]. 

 The ASPECT-cUTI study was a multicenter, double-blind, double-dummy, non-

inferiority RCT comparing C/T vs. levofloxacin for the treatment of complicated urinary-

tract infections (cUTI), including pyelonephritis [72]. C/T and levofloxacin were 

administered at 1500 mg every 8 h (1000 mg of ceftolozane and 500 mg of tazobactam) and 

at 750 mg once daily, respectively. Both C/T and levofloxacin were administered for seven 

days. Doses were adjusted according to renal function. The primary outcome measure was 
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composite cure, defined as clinical cure plus microbiological eradication of all baseline 

uropathogens. Superiority was met both in the microbiological modified intention-to-treat 

(mMITT) population, including all patients with growth of one or two uropathogens of at 

least 105 colony-forming units per mL in urine culture, and in the per-protocol population, 

including all mMITT patients who adhered to the treatment protocol and had a clinical 

assessment and interpretable urine culture at the test of cure. In the MITT population, 

composite cure rates were 76.9% in patients receiving C/T (306/398) and 68.4% in those 

receiving levofloxacin (275/402), with a percentage difference of 8.5 (95% CI from 2.3 to 

14.6). In the per-protocol population, composite cure rates were 83.3% (284/341) and 75.4% 

(266/353) in C/T- and in levofloxacin-treated patients, respectively, with a percentage 

difference of 8.0 (95% CI from 2.0 to 14.0). Of note, microbiological eradication in patients 

with P. aeruginosa at baseline was 6/7 (85.7%) and 7/12 (58.3%) in patients treated with C/T 

and levofloxacin, respectively (percentage difference 27.4, 95% CI from -15.9 to 56.3) [72]. 

 Since as many as 216/800 patients in the mMITT population had a baseline 

uropathogen resistant to levofloxacin (26.5%), a post-hoc analysis was conducted to compare 

composite cure rates between C/T and levofloxacin in two different subgroups: (1) patients in 

the mMITT population with levofloxacin-resistant pathogens; (2) patients in the mMITT 

population with levofloxacin-susceptible pathogens [75]. In patients with levofloxacin-

resistant pathogens, composite cure rates were 60.0% in patients receiving C/T (60/100) and 

39.3% in those receiving levofloxacin (44/112), with a percentage difference of 20.7 (95% CI 

from 7.2 to 33.2). In patients with levofloxacin-susceptible pathogens, composite cure rates 

were 84.9% (231/272) and 81.1% (210/259) in C/T- and in levofloxacin-treated patients, 

respectively, with a percentage difference of 3.8 (95% CI from -2.6 to 10.3) [75].  

 In a pooled post-hoc analysis including ME patients from both ASPECT-cIAI and 

ASPECT-cUTI who had an ESBL-producing member of the Enterobacteriaceae in their 
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baseline cultures (150/1346, 11.1%), clinical cure rates were 97.4% for C/T (76/78), 82.6% 

for levofloxacin, and 88.5% for meropenem (23/26) [76]. In another post-hoc analysis 

including data from both ASPECT-cIAI and ASPECT-cUTI, response rates (i.e., clinical cure 

or composite cure according to the primary endpoint of the two different trials) were 

compared between C/T and comparators in patients with diabetes [77]. In diabetic cIAI 

patients, clinical cure rates were 71.9% in those receiving C/T plus metronidazole (23/32) 

and 78.8% in those receiving levofloxacin (26/33), with a percentage difference of -6.9 (95% 

CI from -27.9 to 14.4%. In diabetic cUTI patients, composite cure rates were 64.2% (43/67) 

and 60.6% (40/66) in C/T- and in levofloxacin-treated patients, respectively, with a 

percentage difference of 3.6 (95% CI from -12.8 to 19.8) [77]. Finally, in a pre-defined 

exploratory subgroup analysis including only those patients from MITT population in cIAI 

and mMITT population in cUTI who had moderate renal insufficiency (defined as CLCr of 

30–50 mL/min), response rates were 72.7% for C/T and 71.4% for meropenem in cIAI, and 

87% for C/T and 80% for levofloxacin in cUTI [78]. 

 A third RCT, ASPECT-NP, comparing C/T vs. meropenem for treating hospital-

acquired bacterial pneumonia (HABP) or ventilator-associated bacterial pneumonia (VABP) 

in adults is currently recruiting participants (NCT02070757). A detailed summary of efficacy 

data from ASPECT-cIAI and ASPECT-cUTI trials is available in Table 3.  

5.2 Safety 

C/T is generally well-tolerated, with the most frequent adverse events (AEs) being those 

associated with any other cephalosporin, such as nausea, vomiting, and diarrhea [71-73, 77-

78]. In the two phase III (ASPECT-UTI and ASPECT-cIAI) and in the one phase II 

randomized clinical trials (RCTs) involving ceftolozane/tazobactam, a similar frequency of 

AEs was observed in patients treated with ceftolozane/tazobactam and in those treated with 
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comparators [71-73]. Overall, AEs were 438/1097 (39.9%) in C/T-treated patients and 

415/1071 (38.7%) in those receiving other agents (levofloxacin for ASPECT-UTI and 

meropenem for the other two studies). Serious AEs were 68/1097 (6.2%) and 56/1071 

(5.2%), respectively. In C/T-treated patients, only 3 serious AEs were deemed as drug-

related, all being Clostridium difficile infection (CDI). No drug-related deaths were reported. 

The full list of AEs observed in RCTs is reported in table 4.  

 According to a pre-defined exploratory analysis and a post-hoc analysis of data from 

both ASPECT-cIAI and ASPECT-cUTI, C/T was also well-tolerated in patients with 

moderate renal insufficiency or diabetes, respectively [77, 78]. With regard to moderate renal 

insufficiency, 41/70 patients receiving C/T experienced AEs vs. 35/54 patients receiving 

comparators (58.6% vs. 64.8%, respectively) [78]. Serious AEs were more frequent in 

moderate compared with mild/no renal insufficiency patients (16.9% vs 4.5%). Five patients 

with cIAI and moderate renal insufficiency died, but all deaths were considered unrelated to 

the study drug [77]. With regard to diabetes, patients with the disease were more likely to 

have AEs (49.0% vs 37.3%) and serious AEs (10.6% vs 4.6%) than those without, although 

the proportions of treatment–related AEs were not different between the two groups (8.2% vs 

10.1%) [77].  

 Regarding post-marketing safety evaluation, seven cases of medication error were 

reported to the Food and Drug Administration (FDA) [79]. All cases were due to a wrong 

preparation of C/T in the pharmacy, leading to the administration of 50% more than was 

prescribed. However, no AEs were reported in all 7 cases [79]. In a multicenter, retrospective 

study of 35 patients infected with carbapenem-resistant Pseudomonas aeruginosa and treated 

with C/T, dosage and length of therapy ranged from 375 to 3000 mg every 8 h and from 5 to 

27 days, respectively [80]. Nine out of 20 patients with CrCL > 50 mL/min were given 3000 

mg of C/T every 8 h. Two AEs were attributed to C/T: (i) self-limited diarrhea with a 
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negative Clostridium difficile molecular test; (ii) peripheral eosinophilia with eosinophiluria, 

possibly due to interstitial nephritis. In the latter case, the eosinophil count normalized after 

C/T was stopped, and no renal damage was later found.  

 In summary, C/T has shown good tolerability, similar to those of other cephalosporins 

(including a similar incidence of CDI). Higher dosages up to 3000 mg every 8 hours and 

longer courses of treatment seem not to unfavorably affect tolerability.  

6. Conclusion 

In conclusion, C/T is the first cephalosporin active against ESBL-producing Gram negative 

rod, which finds its place in therapy in severe infections due to these pathogens, especially 

when a carbapenem-sparing approach is desirable. The drug is safe and has a favorable PK 

and PD profile. The drug’s activity against many Pseudomonas strains that are resistant to 

other beta-lactams (including carbapenems) is very promising, making C/T first, although not 

always approved choice for these infections. In some cases of MDR-Pseudomonas infections 

due to C/T susceptible strains, that are outside the setting of the approved indications, off-

label use is probably mandatory. 

7. Expert Commentary 

C/T is indicated in cIAI and cUTI. In addition, the results of the Phase-3 ASPECT-NP trial 

for the treatment of VABP and  HABP (NCT02070757) might shortly allow the inclusion of 

severe respiratory infections within the approved indications. We agree that at this point the 

spectrum of indications will be quite large, although severe infections, like bacteremias, are 

not among the indications and the drug could not be used for this indication, unless 

bacteremia is associated with an abdominal, pulmonary or urinary source. Unfortunately, so 

far, the regulatory agencies did not allow the possibility to use C/T in other severe infections, 

due by susceptible pathogens, in districts where the drug may reach active concentrations and 
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in patients with no or limited alternatives (for example, for treating MDR P. aeruginosa 

osteomyelitis). This is actually the main point, i.e. the fact that the drug was not studied and 

therefore was not approved according to a pathogen instead of site-oriented approach. The 

approved indications are either restrictive or quite large. Indeed, what is of interest for 

clinicians is not the possibility to use a drug like C/T for indications for which several less 

expensive antibiotics might be available, but rather to use it in unmet clinical needs, based on 

the pathogen likely involved, according to a targeted, colonization-based or epidemiological-

based approach. The place-in-therapy of C/T in our opinion is not universal in IAIs, UTIs or 

lung infections, but rather (i) in any infection (in sites where the drug goes readily), likely 

sustained by an ESBL-producing Gram-negative rod in centers where a carbapenem-sparing 

approach is desirable and (ii) in infections sustained by MDR-Pseudomonas which remains 

susceptible to C/T.  

7.1 C/T in a carbapenem-sparing approach. C/T has been proposed as a potential 

alternative to carbapenems for the treatment of ESBL infections, according to a carbapenem-

sparing strategy aimed at recuperating carbapenem activity. Indeed, carbapenem 

overutilization stimulates the selection and diffusion of carbapenemases, which might further 

prejudicate our ability to treat infections due to MDR Enterobacteriaceae [9] and the 

reduction in carbapenem use has been associated with a decrease in infections due to CPE 

[81]. We believe that in centers where ESBL-producing Gram-negative rods are endemic, a 

carbapenem-sparing strategy in first-line and de-escalation therapy, might be proposed in 

presence of even sporadic infections due to CPE, without waiting for CPE to become 

endemic. Whether or not a carbapenem-sparing strategy might be obtained by using 

piperacillin-tazobactam (less expensive than C/T) for ESBL-producers, is a matter of debate 

[82]. Some data support a possible similar efficacy to carbapenems, provided piperacillin-

tazobactam is used at the maximum tolerated dose (4.5 g q6), while others studies have 



Acc
ep

ted
 M

an
us

cri
pt

 23

favored carbapenems,  especially in critically-ill patients [9, 83-86]. In our opinion the 

situation is multifaceted and might be related to piperacillin-tazobactam MICs, site of 

infection and patient-related factors, including severity of the clinical presentation, although 

meropenem choice is probably based on more solid data. For a definite answer we are 

waiting for the results of the MERINO study, which is comparing piperacillin/tazobactam vs. 

meropenem for treating bloodstream infections due to ceftriaxone-resistant E. coli and K. 

pneumoniae (NCT02176122). In any case, it is worth noting that the use of C/T as a 

carbapenem-sparing agent would be in line with its high in vitro activity against ESBL-

producers [29, 30], as well as with some recent decision-analytic Monte Carlo models 

indicating C/T to be possibly more cost-effective than piperacillin/tazobactam for cIAI and 

cUTI [87, 88]. Cost issues exist, of course, although in other disciplines, like oncology, cost 

considerations have not prevented the use of terribly expensive drugs [89, 90]. 

7.2 C/T in MDR-P. aeruginosa. In many countries, approximately 25-50% of P. aeruginosa 

isolates are resistant to carbapenems, and up to 10-50% of strains can be classified as MDR 

[4, 91]. This poses some difficulties in defining the best therapeutic approach in patients at 

risk for Pseudomonas (for example, patients with hematological malignancies colonized or 

with history of  Pseudomonas infections), since the risk of resistance to all the commonly 

used antipseudomonal agents (fluoroquinolones, aminoglycosides, cephalosporins, and 

carbapenems) is certainly non-negligible. In this worrisome scenario, C/T might remain 

active, in view of its ability to elude multiple resistance mechanisms, including efflux pumps, 

reduced uptake through porin channels, and modification of penicillin-binding proteins [23]. 

The main problem is nonetheless that carbapenem-resistant P. aeruginosa can also cause 

infections other than cIAI and cUTI, for example pneumonia or BSI. Against this 

background, it might have been very helpful for patients and clinicians if both MSD and the 

regulatory agencies would have been more far-sighted, by conducting (or recommending to 
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conduct) phase II studies for this specifying indication. What scientific societies might do, 

right now, is to try to collect as much information as possible about the efficacy of C/T off-

label use in Pseudomonas infections, in order to increase the body of evidence and obtain a 

secondary indication. For the time being, published case series and case reports describing 

the real life use of C/T for off-label indications are made up almost exclusively of patients 

with infections caused by this organism (around one hundred patients cumulatively). The 

largest series included 35 patients with various infections (mostly pneumonia, 18/35, 51%) 

due to carbapenem-resistant P. aeruginosa [80]. Clinical success, defined as a composite 

outcome of in-hospital survival and resolution of signs and symptoms of infection according 

to the treating physicians, was reported in 74% of patients (26/35). Of note, there was a wide 

variation of C/T dosing even for similar types of infections and renal function. Furthermore, 

it is also worth noting that treatment was unsuccessful in all cases of infections due to P. 

aeruginosa with C/T MIC > 4 mg/L [80]. In another series of 12 patients with a severe 

infections due to MDR P. aeruginosa (again, mostly pneumonia, 6/12, 50%) who received 

C/T as salvage therapy after inappropriate or suboptimal initial treatment, and of whom 10/12 

had septic shock (83%), the observed survival was 75% (9/12) [92]. In another recent study, 

C/T was successful in treating 15/21 patients with various MDR P. aeruginosa infections 

(71%), although it should be noted that resistance to C/T conferred by de novo mutations 

occurred in 14% of cases (3/21) [43]. Regarding case reports and small case series, they also 

mainly reported on the successful off-label use of C/T for treating infections due MDR P. 

aeruginosa (mostly pneumonia, bloodstream infections, osteomyelitis, and acute pulmonary 

exacerbation of cystic fibrosis) [54, 93-112]. More reports will come in the near future, that 

remain critical to enrich our knowledge about the effectiveness of C/T for all these 

indications. Studies to collect information about C/T in Pseudomonas infections are ongoing, 

with some preliminary results presented in international conferences [113, 114]. 
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7.3 In vitro susceptibility. We believe that C/T should be routinely and automatically tested 

against every Gram-negative rod isolated from any site, and, especially, against 

Pseudomonas. Every delay in understanding whether or not a given Pseudomonas MDR 

strain is actually susceptible to C/T is deleterious for the patient and unacceptable for 

clinicians.    

8. Five-year view 

Unless decisions are taken by the regulatory agencies and/or more data are provided by 

sponsored or spontaneous studies, in the next 5 years we will probably observe an increasing 

use of C/T in unapproved indications such as bacteremia, neutropenic infections, skin 

infections, osteomyelitis, prosthetic infections, and pulmonary exacerbations of cystic 

fibrosis caused by (or suspected to be caused by) MDR P. aeruginosa, reflecting the 

important urgent and unmet clinical need to find an active agent against this pathogen.  

9. Key Issues 

• C/T is the combination of a novel cephalosporin, structurally similar to ceftazidime, 

with a well-known β-lactamase inhibitor 

• C/T has shown activity against MDR P. aeruginosa and ESBL-producing 

Enterobacteriaceae, and has been recently approved for the treatment of cIAI and 

cUTI, including pyelonephritis, by the U.S. Food and Drug Administration and the 

European Medicines Agency  

• The approval of C/T for the treatment of cIAI and cUTI is based on two phase 3 non-

inferiority RCTs, ASPECT-cIAI, and ASPECT-cUTI. 

• Observational studies reporting the use of C/T are made up almost exclusively of case 

series and case reports of infections due to MDR P. aeruginosa, reflecting the urge 

for an active agent against this organism. 
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• C/T is a promising carbapenem-sparing agent that should be used thoughtfully, taking 

into account the local microbiological epidemiology and its spectrum of activity. 

• Pending broader experience with gradient and disk diffusion tests, and 

implementation of the drug in validated panels of semiautomated systems, current 

evidence would suggest the use of broth microdilution for C/T susceptibility testing. 

• Doubling of the currently approved dose may be appropriate in patients with normal 

renal function in order to achieve PTA > 90% in ELF against P. aeruginosa with a 

MIC up to 8 mg/L for optimal treatment of hospital-acquired and ventilator-associated 

pneumonia. 
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Table 1. Activity of ceftolozane/tazobactam against P. aeruginosa and Enterobacteriaceae reported in selected studies, including recent surveillance 

studies, and studies on P. aeruginosa isolates from Cystic Fibrosis (CF) patients. 

Species 

(resistance traits 
a) 

No. of isolates (country, 

years) 

MIC range 

(mg/mL) 

MIC90 

(mg/mL) 

% susceptible 

(breakpoints)b 

References Notes 
c

       

P. aeruginosa N=3851 

(USA, 2012-15) 

0.03 - >32 2 97 Shortridge et al. 

2017 [28] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

       

P. aeruginosa N=603 

(Europe, 2012-15) 

0.12 - >32 4 92 Pfaller et al. 

2017 [29] 

Isolates from UTI and IAI 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

       

P. aeruginosa N=1099 

(UK 2011-15) 

0.12 - 32 0.5 99 Livermore et al. 

2017 [25] 

Isolates from BSI 

Ceftolozane/tazobactam more active than CAZ, PTZ, IMI, MEM 

       

P. aeruginosa N=537 

(Latin America, 2013-15) 

0.06 - >32 16 87 Pfaller et al. 

2017 [30] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

       

P. aeruginosa N=440 

(Australia & New Zealand, 
2013-15) 

0.06 - >32 2 96 Pfaller et al. 

2017 [31] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 
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P. aeruginosa N=497 

(Germany, 2014-15) 

≤0.12 - >64 2 96 Seifert et al. 

2017 [32] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

 

       

P. aeruginosa N=935 

(Italy, 2013-14) 

0.25 - >128 4 91 Giani et al. 2017 
[33] 

Isolates from BSI and LRTI 

Ceftolozane/tazobactam more active that CAZ, FEP, PTZ, MEM 

       

P. aeruginosa  

(MEM-NS) 

N=290 

(USA, 2013-14) 

0.25 - >64 4 91 Grupper et al. 

2017 [34] 

Isolates from BSI, LRTI and wound infections 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

       

P. aeruginosa  

(MDR) 

N=607 

(USA, 2012-15) 

0.25 - >32 8 84 Shortridge et al. 
2017 [28] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

       

P. aeruginosa  

(XDR) 

N=363 

(USA, 2012-15) 

0.25 - >32 16 77 Shortridge et al. 
2017 [28] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, MEM 

       

P. aeruginosa N=100  

(Spain) 

≤0.12 - >64d 2d 92d Zamorano et al. 
2010 [35] 

CF patients 

Ceftolozane more active than CAZ, FEP, PTZ, MEM  

       

P. aeruginosa N=50  

(USA, 2012-14) 

0.25 - 32 8 86 Kuti et al. 

2015 [36] 

CF patients 

Ceftolozane/tazobactam more active than CAZ, PTZ, MEM 

       

P. aeruginosa N=35 0.5 - >128 128 54 (E) Grohs et al. CF patients 
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(France) 2017 [37] Ceftolozane/tazobactam more active than CAZ, PTZ, MEM 

       

Enterobacteriaceae N=15223 

(USA, 2013-16) 

≤0.015 - >32 1 92 (E) Shortridge et al. 
2017 [38] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
active than MEM 

       

Enterobacteriaceae N=5950 

(Europe, 2012-15) 

0.015 - >32 1 91 (E) Pfaller et al. 

2017 [29] 

Isolates from UTI and IAI 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
active than MEM 

       

Enterobacteriaceae N=1878 

(Latin America, 2013-15) 

≤0.015 - >32 32 81 (E) Pfaller et al. 

2017 [30] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
active than MEM 

       

Enterobacteriaceae N=1019 

(Australia & New Zealand, 
2013-15) 

0.06 - >32 0.5 96 (E) Pfaller et al. 

2017 [31] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
active than MEM 

       

Enterobacteriaceae 
(ESBL non-CRE) 

N=1450 

(USA, 2013-16) 

0.06 - >32 4 79 (E) Shortridge et al. 
2017 [30] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
active than MEM 

E. coli ESBL (N=966), S=86%; more active than PTZ (S=73%) 

K. pneumoniae ESBL (N=369), S=63%; more active than PTZ (S=42%) 

       

Enterobacteriaceae 
(ESBL non-CRE) 

N=906 

(Europe, 2012-15) 

0.06 - >32 8 75 (E) Pfaller et al. 

2017 [29] 

Isolates from urinary tract and intraabdominal infections 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
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active than MEM 

E. coli ESBL (N=559), S=88%; more active than PTZ (S=67%) 

K. pneumoniae ESBL (N=280), S=55%; more active than PTZ (S=40%) 

       

Enterobacteriaceae 
(ESBL non-CRE) 

N=495 

(Latin America, 2013-15) 

0.06 -  >32 >32 67 (E) Pfaller et al. 

2017 [30] 

Ceftolozane/tazobactam more active than CAZ, FEP, PTZ, but less 
active than MEM 

E. coli ESBL (N=238), S=87%; more active than PTZ (S=73%) 

K. pneumoniae ESBL (N=226), S=46%; more active than PTZ (S=33%) 

       

Enterobacteriaceae 

(ESBL) 

N=674 

(UK, 2015-16) 

≤0.25 - >16 >16 42 (E) Livermore et al. 

2017 [25] 

E. coli ESBL (N=362), S=53% 

K. pneumoniae ESBL (N=255), S=26% 

       

Enterobacteriaceae 

(AmpC hyperprod.) 

N=921 

(UK, 2015-16) 

≤0.25 - >16 >16 26 (E) Livermore et al. 

2017 [25] 

Enterobacter spp. (N=649), S=18% 

       

Enterobacteriaceae 

(CRE) 

N=286 

(USA, 2013-16) 

0.5 - >32 >32 2 (E) Shortridge et al. 
2017 [38] 

 

       

Enterobacteriaceae 

(CRE) 

N=112 

(Europe, 2012-15) 

0.5 - >32 >32 2 (E) Pfaller et al. 

2017 [29] 

Isolates from urinary tract and intraabdominal infections 

       

Enterobacteriaceae N=124 (Latin America, 0.03 - >32 >32 2 (E) Pfaller et al.  
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a MEM-NS, meropenem nonsusceptible; MDR, multi drug-resistant; XDR, extensively drug-resistant; ESBL, extended-spectrum beta-lactamase producers; non-CRE, non carbapenem-resistant; 

CRE, carbapenem-resistant. 

b For Enterobacteriaceae: E, EUCAST breakpoints; C, CLSI breakpoints. 

c AMK, amikacin; CAZ, ceftazidime; FEP, cefepime; PTZ, piperacillin/tazobactam; IMI, imipenem; MEM, meropenem; ; UTI, urinary tract infections; IAI, intra-abdominal infections; BSI, 

bloodstream infections; LRT, lower respiratory tract infections; CF, cystic fibrosis. 

d Activity refers to ceftolozane tested alone. 

 

 

 

 

 

 

 

(CRE) 2013-15) 2017 [30] 
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Table 2. Recommended doses of ceftolozane/tazobactam for the treatment of cIAI and cUTI 

in patients with and without renal impairment 

Estimated CrCL 

(mL/min)* 

Recommended dosage 

  
>50  1500 mg (1000 mg of ceftolozane and 500 mg of tazobactam) every 8 hours  
  
30 to 50 750 mg (500 mg of ceftolozane and 250 mg of tazobactam) every 8 hours 
  
15 to 29  375 mg (250 mg of ceftolozane and 125 mg of tazobactam) every 8 hours  
  
End stage renal disease on 
hemodialysis 

A single loading dose of 750 mg (500 mg of ceftolozane and 250 mg of 
tazobactam) followed after 8 hours by a maintenance dose of 150 mg (100 mg 
of ceftolozane and 50 mg of tazobactam) administered every 8 hours (on 
hemodialysis days, the dose should be administered at the earliest possible 
time following completion of hemodialysis) 

  
Adapted from [12]. All doses are recommended for intravenous administration over 1 hour. 

cIAI, complicated intra-abdominal infections; cUTI, complicated urinary tract infections; CrCL, creatinine clearance. 

* According to Cockcroft-Gault formula. 
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Table 3. Efficacy data from non-inferiority phase III randomized clinical trials  

Study Investigational drugs 

(dosage) 

Comparators   

(dosage) 

Primary endpoint Study population Cure rates 

(cured/treated) 

% difference              

(95% CI) 

ASPECT-cIAI  
2015 [71] 
 

Ceftolozane/tazobactam 
(1000 mg of ceftolozane and 
500 mg of tazobactam every 
8 h; adjusted to 500 mg of 
ceftolozane and 250 mg of 
tazobactam every 8 h in 
patients with creatinine 
clearance of 30–50 
mL/minute) 
 
plus 
 
Metronidazole 
(500 mg every 8 h) 
 

Meropenem 
(1000 mg every 8 h; 
adjusted to 1000 mg 
every 12 h in patients 
with creatinine 
clearance of 30–50 
mL/minute) 

Clinical cure 
(complete resolution 
of infection or enough 
improvement not 
further requiring 
interventions) 

MITT population* 
Ceftolozane/tazobactam plus metronidazole 
Meropenem 
ME population** 
Ceftolozane/tazobactam plus metronidazole 
Meropenem 

 
83.0% (323/389) 
87.3% (364/417) 
 
94.2% (259/275) 
94.7% (304/321) 

 
-4.2 (-8.9 to +0.5) 
Reference 
 
-1.0 (-4.5 to +2.6) 
Reference 

ASPECT-cUTI 
 2015 [72] 

Ceftolozane/tazobactam 
(1000 mg of ceftolozane and 
500 mg of tazobactam every 
8 h; adjusted based on 
creatinine clearance by a 
pharmacist aware of 
treatment allocation) 
 

Levofloxacin 
(750 mg once daily; 
adjusted based on 
creatinine clearance by  
a pharmacist aware of 
treatment allocation) 

Composite cure 
(clinical cure plus 
microbiological 
eradication of all 
baseline 
uropathogens) 

mMITT population*** 
Ceftolozane/tazobactam 
Levofloxacin 
Per-protocol population**** 
Ceftolozane/tazobactam  
Meropenem 

 
76.9% (306/398) 
68.4% (275/402) 
 
83.3% (284/341) 
75.4% (266/353)  
 

 
+8.5 (+2.3 to +14.6) 
Reference 
 
+8.0 (+2.0 to +14.0) 
Reference 

cIAI, complicated intra-abdominal infections; cUTI, complicated urinary tract infections; MITT, microbiological intention-to-treat; ME, microbiological evaluable; mMITT, microbiological 
modified intention-to-treat. 

* Including all patients with at least 1 baseline pathogen in peritoneal fluid or abscess 

** Including all clinically evaluable patients with at least 1 baseline pathogen susceptible to the study drug 

*** Including all patients with growth of one or two uropathogens of at least 10� colony-forming units per mL in urine culture 

**** Including all mMITT patients who adhered to the treatment protocol and had a clinical assessment and interpretable urine culture at the test of cure 
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Table 4. Reported adverse events in patients treated with ceftolozane/tazobactam in 

randomized clinical trials 

Study Phase Investigational drug/s Adverse events (n of patients with adverse events/n 

of total patients, %) 

Lucasti et al 
2014 [73] 

Phase II Ceftolozane/tazobactam 
plus metronidazole 

Any AE (41/82, 50%), SAE (14/82, 17%) 
Pyrexia (12/82, 15%), anemia (5/82, 6%), nausea 
(5/82, 6%), diarrhea (4/82, 5%), hypertension (4/82, 
5%), vomiting (4/82, 5%), hypomagnesemia (2/82, 
2%), phlebitis (2/82, 2%), increased GGT (1/82, 1%) 

    
Solomkin et al  
2015 [71] 
 

Phase III 
(ASPECT-cIAI) 

Ceftolozane/tazobactam 
plus metronidazole 

Any AE (212/482, 44%), SAE (39/482, 8%) 
Nausea (38/482, 8%), diarrhea (30/482, 6%), pyrexia 
(25/482, 5%), insomnia (17/482, 4%), hypokalemia 
(14/482, 3%), headache (12/482, 2%), vomiting 
(16/482, 3%), anemia (10/482, 2%), hypertension 
(9/482, 2%) 

    
Wagenlehner et al 
 2015 [72] 

Phase III 
(ASPECT-cUTI) 

Ceftolozane/tazobactam 
 

Any AE (185/533, 35%), SAE (15/533, 3%) 
Headache (31/533, 6%), constipation (21/533, 4%), 
increased AST and/or ALT (18/533, 3%), hypertension 
(16/533, 3%), nausea (15/533, 3%), diarrhea (10/533, 
2%), urinary tract infection (9/533, 2%), pyrexia 
(8/533, 2%), insomnia (7/533, 1%), upper abdominal 
pain (7/533, 1%), dizziness (6/533, 1%), myalgia 
(6/533, 1%), vomiting (6/533, 1%), arthralgia (1/533, 
0%) 

    
cIAI, complicated intra-abdominal infections; cUTI, complicated urinary tract infections; AE, adverse events; SAE, serious adverse 
events; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyltransferase. 

 

 

 

Figure legends 

Figure 1 legend  

The side chain at the 3-position of the dihydrothiazine ring, which is responsible for the improved 
anti-Pseudomonas activity compared to ceftazidime is shaded in grey. 
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