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CHAPTER 13

FastFlow: HIGH-LEVEL AND EFFICIENT
STREAMING ON MULTI-CORE

M. Aldinucci1, M. Danelutto2, P. Kilpatrick3, M. Torquati2

1Dept. of Computer Science, University of Torino, 2Dept. of Computer Science,

University of Pisa, 3Dept. of Computer Science, Queen’s University of Belfast

Computer hardware manufacturers have moved decisively to multi-core and
are currently experimenting with increasingly advanced many-core architec-
tures. In the long term, writing efficient, portable and correct parallel pro-
grams targeting multi- and many-core architectures must become no more
challenging than writing the same programs for sequential computers. To
date, however, most applications running on multi-core machines do not ex-
ploit fully the potential of these architectures.

This situation is in part due to the scarcity of good high-level programming
tools suitable for multi/many-core architectures, and in part to the fact that
multi-core programming is still viewed as a kind of exotic branch of high-
performance computing (HPC) rather than being perceived as the de facto
standard programming practice for the masses.

Some efforts have been made to provide programmers with tools suitable
for mapping data parallel computations onto both multi-cores and GPUs–the

Programming Multi-core and Many-core Computing Systems, edition. By author
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2 FASTFLOW

most popular many-core currently available. Tools have also been developed
to support stream parallel computations [34, 31] as stream parallelism de facto
represents a pattern characteristic of a large class of (potentially) parallel ap-
plications. Two major issues with these programming environments and tools
relate to programmability and efficiency. Programmability is often impaired
by the modest level of abstraction provided to the programmer. Efficiency
more generally suffers from the peculiarities related to effective exploitation
of the memory hierarchy.

As a consequence, two distinct but synergistic needs exist: on the one
hand, increasingly efficient mechanisms supporting correct concurrent access
to shared memory data structures are needed; on the other hand there is a
need for higher level programming environments capable of hiding the diffi-
culties related to the correct and efficient use of shared memory objects by
raising the level of abstraction provided to application programmers.

To address these needs we introduce and discuss FastFlow, a programming
framework specifically targeting cache-coherent shared-memory multi-cores.
FastFlow is implemented as a stack of C++ template libraries1. The low-
est layer of FastFlow provides very efficient lock-free (and memory fence free)
synchronization base mechanisms. The middle layer provides distinctive com-
munication mechanisms supporting both single producer-multiple consumer
and multiple producer-single consumer communications. These mechanisms
support the implementation of graphs modelling various kinds of parallel/con-
current activities. Finally, the top layer provides, as programming primitives,
typical streaming patterns exploiting the fast communication/synchroniza-
tions provided by the lower layers and supporting efficient implementation of
a variety of parallel applications, including but not limited to classical stream-
ing applications.

In our opinion the programming abstractions provided by the top layer of
FastFlow represent a suitable programming model for application program-
mers. The efficient implementation of these programming abstractions in
terms of the lower layers of the FastFlow stack also guarantees efficiency. More-
over, the possibility of accessing and programming directly the lower layers of
the FastFlow stack to implement and support those applications not directly
supported by the FastFlow high-level abstractions provides all the processing
power needed to efficiently implement most existing parallel applications.

In this Chapter we adopt a tutorial style: first we outline FastFlow design
and then show sample use of the FastFlow programming environment together
with performance results achieved on various state-of-the-art multi-core ar-
chitectures. Finally, a related work section concludes the Chapter.

1FastFlow is distributed under LGPLv3. It can be downloaded from SourceForge at http:
//sourceforge.net/projects/mc-fastflow/.
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13.1 FastFlow PRINCIPLES

The FastFlow framework has been designed according to four foundational
principles: layered design (to support incremental design and local optimiza-
tions); efficiency in base mechanisms (as a base for efficiency of the whole
framework); support for stream parallelism (intended as a viable solution for
implementing classical stream parallel applications and also data parallel, re-
cursive and Divide&Conquer applications); and a programming model based
on design pattern/algorithmic skeleton concepts (to improve the abstraction
level provided to the programmer).

Layered design. FastFlow is conceptually designed as a stack of layers that
progressively abstract the shared memory parallelism at the level of cores up
to the definition of useful programming constructs supporting structured par-
allel programming on cache-coherent shared memory multi- and many-core
architectures (see Fig. 13.1). These architectures include commodity, homo-
geneous, multi-core systems such as Intel core, AMD K10, etc. The core
of the FastFlow framework (i.e. run-time support tier) provides an efficient
implementation of Single-Producer-Single-Consumer (SPSC) FIFO queues.
The next tier up extends one-to-one queues (SPSC) to one-to-many (SPMC),
many-to-one (MPSC), and many-to-many (MPMC) synchronizations and data
flows, which are implemented using only SPSC queues and arbiter threads,
thus providing lock-free and wait-free arbitrary data-flow graphs (arbitrary
streaming networks). These networks exhibit very low synchronization over-
head because they require few or no memory barriers, and thus few cache
invalidations. The upper layer, i.e. high-level programming, provides a pro-
gramming framework based on parallel patterns (see Sec. 13.1). The FastFlow
pattern set can be further extended by building new C++ templates. Pro-
grams written using the abstractions provided by the FastFlow layered design
may be seamlessly ported across the full range of architectures supported. The
runtime tier has specific conditional compilation parts targeting the different
shared memory and cache architectures in the various target architectures.
Extra fine-tuning possibilities will be provided in future FastFlow releases, in
particular to allow users to allocate memory in one of the “banks” sported
by the target architecture. This, along with the possibility offered to pin a
thread to a specific core will provide the user full locality control.

Efficiency of base mechanisms. FastFlow SPSC queues represent the base
mechanisms in the FastFlow framework. Their implementations are lock-free
and wait-free [18]. They do not use interlocked operations [15]. Also, they
do not make use of any memory barrier for Total Store Order processors (e.g.
Intel core) and use a single memory write barrier (in the push operation)
for processors supporting weaker memory consistency models (full details on
FastFlow SPSC can be found in [35]). The SPSC queue is primarily used as
a synchronization mechanism for memory pointers in a consumer-producer
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Figure 13.1 FastFlow layered architecture with abstraction examples at the
different layers of the stack.

fashion. SPSC FIFO queues can be effectively used to build networks of com-
municating threads which behave in a dataflow fashion. The formal underpin-
ning of these networks dates back to Kahn Process Networks (KPNs) [20] and
Dataflow Process Networks [21]. Table 13.1 shows the average latencies in-
volved in the use of the SPSC queues on different configurations of producers
and consumers on state-of-the-art Intel and AMD multi-core architectures.

Stream parallelism. We chose to support only stream parallelism in our li-
brary for two basic reasons: i) supporting just one kind of parallelism keeps
the FastFlow implementation simple and maintainable, and ii) stream parallel
patterns, as designed in FastFlow, allow different other parallelism forms to
be implemented (see below), including simple data parallelism, parallelism in
recursive calls and Divide&Conquer. Stream parallelism is a programming
paradigm supporting the parallel execution of a stream of tasks by using a
series of sequential or parallel stages. A stream program can be naturally
represented as a graph of independent stages (kernels or filters) that commu-
nicate explicitly over data channels. Conceptually, a streaming computation
represents a sequence of transformations on the data streams in the program.
Each stage of the graph reads one or more tasks from the input stream, ap-
plies some computation, and writes one or more output tasks to the output
stream. Parallelism is achieved by running each stage of the graph simul-
taneously on subsequent or independent data elements. Local state may be
either maintained in each stage or distributed (replicated or scattered) along
streams.
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Streams processed in a stream parallel application are usually generated
(input streams) and consumed (output streams) externally to the application
itself. However, streams to be processed may also be generated internally
to the application. For example, an embarrassingly data parallel application
may be implemented as a pipeline with three stages: the first generates a
stream of tasks, each representing one of the data parallel tasks that can be
independently processed to compute a subset of the application results; the
second processes in parallel this input stream of tasks, producing an output
stream of results; and the last stage processes the output stream to rebuild
the final (non-stream) result. We refer to the first kind of streams–those
produced/consumed outside the application–as exo-streams and the second–
those produced/consumed internally–as endo-streams.

Parallel design patterns (Algorithmic skeletons). Attempts to reduce the pro-
gramming effort by raising the level of abstraction date back at least three
decades. Notable results have been achieved by the skeletal approach [12, 13]
(a.k.a. pattern-based parallel programming). This approach appears to be
becoming increasingly popular after being revamped by several successful par-
allel programming frameworks [36, 14, 34, 8].

Algorithmic skeletons capture common parallel programming paradigms
(e.g. MapReduce, ForAll, Divide&Conquer, etc.) and make them available
to the programmer as high-level programming constructs equipped with well-
defined functional and extra-functional semantics [2]. Some of these skeleton
frameworks explicitly include stream parallelism as a major source of con-
currency exploitation [36, 2, 34, 19]: rather than allowing programmers to
connect stages into arbitrary graphs, basic forms of stream parallelism are pro-
vided to the programmer in high-level constructs such as pipeline (modeling
computations in stages), farm (modeling parallel computation of independent
data tasks), and loop (supporting generation of cycles in a stream graph and
typically used in combination with a farm body to model Divide&Conquer
computations). More recently, approaches such as those followed in algorith-
mic skeletons but based on parallel design patterns have been claimed to be
suitable to support multi- and many-core programming [8, 23]. Differences
between algorithmic skeletons and parallel design patterns lie mainly in the
motivations leading to these two apparently distinct concepts and in the re-
search environments where they were developed: the parallel programming
community for algorithmic skeletons and the software engineering community
for parallel design patterns.

In FastFlow we chose to adopt an algorithmic skeleton/parallel design pat-
tern based approach to address the problems outlined in the introduction,
and we restricted the kind and the number of skeletons implemented to keep
the size of the implementation manageable while providing a useful skeleton
set. This choice allows us to provide full support for an important class of
applications, namely streaming applications [7, 31].
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13.2 FastFlow µ-TUTORIAL

The FastFlow parallel programming framework may be used in at least two
distinct ways. A first, classic usage scenario is that related to development
“from scratch” of brand new parallel applications. In this case, the application
programmer logically follows a workflow containing the following steps:

Step 1 choose the most suitable skeleton nesting that models the parallelism
paradigm that can be exploited in the given application;

Step 2 provide the parameters needed to correctly instantiate the skeleton(s),
including the sequential portions of code modeling the sequential work-
ers/stages of the skeleton(s); and

Step 3 compile and run the resulting application code, consider the results
and possibly go back to step 1 to refine the skeleton structure if it be-
comes apparent that there is a better combination of skeletons modeling
the parallelism exploitation paradigm in mind.

The workflow just mentioned can be used also to parallelize existing applica-
tions. In this case, rather than choosing the most suitable skeleton nesting for
the whole application, the programmer will analyze the application, determine
which kernels are worth parallelizing and finally enter the three step process
above, with step one being performed only on targeted portions of the code.
As result, the sequential flow of control of a given kernel will be substituted
by the parallel flow of control expressed by the skeleton nesting.

A second scenario, relating to the use of software accelerators, is particu-
larly targeted to low-effort parallelization of existing applications. In this case
programmers identify independent tasks within the application. Then they
choose a representation for the single task, declare a FastFlow accelerator–e.g.
a farm accepting a stream of tasks to be computed–and use the accelerator to
offload the computation of these tasks, much in the sense of OpenMP tasks be-
ing executed by the thread pool allocated with the scoped #pragma parallel

directive. This scenario is distinct from the first in that the application pro-
grammer using FastFlow in this way does not necessarily need any knowledge
of the skeleton framework implemented in FastFlow. Tasks to be computed
are simply sent to a generic “parallel engine” computing some user-supplied
code. Once the tasks have been submitted, the program can wait for com-
pletion of their computation, while possibly performing other different tasks
needed to complete application execution.

13.2.1 Writing parallel applications “from scratch”

When designing and implementing new parallel applications using FastFlow,
programmers instantiate patterns provided by FastFlow to adapt them to the
specific needs of the application at hand. In this section, we demonstrate how
the principal FastFlow patterns may be used in a parallel application.
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#include <ff/pipeline.hpp>
2 using namespace ff;

int main() {
4 ff pipeline pipe;

for(int i=0;i<nStages;++i)
6 pipe.add stage(new Stage);

if (pipe.run and wait end()<0)
8 return −1;

return 0;
10 }

class Stage: public ff node {
12 int svc init () {

printf (”Stage %d\n”,get my id());
14 return 0;

}
16 void ∗ svc(void ∗ task) {

if (ff node :: get my id()==0)
18 for(long i=0;i<ntasks;++i)

ff send out(i);
20 else printf (”Task=%d\n”,(long)task);

return task;
22 }
};

Figure 13.2 Hello world pipeline.

13.2.1.1 Pipeline A very simple FastFlow pipeline code is sketched in Fig. 13.2.
A FastFlow pipeline object is declared in line 4. In line 5 and 6 nStages ob-
jects of type Stage are added to the pipeline. The order of the stages in
the pipeline chain is given by the insertion order in the pipe object (line
6). The generic Stage is defined from line 11 to line 23. The Stage class is
derived from the ff node base class, which defines 3 basic methods, two op-
tional, svc init and svc end and one mandatory svc (pure virtual method).
The svn init method is called once at node initialization, while the svn end

method is called once when the end-of-stream (EOS) is received in input or
when the svc method returns NULL. The svc method is called each time an
input task is ready to be processed. In the example, the svc init method
just prints a welcome message and returns. The svc method is called as soon
as an input task is present and prints a message and returns the task which
will be sent out by the FastFlow run time to the next stage (if present). For
the first stage of the pipeline the svc method is called by the FastFlow runtime
with a NULL task parameter. The first node (the one with id 0 in line 17) gen-
erates the stream sending out each task (in this simple case just one long) by
using FastFlow’s runtime method ff send out (line 19). The ff send out al-
lows for queueing tasks without returning from the svc method. The pipeline
can be started synchronously as in the example (line 7) or asynchronously by
invoking the method run without waiting for the completion, thus allowing
overlap with other work. It is worth noting that the ff pipeline class type
is a base class of ff node type, so a pipeline object can be used where an
ff node object has to be used.

13.2.1.2 Farm A farm paradigm can be seen as a two or three stage pipeline,
the stages being a ff node called the emitter, a pool of ff nodes called work-
ers and–optionally–a ff node called the collector. A FastFlow farm pattern
can be declared using the ff farm<> template class type as in Fig. 13.3 line
4. In line 6 and 7 a vector of nWorkers objects of type Worker is created
and added to the farm object (line 8). The emitter node, added in line 9,
is used in the example code to generate the stream of tasks for the pool of
workers. The svc method is called by the FastFlow runtime with a NULL task
parameter (since, in this case, the emitter does not have any input stream)
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#include <ff/farm.hpp>
2 using namespace ff;

int main() {
4 ff farm<> farm;

std :: vector<ff node∗> workers;
6 for(int i=0;i<nWorkers;++i)

workers.push back(new Worker);
8 farm.add workers(workers);

farm.add emitter(new Emitter(nTasks));
10 farm.add collector(new Collector);

if (farm.run and wait end()<0)
12 return −1;

return 0;
14 }

struct Emitter: public ff node {
16 Emitter(int ntask):ntask(ntask){}

int svc init () {
18 printf (”Work Start\n”);

}
20 void ∗ svc(void ∗) {

long task = new task t(ntask−−);
22 return (void∗)task;

}
24 long ntask;
};

26 struct Worker: public ff node {
void ∗ svc(void ∗ task) {

28 // do something useful with the task
return task;

30 }
};

32 struct Collector: public ff node {
void ∗ svc(void ∗ task) {

34 printf (”Task=%d\n”,(long)task);
delete task;

36 return GO ON;
}

38 void svc end() { printf (”Done!\n”);}
};

Figure 13.3 Hello world farm.

each time a new task has been sent out and until a NULL value is returned
from the method. Another way to produce the stream without entering and
exiting from the svc method each time would be to use the ff send out to
generate all the tasks.

The emitter can also be used as sequential preprocessor if the stream is
coming from outside the farm, as is the case when the stream is coming from
a previous node of a pipeline chain or from an external device.

The farm skeleton must have the emitter node defined: if the user does
not add it to the farm, the run-time support adds a default emitter which
acts as a stream filter and schedules tasks in a round-robin fashion toward
the workers. In contrast, the collector is optional. In our simple example, the
collector, added at line 10, gathers the tasks coming from the workers, writes
a message, and deletes the input task allocated in the emitter. Each time
the svc method is called and the work completed, the collector, being the
last stage of a three stage pipeline, returns the tag GO ON task which tells the
run-time support that further tasks must be awaited from the input channel
and that the computation is not finished. The GO ON tag can be used in any
ff node class. Finally, as for the pipeline, the farm base class is ff node.

13.2.1.3 Farm and pipeline with feedback In the farm paradigm the collector
can be connected with a feedback channel to the emitter. It is also possible
to omit the collector by having, for each worker thread, a feedback channel
toward the emitter. For the pipeline paradigm it is possible to link the last
stage of the chain with the first one in a ring fashion. In general, several
combinations and nestingnestings of farm, pipeline and feedback channels
are possible without any particular limitations to build complex streaming
networks. For example, it is possible to have a farm skeleton whose workers
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are pipelines, or a farm skeleton whose workers are other farms, each with a
feedback channel.

When a feedback channel is present in the farm paradigm, the performance
may strongly depend on the scheduling policies of tasks. FastFlow offers two
predefined scheduling policies: dynamic round-robin (DRR), and on-demand
(OD). The DRR policy schedules a task to a worker in a round-robin fash-
ion, skipping workers with full input queue. The OD policy is a fully dy-
namic scheduling, i.e., a DDR policy where each worker has an input queue
of a predefined small size (typically 1 or 2 slots). Furthermore, in the farm
skeleton, the emitter may also be used to implement user-defined schedul-
ing policies, i.e, it is possible to add new scheduling policies tailored to the
application behavior by subclassing the ff loadbalancer and redefining the
method selectworker. The new scheduling class type should be passed as
template parameter to the farm object. In this way it is possible, for exam-
ple, to define weighted scheduling policies by assigning weights to tasks and
to schedule the tasks directly to the worker that has the lowest weight at
scheduling decision time (i.e. ff send out).

13.2.2 Using FastFlow as an accelerator

FastFlow can also be used as a software accelerator to accelerate existing se-
quential code. An accelerator is defined by a skeletal composition augmented
with an input and an output stream that can be, respectively, pushed and
popped directly from the sequential code. Accelerating sequential code differs
slightly from plain parallelization of existing code such as that sketched at
the end of Sec. 13.2.1. In that case, more extensive application knowledge is
needed in order to choose the most suitable parallel pattern composition for
the whole application. Instead, when the accelerating methodology is used,
programmers have to identify potentially concurrent tasks and request their
execution (by explicit task offloading) onto the FastFlow skeletal composition
in order to let those tasks be computed in parallel. As a consequence, the
programmer has only to identify the concurrent tasks in the code and provide
a suitable representation of those tasks to be submitted through the accelera-
tor input stream. A detailed description of the FastFlow software accelerator
and its usage can be found in [5].

13.3 PERFORMANCE

The FastFlow framework has been validated using a set of very simple bench-
marks, starting from low-level basic mechanisms up to the simplest FastFlow
patterns: farm and pipeline. Furthermore, a brief description of some signifi-
cant real-world applications is reported pointing out, for each application, the
kind of parallelization used.
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Same core & Same CPU & Different CPUs
different contexts different cores
8-core 48-core 8-core 48-core 8-core 48-core

Average 14.29 - 11.23 19.73 9.6 20.21
Std. Deviation 2.63 - 0.29 2.23 0.1 1.9

Table 13.1 Average latency time and standard deviation (in nanoseconds) of
a push/pop operation on a SPSC queue with 1024 slots for 1M
insert/extractions, on the Intel 8-core 16-context and on AMD 48-core.

Two platforms are used in the evaluation: 8-core) Intel workstation with
2 x quad-core Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz; 48-core)
AMD Magny-Cours 4 x twelve-core Opteron 6174 @2.2GHz. Both run Linux
x86 64.

13.3.1 Base mechanism latencies

Table 13.1 shows the results obtained when running a synthetic micro-benchmark
consisting in a simple 2-stage pipeline in which the first stage pushes 1 million
tasks into a FastFlow SPSC queue (of size 1024 slots) and the second stage
pops tasks from the queue and checks for correct values. In the table are
reported 3 distinct cases obtained by changing the physical mapping of the 2
threads corresponding to the 2 stages of the pipeline: 1) the first and second
stage of the pipeline are pinned on the same physical core but on different
HW contexts (only for the Intel 8-core architecture); 2) are pinned on the
same CPU but on different physical cores (for the AMD 48-core architecture
we pinned the two threads on 2 cores of the same die); and 3) are pinned on
two cores of two distinct CPUs. On the 8-core box (Intel), FastFlow’s SPSC
queue takes on average 9.6-11.23 ns per queue operation with standard de-
viations of less than 1 nS when the threads are on distinct physical cores.
Since threads mapped on different contexts of the same core share the same
ALUs, the performances are a little bit worse in this case. On the 48-core
box (AMD), FastFlow’s SPSC queue takes on average 19.7–20.2 ns per queue
operation with standard deviations around 2 ns.

It is well known that dynamic memory allocation and deallocation can be
very expensive, especially for the management of very small objects. The
FastFlow framework offers a lock-free dynamic memory allocator specifically
optimized for the allocation/deallocation of small data structures. It is used
to allocate FastFlow’s tasks (which are usually small) flowing through the
FastFlow network, which are frequently allocated and deallocated by different
nodes. Figure 13.4 reports the execution time, on both architectures, of a very
simple farm application where the emitter allocates 10 million tasks each of
size 32bytes (4 long) and the generic worker deallocates them after a synthetic
computation of 1µs. We compare the standard libc-6 allocator (glibc-2.5-
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42), TBB’s scalable allocator v.3.0 (30 20101215) and FastFlow’s allocator.
FastFlow’s allocator achieves the best performance for all numbers of threads
on the 8-core box (Intel), whereas on the 48-core machine, FastFlow’s allocator
and TBB’s allocator achieve almost the same performance, much better than
the standard libc-6 allocator which performs poorly on this architecture.

13.3.2 Efficiency of high-level streaming abstractions

To evaluate the overhead of the communication infrastructure for the FastFlow
farm and pipeline paradigms, we developed two simple synthetic micro-benchmark
tests. In the micro-benchmarks neither dynamic memory allocation nor access
to global data is performed.
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For the farm paradigm, the stream is composed of a sequence of 10 mil-
lion tasks which have a synthetic computational load associated. By varying
this load it is possible to evaluate the speedup of the paradigm for different
computation grains. Figure 13.5, left, shows the results obtained for three
distinct computation grains: 0.5µs, 1µs and 5µs. The speedup is quite good
in all cases. We have almost linear speedup starting from a computation grain
of about 1µs. Larger computation grains give better results, as expected.

For the pipeline paradigm, the test consists in a set of N stages where the
last stage is connected to the first, forming a ring. The first stage produces 1
million tasks in batch mode, that is, apart from the first 1024 tasks sent out at
starting, for each input task received from the last stage, it produces a batch
of 256 new tasks. Each task has a synthetic computational load associated, so
that the throughput expressed in thousands of messages per second (Kmsg/s)
for the entire pipeline can be evaluated using different computational grains.
The results obtained are sketched in Fig. 13.5, right.

13.3.3 Real world applications

Several real world applications have been developed using the FastFlow frame-
work. Here we report some of them: the Smith-Waterman biosequence align-
ment, the parallelization of the YaDT decision tree builder, the parallelization
of a stochastic simulator, an edge-preserving denoiser filter, and an extension
of the pbzip2 parallel compressor. Table 13.2 summarizes the types of FastFlow
patterns and streams used in these applications.
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contributing to the final result, but the parallelism degree is given related to the
worker threads only.

Biosequence alignment: SWPS3-FF. Biosequence similarities can be deter-
mined by computing their optimal local alignments using the Smith-Waterman
algorithm [29]. SWPS3 [32] is a fast implementation of the Striped Smith-
Waterman algorithm extensively optimized for Cell/BE and x86/64 CPUs
with SSE2 instructions. SWPS3-FF is a porting of the original SWPS3 im-
plementation to the FastFlow framework [4]. The pattern used in the imple-
mentation is a simple farm skeleton without the collector thread. The emitter
thread reads the sequence database and produces a stream of pairs: 〈 query-
sequence, subject sequence 〉. The query-sequence remains the same for all
the subject sequences contained in the database. The generic worker thread
computes the Smith-Waterman algorithm on the input pairs using the SSE2
instruction set in the same way as the original code and produces the resulting
score. Figure 13.6 reports the performance comparison between SWPS3 and
the FastFlow version of the algorithm for x86/SSE2 executed on the Intel test
platform. The scoring matrix used is BLOSUM50 with 10-2k gap penalty.

As can be seen, the FastFlow implementation outperforms the original
SWPS3 x86/SSE2 version for all the sequences tested. 2

2The GCUPS (Giga-Cell-Updates-Per-Second) is a commonly used performance measure
in bioinformatics and is calculated by multiplying the length of the query sequence by the
length of the database divided by the total elapsed time.
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the number of worker threads. Right: Execution time (T) and speedup (Sp) over
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(1 - 10 MBytes), 4% large (10 - 50 MBytes), and 1% very large (50 - 100 MBytes).
pbzip2 uses 16 threads. pbzip2 ff uses 16 threads for each accelerator. Comp stands
for compression and Dec for decompression.

Decision tree builder: YaDT-FF. YaDT (Yet another Decision Tree builder)
implementation [27], is a heavily optimized, efficient C++ version of Quinlan’s
C4.5 entropy-based algorithm [26]. It is the result of several optimizations and
algorithm redesigns with respect to the original C4.5 induction algorithm, and
represents an example of extreme sequential algorithmic optimization. YaDT-
FF is the porting of YaDT onto general purpose multi-core architectures.

The decision tree growing strategy is a top-down breadth-first tree visit
algorithm. The porting consists in the parallelization of the decision tree
visit by exploiting stream parallelism, where each decision node is considered
a task of the stream that generates a set of sub-tasks corresponding to the
child nodes. In order to obtain additional parallelism the computation of
the information gain of attributes associated with each node has also been
parallelized. The overall parallelization strategy is described in detail in [6].

The pattern used is a farm-with-feedback skeleton which implements the
D&C paradigm. Initially the computation is started by offloading the tree
root node task so that the stream can be initiated. The emitter gets as input
the root node task, produces as output the sub-tasks corresponding to the
children of the node, scheduling those tasks to a number of worker threads
using an application-tailored scheduling policy. The workers process the tasks
independently and in parallel, and eventually return the resulting tasks to the
emitter.

The speedup of YaDT-FF is shown in Fig. 13.7 for a set of reference datasets
that are publicly available from the UCI KDD archive, apart from SyD10M9A
which is synthetically generated using function 5 of the QUEST data genera-
tor.
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Stochastic Simulator: StochKit-FF. StockKit [25] is an extensible stochastic
simulation framework developed in the C++ language. It aims at making
stochastic simulation accessible to practicing biologists and chemists, while
remaining open to extension via new stochastic and multi-scale algorithms. It
implements the popular Gillespie algorithm, explicit and implicit tau-leaping,
and trapezoidal tau-leaping methods.

StockKit-FF extends StockKit version 1 with two main features: support
for the parallel run of multiple simulations on multi-cores; and support for
the on-line parallel reduction of simulation results, which can be performed
according to one or more user-defined associative and commutative functions.
StockKit-FF exploits the FastFlow basic farm pattern. Each farm worker
receives a set of simulations and produces a stream of results that is gathered
by the farm collector thread and reduced into a single output stream. Overall,
the parallel reduction happens in a systolic (tree) fashion via the so-called
selective memory data structure, i.e. a data structure supporting the on-line
reduction of time-aligned trajectory data by way of user-defined associative
functions. More details about StockKit-FF and the selective memory data
structure can be found in [1].

As shown in Fig. 13.8, StockKit-FF exhibits good scalability when com-
pared with the sequential (one-thread) version of StockKit.

Stream File compressor: pbzip2-FF. This application is an extension of an al-
ready parallel application: pbzip2 [16], i.e. a parallel version of the widely used
sequential bzip2 block-sorting file compressor. It uses pthreads and achieves
very good speedup on SMP machines for large files. Small files (less then
1MB) are sequentially compressed. We extend it to manage streams of small
files, which can be compressed in parallel. The original pbzip2 application is
structured as a farm: the generic input file is read and split into independent
parts (blocks) by a splitter thread; then each block is sent to a pool of worker
threads which compress the blocks. The farm is hand-coded using pthread
synchronizations and is extensively hand-tuned.

The FastFlow port of pbzip2 (pbzip2 ff ) was developed by taking the orig-
inal code of the workers and including it in a FastFlow farm pattern. Then, a
second FastFlow farm, whose workers execute the file compression sequentially,
was added. The two farms are run as two accelerators and fed by the main
thread which selectively dispatches files to the two accelerators depending on
the file size. Logically the application is organized as two 2-stage pipelines.

The table in Fig. 13.8 compares the execution times of sequential bzip2, the
original pbzip2 and pbzip2 ff on files of various sizes showing the improved
speedup of pbzip2 ff against pbzip2. Compression and decompression per-
formance for a single large file shows no performance penalty for pbzip2 ff
against hand-tuned pbzip2.

Edge-Preserving denoiser. We also implemented an edge-preserving denoiser,
a two-step filter for removing salt-and-pepper noise, which achieved good
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BioAlign DecTreeBuild StocSimul Denoiser File Compressor

Pattern(s) Farm Farm + Loop Farm Farm Pipe(Farm)×2
Stream(s) exo endo endo endo exo+endo
Tasks from DB recursive calls sim no. DP tasks shell+file chunks

Table 13.2 Patterns and streams used in real world applications

performance on the 48-core platform (AMD). Sequential processing for the
test images grows linearly with noise ratio: from 9 to 180 seconds with 10%
to 90% noise ratio. The parallel version speeds them up to a range of 0.4 - 4
seconds (further details may be found in [5]).

13.4 RELATED WORK

Structured parallel programming models have been discussed in Sec. 13.1.
FastFlow high-level patterns appear in various algorithmic skeleton frame-
works, including Skandium [22], Muesli [10] and Muskel [3]. The parallel
design patterns presented in [23] also include equivalents of the FastFlow high-
level patterns. These programming frameworks, however, do not specifically
address stream programming and so FastFlow outdoes them in terms of effi-
ciency. Also, most of the algorithmic skeleton frameworks mentioned above
and in Sec. 13.1, with the exception of Skandium, were designed originally
to target cluster and networks of workstations, and multi-core support has
been–in some cases, e.g. in Muesli and Muskel–only a later addition.

Stream processing is extensively discussed in the literature. Stream lan-
guages are often motivated by the application style used in image processing,
networking, and other media processing domains.

StreamIt [34] is an explicitly parallel programming language based on the
Synchronous Data Flow model. A program is represented as a set of fil-
ters, i.e. autonomous actors (containing Java-like code) that communicate
through first-in first-out (FIFO) data channels. Filters can be assembled as
a pipeline, possibly with a FeedbackLoop, or according to a SplitJoin data-
parallel schema. S-Net [28] is a coordination language to describe the com-
munications of asynchronous sequential components (a.k.a. boxes) written in
a sequential language (e.g. C, C++, Java) through typed streams. The overall
design of S-Net is geared towards facilitating the composition of components
developed in isolation. Streaming applications are also targeted by TBB [19]
through the pipeline construct. However, TBB does not support any kind
of non-linear streaming network, which therefore has to be embedded in a
pipeline with significant programming and performance drawbacks.

OpenMP is a very popular thread-based framework for multi-core archi-
tectures. It chiefly targets data-parallel programming and provides means
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to easily incorporate threads into sequential applications at a relatively high
level. In an OpenMP program data needs to be labeled as shared or private,
and compiler directives have to be used to annotate the code. Both OpenMP
and TBB can be used to accelerate serial C/C++ programs in specific portions
of code, even if they do not natively include farm skeletons, which are instead
realized by using lower-level features such as the task annotation in OpenMP
and the parallel for construct in TBB. OpenMP does not require restructur-
ing of the sequential program, while with TBB, which provides thread-safe
containers and some parallel algorithms, it is not always possible to accelerate
the program without some refactoring of the sequential code.

FastFlow falls between the easy programming of OpenMP and the powerful
mechanisms provided by TBB. The FastFlow accelerator allows one to speed-
up execution of a wide class of existing C/C++ serial programs with just
minor modifications to the code.

The use of the lock-free approach in stream processing is becoming in-
creasingly popular for multi-core platforms. The FastForward framework [15]
implements a lock- and wait-free SPSC queue that can be used to build sim-
ple pipelines of threads that are directly programmed at low-level; arbitrary
graphs of threads are not directly supported. The Erbium [24] framework also
supports the streaming execution model with lock- and fence-free synchroniza-
tions. Among cited works, Erbium is the only framework also supporting the
MPMC model. In contrast to FastFlow, scheduling of tasks within MPMC
queues are statically arranged via a compilation infrastructure. The trade-off
between overhead and flexibility of scheduling is as yet unclear. González
and Fraguela recently proposed a general schema (i.e. a skeleton) for Di-
vide&Conquer implemented via C++ templates and using as synchronization
library the Intel TBB framework [17].

13.5 FUTURE WORK AND CONCLUSIONS

The FastFlow project is currently being extended in several different direc-
tions. FastFlow currently supports cyclic graphs, in addition to standard,
non-cyclic streaming graphs. We are using a formal methods approach to
demonstrate that the supported cyclic graphs are deadlock-free, exploiting
the fact that each time a loop is present, unbounded queues are used to im-
plement point-to-point channels. A version of FastFlow running on standard
Windows framework is being finalized.

We are currently planning further developments of FastFlow: i) to increase
memory-to-core affinity during the scheduling of tasks in order to be able to
optimize consumer-producer data locality on forthcoming many-core architec-
tures with complex memory hierarchy; ii) to provide programmers with more
parallel patterns, including data-parallel patterns, possibly implemented in
terms of the stream parallel patterns already included and optimized; and iii)
to provide simpler and more user-friendly accelerator interfaces.
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The emergence of the so-called power wall phenomenon has ensured that
any future improvements in computer performance, whether in the HPC cen-
tre or on the desktop, must perforce be achieved via multi-processor systems
rather than decreased cycle time. This means that parallel programming,
previously a specialized area of computing, must become the mainstream pro-
gramming paradigm. While in the past its niche status meant that ease of
development was a secondary consideration for those engaged in parallel pro-
gramming, this situation is changing quickly: programmability is becoming as
important as performance. Application programmers must be provided with
easy access to parallelism with little or no loss of efficiency. Traditionally,
for the most part, abstraction has been bought at the cost of efficiency, and
vice-versa. In this work we have introduced FastFlow, a framework delivering
both programmability and efficiency in the area of stream parallelism.

FastFlow may be viewed as a stack of layers: the lower layers provide effi-
ciency via lock-free/fence-free producer-consumer implementations; the upper
layers deliver programmability by providing the application programmer with
high-level programming constructs in the shape of skeletons/parallel patterns.
FastFlow is applicable not only to classical streaming applications, such as
video processing, in which the stream of images flows from the environment,
but also applications in which streams are generated internally – covering
areas such as Divide&Conquer, data parallel execution, etc. While FastFlow
has been created primarily to target developments from scratch, provision has
also been included for a migrating existing code to multi-core platforms by
parallelizing program hot-spots via self-offloading using the FastFlow acceler-
ator. The applicability of FastFlow has been illustrated by a number studies
in differing application domains including image processing, file compression
and stochastic simulation.
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