
MASARYK
U N I V E R S I T Y

FACULTY OF INFORMATICS

Fuzzing of the OpenSC Project

Bachelor's Thesis

VERONIKA HANULÍKOVÁ

Brno, Spring 2022

MASARYK
U N I V E R S I T Y

FACULTY OF INFORMATICS

Fuzzing of the OpenSC Project

Bachelor's Thesis

VERONIKA HANULÍKOVÁ

Advisor: Mgr. Antonín Dufka

Department of Computer Systems and Communications

Brno, Spring 2022

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. A l l sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Veronika Hanulíková

Advisor: Mgr. Antonín Dufka

i i i

Acknowledgements

I w o u l d like to thank my advisor Mgr. Antonín Dufka for guidance
and invaluable feedback during the work on my bachelor thesis. Spe
cial thanks go to Ing. Jakub Jelen from Red Hat for his mentoring,
providing knowledge about smart cards and answering the immense
number of my questions. Final ly I wish to express gratitude to my
family and friends who supported me during my studies and writing
this thesis.

iv

Abstract

The OpenSC project provides middleware and tools for using smart
cards. Smart cards are secure hardware that allows to securely store the
data and cryptographic keys and perform cryptographic operations
with it. It is important to ensure that OpenSC correctly handles data it
receives from smart cards, and fuzzing can be used for this purpose.
Fuzzing is a suitable method for testing and detecting errors i n code
that may affect the application's security. This thesis aims to analyze
the state of support for fuzzing in the OpenSC project and propose
changes leading to the overall improvement of test results.

Keywords

fuzzing, testing, smart card, OSS-Fuzz, OpenSC

v

Contents

Introduction 1

1 OpenSC 3
1.1 OpenSC Architecture 3

1.1.1 OpenSC Library 3
1.1.2 Tools 4

1.2 Fuzz Testing 4

2 Fuzzing 5
2.1 Definition of Fuzzing 5

2.1.1 The Process of Fuzzing 6
2.2 Fuzzer Classification 7

2.2.1 Based on Testing Purpose 7
2.2.2 Based on Data Generation 8
2.2.3 Based on Interface Knowledge 8
2.2.4 Based on the Access to the Tested Object 9
2.2.5 Based on Tested Interface 9

2.3 Evaluation of Fuzzing Efficiency 11
2.4 Software Bugs 12

3 OSS-Fuzz Fuzzing Platform 14
3.1 OSS-Fuzz Workflow 14

3.1.1 Integration of the Project 15
3.2 ClusterFuzz 17

3.2.1 ClusterFuzz Architecture 17
3.2.2 User and Web Interface 17

3.3 CIFuzz 19
3.4 Fuzzing Engines 19

3.4.1 libFuzzer 19
3.4.2 A F L and A F L + + 20
3.4.3 Honggfuzz 20

3.5 Sanitizers 21

4 Existing Fuzzing Support in OpenSC Project 22
4.1 Existing Fuzz Targets 22

v i

4.1.1 A S N . l 22
4.1.2 Decoding PKCS #15 objects 22
4.1.3 Virtual Reader and PKCS #15 Card Functionality 23

4.2 Code Coverage 24
4.3 Performance of Fuzzing Runs 26
4.4 Crash Statistics and Discovered Bugs 28
4.5 Conclusion of Current Fuzzing Support 28

5 Improvements for OpenSC Fuzzing 29
5.1 Encoding of PKCS #15 Objects 29

5.1.1 Structure of Fuzz Target fuzz_pkcsl5_encode . 30
5.1.2 Run Analysis 30
5.1.3 Bugs Discovered by fuzz_pkcsl5_encode 30

5.2 Personalisation of PKCS #15 Card 31
5.2.1 Structure of Fuzz Target f u z z _ p k c s l 5 i n i t . . . 31
5.2.2 Run Analysis 32
5.2.3 Bugs Discovered by f u z z _ p k c s l 5 i n i t 33
5.2.4 Improvement of the f u z z _ p k c s l 5 i n i t 33

5.3 PKCS #11 A P I 34
5.3.1 Structure of Fuzz Target fuzz _pkcs 11 34
5.3.2 Run Analysis 35
5.3.3 Bugs Discovered by fuzz_pkcs 11 36

5.4 OpenSC Tools 36
5.4.1 Fuzz Targets for Tools 36
5.4.2 Structure of Fuzz Targets for Tools in OpenSC . 38
5.4.3 Run Analysis 40
5.4.4 Bugs Discovered by Fuzz Targets for Tools . . . 40

5.5 Conclusion of Fuzzing Support Improvements 41

Conclusion 42

Bibliography 44

A Smart Cards 49

A . l Storage 49
A.2 Communication 49
A.3 Application Areas 50
A.4 PKCS Standards 50

v i i

A.4.1 PKCS #11 50
A . 4.2 PKCS #15 51

B Other Implemented Improvements 52
B . l Improvement of the Virtual Reader 52
B.2 Improvement of fuzz_pkcsl5_decode Fuzz Target . . . 52
B.3 Configuration Parser 54

B. 3.1 Structure of Fuzz Target for Parser 55
B.3.2 Run Analysis 55
B.3.3 Bugs Discovered by f uzz_scconf _parse_str ing 55

B.4 General Functions Performing Card Operations 56
B.4.1 Structure of Fuzz Target fuzz _ card 56
B.4.2 Run Analysis 57
B.4.3 Bugs Discovered by f uzz_card 57

B.5 Fuzzing p k c s l l - t o o l with SoftHSM 57
B.5.1 Structure of the Fuzz Target f u z z _ p k c s l l _ t o o l 58

B.6 Standard Output of Tested A P I 58
B.7 User Manual 59

C Integration into OpenSC Upstream 60

D Data Attachments 62

v i i i

List of Tables

2.1 Classification of selected fuzzers [18] 11
4.1 Coverage of source directory s r c / from 23th October 2021

before integration of new fuzz targets into project [48]. . . 24
4.2 Region coverage of source directory src/ from 27th

November 2021 by existing fuzz targets [35]. Data are
obtained from corpus files generated by OSS-Fuzz [51]. . 26

4.3 Internal performance statistics [35] of libFuzzer engine
wi th A S A N [41] and U B S A N [42] 27

5.1 Coverage of OpenSC parts affected by new fuzz targets
from 16th May 2022 [54] 41

ix

List of Figures

3.1 OSS-Fuzz workflow adapted from OSS-Fuzz [28] and
Cluster Fuzz [31] architecture overview schemes 15

4.1 Code coverage from 23rd August 2019 to 3rd November
2021 [48] 25

5.1 Parts of the fuzzing input used for testing w i t h fixed ar
guments 38

5.2 Parts of the fuzzing input used for testing w i t h fuzzed
arguments 39

x

Introduction

Cryptography is a science concerning securing data from potential
attackers [1]. Whether it is data encryption, w i t h a purpose to hide
the original data, or signing the data for authentication of the sender,
it is necessary to store cryptographic keys for the given operations.
Several risks are involved i n storing such cryptographic objects on
traditional storage media. Storage media are available to other appli
cations, including malicious programs that may misuse the stored
data. Insufficient storage security can therefore expose keys and thus
compromise the security of confidential data. This issue is addressed
by secure hardware.

Secure hardware incorporates computing devices that provide
secure storage for sensitive data. In addition, these devices can directly
perform cryptographic operations i n a secure environment without
revealing secret keys. [2]

Smart cards are secure hardware found in many application ar
eas, such as authentication tokens or bank cards. Smart cards provide
secure storage of cryptographic keys and other data. Moreover, they
can safely perform security-critical operations wi th secret keys them
selves [3]. Smart cards also need to communicate wi th a host device.
Therefore, it is necessary to ensure the secure handling of both the com
munication wi th the card and subsequent processing of the received
data.

The methods of communication w i t h cards are specified by sev
eral standards, some of which are implemented within the OpenSC
project [4]. OpenSC provides a smart card library, middleware and
tools for personalisation and communication w i t h smart cards [5].
OpenSC API and tools communicate with connected smart cards and
process the received data further. Possible flaws in OpenSC code may
result i n vulnerabilities affecting other applications. Sufficient test
ing is necessary to ensure security and eliminate such vulnerabilities.
Proper implementation of tests can lead to discovering new bugs and
reduce the risk of potential threats that may affect users and their data.
A n example of such a suitable testing method is fuzzing.

Fuzzing is a testing technique that reveals unsafe application be
haviour on unexpected or malformed input [6]. It can detect a wide

1

range of minor bugs that can significantly impact the security of an
entire application. Fuzz testing is a convenient method for testing the
application since it can simulate untrusted and possibly dangerous
inputs from users and cryptographic tokens. OpenSC is already part
of the OSS-Fuzz project [7] that provides continuous fuzzing for open-
source software. Nevertheless, the fuzzing in OpenSC has only limited
support due to the low number of tested operations.

The goal of this thesis is to enhance support for continuous fuzzing
of the OpenSC project in OSS-Fuzz. The proposed improvements and
new fuzz targets are based on an analysis of the current state of fuzz
targets that OpenSC contains. The improvements are also supposed to
cover parts that may be in contact wi th potentially dangerous inputs.
In addition to specific design and implementation of improvements
and new fuzz targets, the thesis also presents the OpenSC project and
its functionality and an overview of fuzz testing as a form of regression
testing.

Chapter 1 summarizes basic information about OpenSC project,
provided tools and API. The following Chapter 2 presents the fuzzing
technique and its possibilities. In Chapter 3,1 describe the OSS-Fuzz
project and its infrastructure. The next step is analysing the current
fuzzing support of the OpenSC project. Chapter 4 contains a descrip
tion of implemented fuzz targets, an evaluation of statistics and a
comparison of the performance of individual fuzz targets. Finally,
based on the acquired knowledge, I propose improvements to the
current fuzz targets and introduce the implementation of new ones
depending on the reports indicating the existing code coverage. A n
overview of the changes is given in Chapter 5.

During the work on my thesis, the implementation was provided
for integration into the OpenSC project so that I could evaluate the
performance of my changes directly i n the OSS-Fuzz environment.
The result of the thesis is the implementation of improvements and
partial integration of these changes into the OpenSC project.

2

1 OpenSC

OpenSC [4] is an open-source project providing a smart card library,
middleware, and tools for personalisation and work w i t h smart
cards [5]. The project is maintained by the OpenSC team on Github 1 .
The project is still active, and a new release is published approximately
every year [8].

The Appendix A presents basic information on the operation and
communication of smart cards. There is also a description of the
PKCS #11 [9] and PKCS #15 [9] standards.

1.1 OpenSC Architecture

The essential components of OpenSC are the library, the code for
maintaining the PKCS #15 cards, the code for working with the config
uration files, the secure messaging module and the provided tools [4].
Another critical component of OpenSC is P K C S #11 module imple
menting PKCS #11 A P I [10].

1.1.1 OpenSC Library

The fundamental part of the OpenSC project is the library l ibopensc.
The library contains the implementation of drivers for individual sup
ported cards. Smart card drivers contain functions for card-supported
operations, more precisely, sending A P D U (Application Protocol Data
Unit) commands to operate on the card and processing the received
response. Another part of the library is PKCS #15 card emulators pro
viding compatibility with different file structures present on some card
types. The library also includes reader drivers for CT-API , OpenCT
and P C / S C interface and operations for establishing OpenSC context
and general functions enabling card operations and maintenance. [4]

Whether OpenSC supports a smart card is determined by the
presence of a driver for the card (and possibly a PKCS #15 emulator).
The exact list is given on the project w i k i page 2 . Supported cards

1. List of current members can be found at h t t p s : / / g i t h u b . com/OpenSC.
2. OpenSC W i k i is available at h t t p s : / / g i t h u b . com/OpenSC/OpenSC/wiki.

3

i . O P E N S C

include national ID cards, generic cards representing whole families
(with specified models), and USB tokens. [8]

1.1.2 Tools

OpenSC provides several tools for operating w i t h supported smart
cards. One of the crucial provided tools is the p k c s l l - t o o l for working
with PKCS #11 cards. This tool makes it possible to list stored objects,
sign, verify, encrypt, and decrypt data. The p k c s l l - t o o l requires a
module that implements the PKCS #11 API . This module can be linked
statically or dynamically in the form of a shared object. [11]

To create the PKCS #15 file structure on the card, users can utilise
the p k c s l 5 - i n i t tool. It allows users to personalise the card, upload
keys and certificates or generate new ones. Wi th p k c s l 5 - t o o l , it is
possible to manage a file structure on a card. Tool pkcs l5 -crypt serves
for cryptographic operations. [11]

Other tools are used to manipulate and display information about a
particular card type. The operation differs according to the capabilities
of the card. [11]

1.2 Fuzz Testing

Continuous testing of provided tools and functions that handle po
tentially dangerous input is an ideal target for fuzzing. Support for
fuzzing was added in 2019 [4, pul l request 1697]. The OSS-Fuzz project
was chosen as a suitable candidate for fuzzing of the OpenSC, mainly
due to the possibility of continuous integration of fuzzing for testing.
In addition to OSS-Fuzz, fuzzing i n OpenSC has also become a part
of Gi tHub actions using CIFuzz [12] concerning new changes in the
repository [4, p u l l request 2130].

Since then, only slight changes have been implemented i n exist
ing fuzz targets, mainly correcting minor problems in source code.
However, fuzz testing has already revealed many bugs in the OpenSC
project. The results show that fuzzing is a suitable way to find hard-
to-find problems that can affect the safety of the final product.

4

2 Fuzzing

Software security is a process that addresses how software can be pro
tected against vulnerabilities that may affect the system's operation.
The goal of software security is to prevent attacks that can compro
mise a given system. It covers several areas that permeate the entire
software development. These include secure development practices,
issue maintenance, code review and testing. [6]

A n integral part of the testing process is static and dynamic code
analysis. While the static analysis does not execute the code, dynamic
analysis involves testing performed at run time. One of the dynamic
analysis techniques and automatic code testing that has been widely
used recently is fuzzing. [6]

This chapter defines fuzzing as a testing technique, describes the
fuzz testing process and introduces a brief classification of fuzzers.
Finally, it clarifies metrics for evaluation of fuzzing performance and
fundamental categories of errors discovered by fuzz testing.

2.1 Definition of Fuzzing

Fuzzing is a negative testing technique. Negative testing is charac
terised by utilising unexpected or malformed inputs sent to the system
under test. The fuzzing approach differs from other test techniques
(such as performance testing) i n the intentionally malformed input
type. [6]

The goal is to create an input that causes the tested target to behave
unexpectedly and lead to an error. Testing is successful if the input
causes the system to crash or force unexpected behaviour. A crash on
such an input indicates an issue that can cause erroneous behaviour
or even a real crash when the system is deployed. Fuzzing is usually
a black-box or grey-box testing approach, where not all internally
running operations are known when delivering inputs. The purpose
of fuzzing is to generate unexpected inputs and subsequently discover
flaws related to security or service availability. [6]

5

2. F U Z Z I N G

Fuzzers are programs that cover the entire fuzz testing process -
creating inputs, supplying them to the system under the test, monitor
ing the running of the system and reporting problems [6]. The tested
interface or, more specifically, a function that uses fuzzing input for
testing, is referred to as a fuzz target in this thesis 2.

Fuzzing is a relatively simple way of testing that can be well auto
mated. Generating various damaged inputs can better cover the tested
program, as it can develop cases that human testers miss. In addition,
false positives are rarely found when fuzzing, as only crashes that
occurred are reported. [15]

2.1.1 The Process of Fuzzing

The first stage of the testing requires the determination of a suitable
target, which can be examined. The target can be, for example, an API
or an application, which malformed inputs could compromise. Such
targets include security-related applications, applications working
over the network, and programs working w i t h higher privileges or
confidential data. [16]

It is also necessary to determine how the attacker can disrupt the
target's run. Therefore, the second phase is evaluating critical parts
of the application. This can include function input arguments, used
protocols, environment variables, or memory. [16]

After the initial preparation, the fuzzer can generate a new fuzzing
input data or mutate existing inputs, depending on the fuzzer type
and its generation technique. The created inputs are passed to the
tested interface. [16]

In the next phase, the data are fed as inputs to the tested object, and
the tested target runs on the created data. The fuzzer then monitors
the run and evaluates encountered problems and crashes. During
fuzzing, it is essential to monitor the program's visible behaviour
(such as direct crashes) - fuzzer can use tools or components to detect
other problems. It can be, for example, responsiveness by protocol
implementations or memory corruption [16]. The level of monitoring
depends on the specific fuzzer.

1. The fuzzer is a commonly overloaded term; therefore, OSS-Fuzz and ClusterFuzz
use their defined terms [13].
2. The term fuzz target is also used by some fuzzers as by libFuzzer [14].

6

2. F U Z Z I N G

If the fuzzer finds a vulnerability, it can generate output suitable
for further investigation, reproduction of the error or other statistics.

2.2 Fuzzer Classification

Due to the diversity of approaches to fuzzing and the goal of testing, it
is impossible to divide fuzzers according to only one criterion into spe
cific groups. This section presents multiple possibilities for dividing
fuzzers and their types i n a given category.

2.2.1 Based on Testing Purpose

Individual types of fuzzers are divided mainly according to the pur
pose of use.

Single-Use Fuzzers These are fuzzers targeting one particular applica
tion or task. They can be quickly created and are used for easy testing.
Single-use fuzzers are not generic and cannot be easily extended for
further use. [6]

Fuzzing Libraries and Frameworks Fuzzers can also be implemented
as libraries that allow reusing for various purposes. These libraries
provide an A P I that is used to test a specific object. Fuzzing libraries
belong to generic fuzzers that can test various independent interfaces.
Based on their knowledge of the tested object and input structure, they
adaptively generate inputs for the tested object to reach new states in
the program's execution. [6]

Protocol-Specific Fuzzers Protocol fuzzers are developed for fuzzing
various implementations of a given protocol. These fuzzers should fol
low basic protocol structures. Adapting the fuzzer to a given protocol
type increases code coverage. [6]

Commonly tested protocols include, for example, SSL and TLS [6].
Recently developed protocol-specific fuzzer is project t l s f uzzer [17].

In-Memory Fuzzers Another option is an in-memory fuzzer. It modi
fies the arguments i n the memory of the tested program before other

7

2. F U Z Z I N G

functions process them. The tested functions can also be internal func
tions that are not directly run wi th user input. [6]

2.2.2 Based on Data Generation

Fuzzers can be categorised based on the process of creating new inputs.
Two main approaches are mutating inputs and generating inputs.

Mutation-Based Fuzzers Fuzzers based on generating new inputs with
mutations start with a set of valid inputs. The initial set is often referred
to as corpus. Files in the corpus are then mutated using (predefined)
rules to create anomalies. These rules include, for example, utterly
random byte changes or bit-flipping. [6]

Generation-Based Fuzzers This approach does not require an initial
set of inputs, as it generates new inputs without using the previous
ones. For the fuzzer to work efficiently, it must know the structure of
the data it is to generate. A generation-based fuzzer can work well in
generating inputs for structured protocols, provided it is familiar with
these structures. [6]

2.2.3 Based on Interface Knowledge

Another criterion for fuzzer classification is its knowledge of the struc
ture of generated inputs. This is a different approach to input gen
eration - it depends on how much knowledge the fuzzer needs to
have about the tested interface. For an ideal approach, it is valuable to
combine the following two mentioned methods, thus adhering to the
necessary structure wi th anomalies. [6]

Intelligent Fuzzer In general, the fuzzer knows the object under test
and the structure of the inputs it works with. Newly generated inputs
adhere to the given structure. However, a fully smart fuzzer has a low
chance of finding a bug since it is impossible to create input causing a
crash. [6]

8

2. F U Z Z I N G

Dumb (Non-Intelligent) Fuzzer The fuzzer generates data mostly at ran
dom. That might cause direct rejection of an entry that does not follow
the structure in the early stages of testing. The result is low code cov
erage and a low probability of finding a problem. Therefore, this type
of fuzzer is not suitable for testing interfaces that are sensitive to the
structure form of input. [6]

2.2.4 Based on the Access to the Tested Object

Just as testing approaches can be divided into white-box, grey-box and
black-box testing, this division also applies to fuzzers. The individual
categories specify the degree of access of the fuzzer to the tested object.

White-Box Testing In this case, the fuzzer has full access to the source
code of the tested object. This is also the only way to achieve higher
code coverage. These fuzzers use tracking parts of the code to create
new inputs. [6]

Black-Box Testing Object source code is not available w i t h this
method. The generation of new inputs by the fuzzer depends only
on the object's response to the given input (return value or other
program output) and not on any metrics working wi th the code, e.g.
code coverage. [6]

Grey-Box Testing The more efficient work of the fuzzer requires
the evaluation of metrics depending on the knowledge of the code.
These metrics include, for example, code coverage (of which coverage-
guided fuzzers). This knowledge then allows the adaptation of the
fuzzer for subsequently generated inputs. Grey-box testing is, there
fore, a hybrid approach to the tested object [6]. It is possible to support
grey-box fuzzers wi th a sufficient corpus and a dictionary.

2.2.5 Based on Tested Interface

Fuzzers can be classified according to the type of tested interface. The
following section is a brief overview of possible interface targets for
fuzzing.

9

2. F U Z Z I N G

Local Program The fuzzer specializes in the execution of the program
in the local environment (as opposed to, for example, fuzzing net
work communication). Fuzzing inputs contain environment variables,
command-line arguments or malformed file formats. Deformed inputs
can make the tested program crash unexpectedly and cause memory
corruption and possible security threats. File format testing is suitable
for various parsers, from multimedia to antivirus gateways. [6]

API Fuzzing Fuzzer supplies inputs directly to functions from A P I
provided by the tested object. Generated parameters become mal
formed arguments of the tested function [6]. The goal is to cause a
crash in the API backend. Fuzzer should know the argument structure
of the tested API .

Network Protocol Fuzzing It is possible to test communication w i t h
the target over a communicating channel and fuzz protocols used
in networking. Sent malformed packets are monitored to determine
whether they cause a crash. This fuzzer type may be sensitive to inputs
non-compliant wi th protocol format. [6]

Web Fuzzing That fuzzing type can also be a specification of network
protocol fuzzing. It focuses mainly on fuzzing the H T T P protocol. It
can also include fuzzing a web application by pushing malformed
inputs to forms and testing SQL injections 3 . [6]

Table 2.1 describes the primary classifications of some well-known
fuzzers. In particular, the category of access to the tested object may
differ based on the specific use.

3. Unchecked input can result in the insertion of a foreign code modifying an SQL
statement.

10

2. F U Z Z I N G

Table 2.1: Classification of selected fuzzers [18].

Fuzzer Purpose New data Knowledge Access

SPIKE framework generation intelligent white-box
Peach framework generation intelligent white-box
A F L library mutation intelligent grey-box
libFuzzer library mutation intelligent black-box f l

a. According to some sources, l ibFuzzer is referred to as a grey-box fuzzer. The
access to the tested object depends on the specific use.

2.3 Evaluation of Fuzzing Efficiency

Several essential characteristics are used to measure fuzzing efficiency.
The importance of individual metrics depends on the specific fuzzer
type and its use.

Execution Speed The primary metric for performance comparison is
the speed of testing by which is meant the speed at which just one
test is performed. The execution speed of fuzzing usually depends
on the program or function being tested. Slowdowns can occur, for
example, when working w i t h memory excessively. Generally, faster
execution allows for the testing of more inputs, and it is recommended
to aim for a higher test execution speed of around 1000 executions per
second. [19]

Code Coverage One of the most fundamental metrics of any testing
is code coverage. It is the amount of code of the tested object that was
run during testing among all code that can be executed [6]. Different
inputs trigger different conditional paths through the executed code
and may encounter hidden flaws.

The unit in which code coverage is measured depends on the
specific fuzzer - it can be line coverage, function coverage, executed
tools, or other regions determined by the abstraction layer [20]. This
metric also depends on the code style and concrete implementation
used in the tested program.

11

2. F U Z Z I N G

The coverage tells how much of the code was executed during
the testing. Therefore, it is a good metric for displaying the possible
range of a fuzzer, and the tester's goal should be to achieve the highest
possible coverage (not necessarily 100%). However, there can be inter
nal parts of code that cannot be executed even with a wide variety of
inputs [21], or on the contrary, neither higher values may not always
mean finding more problems (since the inputs covering the region
may not include ones that cause an actual crash) [6]. Some parts of
the code are more error-prone than others, so it is sometimes more
efficient to include more possible inputs than to cover code that may
not cause errors.

Input Space Coverage As mentioned for code coverage, a critical fuzz
metric is also the coverage of possible inputs of the tested program.
This metric shows which possible inputs were tested and which fuzzer
did not reach [6]. The fuzzer should be able to insert anomalies in the
appropriate places of the generated input.

For mutation-based fuzzers, suitable input space coverage can be
reached with well-defined corpora. Corpus files should adhere to the
appropriate input structure.

2.4 Software Bugs

Fuzz testing aims to f ind malformed inputs that cause errors in the
system under test. The most common error categories found when
fuzzing are memory-related vulnerabilities, denial of service and data
injection vulnerabilities.

Memory-Related Vulnerabilities A possible vulnerability that can arise
from bugs i n code happens in memory. This can be caused by both
reading and writing.

The program can read the memory where it should not have access.
In this case, it is possible to reveal some internal information stored
in this part of memory. It is also possible that the program writes
outside its reserved memory. Then the application data may change.
This vulnerability could be exploited by an attacker to change the

12

2. F U Z Z I N G

execution of a given program or to run its code [6]. This corruption
can affect both stack and heap memory.

This vulnerability category also includes other problems, for ex
ample, an integer overflow.

Denial of Service The attack aims to limit the system's functionality
or degrade its computing power. Users are no longer able to use all of
the system resources. This severe security issue prevents users from
working with the system. [6]

Data Injection Vulnerabilities In this attack approach, a foreign data is
injected into the process performed by the system. One of the methods
of data injection is SQL injection, where an attacker inserts a string
into the SQL query, which causes an unsolicited operation. A sys
tem unprepared for such an attack may face a compromise on its
database. [6]

Other attacks may also involve H T T P requests or X M L data [6].
Since fuzzing supplies the system with malformed inputs, fuzz testing
can reveal vulnerabilities connected wi th injection.

13

3 OSS-Fuzz Fuzzing Platform

OSS-Fuzz launched in 2016 as a service for open-source software
fuzzing, previously used for fuzzing Chrome components [22].
It works w i t h libFuzzer [14], A F L + + [23] (previously supported
A F L [24] was replaced w i t h AFL++) and Honggfuzz [25] fuzzing
engines with L L V M sanitizers [26] for continuous fuzzing of projects
written in C, Java, Python and other common languages [27].

OSS-Fuzz is widely used. By 2021, it has already discovered over
36,000 bugs i n more 500 open-source projects1 [27]. A m o n g the in
volved projects, it is possible to find well-known open-source projects
such as OpenSSL or GnuTLS [7].

This chapter deals w i t h the operation of the OSS-Fuzz project
and its fuzzing environment Cluster Fuzz. The fuzzing engines and
sanitizers used by ClusterFuzz are also described here.

OSS-Fuzz uses specific terms concerning fuzz testing. The fuzzing
engine is the program responsible for performing the entire fuzz testing
process. In contrast, the fuzzer only generates new fuzzing inputs. [13]

3.1 OSS-Fuzz Workflow

Continuous fuzzing i n OSS-Fuzz includes several phases - bui lding
fuzz targets, the testing itself and reporting bugs. In the first step, OSS-
Fuzz downloads the source code from the upstream repository and
OSS-Fuzz repository on GitHub [28]. The upstream directory usually
contains the particular fuzz targets. However, some projects store fuzz
targets directly i n the OSS-Fuzz repository [7].

Then, a container is created using base images. The builder 2 builds
the project wi th fuzzing targets according to the specified configura
tion. It also uploads fuzz targets into cloud storage. [28]

After that, ClusterFuzz [29] uses the compiled fuzz target binaries
and performs fuzzing in an isolated environment. The crashes are au-

1. List of public issues can be found at h t t p s : / / b u g s . chromium. o r g / p / o s s - f uzz
/ i s s u e s / l i s t .
2. The builder details can be found at h t t p s : / / g i t h u b . com/google/oss-f u z z / t
r e e / m a s t e r / i n f r a / b u i l d .

14

3. OSS-Fuzz F U Z Z I N G PLATFORM

tomatically reported to the issue tracker3. ClusterFuzz notifies project
members about arising issues and tracks fixes of found crashes. [31]

The overall process is shown in Figure 3.1.

OSS-Fuzz
project

r e t r i e v e
ClusterFuzz

p r o v i d e
c o n f i g u r a t i o n builder

u p l o a d
cloud

upstream
project

sync

^ m a i n t a i n

developer

t
n o t i

v e r i f y
f i x

p e r f o r m

fuzzing

f i n d

f y issue
tracker

t r a c k
bug

f i x

Figure 3.1: OSS-Fuzz workflow adapted from OSS-Fuzz [28] and Clus
terFuzz [31] architecture overview schemes.

3.1.1 Integration of the Project

OSS-Fuzz integrates open-source projects at the request of their main-
tainers. The OSS-Fuzz repository contains all currently integrated
projects i n the proj ects / directory. Each project's directory includes
the project's metadata, bu i ld script, and Dockerfile that defines the
container environment for building the particular project. [32]

The fuzz targets themselves should be located in the repository
of the tested project. This allows faster code changes and the addi-

3. ClusterFuzz uses Monorail [30], which is a Cloud-based issue tracker also used
for C h r o m i u m projects.

15

3. OSS-Fuzz F U Z Z I N G PLATFORM

tion of new targets. The following code snippet presents the function
signature required for fuzz targets in OSS-Fuzz. [32]

i n t LLVMFuzzerTestOnelnput(const u i n t 8 _ t *Data,
s i z e _ t S i z e) ;

In addition to the fuzz targets themselves, attaching a corpus with
files used to generate new entries and dictionaries is possible. The
dictionaries contain terms that the fuzz engine can use to generate
new inputs. [32]

Dockerfile defines the container environment for the bui ld of the
project and its fuzz targets. It must include commands for installing de
pendencies needed for building the project repository. The build script
also runs in this container. It is recommended to link the project stati
cally. After the fuzz targets are built, they are executed in a different
environment than the bui ld environment. [32]

Build script contains the basic configuration for building binaries,
loading the final fuzz target binaries, and creating ZIP files wi th cor
pora and dictionaries in $0UT destination. Environment variable $0UT
indicates where the binaries and bui ld artefacts for fuzzing run are
stored. Since the bui ld and runtime environments are different, it is
recommended to use static linking. [32]

File pro ject .yaml stores the project's metadata. In addition to
setting basic information such as homepage, programming language,
and the repository, it is possible to configure sanitizers, architecture,
fuzzing engine, or the number of builds per day. The configuration
file also lists the project members used to control access control to the
reported bugs, test cases, and the whole OSS-Fuzz application. [32]

Establishing the project directory in the OSS-Fuzz repository serves
as registration i n the OSS-Fuzz system, and OSS-Fuzz can start wi th
fuzzing. Alternatively, it is possible to use i n f r a / h e l p e r . py script for
bui lding and running fuzzing locally i n a container for local testing
purposes. This allows users to reproduce crashes and generate code
coverage based on the current corpus. [32]

16

3. OSS-Fuzz F U Z Z I N G PLATFORM

3.2 ClusterFuzz

ClusterFuzz is a fuzzing backend running on the Google Cloud Plat
form [31], and it is used by OSS-Fuzz 4 . The infrastructure mediates
fuzzing via available fuzzing engines, operates w i t h test cases, and
takes care of bug issue management. For a simple overview of the
status of fuzz targets and current crashes, ClusterFuzz provides a user-
friendly web interface and issue tracker for discovered problems. [29]

3.2.1 ClusterFuzz Architecture

ClusterFuzz runs in the cloud environment and consists of two main
components. The first component is A p p Engine [31] takes care of
web interface and crash management. The second component is a pool
of fuzzing bots [31] - these work on the fuzzing itself, checking for a
crash fix, minimising test cases and pruning the corpus 5 .

Job definition characterises the bui ld specification of running one
fuzz target w i t h settings for the fuzzing engine and sanitizer [13].
Managing job types is possible on the ClusterFuzz web interface [33].

The workflow starts w i t h uploading builds. According to jobs,
selected fuzzing engines w i t h sanitizers perform fuzzing on loaded
fuzz target binaries. When a crash occurs, ClusterFuzz sets up issues
in the issue tracker and checks daily whether the bug is fixed or not.
The period for disclosure is three months from the date of finding the
crash. [31]

3.2.2 User and Web Interface

The web interface [34] provides convenient access to outcomes of the
fuzzing process. Results are collected daily and presented on several
levels for particular fuzz targets and fuzzing engines with sanitizers.

4. ClusterFuzz can be used standalone outside of OSS-Fuzz on Google C l o u d or
run locally [31].
5. Removal of irrelevant test files without affecting code coverage [13].

17

3. OSS-Fuzz F U Z Z I N G PLATFORM

Overall Fuzzing Statistics Statistics for selected fuzzing engine in com
bination wi th used sanitizer for particular fuzz targets on OSS-Fuzz
webpage [35] gather:

• number of found crashes,
• size of the generated corpus,
• average time of test case executions per second and total fuzzing

time in hours,
• stability of runs,
• number of newly added tests,
• percentage of a regular crash and startup crash
• percentage of timeouts,
• and average of unwanted log lines.

Data are shown for the selected period. In addition, libFuzzer adds
a performance report w i t h fuzz target issues such as low speed or
code coverage found while fuzzing and a total number of executed
tests. ClusterFuzz stores the metrics mentioned above for every fuzz
target from every day. [34]

Code Coverage ClusterFuzz uses Clang [26] compiler with the Sani-
tizerCoverage [36] instrumentation for generating reports. OSS-Fuzz
web environment provides a coverage summary of all currently run
ning fuzz targets together [34]. It is possible to generate coverage for
individual fuzz targets manually via container from supplied cor
pus [32].

In OSS-Fuzz, line coverage is the ratio of lines executed at least
once during a run to the total sum of executable lines of source code.
This is the most straightforward way to track code execution. Region
coverage sums coverage of particular code regions 6 executed at least
once during fuzz target run. Function coverage delivers the roughest
picture since it covers only the execution of individual functions. [20]

Crash Statistics Crash statistics present a list of individual found
crashes. It sums up basic information about a particular crash - fuzz
target, date, platform, used sanitizer, build details, frequency of crash
ing, rate of security implication and flag whether the crash is reliably

6. Sections of code divided by control flows or particular code blocks.

18

3. OSS-Fuzz F U Z Z I N G PLATFORM

reproducible. The webpage also contains a stack trace with sanitizer
output and a downloadable test case that might be used for local
debugging either w i t h the fuzzing engine itself or i n an OSS-Fuzz
container. [34]

A security flag appears when a crash is a security-relevant prob
lem [34]. That mainly links to heap and stack buff er-overflows, double
frees, write and read operations outside bounds. Flag specifies also
estimated severity (unknown/low/medium/high) [35].

Crash overview refers to the issue-tracker [30] issue that is created.
Developers have three months to fix the bug before public disclo
sure [37].

3.3 CIFuzz

In addition to continuous fuzzing through ClusterFuzz, it is possible to
use CIFuzz. The CIFuzz is GitHub Actions [38] workflow for fuzzing
as part of CI (Continuous Integration) on Gi tHub. The fuzzing is
triggered via pul l requests. To use CIFuzz, the project repository must
be on G i t H u b , and the project should be part of OSS-Fuzz. Then,
maintainers need to create a workflow i n the . g i thub/ directory of
the target project. [12]

3.4 Fuzzing Engines

The concept of a fuzzing engine stands for a tool that creates fuzzed
inputs and feeds them to the fuzzing target [13]. Creating new in
puts is based upon mutation of already produced data or generation.
Particular fuzzer types are described in Chapter 2.

3.4.1 MbFuzzer

Library libFuzzer [14] is the only fuzzing engine directly required by
OSS-Fuzz [32]. The libFuzzer is coverage-guided and is meant to work
with libraries and APIs rather than testing whole programs [14]. For
code-coverage instrumentation, libFuzzer uses SanitizerCoverage [36].

7. A list of statistics is available at h t t p s : / / o s s - f u z z . com/ for users who are listed
in the project details in the OSS-Fuzz repository.

19

3. OSS-Fuzz F U Z Z I N G PLATFORM

The fuzz targets are named as LLVMFuzzerTestOnelnputO, the
declaration is presented i n the Section 3.1.1. After compilation w i t h
Clang and - f sanit ize=f uzzer flag, Clang builds standalone binaries,
which can be executed directly. The libFuzzer also offers many options
for running adjustments for running fuzz targets, including mem
ory and time limitations. If specified, it starts fuzzing either from an
empty corpus or a user-provided one. The fuzzing engine supports
the minimization of corpus files and dictionaries. By default, fuzzing
runs until a crash is found or until it is stopped from the command
line. [14]

The output contains information describing used corpus files and
set options. Further statistics describe at each step current region
coverage, corpus size, execution speed, the length limit for entries and
memory consumption. [14]

3.4.2 AFL and AFL++

A F L [24] works similarly to libFuzzer; thus, it mutates generated test
cases into new ones according to their achieved code coverage. Sim
ilarly, it is also possible to define dictionaries used by the fuzzing
engine.

A F L + + [23] originated i n 2019 as a fork of A F L due to low devel
oper activity. A fuzzing engine combines more mutation techniques
and enables custom mutators. It also offers more complex improve
ments related to corpus pruning [39].

It is possible to use A F L + + and libFuzzer on the same corpus.
Moreover, A F L + + can run w i t h the same defined fuzz targets as
libFuzzer. Therefore there is no need to create a particular signature in
fuzz targets only for this fuzzing engine. Fuzzing wi th A F L + + does
not support corpus pruning and crash minimization. Therefore it is
recommended to use libFuzzer as a second fuzzing engine. [40]

3.4.3 Honggfuzz

Honggfuzz has been one of the fuzzing engines used in the OSS-Fuzz
project since 2019. It is security-oriented and feedback-driven; it also
supports corpus minimization and allows users to generate coverage,
use dictionaries and sanitizers. [25]

20

3. OSS-Fuzz F U Z Z I N G PLATFORM

3.5 Sanitizers

Sanitizers are error detectors and dynamic analyzers of a running
program. Their job is to identify problems that could lead to run-time
errors. Each sanitizer is specified to recognize a particular class of is
sues. Common sanitizers include AddressSanitizer [41], UndefinedBe-
haviorSanitizer [42], ThreadSanitizer [43], MemorySanitizer [44] and
LeakSanitizer [45]. This section describes AddressSanitizer with Leak-
Sanitizer, UndefinedBehaviorSanitizer, MemorySanitizer and Sanitiz-
erCoverage [36] as they are used i n fuzzing wi th OSS-Fuzz.

Sanitizer libraries have to be l inked w i t h the final binary. It is
required to use the Clang compiler for its instrumentation and

- f s a n i t i z e flag to specify the sanitizer type while compiling the
executable. For most of the offered analysis tools is possible to select
either particular checks via the same - f s a n i t i z e flag or set environ
ment variable to define memory and time limits, listing methods and
more [41].

Errors that AddressSanitizer (A S A N) detects are often out-of-
bounds accessing, usage after calling free() or return. OSS-Fuzz
uses it together wi th LeakSanitizer [45] to detect memory leaks. The
default configuration of OSS-Fuzz fuzzing use AddressSanitizer with
libFuzzer and A F L + + fuzzing engines. [27]

UndefinedBehaviorSanitizer (UBSAN) catches errors connected
wi th out of bound access for static array and bitwise shifts, derefer
encing of invalid or NULL pointers and overflows for some data types.
Other problems found include timeouts. ClusterFuzz also supports
U B S A N with libFuzzer fuzzing engine by default. [29]

The only non-default used sanitizer is MemorySanitizer. Its pur
pose is to find uninitialised reads of values. To utilise this sanitizer, the
whole program w i t h all libraries included must be built w i t h M e m
orySanitizer. Otherwise, the tool w i l l not consider the initialisation
of values from the code parts not instrumented from the compila
tion. [44]

The last supported sanitizer is SanitizerCoverage. Its purpose is
to track line, function and region coverage of the executed program's
source code. [36]

21

4 Existing Fuzzing Support in OpenSC Project

Fuzz targets i n OpenSC are stored in the s r c / t e s t s / f u z z i n g / direc
tory along w i t h the corpus directory and Makefile [4]. OpenSC is
tested w i t h the libFuzzer fuzzing engine in combination w i t h A d -
dressSanitizer and UndefinedBehaviorSanitizer; the A F L + + fuzzing
engine runs with AddressSanitizer [35].

4.1 Existing Fuzz Targets

The following section presents existing fuzz targets implemented in
OpenSC before the work on this thesis started.

4.1.1 ASN.1

A S N . l (Abstract Syntax Notation One) [46] is a data format that en
ables unified message encoding in communication between differ
ent applications. OpenSC provides a basic A P I for using A S N . l en
coding consisting mainly of encoding and decoding functions and
tag processing [4]. These interfaces are tested via two fuzz targets:
fuzz_asn l_pr in t and fuzz_asnl_s ig_value[4] .

Target fuzz_asn l_pr in t calls function sc_asnl_print_tags ()
supplying fuzzing input data and its size. This function prints recur
sively parsed input buffer according to the A S N . l format. The fuzz
target uses this function as it processes all components of the A S N . l
parsing and thus should cover the majority of the potential issues. [4]

Target f uzz_asnl_sig_value aims to test encoding and decoding
of E C D S A (Elliptic Curve Digital Signature Algorithm) [47] signa
tures. The encoding of signature is from R/S 1 format into sequence
format. The fuzz target first encodes the input fuzzing data and then
decodes it into sequence format [4].

4.1.2 Decoding PKCS #15 objects

OpenSC works wi th the PKCS #15 structure on the card through the
internal sc_pkcsl5_card structure. It also contains a list of structures

1. R and S are integer values specifing E C D S A signature.

22

4. EXISTING F U Z Z I N G SUPPORT I N O P E N S C PROJECT

representing the card's actual objects (directory entries). These inter
nal representations can be decoded from the byte sequences. [4]

Fuzz target f uzz_pkcsl5_decode tests decoding of fuzzing input
into internal object structures representing PKCS #15 directory entries.
The fuzz target also includes a call to decoding function into public
key and token information structures, which are thus tested. [4]

4.1.3 Virtual Reader and PKCS #15 Card Functionality

Smart cards can perform various cryptographic operations like com
puting signatures or encryption. These operations are invoked via
drivers that include functions used to communicate with the card. In
the communication between the host and the card, the card driver
mediates the creation of A P D U requests sent to the card via a reader.
The cards respond based on these requests with A P D U response pack
ets. [4]

The reader is represented in OpenSC by the sc_reader_t structure.
The structure contains reader functions, data, and a pointer to the
OpenSC context object. [4]

When the reader is to be used for communication w i t h the card,
it must be stored i n the list of readers that are part of the context
structure and be part of the call to the sc_cormect_cardO function,
which ensures the connection of the card. If the connection succeeds,
A P D U requests can be transmitted via a transmit function of the reader
structure. [4]

Virtual Reader The fuzz target fuzz_pkcsl5_reader implements a
simple virtual reader that simulates the communication with a virtual
card. The reader structure uses fuzzing input data that it interprets as
A P D U responses. [4]

The reader structure contains release, connect, disconnect, and
transmit operations. The connect operation sets the ATR (Answer To
Reset) value of the simulated card, and the transmit operation sets
the appropriate data in the A P D U response. [4]

The ATR and the response data are created via f uzz_get_ chunk ()
function, which processes data stored i n the virtual reader. The func
tion parses the data into individual chunks whose length is determined
by the first two bytes. [4]

23

4. EXISTING F U Z Z I N G SUPPORT I N O P E N S C PROJECT

The usage of the virtual reader in fuzz target assumes initialised
OpenSC context. The first step of creating the virtual reader is to re
move all readers stored in the context object. That is followed by the set
ting reader operations in the reader driver. Next, a f uzz_add_reader ()
function allocates the reader object for the virtual reader. It sets its
provided operations and supplies the fuzzing input as reader data. [4]

The fuzz_pkcsl5_reader fuzz target The fuzz target begins w i t h
the initialization of the virtual reader. Then it creates the internal
sc_pkcsl5_card structure and tests decipher, wrap, unwrap, sign and
pin operations. [4]

The f uzz_pkcsl5_reader has a relatively large reach. It is possible
to test individual cryptographic operations with it. It also covers card
detection and initialisation and functions implemented in individual
card drivers.

4.2 Code Coverage

Table 4.1: Coverage of source directory s r c / from 23th October 2021
before integration of new fuzz targets into project [48].

Path Line Lines Region Regions
common/ 42.76% 263/615 38.91% 200/514
l ibopensc/ 40.88% 26229/64168 33.43% 28 741/85962
p k c s l l / 0.00% 0/0 0.00% 0/0
p k c s l 5 i n i t / 0.00% 0/15360 0.00% 0/22627
scconf/ 10.19% 79/775 7.24% 36/497
sm/ 0.00% 0/54 0.00% 0/38
t e s t s / 95.13% 254/267 95.24% 140/147
t o o l s / 0.00% 0/28 0.00% 0/27
u i / 25.00% 1/4 25.00% 1/4
Total 33.01% 26826/81271 26.52% 29118/109816

Figure 4.1 presents the overall line and region code coverage of the
OpenSC project. The second and fourth column in the table represents
the ratio of the executed code lines (regions) to the lines (regions)

24

4. EXISTING F U Z Z I N G SUPPORT I N O P E N S C PROJECT

found i n some execution paths [48]. There can be seen the highest
percentage in t e s t s / directory, which is caused by executing the fuzz
targets themselves.

A l l fuzz targets access the l ibopensc/ directory primarily. It con
tains all particular card drivers and PKCS#15 emulators tested mostly
by fuzz_pkcsl5_reader. There are also source files for processing
data in A S N . l format covered by fuzzing targets f uzz_asnl_pr int
and fuzz_asnl_s ig_value.

The report [48] consists of the files, including code parts that are
reachable from current fuzz targets. Since it is focused only on listed
directories, directories for m i n i d r i v e r / , p k c s l l / and smm/ are not
considered since none of their functionality is reached by fuzz targets.

75000

150000

'25000

0

Line Coverage

E x e c u t e d l i nes

R e a c h e d l ines

23 .08-
3 0 L 9 J 08-' 03-

100000
in
c

ö l 50000
E x e c u t e d r eg ions

R e a c h e d reg ions

-v—v"r-r — 1

23-' 30 \9J 08-' 03-

Figure 4.1: Code coverage from 23rd August 2019 to 3rd November
2021 [48].

Figure 4.1 presents overall coverage statistics of line and region
coverage. The fluctuations in 2019 are primarily due to the frequent
crashes [4]. These have the effect of slowing down the speed and lower
ing coverage. In 2019,60 crashes were found. The f uzz_pkcs 15_reader
spent only 21.5% of the run time on fuzzing [35].

25

4. EXISTING F U Z Z I N G SUPPORT I N O P E N S C PROJECT

In 2020, there was a sharp decline in coverage of almost 20% caused
by the fuzz target f uzz_pkcsl5_reader. Its region coverage dropped
from 31.05% to 14.80% [35]. The others d id not notice significant de
viations. In this period, the coverage of l ibopensc/ significantly de
creased [49]. There were no significant changes in the OpenSC project,
which could have led to this drop [4].

Another significant drop occurred in A p r i l 2021, when line cover
age fell from 42.95% to 34.44%. The reason was that the fuzz target
found a path to the p k c s l 5 i n i t / directory, and the total amount of
code available increased. [50]

For the overall coverage evaluation, it is essential to compare the
statistics of all fuzz targets w i t h each other. The difference between
fuzz targets is caused by having a different possible reach in the code.
In Table 4.2 can be seen code coverage of s r c / directory per fuzz target.

Table 4.2: Region coverage of source directory src/ from 27th November
2021 by existing fuzz targets [35]. Data are obtained from corpus files
generated by OSS-Fuzz [51].

Fuzz target Region Regions

fuzz_asnl_pr in t 13.73% 383/2,789
fuzz_asnl_s ig_value 0.70% 770/109478
fuzz_pkcsl5_decode 1.37% 1504/109480
fuzz_pkcsl5_reader 25.56% 28283/110635

The overall reach of fuzzing in an OpenSC project is limited by the
relatively small number of tested functions.

4.3 Performance of Fuzzing Runs

OSS-Fuzz provides further fuzzer statistics and performance reports
accessible only to project members [35]. Project members are set via
project .yaml file in OSS-Fuzz repository [32].

Table 4.3 containing the speed of execution and fuzzing time shows
that f uzz_pkcs 15_reader is the slowest among all. With libFuzzer, it is
significantly less than recommended 1000 executions per second [19]

26

4. EXISTING F U Z Z I N G SUPPORT I N O P E N S C PROJECT

from the two years of fuzzing. The slowdown can be caused by exces
sive logging or the dynamic allocation in the code.

Table 4.3: Internal performance statistics [35] of libFuzzer engine with
A S A N [41] and U B S A N [42].

Year Fuzz target A S A N U B S A N Fuzz target
Speed Time Speed Time

2019 fuzz_asnl_print 4321 92.2% 1231 16.7%
fuzz_asnl_sig_value 3739 91.3% 8013 99.5%
fuzz_pkcsl5_decode 2431 14.9% 3 229 11.7%
fuzz_fuzz_pkcsl5_reader 104 21.5% 160 24.1%

2020 fuzz_asnl_print 5114 99.5% 10290 99.6%
fuzz_asnl_sig_value 4807 99.6% 9 387 99.6%
fuzz_pkcsl5_decode 3622 99.6% 7295 99.6%
fuzz_fuzz_pkcsl5_reader 223 42.9% 523 82.6%

2021 fuzz_asnl_print 5224 95.9% 8 734 95.9%
fuzz_asnl_sig_value 6008 95.6% 9 559 95.6%
fuzz_pkcsl5_decode 3770 95.6% 6 059 95.6%
fuzz_fuzz_pkcsl5_reader 333 73.1% 679 95.5%

Time i n the Table 4.3 represents fuzzing time percentage. It is a
ratio of total time spent fuzzing. The overall testing time, including
states when fuzzing, is interrupted by crashes (either startup and new
ones), logging and timeout [35]. O n average, f uzz_pkcsl5_reader
achieves less fuzzing time than the rest of the fuzz targets - mainly
due to the frequent crashes found by this target [35].

Fuzzing with U B S A N , according to Table 4.3 reports a significantly
lower fuzzing percentage in 2019 than in the following years. This was
probably caused by frequent crashes encountered by the presented
three fuzz targets [35].

27

4. EXISTING F U Z Z I N G SUPPORT I N O P E N S C PROJECT

4.4 Crash Statistics and Discovered Bugs

The Monorail [30] issue tracker allows direct access to discovered bugs
only to project members. However, after fixing the bug or disclosure,
the bug reports are opened to public 2 .

Fuzzing engine A F L + + w i t h A S A N has run for a shorter period.
It has found five crashes only by fuzz_pkcsl5_reader, from which
all were evaluated as security-relevant. Four crashes were caused by
timeout, heap-buffer-overflow and subsequent read operation. [35]

The libFuzzer engine has run since 22nd August 2019. The tar
get f u z z _ a s n l _ p r i n t crashed three times, once on the security-
relevant problem w i t h heap-buffer-overflow. The second target
fuzz_asnl_s ig_value has discovered two problems, one of them
being security-relevant heap-buffer-overflow. [35]

Target f uzz_pkcs 15_decode was significantly more successful than
the previous two. It has encountered 20 crashes, among which there
were bad free callings, heap-buffer-overflows and direct memory leaks
and undefined behaviour such as aborts or integer-overflow. [35]

Fuzz target fuzz_pkcsl5_reader achieves the highest amount
of found bugs. It has discovered 117 crashes w i t h A S A N and 39
crashes with U B S A N ; 75 were security-relevant. It was most often an
out-of-memory approach as heap-buffer-overflow and stack-buffer-
overflow. [35]

4.5 Conclusion of Current Fuzzing Support

When comparing all fuzz targets, fuzz_pkcsl5_reader stands out
significantly. Despite the slowest running speed, it exposed the most
crashes.

The other fuzz targets run relatively stably and w i t h sufficient
speed. Nevertheless, f uzz_asnl_sig_value and f uzz_pkcsl5_decode
have low code coverage and have found small number of bugs. To
achieve better results, it is necessary to examine the coverage reports
for the given fuzz targets and find possible limitations causing the
mentioned problems.

2. Crashes described in this section can be found in the OpenSC repository as links
to the Monorai l reports included in the corresponding commits.

28

5 Improvements for OpenSC Fuzzing

The following chapter presents the implementation part of this thesis.
Several OpenSC parts were selected as suitable for fuzz testing: gen
eral card operations, configuration parser, PKCS #15 object encoding,
PKCS #11 module, PKCS #15 compatible card initialisation and some
of the OpenSC tools. Other changes concern improvements to existing
fuzz targets and overall improvement in fuzzing for local regression
testing. Each section describes the selected OpenSC part, the structure
of a new fuzz target, comments for the implementation, corresponding
corpus creation, and discovered bugs 1 .

The run of the new fuzz targets was analysed either from the local
environment using a container or directly from reports in the OSS-
Fuzz project. The fuzz targets were further enhanced according to run
statistics and performance.

Newly implemented fuzz targets for encoding PKCS #15 objects,
PKCS #15 card personalisation, PKCS #11 A P I and OpenSC tools are
described in this chapter. Further changes regarding the improvements
of the two existing fuzz targets, implementations of new fuzz targets
for the configuration parser and generic card operations can be found
in Appendix B. There is also a future proposal for fuzz target testing
p k c s l l - t o o l using the Sof tHSM [52] software token. The improve
ments in Appendix B are beyond the scope of the mandatory part of
this thesis.

5.1 Encoding of PKCS #15 Objects

OpenSC provides A P I for encoding PKCS #15 objects from the internal
object representation of P K C S #15 structure on the actual card into
bytes. The requirement for their usage is initialised sc_pkcsl5_card
object [4]. According to the code coverage obtained from OSS-Fuzz
reports [48], these encoding functions are not reachable by any existing
fuzz target and thus are not tested.

1. The bugs found by OSS-Fuzz described in this chapter have already been fixed,
and their descriptions are available in the corresponding pul l requests in the OpenSC
repository [4].

29

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

5.1.1 Structure of Fuzz Target fuzz_pkcsl5_encode

The first part of the new fuzz target f uzz_pkcsl5_encode consists of
establishing OpenSC context and connecting the virtual reader. The
fuzzing input is interpreted as A P D U responses.

Subsequently, the sc_pkcsl5_bind() function is called. After in i
tialisation, this function sets up the PKCS #15 card structure containing
PKCS #15 file objects. The initialisation is crucial because it is impossi
ble to test encoding functionality without the PKCS #15 card object.

The main testing happens i n the iteration over file objects. The
corresponding encoding function is called based on the type of object.
The result is stored i n the auxiliary buffer and then released.

In addition to the encoding itself, the conversion of the object to the
internal structure of the public key is tested for the public key object.
Similarly, the fuzz targets call function for converting a certificate
object to an object containing private key attributes.

Finally, a function for encoding the unused space representation
is called after the cycle. Allocated resources are released before the
termination of the program.

Corpus The input for the fuzz target is only the list of A P D U s used
by the virtual reader as the card responses. For the P K C S #15 card
object to finish the initialisation via virtual reader and work correctly,
the input must contain responses related only to the card connection.
The corpus files were created from the already existing corpus of fuzz
target fuzz_pkcsl5_reader.

5.1.2 Run Analysis

After 30 days of running i n OSS-Fuzz, the fuzz target reaches on
average 500 executions per second and has 22.43% region coverage.
Coverage is gradually increasing, according to OSS-Fuzz statistics. [35]

5.1.3 Bugs Discovered by fuzz_pkcsl5_encode

The fuzz target d i d not encounter any problems during the local or
OSS-Fuzz run.

30

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

5.2 Personalisation of PKCS #15 Card

Tool p k c s l 5 - i n i t tool serves as a utility for the card's personalisation.
The card must be compatible w i t h P K C S #15 standard [4]. It allows
users to create PKCS #15 structure, add keys and certificates and man
age PINs on the card. The relevant source code is stored in l ibopensc/
and p k c s l 5 i n i t / directory, with 0% code coverage according to OSS-
Fuzz statistics [48].

The personalisation is specified via a profile file. The profile de
fines the PKCS #15 structure layout and contains information about
files and objects stored on the card. The p k c s l 5 i n i t / directory holds
one general profile and other more specific profiles for various types
of cards. The profile file structure is similar to the structure of the
configuration file, and therefore the same parser is used. Parses profile
is required for most of the PKCS #15 initialization functions. [4]

5.2.1 Structure of Fuzz Target fuzz_pkcsl5init

The fuzz target begins wi th splitting the fuzzing input data into two
main blocks with a null byte as a divider. The first block serves as data
of the profile file. The second block is processed A P D U responses. The
target also uses data from this block as input buffers to test functions.
The data are obtained w i t h fuzz_get_chunk(). The following steps
try to simulate the functions from the p k c s l 5 - i n i t tool.

First, the OpenSC context is established, and the virtual reader is
created and supplied w i t h fuzzing input data. Connecting the card
and transmitting data uses a second input data block to communicate
with the card.

After establishing the card connection, the target needs to load the
profile. This functionality is emulated since the original function is
supplied with a filename and works directly with the profile file stored
in the OpenSC directory (fuzz target binaries do not have access to
the profile files i n the execution environment). That function parses
the profile string, processes it, and creates a profile structure w i t h
appropriately set attributes. This functionality is similar to the original
implementation of the sc_pkcs l5 in i t_b ind() function.

Testing the tool's functionality is split into individual functions
that imitate operations in the p k c s l 5 - i n i t tool. The fuzz target tests

31

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

card initialization, P I N settings, object storage, generation of all pos
sible symmetric and asymmetric keys, symmetric key storage, card
finalization and card erasure. These operations take various flags and
buffers as arguments. Some of them (such as P I N values) have been
selected as static; some are separated from the A P D U part of the input
file.

It is possible to store the private key i n P E M format, the public
key in D E R or P E M format, and the secret key and certificate. When
storing a private and public key, the p k c s l 5 - i n i t tool first transforms
the content of the input file into a key format from OpenSSL and then
converts it into argument structure. Due to this procedure, the target
would have to transform the random input into a valid OpenSSL key
structure. Therefore private and public key storage testing is omitted
in the fuzz target.

Corpus The profile part of the corpus file consists of two files. These
are pkcs l5 . prof i l e wi th the information needed for every card and
myeid. prof i l e with specifications for the chosen card. In the original
p k c s l 5 - i n i t tool, there is gradual loading, firstly program parser
pkcsl5 .prof i l e and then continues with myeid. prof i l e . The corpus
file has both profile files directly attached.

The M y E I D card was used to generate the A P D U traces from the
p k c s l 5 - i n i t tool. A P D U traces are split and connected behind each
other to match particular procedures. The exact number of removed
bytes is calculated from the log files containing sent and received
A P D U s created when generating card responses from the pkcs 1 5 - i n i t
tool.

For functionality not supported by the M y E I D card, the sections
were filled w i t h responses from other parts of the communication.
Just enough bytes were truncated so that the answers were enough to
complete the function (with an error) so that they d i d not interfere
with the following test block.

5.2.2 Run Analysis

After two month of fuzzing wi th the f u z z _ p k c s l 5 i n i t , OSS-Fuzz re
ports 20.73% of region coverage [35]. It raised from initial 14.09%. The

32

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

average speed of test execution is relatively slow; it reached maximally
548 executions per second [35].

The low speed is caused mainly by frequently repeated crashes [35]
until bugs are fixed i n the code. Another reason may be the com
plexity of that fuzz target. Using a virtual reader generally slows
down fuzzing, as seen in other fuzz targets that use the reader. The
f u z z _ p k c s l 5 i n i t also tests multiple operations consecutively, which
can affect the execution time of the test case.

5.2.3 Bugs Discovered by fuzz_pkcsl5init

Despite the lower speed, the fuzz target is relatively successful in
finding bugs. Most cases relate to memory leaks, out-of-bounds reads
and timeouts [35].

Local Run with MbFuzzer Engine Local run in container showed many
small memory leaks in p k c s l 5 - i n i t functions and profile parser. A n
other common bug was dereferencing pointers without checking
whether they have a NULL value. Subsequent problems arose from
reading outside of allocated memory and using variables defined out
of the current scope. The initial p u l l request contains a patch to fix
these bugs 2 .

OSS-Fuzz Run The f u z z _ p k c s l 5 i n i t fuzz target encountered more
than 20 reproducible problems during the first two months of running
in OSS-Fuzz. The issues detected in profile file parsing and functions
for PKCS #15 initialisation included NULL dereferencing, buffer over
flows and memory leaks. [35]

5.2.4 Improvement of the fuzz_pkcsl5init

Implemented fuzz target f u z z _ p k c s l 5 i n i t is relatively slow due to a
large number of operations. As input, it also takes a complex structure
that must cover the profile's content and the A P D U responses for
many operations. In addition, some of the operations receive buffers
with hard-coded values as input instead of fuzzed arguments.

2. Details can be found in original p u l l request h t t p s : / / g i t h u b . com/OpenSC/Op
enSC/pull /2500.

33

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

To solve these problems, fuzzing individual operations can be
done separately. The first byte of the input is used to select the tested
operation. To separate the profile part from the fuzzing input, two
bytes specifying the length of this part are taken instead of the null byte
divider. A l l arguments needed for the tested operations are further
parsed from the input data.

The described implementation is a proposal for future improve
ments.

5.3 PKCS#11API

The PKCS #11 standard defines A P I for operations accessible on cryp
tographic devices [9]. Details of this standard are given in Appendix
A.4.1. OpenSC project provides a module that implements this in
terface. The particular implementations of functions defined by the
PKCS #11 A P I are stored i n s r c / p k c s l l / directory [4].

The primary use of the P K C S #11 A P I in OpenSC is i n the
p k c s l l - t o o l , which allows performing cryptographic operations
with a connected smart card. With default settings, this tool uses the
PKCS #11 module from OpenSC. [4]

A s shown in the code coverage reports from OSS-Fuzz [48], the
PKCS #11 is not covered by any fuzz target.

5.3.1 Structure of Fuzz Target fuzz_pkcsll

Fuzz target f u z z _ p k c s l l aims to test PKCS #11 A P I implementation
provided by OpenSC. The PKCS #11 module is linked statically to the
fuzz target.

The fuzz target allows testing one procedure at a time. Initially,
the first byte of the fuzzed input data decides which procedure to test.
For each procedure, the fuzz target then extracts the data needed for
testing - PINs, data buffers, and the values used i n the templates for
key generation, key derivation and key wrapping.

The template is an array that contains attributes that specify in
formation about the type and usage of the new key. First, for each
attribute, according to the value of one byte, it is decided whether it

34

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

w i l l be part of the template. The following bytes are interpreted as the
value of the attribute to be stored i n the template.

The P K C S #11 library needs to be initialised to use the A P I . The
C _ I n i t i a l i z e [10] function is used for this purpose. A l l connected
cards are detected during the initialisation, and virtual slots are cre
ated. In p k c s l l - t o o l , the slots are further used for card selection for
particular procedures.

A s the fuzz target does not aim to test real connected cards, it
removes any connected readers and deletes the created virtual slots
after initialisation. The original list of slots is replaced by only one
newly created virtual slot connected to the virtual reader that contains
the fuzz input data. This process simulates the detecting the real card
in the function card_detect (). The original detection function cannot
be used because it is impossible to supply the virtual reader.

Fuzz target focuses on testing P I N operations, token initialisation,
decryption, signing, verification, key wrapping and key derivation.
Some of the mentioned procedures, such as encryption, hashing, sign
ing and signature verification, enable data processing as the whole
or per parts. The fuzz target tests both approaches. For sequential
processing, it divides the data buffers into smaller parts and calls the
operations in a loop.

Corpus It is possible to generate A P D U traces directly from running
the fuzz target built- in non-fuzzing mode 3 . Since the C I n i t i a l i z e
function is called before connecting to the virtual reader, it is only
needed to skip deleting the virtual slots and connecting the new reader.
Then, the fuzz target can work directly wi th the connected card. The
arguments needed for the given operations are appended before the
given A P D U traces to create the final corpus of files.

5.3.2 Run Analysis

This fuzz target is not merged in OpenSC yet. Nevertheless, the local
test run does not show any performance problems. According to the

3. Via the f u z z e r . c with mainO function, that takes a file and supplies its content
to the fuzz target as fuzzing input.

3 5

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

corresponding local code coverage report, the created corpus covers
the paths leading to the tested functions.

5.3.3 Bugs Discovered by fuzz_pkcsll

Since the fuzz target is not integrated into OpenSC, this section de
scribes only bugs found locally while testing the fuzz target.

Local Run with MbFuzzer Engine Only one memory leak was found
during local f u z z _ p k c s l l fuzz target testing. This issue is caused
by the non-releasing of the list of operations part of the P K C S #11
structure for the session. Fixing the problem is part of the initial pul l
request.

5.4 OpenSC Tools

Essential parts of the OpenSC project are tools provided for working
wi th smart cards. They are located i n s r c / t o o l s / directory. Some
tools are generic, so users can use them w i t h various smart cards
(that comply w i t h PKCS #11 and PKCS #15 standard) or specific for
particular card types. [11]

The structures of the tools are quite similar. They always contain a
mainO function that handles command-line options and performs a
sequence of operations based on the used options. Tools specialised
for a given card type can set a single card driver before attempting to
connect the card - only this one is used when connecting. If the user
tries to use a non-compatible card, the connection fails, and the tool is
terminated. The sequence of the executed operations also depends on
whether some form of authentication is required, which is addressed
differently by each tool. [4]

The tools i n OpenSC are not tested by any fuzz target, as shown
by the code coverage report from OSS-Fuzz [48].

5.4.1 Fuzz Targets for Tools

The problem w i t h tool fuzzing is the mainO function i n the tool's
source code. It is impossible to link or include the source code directly

36

5- IMPROVEMENTS FOR O P E N S C F U Z Z I N G

since the fuzzing engine includes its mainO during the testing phase.
However, two basic approaches enable fuzz testing of tools.

The first approach is implementing a fuzz target to simulate the
tool's operation. That means that besides omitting the processing of
options, fuzz target needs to reimplement functions included in the
tool source code and call them in the same manner as the tool does in
mainO function.

This approach is quite challenging, as it is essential to rewrite
the complete functionality of the tool. In case of significant changes
in the tool's source code, adjusting the corresponding fuzz target is
also necessary. In addition, some tools have most of the functional
ity implemented directly in the source file, which puts even more
emphasis on proper reimplementation. Nevertheless, this approach
is possible, and some tools' functionality is suitable for this type of
testing. A n example is f u z z _ p k c s l 5 i n i t , which works on a similar
basis as the p k c s l 5 - i n i t tool and tests the functionality for PKCS #15
initialisation.

The second approach is to test the tool run in the body of the fuzz
target w i t h fuzzed command-line options. To enable direct testing
of the tool, it is needed to include the source code and rename the
mainO function 4. Renaming can be done via #def ine directive, which
is pre-processed before the compilation. In the same way, the fuzz
target can change the default function for connecting the card to the
connection of the virtual reader.

The advantage of this approach is that there is no need to reim
plement tool operations. O n the other hand, file processing is a bit
problematic. Suppose the argument of the input file appears between
the fuzzed options. In that case, such a file does not exist in the test
environment. The absence of an input file w o u l d cause the tool to
terminate, and fuzzing would not cover the corresponding parts of the
code. Another problem is that the fuzz target does not subsequently
delete the output files created during testing.

4. Since it is not possible to assume the current working directory of the fuzz
target according to the OSS-Fuzz documentation [27], the tool cannot be called via
systemO (function executing the commands).

37

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

5.4.2 Structure of Fuzz Targets for Tools in OpenSC

The implemented fuzz targets for tools in OpenSC projects follow the
second approach described in the previous subsection. The renaming
procedure is presented in the following code snippet.

d e f i n e main _main
d e f i n e u t i l _ c o n n e c t _ c a r d _ e x

f u z z _ u t i l _ c o n n e c t _ c a r d
i n c l u d e " t o o l s / p k c s 1 5 - t o o l . c "
#undef main

It is possible to call the tested tool with fixed predefined arguments
or parse the entire command-line options from the input. The fuzz tar
get first decides which of the mentioned strategies is tested depending
on the first byte of the fuzzing input.

The first of these strategies is used to test tool's operations that
require an input file 5 . The fuzz target first parses the fuzzing input to
get values for command-line options for the tested function of the tool.
These values are separated by one null byte as presented in Figure 5.1.
Subsequently, it creates a new file stored in the /tmp directory. The file
size is determined by the two bytes of fuzzing input (referred to as
l e n l and len2 in Figure 5.1) converted into a number. Then the file is
filled w i t h data of a given length, following immediately after bytes
specifying the size.

optl \x00 \x00 optn \x00 lenl len2 f i l e content APDU part

Figure 5.1: Parts of the fuzzing input used for testing with fixed argu
ments.

The second strategy of interpreting input data parses a part of the
fuzzing input as command-line options. It passes them to the renamed
mainO function. The structure of the interpretation of input data is

5. If a file is created dur ing fuzz testing, it should be deleted at the fuzz target's
end. However, the file may not be deleted if a crash is found. The creation of files
also might slow d o w n test execution. However, tool operations cannot be easily
reimplemented to be tested without the usage of a file.

38

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

shown in Figure 5.2. The argument part is separated from the A P D U
part by two nul l bytes. If any created option requires a file name, this
file is not created, and the tool is terminated.

argl \x00 \x00 argn \x00 \x00 APDU part

Figure 5.2: Parts of the fuzzing input used for testing w i t h fuzzed
arguments.

A s shown i n the presented scheme in 5.2, two n u l l bytes mark
the end of the argument part. Therefore it is not possible to extract
from the input an empty argument. This is not a problem that would
influence the range of tested inputs, since getopt_long () [53] function
used i n the tools can take arguments i n two forms: - o p t i o n value
and -option=value. It is impossible to generate the first variant as the
value cannot be an empty string. However, the fuzz target can create
the second variant wi th an empty value as -option=.

Implemented Fuzz Targets for Tools Wi th in the implementation part
of this thesis, three fuzz targets for tools were implemented and inte
grated into the OpenSC upstream: f u z z _ p i v _ t o o l , f uzz_pkcsl5_tool
and f uzz_pkcsl5_crypt. For the future improvements of fuzzing sup
port in OpenSC, eight fuzz targets were implemented for tools working
only w i t h cards of the given type. These tools include, for example,
c r y p t o f l e x - t o o l or cardos- tool .

Tools p k c s l l - t o o l and p k c s l 5 - i n i t This testing method cannot be
applied directly to tools that contain e x i t () functions. If a fuzz target
encounters such a call, it crashes as if it found a bug. Therefore, the
fuzz target cannot test p k c s l l - t o o l and p k c s l 5 - i n i t as described, as
long as the tools contain an ex i t () calls [4]. Moreover, p k c s l l - t o o l
contains initialization and connection of the card using the PKCS #11
API , the call of which cannot be easily renamed as is the case with the
mainO function [4]. For the mentioned reasons, fuzz targets testing
only the specific P K C S #15 and P K C S #11 functionality are imple
mented.

39

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

Corpus For corpus files, it is possible to use A P D U traces generated
from original tools directly. This data only needs to be prepended with
the values of the arguments appended to the beginning of the corpus
file.

5.4.3 Run Analysis

Three fuzz targets testing tools were integrated into the OpenSC
project: f u z z _ p i v _ t o o l , f uzz_pkcsl5_tool and f uzz_pkcsl5_crypt.
The data are evaluated after 18 days of running in OSS-Fuzz.

The target f u z z _ p i v _ t o o l reaches speed over 1000 executions
per second on average [35]. Al though the region coverage reaches
only 3.18% at maximum [35], 69.78% of the available regions of the
p i v - t o o l . c file are covered according to the total code coverage of
the project [54].

Fuzz target for pkcs l5-crypt achieves higher region coverage
around 21.09% [35]. Region code coverage of the tool's source code is
84.31% [54]. The speed is around 400 executions per second [35].

The region coverage of p k c s l 5 - t o o l fuzzed by f uzz_pkcsl5_tool
reaches only 8.84% according to OSS-Fuzz report [54]. This signifi
cantly lower coverage is due to a malformed integrated corpus.

5.4.4 Bugs Discovered by Fuzz Targets for Tools

Several issues were found using f u z z _ p i v _ t o o l , f uzz_pkcsl5_tool
and f uzz_pkcsl5_crypt during both local and OSS-Fuzz fuzzing.

Local Run with libFuzzer A n interesting bug discovered during lo
cal fuzzing is not resetting the flag from the card structure i n the
sc_lock() function when an error occurs. If the flag remains set from
sc_lock() , the memory allocated for the card can not be freed.

OSS-Fuzz Run OSS-Fuzz has encountered three bugs 6 so far. They
relate to the use of f ree() on an invalid pointer and the associated
abortion, NULL dereference and a memory leak. [35]

6. Details can be found at h t t p s : / / g i t h u b . com/OpenSC/OpenSC/pull/2553.

40

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

5.5 Conclusion of Fuzzing Support Improvements

The described improvements to the existing fuzz targets and the im
plementation of new ones led to an overall improvement i n the state
of fuzz testing i n the OpenSC project. The new fuzz targets are also
designed to cover previously untested code parts.

Existing fuzz target fuzz_pkcsl5_decode and virtual reader
have been modified to cover the tested code better. Changes i n the
f uzz_pkcsl5_decode target increase the low code coverage mentioned
in Section 4. The modifications mentioned above are described in
Appendix B.

Table 5.1: Coverage of OpenSC parts affected by new fuzz targets from
16th May 2022 [54].

Path Before improvements After improvements
Region Regions Region Regions

common/ 38.91% 200/514 39.88% 205/514
l ibopensc/ 33.43% 28 741/85 962 41.60% 36645/88099
p k c s l 5 i n i t / 0.00% 0/22627 24.50% 5593/22833
scconf/ 7.24% 36/497 55.64% 281/505
t o o l s / 0.00% 0/27 24.98% 535/2142

The Figure 5.1 presents region code coverage of OpenSC parts
affected by implemented and integrated improvements. The particular
pul l requests referencing the integration of fuzz targets are described
in Appendix C.

The most compelling difference according to Figure 5.1 is cov
erage of p k c s l 5 i n i t / and scconf / directory, that show the largest
percentage improvement. However, the most significant difference in
the number of covered regions is shown by l ibopensc/ . Tests have
covered more than 7 000 new regions.

Another indicator of success is the number of bugs found. Because
of the implemented changes, more than 40 problems have already
been detected [35].

41

Conclusion

The goal of this thesis was to analyse the current state of fuzzing sup
port in the OpenSC project and implement improvements to enhance
testing coverage.

This thesis presents the structure and functionality of the OpenSC.
It explains the principles of fuzz testing and the possibilities of its use.
The thesis also describes the OSS-Fuzz project for continuous fuzzing
of open-source software.

The performance of individual fuzz targets that were part of
OpenSC was analysed based on reports from the OSS-Fuzz project.
It turned out that a great benefit is the implementation of a virtual
reader that allows simulation of the communication w i t h the card.
Thanks to this, it is possible to test operations implemented i n the
drivers of individual cards. However, the mentioned fuzz targets
tested only a small number of functions, and therefore their reach was
limited.

N e w suitable targets for testing were chosen based on the infor
mation obtained from the code coverage of individual parts of the
OpenSC project. The implementation of new fuzz targets focuses on
configuration file processing functionality, P K C S #15 related opera
tions, PKCS #11 A P I , generic card operations, and tools provided by
OpenSC.

Appendix B describes improvement suggestions beyond the scope
of the mandatory part of the thesis. These suggestions include changes
for simplification of local regression testing and improvements of the
existing fuzz target. There is a description of two new fuzz targets for
configuration parser and generic card operations.

Part of the thesis was also an effort to integrate the implemented
improvements into OpenSC upstream. The integration was successful
for fuzz targets concerning parsing of the configuration file, PKCS #15
related functions, encoding of PKCS #15 objects, general card functions
and OpenSC tools. The results of their run were evaluated based on
internal OSS-Fuzz reports. A description of the corresponding p u l l
requests to the OpenSC upstream can be found in Appendix C.

In conclusion, the goal of this thesis was achieved. A total of 7 fuzz
targets were integrated into OpenSC. The fuzz target for PKCS #11 API

42

5. IMPROVEMENTS FOR O P E N S C F U Z Z I N G

(Section 5.3) is part of the p u l l request to OpenSC upstream. These
implementations have already contributed to the discovery of several
bugs.

Further development of fuzzing support i n OpenSC may include
the integration of fuzz targets for specific card types (Section 5.4). It
is also possible to replace the fuzz target f u z z _ p k c s l 5 i n i t w i t h the
new version described i n Section 5.2.4. For the tool p k c s l l - t o o l , a
fuzz target solution using SoftHSM is proposed in Appendix B.5. Its
inclusion is feasible only after reworking p k c s l l - t o o l , which should
not contain terminations with e x i t () function.

43

Bibliography

1. K A T Z , Jonathan; L I N D E L L , Yehuda. Introduction to Modern Cryp
tograph}/. Chapman and H a l l / C R C , 2021. ISBN 978-0-8153-5436-9.

2. SUSTEK, Laurent. Encyclopedia of Cryptography and Security. Hard
ware Security Module. Ed. by TILBORG, Henk C. A . van; JAJO-
DIA, Sushil. Boston, M A : Springer US, 2011. ISBN 978-1-4419-5906-
5. Available from DOI : 10.1007/978-1-4419-5906-5_509.

3. R A N K L E , Wolfgang; EFFING, Wolfgang. Smart Card Handbook.
4th ed. The A t r i u m , Southern Gate, Chichester, West Sussex,
P019 8SQ, United Kingdom: John Wiley & Sons Ltd , 2010. ISBN

978-0-470-74367-6.

4. OpenSC: Open Source Smart Card Tools and Middleware [online]
[visited on 2022-05-17]. Available from: https : / / g i t h u b . com
/OpenSC/OpenSC.

5. OpenSC Wiki: Home [online] [visited on 2022-05-17]. Available
from: h t t p s : / / g i t h u b . com/OpenSC/OpenSC/wiki.

6. T A K A N E N , A r i ; D E M O T T , Jared; M I L L E R , Charlie. Fuzzing for
Software Security Testing and Quality Assurance. Norwood: Artech
House, Inc., 2008. ISBN 978-1-59693-214-2.

7. OSS-Fuzz: Continuous Fuzzing for Open Source Software [online]
[visited on 2022-05-15]. Available from: https : / / g i t h u b . com/g
oogle/oss- fuzz.

8. OpenSC Wiki: Overview [online] [visited on 2022-05-17]. Available
from: https://github.com/OpenSC/OpenSC/wiki/Overview.

9. W A N G , Yongge. Public Key Cryptography Standards: PKCS. arXiv,
2012. Available from DOI : 10.48550/ARXIV. 1207.5446.

10. OASIS. PKCS #11 Cryptographic Token Interface Base Specification
Version 3.0 [online]. 2020 [visited on 2022-05-09]. Available from:
h t t p s : / / d o c s . o a s i s - o p e n . o r g / p k c s l l / p k c s l l - b a s e / v 3 . O / o
s / p k c s l l - b a s e - v 3 . 0 - o s . h t m l .

44

https://github.com/OpenSC/OpenSC/wiki/Overview
https://docs.oasis-open.org/pkcsll/pkcsll-base/v3.O/o

B I B L I O G R A P H Y

11. OpenSC Manual Pages: Section 1 [online] [visited on 2022-05-17].
Available from: h t t p : / /htmlpreview. g i thub. i o / ? h t t p s : / / g i
thub.com/OpenSC/OpenSC/blob/master/doc/tools/tools.htm
1.

12. OSS-Fuzz: Continuous Integration [online] [visited on 2022-05-17].
Available from: https : / /google . g i thub. i o / o s s - f u z z / g e t t i n
g - s tar ted/cont inuous- in tegra t ion/ .

13. ClusterFuzz: Glossary [online] [visited on 2022-05-17]. Available
from: h t t p s : / / g o o g l e . g i t h u b . i o / c l u s t e r f u z z / r e f e r e n c e / g l
ossary/.

14. UbFuzzer - a Library for Coverage-Guided Fuzz Testing. — LLVM
15.0.Ogit documentation [online] [visited on 2022-04-30]. Available
from: h t t p s : / / l l v m . org/docs/LibFuzzer . html.

15. M C N A L L Y , Richard; Y I U , Ken; G R O V E , Duncan; G E R H A R D Y ,
Damien. Fuzzing: the State of the Art. 2012. Tech. rep. Defence
Science and Technology Organisation Edinburgh (Australia).
Available also from: https : / /apps . d t i c . m i l / s t i / c i t a t i o n s
/ADA558209.

16. C L A R K E , Toby. Fuzzing for Software Vulnerability Discovery.
Department of Mathematic, Royal Holloway, University of London,
Tech. Rep. RHUL-MA-2009-4. 2009. Available also from: https :
/ / reposi tory.royalhol loway.ac .uk/ i tems/4941b5d6-2f4a-8
499-8954-la7feee7cc4c/l/ .

17. tlsfuzzer: SSL and TLS Protocol Test Suite and Fuzzer [online] [vis
ited on 2022-05-15]. Available from: https : / / g i t h u b . com/tlsf
u z z e r / t l s f u z z e r .

18. LI, Jun; Z H A O , Bodong; Z H A N G , Chao. Fuzzing: a Survey. Cy-
bersecurity. 2018, vol. 1, no. 1, pp. 1-13.

19. Efficient Fuzzing Guide [online] [visited on 2022-04-30]. Available
from: https://chromium.googlesource.com/chromium/src/te
st ing/l ibfuzzer/+/HEAD /eff ic ient_fuzzing.md.

20. THE C L A N G T E A M . Source-based Code Coverage — Clang 15.0.0git
documentation [online] [visited on 2022-05-15]. Available from:
https:/ /clang.l lvm.org/docs/SourceBasedCodeCoverage.ht
ml.

45

https://google.github.io/clusterfuzz/reference/gl
https://chromium.googlesource.com/chromium/src/te
https://clang.llvm.org/docs/SourceBasedCodeCoverage.ht

B I B L I O G R A P H Y

21. D E M O T T , Jared. The Evolving Art of Fuzzing. DefCon [online].
2006, vol. 14 [visited on 2022-04-30]. Available from: https : / /w
ww.ida . l iu .se/~TDDC90 / l i terature/papers /evolvingfuzzin
g.pdf.

22. A I Z A T S K Y , Mike ; SEREBRYANY, Kostya; C H A N G , Oliver;
A R Y A , Abhishek; W H I T T A K E R , Meredith. Announcing OSS-
Fuzz: Continuous fuzzing for open source software. Google
Testing Blog. 2016.

23. The AFL++ Fuzzing Framework [online] [visited on 2022-04-30].
Available from: h t t p s : / / a f l p l u s . plus.

24. AFL: American Fuzzy Lop - a Security-Oriented Fuzzer [online]
[visited on 2022-04-30]. Available from: https : / / g i t h u b . com/g
oogle/AFL.

25. honggfuzz: Security Oriented Software Fuzzer [online] [visited on
2022-04-30]. Available from: https : / / g i t h u b . com/google/hong
gfuzz.

26. T H E C L A N G T E A M . Clang Compiler User's Manual — Clang
15.0.Ogit documentation [online] [visited on 2022-05-15]. Available
from: h t t p s : / / c l a n g . l l v m . org/docs/UsersManual. html.

27. OSS-Fuzz [online] [visited on 2022-04-30]. Available from: http
s : / / g o o g l e . g i t h u b . i o / o s s - f u z z / .

28. OSS-Fuzz: Architecture [online] [visited on 2022-05-15]. Available
from: h t t p s : / /google . g i thub. i o / o s s - f u z z / a r c h i t e c t u r e / .

29. ClusterFuzz [online] [visited on 2022-04-30]. Available from: ht t
p s : / / g o o g l e . g i t h u b . i o / c l u s t e r f u z z / .

30. Chrome Infrastructure - Monorail Issue Tracker [online] [visited on
2022-04-30]. Available from: https : //opensource .google/proj
ects/monorail .

31. ClusterFuzz: Architecture [online] [visited on 2022-05-15]. Avai l
able from: h t t p s : / / g o o g l e . g i t h u b . i o / c l u s t e r f u z z / a r c h i t e c
ture / .

32. OSS-Fuzz: Setting Up a New Project [online] [visited on 2022-05-
07]. Available from: https : / /google .g i thub. i o / o s s - f uzz/get
t ing-s tar ted/new-pro jec t -guide/ .

46

https://google.github.io/clusterfuzz/architec

B I B L I O G R A P H Y

33. ClusterFuzz: UI Overview [online] [visited on 2022-05-15]. Avai l
able from: h t t p s : / / g o o g l e . g i t h u b . i o / c l u s t e r f u z z / u s i n g - c l
u s t e r f u z z / u i - o v e r v i e w / .

34. OSS-Fuzz: ClusterFuzz [online] [visited on 2022-05-15]. Available
from: h t t p s : / / g o o g l e . g i t h u b . i o / o s s - f u z z / f u r t h e r - r e a d i n
g / c l u s t e r f u z z / .

35. OSS-Fuzz [online] [visited on 2022-04-30]. Available from: http
s: / / o s s - f uzz . com/. [Internal for project members].

36. T H E C L A N G T E A M . SanitizerCoverage — Clang 15.0.0git docu
mentation [online] [visited on 2022-05-15]. Available from: http
s : / / c lang . l lvm.org /docs /San i t izerCoverage .h tml .

37. OSS-Fuzz: Bug Disclosure Guidelines [online] [visited on 2022-05-
15]. Available from: h t t p s : / / g o o g l e . g i t h u b . i o / o s s - f u z z / g e t
t i n g - s t a r t e d / b u g - d i s c l o s u r e - g u i d e l i n e s / .

38. GitHub Actions [online] [visited on 2022-05-16]. Available from:
h t tps : / /g i thub .com/fea tures /ac t ions .

39. F I O R A L D I , Andrea; M A I E R , Dominik; EISSFELDT, Heiko;
H E U S E , Marc. AFL++: Combining Incremental Steps of Fuzzing
Research [online]. 2020 [visited on 2022-04-30]. Available from:
h t t p s : / / a f l p l u s . p l u s / / p a p e r s / a f l p p - w o o t 2 0 2 0 . p d f .

40. ClusterFuzz: UbFuzzer and AFL++ [online] [visited on 2022-05-
16]. Available from: h t t p s : / / g o o g l e . g i t h u b . i o / c l u s t e r f u z z
/ s e t t i n g - u p - f u z z i n g / l i b f u z z e r - a n d - a f 1 / .

41. THE C L A N G T E A M . AddressSanitizer — Clang 15.0.0git documen
tation [online] [visited on 2022-05-15]. Available from: https :
/ / c l a n g . l l v m . o r g / d o c s / A d d r e s s S a n i t i z e r . h t m l .

42. THE C L A N G T E A M . UndefinedBehaviorSanitizer — Clang 15.0.0git
documentation [online] [visited on 2022-05-15]. Available from:
h t tps : / / c lang . l lvm.org/docs /Undef inedBehaviorSani t izer
.html.

43. T H E C L A N G T E A M . Threadsanitizer — Clang 15.0.0git documen
tation [online] [visited on 2022-05-15]. Available from: https :
/ / c l a n g . l l v m . o r g / d o c s / T h r e a d S a n i t i z e r . h t m l .

47

https://google.github.io/clusterfuzz/using-cl
https://google.github.io/oss-fuzz/further-readin
https://google.github.io/oss-fuzz/get
https://github.com/features/actions
https://aflplus.plus//papers/aflpp-woot2020.pdf
https://google.github.io/clusterfuzz
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer

B I B L I O G R A P H Y

44. THE C L A N G T E A M . MemorySanitizer — Clang 15.0.0git documen
tation [online] [visited on 2022-05-15]. Available from: https :
/ / c lang. l lvm.org/docs /MemorySani t izer .html .

45. T H E C L A N G T E A M . LeakSanitizer — Clang 15.0.0git documenta
tion [online] [visited on 2022-05-15]. Available from: h t t p s : / / c
lang . l lvm.org /docs /LeakSani t izer .h tml .

46. L A R M O U T H , J. ASN.l Complete. Elsevier Science, 2000. ITPro
collection, ISBN 9780122334351.

47. J O H N S O N , Don; M E N E Z E S , Alfred; V A N S T O N E , Scott. The E l
liptic Curve Digital Signature Algorithm (ECDSA). International
journal of information security. 2001, vol. 1, no. 1, pp. 36-63.

48. OSS-Fuzz Coverage Report 2021-11-03 [online] [visited on 2022-
05-07]. Available from: h t t p s : / / s torage . googleapis. com/oss-
fuzz-coverage/opensc/reports/20211103/linux/src/opensc
/ s r c / r e p o r t . h t m l .

49. OSS-Fuzz Coverage Report 2020-07-09 [online] [visited on 2022-
05-07]. Available from: h t t p s : / / s torage . googleapis. com/oss-
fuzz-coverage/opensc/reports/20200709/l inux/src/report
.html.

50. OSS-Fuzz Coverage Report 2020-07-09 [online] [visited on 2022-
05-07]. Available from: °/„5Ctextbf %7Bhttps: / /s torage .google
apis .com/oss- fuzz-coverage/opensc/reports /20200709/ l i
nux/src/report.html%7D.

51. OSS-Fuzz: Code Coverage [online] [visited on 2022-05-07]. Avai l
able from: h t t p s : / / g o o g l e . g i t h u b . i o / o s s - f u z z / a d v a n c e d - t o
pics/code-coverage/ .

52. OpenDNSSEC — SoftHSM [online] [visited on 2022-05-09]. Avail
able from: https://www.opendnssec.org/softhsm/.

53. getopt_long(3): Parse options - Linux man page [online] [visited on
2022-05-16]. Available from: https : / / l i n u x . d i e . net/man/3/ge
t opt _ long.

54. OSS-Fuzz Coverage Report 2022-05-16 [online] [visited on 2022-05-
16]. Available from: ht tps : / / s torage .googleapis . com/oss - fu
zz-coverage/opensc/reports/20220516/l inux/report .html.

48

https://google.github.io/oss-fuzz/advanced-to
https://www.opendnssec.org/softhsm/
https://storage.googleapis.com/oss-fu

A Smart Cards

A smart card is a physical card w i t h an integrated circuit (so-called
chip). The cards can be divided into three categories based on their
interface: contact, contactless, and hybrid. It is possible to classify the
cards by their capabilities into memory and microprocessor cards [3].
Smart card technology is in detail described by ISO/IEC 7816 stan
dard 1 .

A.1 Storage

Access to the stored data is only possible via a defined interface. Sensi
tive data cannot be read from outside the card. They can be only used
for specific operations directly on the card. Memory cards usually
store data in E E P R O M (Electrically Erasable Programmable Read
o n l y Memory) . [3]

A microprocessor card has three types of memory - R A M (Random
Access Memory), R O M (Read-Only Memory) and E E P R O M . A logical
directory and folder structure are available to access the data on the
card. The root directory containing all files and directories is called
the master file directory (MF). Other directories on the card are called
dedicated files (DF). Elementary File (EF) stores the actual user data.
Access control to the objects on the card is given by restricting access
to individual files. [3]

A.2 Communication

Communication is always initiated by the terminal that sends com
mands to the card. The card only responds to these commands. The
first message sent by card is ATR (Answer To Reset), initiated by the
reset command from the terminal. Based on the ATR, the terminal
evaluates the card information and parameters. [3]

The communication protocol between the reader and the card is
called the A P D U (Application Protocol Data Unit) . The structure
of the A P D U is defined by the ISO/IEC 7816-4 standard. A P D U is

1. Further information can be found at h t t p s : //www. i s o . org/s tandards . html.

49

A . SMART C A R D S

divided into commands sent by the reader and responses sent by the
card. The command contains a header and data. The response consists
of data and returns code bytes. [3]

ThePC/SC (Personal Computer/Smart Card) specification defines
an interface for utilising smart cards in computer environments in
dependently on platforms [3]. A s an alternative to P C / S C , OpenSC
also supports CT-API (Card Terminal-Application Programming In
terface) [3,4].

A.3 Application Areas

The usage of smart cards is widespread. The primary areas are pay
ment systems, where the smart cards are used to perform transactions
or as electronic purses. Another sector is telecommunications. Smart
cards are also used in the G S M system known as S IM cards. In addi
tion, smart cards can be part of ID cards and health insurance cards
or can serve as a repository of cryptographic keys for authentication
or signing [3].

A.4 PKCS Standards

PKCS stands for Public-Key Cryptography Standards, created by RSA
Laboratories [9]. The standards are used for cryptographic implemen
tations; they describe algorithms, protocols, data storage formats, APIs
and work wi th tokens [9]. OpenSC supports smart cards compatible
with PKCS #11 and PKCS #15 standards.

A.4.1 PKCS #11

"Cryptographic Token Interface Standard" [9] is a specification of API
for cryptographic tokens. Cryptographic Token Interface is also known
as Cryptoki . It is designed for devices storing cryptographic data
and performing cryptographic operations. Cryptographic devices can
perform cryptographic operations following the commands passed
through the device driver. Cryptoki unifies the interface to work with
the cryptographic device for application - it hides the implementation

50

A . SMART C A R D S

details of the underlying driver layer. The interface provides a uniform
environment and ensures portability. [9]

Cryptoki defines data types, logical objects, and functions. Objects
include data, keys, and certificates. The API contains functions to work
with these objects. The standard then describes the A P I and A B I for
cryptographic and token operations such as signing, encryption, key
and P I N handling. The non-public objects are accessible w i t h a P I N
(there are two possibilities - Security Officer P I N and standard user
PIN). Some objects (as private keys) are not accessible in plaintext at
all. [9]

OpenSC provides PKCS #11 module that implements the specified
API. It is utilized in OpenSC p k c s l l - t o o l , which is used for managing
PKCS #11 compatible tokens. The p k c s l l - t o o l can also load foreign
PKCS #11 module. [11]

A.4.2 PKCS #15

"Cryptographic Token Information Syntax Standard" [9] describes
how the application works w i t h the token. It defines file structures
that enable compliant card work unified [9]. It can be implemented
on Integrated Circuit Cards defined in ISO/IEC 7816-4 standard.

The file structure on the card compatible with PKCS #15 has a root
directory called the master file directory (MF) . It must contain an
Object Directory File (ODF) wi th pointers to other files, which serve
as directories for files storing references to objects - Private Key Direc
tory Files (PrKDFs), Public Key Directory Files (PuKDFs), Secret Key
Directory Files (SKDFs), Certificate Directory Files (CDFs), Authen
tication Object Directory Files (AODSs) and Data Object Directory
Files (DODSs). The structure must also have files storing information
about the token and hold optional elementary files to track unused
space in existing files. [9]

OpenSC implements several tools for working with PKCS #15 com
patible cards. These are p k c s l 5 - t o o l , pkcs l5 -crypt and p k c s l 5 - i n i t .
With p k c s l 5 - i n i t , users can initialise PKCS #15 compatible cards if
OpenSC supports them, e.g. there is p k c s l 5 - i n i t driver for the given
card. For cards not using P K C S #15 format, OpenSC implements an
emulator for this layer. [4]

51

B Other Implemented Improvements

This chapter contains the rest of implemented improvements for
OpenSC fuzzing support beyond the scope of the mandatory part of
the thesis.

B.1 Improvement of the Virtual Reader

The virtual reader parses fuzzing input as A P D U responses from
the card. There were only four basic operations that virtual reader
implements - connect, transmit , disconnect and release. Those
operations are crucial to reader work. [4]

Other operations that the reader can perform are lock and unlock.
These operations are used in the sc_lock() and sc_unlock() func
tions during some of the procedures i n OpenSC. Once the lock is
obtained, the card_reader_lock_obtained() function is called [4].
Since the virtual reader does not support lock and unlock operation,
fuzzing cannot reach the corresponding procedures in card drivers in
fuzz testing [48].

To fix that and increase the code coverage in card drivers, it is
needed to implement a lock and unlock operation in the virtual reader.
The newly added lock and unlock use the same approach as in the
reader driver for CT-API - the operations only return SCSUCCESS
value. The functions sc_lock() and sc_unlock() interpret the return
value as the lock is obtained successfully and enable the usage of
corresponding card functions.

Run Analysis After integrating this change into OpenSC, the corre
sponding functions called from s c l o c k O are now covered in some
card drivers such as card_piv. c according to OSS-Fuzz [54].

B.2 Improvement of f uzz_pkcsl5_decode Fuzz Target

Existing fuzz target f uzz_pkcsl5_decode aims to test the decoding
functions for PKCS # 15 objects stored on a card [4]. However, accord
ing to statistics presented i n Chapter 4, it has low code coverage.

52

B. O T H E R IMPLEMENTED IMPROVEMENTS

According to the code coverage report from OSS-Fuzz [48], func
tions reachable from the fuzz target are not fully covered. A pos
sible explanation is that the used internal representation of the
PKCS #15 structure on the card is not fully initialised. Its type is
s t ruct sc_pkcsl5_card, and besides the card information, it also
holds objects representing file structure from PKCS #15 standard. The
original PKCS #15 card object initialisation only allocated memory and
set the required pointer to the general card object. The object, therefore,
remains almost empty, and further card information required by some
code paths is missing.

Also , the fuzz target contains the decoding of a public key object
that requires an allocated public key structure. However, the object re
mained filled with zeros after the structure was allocated. This means
that the type of algorithm is also set to the same value (RSA as the
used macro has a value of 0); therefore, the decoding function never
tests other algorithm types.

Structure of Fuzz Target f uzz_pkcsl5_decode The first change to the
fuzz target is separating the input into two parts, the buffer and the
A P D U responses. Its length is determined by the first two bytes of
the fuzzing input. This data buffer is then used as an input for testing
decoding functions.

It is necessary to simulate the card's connection to completely
initialise the card object representing the P K C S #15 card structure,
since the card information is obtained during the initialisation process.
The virtual reader from f uzz_pkcsl5_reader is created wi th the rest
of the fuzzing input. The initialisation of P K C S #15 card object is
then processed in sc_pkcsl5_bind() function. After that change, the
PKCS #15 card object contains card data, which can be used in tested
functions.

When testing the decoding of a public key object from the data
buffer, it is possible to do so in an iteration over available algorithms.
Then, the public key structure is set w i t h different algorithm types
in every cycle. Decoding functions that use a switch statement for
corresponding algorithm types should fall into algorithm-specific
functions.

53

B. O T H E R IMPLEMENTED IMPROVEMENTS

Corpus Initially, there was no corpus to the fuzz target. As the target
begins wi th extracting data buffer for decoding functions, the corre
sponding encoding functions can output data from objects stored on
the card to create these buffers. The resulting bytes were used to create
a buffer part of the corpus.

The A P D U parts of new fuzz_pkcsl5_decode corpus files are
created using previously generated A P D U traces, which are part
of the f uzz_pkcsl5_reader corpus. Only the part corresponding to
the card connection was used for our purposes. The exact number
of bytes to truncate from the original files was calculated using the
fuzz_pkcsl5_reader debug logs.

Run Analysis Al though this change causes a decrease i n the speed
of fuzz target testing to 500 executions per second [35], there is the
desired coverage of functions that decode the public key object for
other algorithms [54]. Furthermore, fuzzing also reaches parts of the
decoding functions that are only executable when the PKCS #15 card
object is initialised correctly [54]. The region coverage increased to
16% on average [35].

B.3 Configuration Parser

Configuration is crucial for the proper operation of OpenSC. Par
ticular tools have a direct setup within command-line options and
environment variables (0PENSC_C0NF). The main setup for OpenSC is
through a configuration file, which is maintained during compiling
and installation. Users can change the location of opensc.conf file
via environment variables or in a phase of preparation for compila
tion within the . / conf igure command (—sysconf d i r option w i t h
specification of path) [4].

The configuration file itself has a specific format - scconf system. It
has a block structure, where the block's content is one of the following
items - comment, list or another block [4].

Parsing of the configuration file is not tested by any fuzz target
according to OSS-Fuzz coverage reports [48].

54

B. O T H E R IMPLEMENTED IMPROVEMENTS

B.3.1 Structure of Fuzz Target for Parser

Parsing i n OpenSC is done by two functions while establishing an
OpenSC context. The scconf parse () function works directly w i t h
the configuration file. The scconf p a r s e s t r i n g O uses the same
parsing engine but avoids direct work w i t h the file. For simplicity
and better performance fuzz target calls scconf _parse_str ing() .

Since scconf _parse_string() takes a simple string as an argu
ment, the target adjusts the buffer wi th zero character as the ending
byte.

Configuration files containing all essential settings reach a size of
about four kB. For testing, inputs w i t h large sizes i n megabytes lose
their meaning due to arduous debugging of the test cases from found
crashes. The limit for file size was set to 16 kB after discussion w i t h
project maintainers. They also suggested the usage of dynamically
allocated memory rather than static buffer 1.

Corpus The initial corpus contains two basic and correct OpenSC
configurations stored as text. They differ i n length to cover various
options. Both are based on the template from OpenSC.

B.3.2 Run Analysis

Before setting the input size, the average execution achieves around
700 executions per second. Fuzzing time is 53% probably due to 3
found crashes, which slow the run when frequently repeated [35].

After the size limitation, region coverage remains approximately
the same. Execution speed increased above 2 000 executions per second
and 99% fuzzing time [35].

B.3.3 Bugs Discovered by f uzz_scconf _parse_string

Fuzzing wi th f uzz_scconf _parse_str ing has already found several
bugs.

1. Nevertheless, in general, dynamic memory usage slows the fuzzing proce
dure [14].

55

B. O T H E R IMPLEMENTED IMPROVEMENTS

Local Run with MbFuzzer Engine The local testing without corpus
found a direct memory leak and out-of-bounds writes. The memory
leak was connected to the incorrectly classified configuration data,
which was subsequently not appropriately released.

OSS-Fuzz Run Dur ing the run i n the OSS-Fuzz, a crash related to
timeout was discovered. The problem is related to stack-overflow in
too submerged recursion. The fix is to limit the immersion of the
parser 2.

B.4 General Functions Performing Card Operations

The directory l ibopensc/ consists mainly of particular card drivers.
The drivers implement operations that the corresponding smart cards
are capable of [4]. It is not convenient to access these provided func
tions and test them directly from fuzz target since preparing the envi
ronment for their calling is often necessary.

Therefore, OpenSC provides generic functions, that require card
object sc_card_t, and allow carrying some generic and cryptographic
operations. Some of those generic functions are covered by already
existing fuzz targets, primarily with f uzz_pkcsl5_reader [4]. Several
functions appear not to be tested from OSS-Fuzz code coverage reports.
They are also not reachable by the current fuzz targets [48].

Namely, the operations are:

• key wrapping and unwrapping,
• writing binary data into EF on the card,
• storing data on the card,
• listing file IDs from the D F into the buffer,
• getting a challenge from the card,
• and appending to file selected via a flag,

B.4.1 Structure of Fuzz Target f uzz_card

The mentioned functions require initialised general card object of type
s c c a r d t . Some of them also need a data buffer or an optional flag.

2. Details of fixed problem can be found in pul l request h t t p s : / / g i t h u b . com/Ope
nSC/OpenSC/pull/2499.

56

B. O T H E R IMPLEMENTED IMPROVEMENTS

The fuzz target splits fuzzing input into three main parts - flag, chal
lenge length and A P D U responses. This is followed by the connection
of a virtual reader working w i t h the third part of the input. After
setting the OpenSC context and the initialisation of the card object,
the fuzz target calls f uzz_get_ chunk () from the virtual reader API to
obtain a data buffers for testing.

Then the tested functions are called one after the other. The opera
tion for unwrapping keys require a data buffer, that is extracted via the
f u z z g e t c h u n k O function. Another buffer is used also for testing
sc_put_data(). The initially created flag specifies the file number to
be written to.

Corpus Files from the original corpus for fuzz_pkcsl5_reader in
volve A P D U traces for the card connection, which can also be used in
the corpus for fuzz card. Unfortunately, A P D U responses required
for the particular tested functions can not be put together easily. The
tested functions are mostly called internally in some OpenSC provided
tools. It is not convenient to get the matching data from the debug
logs. Therefore, corpus files contain additional bytes as malformed
A P D U responses after the part for the card's connection.

B.4.2 Run Analysis

The f uzz_card fuzz target 30 days after integration into the OpenSC
project reports a speed of around 700 executions per second. The
region coverage reaches 11.35%. The percentage of the regular crash
is, on average, 80%. This is caused by crashes, which often recur. [35]

B.4.3 Bugs Discovered by f uzz_card

So far, fuzz target found a stack-buffer-overflow bug [35]. It is located
in a function that handles A S N . l tags i n a list files operation.

B.5 Fuzzing pkcsll-tool with SoftHSM

The p k c s l l - t o o l is one of the most used tools from the OpenSC
project. Since the tool uses the P K C S #11 module (in the form of
a shared library or linked statically), the card connection happens via

57

B. O T H E R IMPLEMENTED IMPROVEMENTS

the C _ I n i t i a l i z e function [4]. Wi th C _ I n i t i a l i z e , it is not easy to
supply a virtual reader wi th fuzzed A P D U card responses as it is by
other fuzz targets for tools. The PKCS #11 A P I is covered by the fuzz
target implemented i n Section 5.3. So it is sufficient to test only the
work of the tool itself. For this purpose, the software cryptographic
module SoftHSM [52] can be utilised.

B.5.1 Structure of the Fuzz Target f uzz_pkcsll_tool

The Sof tHSM communicates via P K C S #11 A P I [52], so it can be d i
rectly used by p k c s l l - t o o l . The static SoftHSM library must be built,
installed and l inked directly to the fuzz target. Then, the user must
create a configuration file for SoftHSM, set the destination folder for
storing the token data, and use the sof t h s m 2 - u t i l tool to initialise
the token. In order to automatise this procedure, there is a basic bash
script executing all the mentioned steps.

The fuzz target itself can directly fetch the provided A P I w i t h
C_GetFunctionList [10] function and use it i n p k c s l l - t o o l . From
fuzzing input, the fuzz target only parses arguments for mainO func
tion.

Although the described fuzz target can test the pkcs 11-tool source
code, its direct integration into the OpenSC project is not possible. The
p k c s l l - t o o l contains many calls to the e x i t () function that is not
compatible with fuzz testing, as the fuzzer crashes in those situations.
Therefore, this fuzz target is only a proposal for future improvements
to fuzzing support.

B.6 Standard Output of Tested API

There is no need to have the standard output stream open for fuzzing
itself - it may cause an overfill of the user terminal during the local run
and slow the immediate execution. O n the other hand, the possible
output can be convenient for users debugging the code, so it cannot
be removed from the code entirely.

The optional way is to create an environment variable in the con
figuration phase of OpenSC when fuzzing is enabled. In that case,
the fuzz target containing the following snippet closes the standard

58

B. O T H E R IMPLEMENTED IMPROVEMENTS

output. However, it keeps it open when built in non-fuzzing mode, as
shown in the following code snippet.

i f d e f FUZZING_ENABLED
f c l o s e (s t d o u t) ;

#endi f

In non-fuzzing mode, it stays open.

B.7 User Manual
Current fuzzing support in OpenSC does not contain any summary in
formation on how it is possible to build OpenSC with fuzzing support
and details on individual fuzz targets and their corpora. A manual
in README. md file for users is created as part of this thesis. It describes
how it is possible to build fuzz targets for fuzzing and local regression
testing and generate new files into the corpus, including the possi
bility of generating own A P D U traces and usable links to OSS-Fuzz
libFuzzer documentation.

59

C Integration into OpenSC Upstream

The implementation part also includes the integration of some imple
mented fuzz targets into the OpenSC upstream. The integration takes
place as part of pul l requests to the upstream repository. This section
contains a description of pul l requests, discussions wi th the OpenSC
team, possible changes in the source code, and necessary changes in
the OpenSC project.

Pull Request for Config Parser Fuzz Target

• Pul l request: h t t p s : / / g i t h u b . com/OpenSC/OpenSC/pull/2417

Pull request is related to Section B.3. In contrast to the original design
of the fuzz target, which contained a static buffer on the stack, the use
of a dynamically allocated array was proposed and later used. Part of
this p u l l request was also the inclusion of the f uzzer . c file and the
setting of macro to limit the dump to standard output.

Pull Request for PKCS #15 Initialisation Fuzz Target

• Pul l request: h t t p s : / / g i t h u b . com/OpenSC/OpenSC/pull/2500

The fuzz target f u z z _ p k c s l 5 i n i t is introduced i n Section 5.2. After
the pul l request discussion, minor bugs such as checking return values
were fixed. The rest of the comments concern fixes for locally found
bugs.

Pull Request for Encoding and Card Operations Fuzz Target

• Pul l request: h t t p s : / / g i t h u b . com/OpenSC/OpenSC/pull/2520

This pull request contains code for f uzz_pkcsl5_encode (Section 5.1),
fuzz_card (Section B.4), and improvements for f uzz_pkcsl5_decode
(Section B.2). The main discussions and subsequent changes relate to
when to extract data buffers from fuzzed input. The f uzz_pkcs_decode
created a new buffer before each tested operation. The change involves
moving the extraction buffer before connecting the virtual reader.

60

C . INTEGRATION INTO O P E N S C U P S T R E A M

Pull Request for Tool's Fuzz Targets

• Pul l request: h t t p s : / / g i t h u b . com/0penSC/0penSC/pull/2538

The pul l request integrates three fuzz targets testing some of the main
OpenSC tools (Section 5.4). These fuzz targets are create for p i v - t o o l ,
p k c s l 5 - t o o l and pkcs l5 -crypt . The review concerns the mismatched
argc variable and the clarification of bugs that fuzz targets found
during the local run. There is also improvement regarding sc_lock()
function from Section B . l .

Pull Request for PKCS #11 API Fuzz target

• Pul l request: h t t p s : / / g i t h u b . com/0penSC/0penSC/pull/2550

In addition to the new fuzz target presented i n Section 5.3, the p u l l
request fixes locally found issues.

61

D Data Attachments

The thesis archive has the following structure:

• the ta rge ts / directory wi th all created fuzz target source files,

• the corpus/ directory holding corpora for particular fuzz targets,

• the data/ directory containing A P D U traces, data object files
and log files,

• the other/ directory w i t h OSS-Fuzz patches and auxiliary
scripts,

• and the OpenSC/ repository wi th integrated fuzz targets.

Details of the compilation of OpenSC can be found in the README. md
file, fuzz targets and corpora are further described in targets .md and
corpus .md.

62

