
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

An automated testing of
smartcards in OpenSC project

M A S T E R ' S THESIS

Be. Martin Strhársky

Brno, Spring 2016

Replace this page with a copy of the official signed thesis assignment and the
copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out by my own. A l l sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Be. Mart in Strhársky

Advisor: RNDr . Petr Švenda, Ph.D.
Consultant: dr. Nikos Mavrogiannopoulos

i

Acknowledgement

I would like to thank my supervisor RNDr . Petr Svenda, Ph.D., for his
guidance while writing the thesis. I would also like to thank dr. Nikos
Mavrogiannopoulos, for helping me wi th introduction to smart cards
community, valuable comments and his time invested in consultation
throughout the work.

i i

Abstract

The thesis investigates the common use of smart cards i n the Fedora
distribution of the operating system Linux, in order to create a unit
testing application for OpenSC project. At first, the smart card usage
data are collected and analysed, i n order to prepare a set of tests for
selected PKCS#11 drivers. Subsequently, the unit testing application
for OpenSC project is developed. The objective of the application is
to execute a test suite against selected PKCS#11 drivers. The selected
drivers for testing are the PIV driver and the smart card driver for
Cryptoflex card.

i i i

Keywords

OpenSC, unit testing, smart cards, PKCS#11, YubiKey Neo, Cryptoflex

iv

Contents

1 Introduction 1
2 Smart cards 3

2.1 Types of smart cards 3
2.1.1 Microprocessor based cards 4
2.1.2 Memory based cards 5
2.1.3 Contact cards 5
2.1.4 Contactless cards 6
2.1.5 Combination cards 6

2.2 Smart card operating system 6
3 Public-Key Cryptography Standards 8

3.1 PKCS#U 9
3.1.1 Microsoft CryptoAPI 10
3.1.2 PKCS#11 vulnerabilities 11

Attacks 11
3.2 PKCS#15 12

4 Analysis and design 13
4.1 Usage of pkcsll-spy 14

4.1.1 Environment configuration 15
4.1.2 Pkcs l l - spy with OpenSSH 17
4.1.3 Pkcs l l - spy wi th pkcs l l - tool 21
4.1.4 Pkcs l l - spy with MozillaFirefox 23
4.1.5 Pkcs l l -spy with L i n u x - P A M 26

5 Implementation 32
5.1 Technologies 33

5.1.1 CMocka 34
5.2 Test cases 34

5.2.1 General tests 39
5.2.2 User P I N tests 40
5.2.3 Message digest tests 41
5.2.4 Key generation tests 42
5.2.5 Sign and verify tests 43
5.2.6 Encrypt and decrypt tests 45
5.2.7 Find objects tests 45
5.2.8 Generate random data tests 47
5.2.9 Create and delete objects tests 47

v

6 Conclusion 49
Bibliography 50
A Pcsc_scan output 52
B Pkcsll-tool utility 53
C Smart card with Mozilla Firefox 55
D YubiKey OpenSC tests output 56

v i

1 Introduction

The rapid growth i n the development of information technologies
during the last few years resulted i n the necessity to secure user's sen
sitive data. Many protection methods have been already developed.
One of the popular options for increasing security of user's personal
data nowadays is the use of smart cards.

The advantage of smart cards over other protection methods is
increased security. Furthermore, their use is convenient, mainly be
cause, they are small and compact, so a user can carry and use them
at any time. The cards are used for authentication, but they can also
carry sensitive information like fingerprints, face or iris images. Fur
thermore, the operating systems such as Microsoft Windows, Linux
and Mac OS provide direct support for the smart card usage.

There are various applications, which allow the user to use smart
cards i n the Linux operating system. One of them is OpenSC. It pro
vides many utility programs that are used for smart card manipu
lation. Moreover, the OpenSC supplies the system with smart card
drivers, which enable communication wi th the card.

However, there still is a possibility of security issues during the
implementation of smart card drivers. In order to lower the number
of issues, the code should be covered by tests. For developers, the
benefit of such test suite is the possibility to verify that their code did
not break any functionality. Moreover, the test suite can also be used
by the end user to verify that the obtained version of code is working
with his/her smart card without any problems.

The goal of this master thesis is to develop a unit testing applica
tion for OpenSC project. At first, a common smart card usage i n the
Fedora distribution of the Linux operating system, is explored. Data
are collected and analysed from several selected use cases. This anal
ysis is further used i n the creation of test suite for selected smart card
drivers - PIV driver and driver for Cryptoflex card.

The theoretical part of the thesis introduces the reader to the basic
concepts and definitions. The second chapter contains basic informa
tion about smart cards and smart card operating systems. Further
more, this chapter describes the various types of smart cards.

1

i . INTRODUCTION

The third chapter briefly introduces Public-Key Cryptography Stan
dards i n order for reader to get overview of the functionality, which
is tested by developed application. The PKCS#11 and the PKCS#15
standards are selected and explained. The PKCS#11 standard is dis
cussed i n more detail. The description includes possible vulnerabil
ities, for instance various attacks through API . In addition, the M i
crosoft Cryptographic A P I is outlined as alternative to PKCS#11.

The fourth chapter deals wi th data collection and analysis. In or
der to work wi th smart cards, the Fedora configuration is explained
thoroughly. This chapter also contains i n depth data analysis obtained
using the OpenSC's pkcs l l - spy utility module.

The applied technologies, such as CMocka and PKCS#11 A P I , are
described i n the implementation chapter 5. This chapter also explain
the created test suite. A l l test cases are divided into various groups
according to set of PKCS#11 functions they have used.

At the end of the thesis are attached thesis appendices. The A p
pendix A shows the example output of the pcsc_scan program. The
p k c s l l - t o o l utility program usage wi th various command line ar
guments is described i n the Appendix B. The Appendix C contains
the example output of the pkcs 15-tool -D command. This command
displays all objects stored on the card and it is used to verify, which
objects are created on the card after the certificate is imported using
Mozi l la Firefox.

The output of the practical part of the master thesis is the appli
cation written i n C programming language. This application imple
ments and provides all tests cases described i n chapter 5. The appli
cation is part of the OpenSC test coverage. The output of all tests can
be found i n the Appendix D .

2

2 Smart cards

Smart card (chip card or integrated circuit card (ICC)) is a plastic card
with a microprocessor and memory embedded i n it. These cards are
available in various sizes and different types.

There are some cards that have only non-programmable memory.
These cards are read-only and the information stored on them can
not be changed or manipulated. The other group of cards containing
a microprocessor, have various functionalities. Smart cards can be de
signed to be inserted into a slot and read by a special reader or to be
read from a distance.

Smart cards are used for personal identification, authentication, data
storage and application processing. Furthermore, they provide strong
security authentication for single sign-on (SSO).

Operating systems such as Microsoft Windows or all new versions
of Linux have built-in software hooks to deploy smart cards as a re
placement for user names and passwords. Microsoft has built a com
plete credential platform around the Scard DLL and Crypto Service
Provider (CSP). Business-to-business Intranets and Virtual Private
Networks (VPNs) are enhanced by the use of smart cards. Based on a
smart card, a user can be authenticated and authorized to have access
to specific information.

2.1 Types of smart cards

There are two criteria, for smart cards classification:

• functionality of smart cards

- microprocessor based cards

- memory based cards

• communication wi th the reader (image 2.1-1)

- contact cards
- contactless cards

3

2. SMART CARDS

- combination cards
- hybrid cards

Contact Cards
ISO 7816

Memory
Cards

Straight
memory

1 k-1 Mbit Fiashi
EE PROM I2CSPI

Protected /
Segmented

memory 3 k to
64 kbit EEP ROW

Stored value
memory

Contactless Cards

CPU/MPU
Cards

8 Mt Symmetric
Key (File Eased}

3-144 kB
EEPHOM

&16.32 bit
Public Key

Dynamic S k-1
MB EEP ROM
with math

coprocessor

Muht Component
C a r d s

Dual Interface
Cards

Memory
Cards
12S kHz

Proximity Cards
[Read Only)

13,56 MHz, ISO
14443 (Read
write) 5 2 kP

MIFARESOther
Proprietary
Protocols

Ultrahigh
Frequency IUHF1

Cards-Gen2

Vault Cards

Fingerprint
Cards

One Time
Password
Display
Cards

Bio-Assaying
Fluidics

Sensor Cards

Img. 2.1-1. Types of smart cards [1]

2.1.1 Microprocessor based cards

Microprocessor based cards have on-card dynamic data processing
capabilities. The card contains a microprocessor or micro-controller
chip. This chip manages memory allocation and file access via card
operating system.

Unlike other operating systems, this software controls access to
on-card user memory. This capability permits different applications
to reside on the card.

There are many configurations of chips i n this category, for exam
ple:

4

2. SMART CARDS

• chips that support cryptographic P K I 1 functions wi th on-board
math co-processors

• JavaCard wi th virtual machine hardware blocks.

2.1.2 Memory based cards

Cards i n this category are used for applications i n which the func
tion of the card is fixed. They can perform only following operations:
store, read and write data to a particular memory location. These data
cannot be manipulated or processed.

Memory based cards contain a non-volatile memory EEPROM2 and
need a card reader to manipulate the data on the card. They com
municate wi th the reader via synchronous protocols. Memory based
smart cards have no processing power and cannot manage the data
stored i n them.

Due to the incapability of cryptography, this type of cards is used
in storing telephone credits, electronic cash or transportation tickets.

2.1.3 Contact cards

Contact smart cards have embedded microprocessors. They contain
golden plates (contact pads) in one corner of the card. Proper function
of a smart card is contingent upon energy supply. Furthermore, a card
needs some mechanism for communication, receiving and sending
data.

The golden plates are used to supply the necessary energy and
to communicate via direct electrical contact wi th the reader. Readers
for contact smart cards are generally a separate devices plugged into
serial or USB ports.

Contact cards are the most common type of smart cards. They
have the size of credit cards and are used for a network security, ac
cessing control, e-commerce and electronic cash.

1. Public Key Infrastructure
2. Electrically Erasable Programmable Read-Only Memory

5

2. SMART CARDS

2.1.4 Contactless cards

Another type of a smart card is a contactless card. Many of these cards
are considered to be C P U / M P U microprocessor cards. In order for a
contactless card to communicate wi th a smart card reader, the radio
identification (RFID) technology is used. Furthermore, these cards
have embedded antenna, which is used as an inductor for supplying
of energy to the card.

Smart card readers are usually connected to the computer via USB
or serial port. As the contactless cards do not need to be inserted into
the reader, they are usually composed only of a serial interface for the
computer and an antenna connected to the card. Readers for contact
less smart cards may or may not have a slot.

A special type of contactless cards is a proximity card. Proximity
cards are read-only cards and the information on these cards can
not be changed or manipulated. Such cards also use radio frequency
identification (RFID) technology.

Contactless smart cards can be credit-card or token sized. They
are used for electronic passports, student identification, electronic toll
collection, vehicle parking and identification purposes.

2.1.5 Combination cards

These cards are combination of contact and contactless smart cards.
They are read or written wi th or without any contact wi th the smart
card reader. In order to manipulate the data, an antenna or contact
pads are used.

Combination cards are used i n mass transit, network security and
for vending purposes.

2.2 Smart card operating system

The smart card's Chip Operating System (frequently referred to as
COS or the Mask) is a sequence of instructions permanently embed
ded i n the R O M 3 of the smart card. It provides basic functionality
such as secure access to on-card storage, authentication and encryp-

3. Read Only Memory

6

2. SMART CARDS

tion. The operating system instructions are not dependent on any spe
cific application, but are frequently used by most of applications [2].

Chip operating systems are divided into two families [3]:

• the general purpose COS - it has a generic command set in
which the various sequences cover most of applications.

• the dedicated COS - commands are designed for specific appli
cations and can contain the application itself.

The smart card operating system provides the baseline functions that
are common across all smart card products. It is responsible for file
and data management held i n memory and communication between
the card and the card reader. Additional responsibilities are access
control to information and functions (e.g. select file, read, write and
update data), management of card security and the cryptographic al
gorithm procedures.

Chip operating systems that support multiple applications on smart
cards, are:

• JavaCard OS

• MultOS (Multi-application Operating System)

7

3 Public-Key Cryptography Standards

The Public-Key Cryptography Standards (PKCS) are a set of stan
dards for public-key cryptography developed by RSA Laboratories
in cooperation wi th an informal consortium, originally including Sun
Apple , Microsoft, D E C , Lotus and MIT [4].

The PKCS are designed for binary and ASCII data and they are
also compatible wi th the ITU-T 1 X.509 standard.

The PKCS include two types of standards: algorithm-specific and al
gorithm-independent. Many algorithms are supported, including RSA
and Diffie-Hellman key exchange, however, only the latter two are
specifically detailed [4]. The PKCS also define an algorithm-indepen
dent syntax for digital signatures, envelopes and also for extended
certificates. This enables the implementation of any cryptographic al
gorithm to conform to a standard syntax and achieve interoperability.

The following is the list of Public-Key Cryptography Standards (PKCS)
[4]:

• PKCS#1 - defines mechanisms for encrypting and signing data
using a RSA public-key cryptosystem.

• PKCS#3 - defines a Diffie-Hellman key agreement protocol.

• PKCS#5 - describes a method for encrypting a string wi th a se
cret key derived from a password.

• PKCS#6 - is being phased out in favor of version 3 of X.509.

• PKCS#7 - defines a general syntax for messages that include
some cryptographic enhancements such as digital signatures
and encryption.

• PKCS#8 - describes a format for private key information.

• PKCS#9 - defines selected attribute types for use i n the other
PKCS standards.

1. Telecommunication Standardization Sector of the International Telecommuni
cations Union

8

3- P U B L I C - K E Y CRYPTOGRAPHY STANDARDS

• PKCS#10 - describes syntax for certification requests.

• PKCS#11 - defines an independent programming interface, called
Cryptoki , for cryptographic devices such as smart cards and
P C M C I A 2 cards.

• PKCS#12 - specifies a portable format for storing or transport
ing a user's private keys, certificates, miscellaneous secrets, etc.

• PKCS#13 - defines mechanisms for encrypting and signing data
using Elliptic Curve Cryptography.

• PKCS#14 - covers pseudo-random number generation, but it is
currently i n development phase.

• PKCS#15 - is a complement to PKCS#11, giving a standard for
the cryptographic credentials format stored on cryptographic
tokens.

3.1 PKCS#11

The PKCS#11 is a cryptographic token interface standard, that spec
ifies an A P I 3 , called Cryptoki. With this A P I , it is possible to imple
ment and to perform cryptographic functions for cryptographic to
kens.

The Cryptoki follows simple object-based approach, addressing
the goals of technology independence and resource sharing [5]. Con
sequently, any kind of device thus can be used and multiple applica
tions can access multiple devices. Furthermore, it presents a logical
view of the device, called a cryptographic token, to the application.
For instance, devices such as hardware security modules (HSM) and
smart cards belong to cryptographic token category.

The A P I defines the most commonly used cryptographic object types
(RSA keys, X.509 certificates, DES and T r i p l e DES keys, etc.) [6]. A d
ditionally, the A P I specifies all necessary functions to use, create or

2. Personal Computer Memory Card International
3. Application Programming Interface

9

3- P U B L I C - K E Y CRYPTOGRAPHY STANDARDS

generate, modify and delete those objects. Complete list of functions
defined by Cryptoki is described in chapter 5.

When the cryptographic token is connected to the computer (e.g.
inserted to the reader), the appropriate slot ID defined by the Cryp
toki is assigned. In order for application to use a particular crypto
graphic token, the appropriate slot ID has to be specified.

3.1.1 Microsoft CryptoAPI

One of the alternatives to PKCS#11 is the Microsoft Cryptographic
Application Programming Interface (also known as CryptoAPI or M S -
CAPI). The CryptoAPI together wi th Microsoft Cryptographic Ser
vice Providers (CSPs) are included within the Microsoft Windows
operating systems. Furthermore, they provide services enabling de
velopers to secure Windows-based applications by means of cryptog
raphy.

The CryptoAPI supports both public-key and symmetric-key cryp
tography. It also contains functions that allow applications to encrypt
or digitally sign data. A l l cryptographic operations are performed
by independent modules known as cryptographic service providers
(CSPs).

The Cryptographic Service Provider provides an implementation of
a Cryptography A P I layer. Some provide stronger cryptographic al
gorithms, while others contain hardware components such as smart
cards [7]. CPS is built and delivered as a . d l l library on Windows.
There is no concept of a CSP on other platforms than Microsoft W i n
dows.

The advantage of the CryptoAPI over PKCS#11 is that smart card
vendors can write card mini-drivers. These drives present consistent
interface to the Microsoft Smart Card Base Cryptographic Service
Provider or Crypto Next Generation Key Storage Provider and to the
Smart Card Management Interface. These card mini-drivers plug in
to Windows operating system code [8].

10

3- P U B L I C - K E Y CRYPTOGRAPHY STANDARDS

3.1.2 PKCS#11 vulnerabilities

Although the PKCS#11 standard is widely used, it contains some v u l
nerabilities. According to "Attacking and Fixing PKCS#11 Security To
kens"4^ paper there is a chance for attacks on PKCS#11 compliant to
kens. The feasible attacks have been detected by tool called Tookan.

The Tookan (TOOl for cryptoKi ANalysis) is an automated tool
which reverse-engineers a real PKCS#11 token to deduce its function
ality. It constructs a model of its A P I and then executes any attack
trace found by the model checker directly on the token. The Tookan
is able to extract sensitive cryptographic keys from a variety of cryp
tographic security tokens, exploiting vulnerabilities in their PKCS#11
based APIs [9].

Attacks

One common way to derive a device-specific symmetric key is to take
a master key and some public data unique to the device, like a serial
number, and encrypt the data under the key.

In PKCS#11, this is done by calling the C_DeriveKey function. In
order to keep a key value as a secret, the CKA_SENSITIVE attribute is set
to TRUE. The C_Der iveKey is implemented as specified i n the standard,
deriving the key from a key which is CKA_SENSITIVE and produces
another key which is CKA_SENSITIVE.

However, when the master key has the attribute CKA_DERIVE and
also CKA_ENCRYPT set to TRUE, an attacker can execute C_Encrypt using
the master key and recover the value of the derived secret keys from
the serial numbers.

Another attack is possible via a flaw in the PKCS#11 implementation.
The value of sensitive keys is explicitly required to never be revealed
outside of the token. In theory, when the token is asked for the value
of a sensitive key, the "value is sensitive" error code is returned. In spite
of that, some of the analysed devices just returned the plain key value,
ignoring this basic policy [10].

Another violation of the PKCS#11 security policy is the possibility

4. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCFS-ccslO.pdf

11

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCFS-ccslO.pdf

3- P U B L I C - K E Y CRYPTOGRAPHY STANDARDS

of changing sensitive and unextractable keys respectively into non-
sensitive and extractable ones [10].

3.2 PKCS#15

The PKCS#15 defines a standard that allows users of cryptographic
tokens to identify themselves to multiple applications, regardless of
the application's Cryptoki (or other token interface) provider. The IC-
card-related parts of this standard are specified i n ISO/IEC 7816-15
standard [11].

The "object-oriented" approach (treating keys, certificates and other
data as objects wi th attributes and values) selected for PKCS#11, has
been adopted for PKCS#15 as well [12].

12

4 Analysis and design

Smart cards usage during everyday tasks was analysed i n order to
obtain various test scenarios. The analysis was mostly concerned with
the usage of smart cards in Fedora distribution of operating system
Linux. The obtained data were used to design test suite that covers
majority commonly used functions from PKCS#11 API . This way, all
the common use cases of smart card usage are covered by tests.

There are many applications using smart cards for various objectives.
They can be divided into two groups:

• applications using an already initialized smart card via PKCS#11
high-level functions, (e.g. Mozi l la Firefox or TrueCrypt)

• applications, that work directly wi th data structures on a card.
This category includes utility programs from the OpenSC project
like pkcsl5-init or pkcsll-tool, whose role is to initialize the
card and prepare it for high level programs usage.

Each application works wi th a given smart card in different ways,
but there are some common use cases:

• authentication - logging into Fedora via smart card belongs to
this category. Linux authentication modules (Linux-PAM1) are
responsible for the authentication to the Fedora system via a
smart card.

- a special example is the authentication to the remote server
via ssh. The OpenSSH library is used for this purpose and
it supports authentication via a smart card.

• disk encryption - representative of this category is TrueCrypt.
It can create a virtual encrypted disk within a file or encrypt a
partition or the entire storage device.

1. Pluggable Authentication Modules

13

4. ANALYSIS A N D DESIGN

• smart card initialization - utility programs like pkcsll-tool or
pkcsl5-init from the OpenSC project serve for a card initializa
tion. Their tasks is either generation of RSA key pair on a card
or the creation of PKCS#15 structure on a card.

• managing certificates - main operation used wi th certificates
is reading. However, a new certificate can be also stored on or
erased from a smart card. Certificates are mostly used for au
thentication for example to some web pages or to a remote server.
Applications that are managing certificates are Mozilla Firef ox,
pkcsll-tool and others.

• data storage - smart cards can be used as data storage for sen
sitive data like finger prints, face or iris images

Particular information about smart card usage from applications
were obtained the by utility module pkcsll-spy from the OpenSC
project. Data for the analysis were obtained from these applications:

• OpenSSH

• L i n u x - P A M

• Mozi l la Firefox

• pkcs l l - tool

4.1 Usage of pkcsll-spy

The pkcsll-spy is a special PKCS#11 module that sits between the
application and the real PKCS#11 module. It creates a log file wi th all
functions calls from the application and returns values from the real
PKCS#11 module [13].

The pkcsll-spy does not change the communication i n any way, it
only serves for logging sequence of PKCS#11 functions that are used
by the application. These log files are security sensitive, since all in
formation is logged, including PIN, P U K , signatures etc. [13]. This is
the reason, why the pkcs l l - spy should be only used for debugging
and preferably only wi th test keys.

14

4. ANALYSIS A N D DESIGN

O n Linux the PKCS#11 Spy is used wi th environment variables,
which specify where the output is logged, s tderr is used for logging
by default, but the environment variable PKCS11SPY_0UTPUT can be set
to a file name and all logging output is appended to that file [13]. The
environment variable PKCS11SPY needs to be set to the real PKCS#11
module path such as opensc-pkcsll.so (absolute path should be used)
in order to use the PKCS#11 module.

A l l outputs for data analysis were obtained by utility pkcsll-spy.
Selected applications for data collection were OpenSSH, L i n u x - P A M ,
Firefox and utility pkcsl l - tool .

4.1.1 Environment configuration

In order to work correctly wi th smart cards and wi th OpenSC utility
programs, the Fedora environment has to be configured.

First, the middle-ware has to be installed in order to access a smart
card using the SCard A P I (PC/SC) and a PKCS#11 standard interface
for smart cards connected to a P C / S C compliant reader [14].

The pcsclite project provides the middle-ware layer. It is split into
a few packages. These packages have to be installed:

$ dnf install pcsc—lite pcsc—lite—devel pcsc—lite—ccid
$ dnf install perl—pcsc pcsc—tools

When a user connects a smart card reader to a computer, it is
recognized by the pcsc_scan program. The smart card is also recog
nized when it is inserted into the reader. The output example of the
p c s c s c a n is included i n Appendix A .

The computer is now able to recognize the connected smart card.
The OpenSC has to be installed in order to work wi th the smart card.

The OpenSC provides a set of libraries and utilities to work with
smart cards. Its main focus is on cards that support cryptographic
operations and facilitate their use i n security applications such as
authentication, mail encryption and digital signatures. The OpenSC
implements the PKCS#11 A P I so applications supporting this A P I
(such as Mozi l la Firefox and Thunderbird) can use it. O n the card,
the OpenSC implements the PKCS#15 standard and aims to be com-

15

4. ANALYSIS A N D DESIGN

patible wi th every software and card that does so as well [15].

For the purpose of this thesis was used the latest OpenSC version
cloned from GitHub. Before the installation of the OpenSC, two util
ity programs and the OpenSSL have to be installed:

$ dnf install autoconf automake
$ dnf install openssl openssl—devel engine_pkcsll

The OpenSSL has to be installed before the OpenSC, so the OpenSC
can use some OpenSSL functions for reading certificates, working
with public or private key, etc. In addition, the OpenSSL is used to
check whether outputs from testing applications were correct. At this
point, the OpenSC project can be cloned from GitHub and installed:

$ cd ~/Downloads
$ git clone https:/ /github.com/OpenSC/OpenSC.git
$ cd OpenSC/
$ autoreconf install verbose
$ make
$ sudo make install

The last package required by the test application is CMocka 2. The
version 1.0.1 of the CMocka package was used in this thesis and it
was downloaded from url https : //cmocka. org/f i l e s / 1 . 0 / .

$ cd ~/Downloads
$ xz —d cmocka—1.0.l.tar.xz
$ tar vxf cmocka—1.0.1.tar
$ cd cmocka—1.0.1
$ mkdir bui ld
$ cd bui ld
$ cmake — DCMAKE_BUILD_TYPE=Release ..
$ make
$ sudo make install

After this configuration, the environment is ready for work with
the smart card and the test application. A l l examples wi th the p k c s l l -
spy module assume, that the Cryptof lex 32k e-gate smart card is
used.

2. https://cmocka.org/

16

https://github.com/OpenSC/OpenSC.git
https://cmocka.org/

4. ANALYSIS A N D DESIGN

4.1.2 Pkcsll-spy with OpenSSH

In order to get the output of the used PKCS#11 A P I functions with
their parameters from the OpenSSH, the card needs to be initialized
with correct objects. At the beginning, the Cryptof lex card has to be
erased and initialized wi th a user PIN. This step ensures, that there
are not any objects which are needed by the OpenSSH.

$ pkcsl5—init —ET
$ pkcsl5—init —CT no—so—pin
$ pkcsl5—init store—pin auth—id 01 label"

M y test label" p in 12345 puk 54321 - T

The -T parameter for the p k c s l 5 - i n i t command means, that the
default transport key is being used. If the transport key has been al
ready changed this command fails. In this case, the command should
be running without the -T option and a user would be asked for the
transport key.

The next step is to generate a RSA key pair and store the certificate to
the smart card. There are two possible options:

1. keys are generated on the smart card and the certificate w i l l be
imported to the card. It includes 3 steps:

(a) generate RSA key pair on the smart card

$ pkcsl l—tool login p in 12345
keypairgen key—type rsa:1024 i d a l
label " M y generated key"

(b) create the certificate from a public key, that was generated
on the card. (Note during the creation of X.509 certificate
inputs like "Common name", "Country name" have to be
filled in)

$ openssl
OpenSSL> engine dynamic —pre S O _ P A T H : / u s r /

l ib64/openssl/engines/libpkcsll .so —pre ID:
p k c s l l - p r e LIST_ADD:1 - p r e L O A D - p r e
M O D U L E _ P A T H : / u s r / l i b 6 4 / o p e n s c - p k c s l l .
so

17

4. ANALYSIS A N D DESIGN

OpenSSL> req —engine p k c s l l —new —key i d _ a l
—keyform engine — x509 —out cert.der —
outform DER

OpenSSL> quit

(c) store/import the certificate to the card

$ pkcsl l—tool —1 p in 12345 write—object
cert.der type cert i d a l

2. the keys are generated by the OpenSSL and imported to the
card. These steps must be followed:

(a) create a 2048 bit RSA private key in DER format

$ openssl genpkey —algorithm RSA —out
private_key.key —outform DER —pkeyopt
rsa_keygen_bits:2048

(b) from the obtained private key generate a public key in DER
format

$ openssl rsa — pubout —in private_key.key —
inform DER —out public_key.key —outform
DER

(c) create the X.509 certificate

$ openssl req —out cert.der —key private_key.key
—keyform DER —new —outform DER — x509 —
days 365

(d) import all created objects to the smart card

$ p k c s l l - t o o l -1 p in 12345 label " M y
Private Key" type privkey write—object
private_key.key i d a l usage—sign
usage—decrypt

$ p k c s l l - t o o l -1 p in 12345 label " M y
Public Key" type pubkey write—object
public_key.key i d a l usage—sign
usage—decrypt

18

4. ANALYSIS A N D DESIGN

$ pkcsl l—tool —1 p in 12345 write—object
cert.der type cert i d a l label " M y
certificate"

At this moment, there are 4 objects on the card: the user PIN, the
private key, the public key and the certificate. In order to list all objects
from the card the command p k c s l 5 - t o o l -D is used. Output is as
follows:
PKCS#15 Card [OpenSC Card] :
Version : 0
S e r i a l number : 0000D909FFFF0200
Manufacturer ID: OpenSC Project
Last update : 20160221162253Z
Flags : EID compliant

PIN [My tes t label]
Object Flags : [0x3], p r i v a t e , modif iable
ID : 01
Flags : [0x32], l o c a l , i n i t i a l i z e d ,

needs-padding
Length
Pad char
Reference

min_len:4 , max_len:8, s tored_len:8
0x00
1 (0x01)

Type
Path

ascn-numeric
3f0050154b01

Pr ivate RSA Key [My P r i v a t e Key]
Object Flags : [0x3], p r i v a t e , modif iable
Usage : [0x2E], decrypt, s i g n ,

signRecover, unwrap
Access Flags : [0x0]
ModLength : 2048
Key ref : 0 (0x0)
Native : yes
Path : 3f0050154b0130000012
Auth ID : 01
ID : a l

19

4- ANALYSIS A N D DESIGN

MD:guid {4a6c27d7-802a-5be2-b97d-88aab52f5238}

Publ i c RSA Key [My P u b l i c Key]
Object Flags
Usage

Access Flags
ModLength
Key ref
Native
Path
ID

[0x2], modif iable
[OxDl], encrypt, wrap,

veri fyRecover , v e r i f y
[0x0]
2048
0 (0x0)
no
3f0050154800
a l

X.509 C e r t i f i c a t e [C e r t i f i c a t e]
Object Flags : [0x2], modif iable
Author i ty : no
Path : 3f0050154500
ID : a l
Encoded s e r i a l : 02 09 00C45607B26EE39A4A

A n ssh key has to be created to use the OpenSSH with the generated
certificate. (Note if the OpenSSL was not installed before the OpenSC,
there would be no option read-ssh-key for p k c s l 5 - t o o l utility)

$ pkcsl5—tool read—ssh—key a l

The obtained key should be copied to a - / . ssh/authorized_keys file
on a remote server.

aisa:/home/xusername>$ cat ~/.ssh/authorized_keys
ssh—rsa ${obtained_key}

After all these steps, everything is set for the use of the OpenSSH
with the smart card to login via ssh to the remote server. The path to
the PKCS#11 module has to be specified as a parameter to ssh com
mand. When the path to the pkcs l l - spy module is set as a parameter,
all PKCS#11 functions used by the OpenSSH are logged to the file.

$ export PKCSHSPY=/ l ib64 /opensc -pkcs l l . so
$ export PKCSHSPY_OUTPUT=/path/ to /output . log

20

4. ANALYSIS A N D DESIGN

$ ssh —I / u s r / l i b 6 4 / p k c s l l / p k c s l l — s p y . s o xstrhars@fi.
muni.cz

A user is asked to provide a P I N for the smart card. When the P I N
is correct, the user is logged in to the remote server.

4.1.3 P k c s l l - s p y w i t h pkcsll-tool

A prerequisite for using the pkcsll-tool utility is a reinitialized card
without any unnecessary objects (e.g like in chapter 4.1.2).

The pkcsll-tool is universal and can be used wi th most opera
tions supported by smart cards. According to the documentation, a
subset of functions was selected to get the pkcs l l - spy output.

Note that before using any of these commands, the smart card has
to be reinitialized and pkcs l l - spy environment variables have to be
exported. A l l examples of pkcs l l - tool commands are included in A p
pendix B.

$ export PKCSHSPY=/ l ib64/opensc -pkcs l l . so
$ export PKCSHSPY_OUTPUT=/path/ to /output . log

Selected commands to analyse were:

• test - to run basic tests on the smart card e.g. random data gen
eration tests, tests of signatures, verification, message digest, de
cryption and key unwrap.

• list slots - to list all available slots (physical and virtual) and
display their information (e.g. card insertion, virtual or physical
slot). Note that it is not necessary to have a user P I N on the card.

• list mechanisms - to list all mechanisms supported by the card.
Every mechanism has its name and is flagged for which func
tion it can be used for. Possible function flags are digest , s ign,
v e r i f y , decrypt and generate_key_pair. Some mechanisms have
a supported size of keys, that canbe used (keySize={512,2048}).
Note, that it is not necessary to have a user P I N on the card.

21

http://muni.cz

4. ANALYSIS A N D DESIGN

• list objects - to list all objects stored on the card. If this option is
used without logging i n to the card, it w i l l list only public avail
able objects such as certificates or public keys. When the login
and p in options are provided, private objects are also shown.

• init pin - to initialize user's PIN. Only the Security Officer (SO)
has privileges to initialize the user PIN, therefore he must be
logged in. A default SO P I N for the Crypt of lex smart card is
00000000. Note, that for this command, the card must not be
already initialized wi th the user PIN.

• change pin - to change an old user P I N to a new one. To change
the PIN, a user has to log i n to the smart card.

• test ec - to test whether elliptic curves are supported. This test
checks whether the mechanism CKM_EC_KEY_PAIR_GEN is sup
ported by the card.

• key pair gen - to generate key pair on the card. It is possi
ble to choose between two key pair types - r s a : {keySize} or
EC: prime256vl. Mostly only the rsa is supported. The card must
support the mechanism for generating a key pair (it has a flag
generate_key_pair). A key size must also be specified before
the generation of the key pair.

• read object - to read object stored on a card. Some objects, like
a private key cannot be read from the card, therefore this com
mand fails. Furthermore, an i d of the object and its type must
be provided.

• write object - to write/ import object to the card. Four types of
objects can be imported to the card - certificate (cert), private
key (privkey), public key (pubkey) and data (data)

• delete object - to delete object from the card. This operation
usually fails because deletion is not supported by the majority
of smart cards.

• sign - to sign message wi th a private key. A prerequisite is that
a private key has to exist on the card. Verification is not the part

22

4. ANALYSIS A N D DESIGN

of the pkcs l l - tool , because it uses a public key which is rarely
present on the smart cards.

• decrypt - to decrypt an encrypted message. There is no support
for encryption due to the same reason as the verification. More
over, most cards do not have a mechanism with the encrypt
flag.

• hash - to use a message digest algorithm to create a hash of
an input message. There can be more than one message digest
algorithm supported by the card. Commonly used are SHA-1,
SHA256, SHA512, MD5, RIPEMD160, G0STR3411. It is possible to spec
ify which message digest mechanism is used to create the hash
of the message.

Most of the data for analysis were obtained by means of the pkcsll-
spy utility module wi th the pkcsll-tool.

4.1.4 Pkcsll-spy with Mozilla Firefox

A prerequisite for using program Mozilla Firefox wi th the p k c s l l -
spy is a reinitialized card without any unnecessary objects (as i n chap
ter 4.1.2).

There are three ways how Mozi l la Firefox works wi th certificates:

1. to read a certificate

2. to store/import a certificate to a card

3. to delete a certificate - on a Cryptof lex card only the public key
is deleted from the card, but the certificate and the private key
remained on the smart card

In order to make Mozi l la Firefox work wi th the smart card a new
Security Device has to be added to Firefox. Firstly, the pkcs l l - spy en
vironment variables are exported. Subsequently, Firefox is executed
from the command line, so it is possible to add the pkcs l l - spy secu
rity device.

23

4- ANALYSIS A N D DESIGN

$ export PKCSHSPY=/ l ib64 /opensc -pkcs l l . so
$ export PKCSHSPY_OUTPUT=/path/ to/ f i refox . log
$ firefox

The path to the configuration of security devices is as following:
Menu - Preferences - Advanced - Secur i ty Devices. Afterwards Load
is pressed and the Load PKCS#11 Device dialogue window is opened.
The name of the module and path to the pkcs l l - spy utility module is
filled as shown in the picture 4.1-1

Load PKCS411 Device

Enter the information for the moduLe you want to add.

ModuLe Name: OpenSC Spy

ModuLe filename: /usr/Lib64/pkcsll/pkcsll-sp^ Browse

Cancel OK

Img. 4.1-1. Load PKCS#11 Device dialogue

Importing of a certificate

Firefox supports certificate importing only in PKCS#12 format. In or
der to create the importing certificate, these steps have to be followed:

1. using the OpenSSL generate a private key

$ openssl genpkey —algorithm RSA —out private_key.
key —pkeyopt rsa_keygen_bits:2048

2. from the obtained private key create the certificate i n P E M 3 for
mat

$ openssl req —out cert.pem —key private_key.key —
new — x509 —days 365

3. Privacy Enhanced Mail

24

4- ANALYSIS A N D DESIGN

3. create the certificate i n PKCS#12 format using the private key
and the certificate in P E M format. A user is asked to provide a
password, which w i l l be subsequently used during the certifi
cate importing from Firefox.
$ openssl pkcsl2 —export —inkey private_key.key

cert.pem —out cert.pl2
-in

The user has to navigate to Menu - Preferences - Advanced -
Securi ty Devices and press View C e r t i f i c a t e s in order to import
the newly created certificate. The password required dialogue is dis
played and the user has to fi l l i n the P I N to the smart card

After Import is pressed, the user is asked to choose, the certificate
location (image 4.1-2), the password dialogue for token P I N and the
certificate password (image 4.1-3).

Choose Token Dialog

P l e a s e c h o o s e a t o k e n .

O p e n S C C a r d (M a r t i n S t r h a r s k y)

C a n c e l O K

Img. 4.1-2. Import certificate dialogue

Password Required

P l e a s e e n t e r t h e p a s s w o r d t h a t w a s u s e d t o e n c r y p t t h i s c e r t i f i c a t e b a c k u p :

C a n c e l O K

Img. 4.1-3. Certificate password

At this moment, the certificate is successfully imported to the smart
card. It is shown i n View C e r t i f i c a t e s dialogue (image 4.1-4)

The imported certificate, the private and the public key can are
shown via " p k c s l 5 - t o o l -D" command. The output example is in
cluded in Appendix C.

25

4. ANALYSIS A N D DESIGN

Certificate Manager

Y o u r C e r t i f i c a t e s P e o p l e S e r v e r s A u t h o r i t i e s O t h e r s

Y o u h a v e c e r t i f i c a t e s f r o m t h e s e o r g a n i z a t i o n s t h a t i d e n t i f y y o u :

C e r t i f i c a t e N a m e S e c u r i t y D e v i c e

• D e f a u l t C o m p a n y L t d

S e r i a l N u m b e r E x p i r e s O n

I m p o r t e d C e r t i f i c a t e O p e n S C C a r d { M a r t i n ... 0 0 : B 4 : 3 E : D B : 5 8 : A 4 : . . . 0 2 / 2 3 / 2 0 1 7

V i e w . . B a c k u p . . B a c k u p A l l - I m p o r t . . . D e l e t e . .

O K

Img. 4.1-4. View imported certificate

The pkcs l l - spy output log is used to verify, that the certificate has
been i n fact imported to the smart card. In the log file, the function
C_CreateObject is used at least 3 times to subsequently create the
private key, the public key and the certificate. The log file includes all
input parameters of the created objects such as a modulus, a private
exponent, prime numbers and others.

4.1.5 Pkcsll-spy with Linux-PAM

L i n u x - P A M (Pluggable Authentication Modules) is an authentication
framework that uses modules to authenticate users by a wide variety
of methods [16]. A PKCS#11 P A M module enables smart cards to au
thenticate against any service that uses P A M . The most obvious usage
of P A M is i n system logins, either console or graphical. However, a lot
of other services, for example sudo, use it as well .

The PKCS#11 P A M module is found i n the pam_pkcs 11 package in
the repositories.

26

4. ANALYSIS A N D DESIGN

Several methods are used to "map" a smart card to a user. One of
the methods is pwent. The pwent checks the C N (Common Name)
field of the X.509 certificate associated wi th a key, and grant access
only if it matches either the login name or the real name of the user.
Alternative mappers are [17]:

• Common Name (CN) mapper - assumes the C N field on the
certificate to be the login name.

• Subject mapper - extracts the Certificate Subject and assumes
it as login.

• LDAP 4 mapper - uses an L D A P server to retrieves the user name.
A n additional file informs the module about the mapping be
tween Cert fields and L D A P entries.

• OpenSC library mapper - searches for the certificate in
${H0ME}/. e id/autor ized_cer t i f i cat es i n a similar way as the
OpenSC does. When it is used as a login finder, it returns the
user, who owns the ${H0ME} directory, to the certificate location.

• OpenSSH library mapper - searches for the certificate pub
lic key in ${HOME}/.ssh/authorized_keys in a similar way as
the OpenSSH does. The openssh mapper uses Naming Service
Switch (NSS) via getpwentO to get the list of users and home
directories.

• Email Cert to login mapper - is an email mapper that extracts
an e-mail from the certificate. When the mapf i l e option is set
and the file is provided, the module maps the email field from
the certificate to a user (or an alternate email). When the mapf i l e
is not set, only an email address from the certificate is used to
perform find / match.

• Microsoft Universal Principal Name mapper - finds and uses
a Microsoft Universal Principal Name (UPN) extension to get
the login name. The Microsoft U P N is an ASNl-encoded UTF8
string wi th the syntax login@ADS_Domain. When a U P N is found,
the mapper extracts login part as the login user.

4. Lightweight Directory Access Protocol

27

4. ANALYSIS A N D DESIGN

• Kerberos mapper - finds and uses Kerberos Principal Name
(KPN) as the login name. When the mapf i l e is specified, it maps
K P N into the login.

• Unique ID to login mapper - uses the Unique ID (UID) field as
the login name. It is similar to the C N mapper, but uses the UID
as the field to find/match.

• Certificate Digest to login mapper - evaluates the certificate
digest and maps the result into a login by using a mapf i l e .

• Generic mapper - groups several mappers into one. A user se
lects which certificate content is used to deduce/match login
and whether a file mapping is wanted. If it is desired, it con
sults mapped string to NSS services to get the final user login.

• Null mapper - is a bl ind access/deny mapper.

After the pam_pkcsll package installation, some additional man
ual configuration has to be performed. Firstly, some additional direc
tories are created in /etc /pam_pkcsl l .

The directory /etc /pam_pkcsl l /cacerts stores the certificates of all
trusted certificate authorities - a certificate is accepted only if it has
been signed by one of those certificate authorities. O n the other hand,
the directory / e t c / p a m _ p k c s l l / c r l s stores the Certificate Revoca
tion Lists sent by the certificate authorities, so the P A M module knows
which certificates are no longer valid (revoked).

The private key and the X.509 certificate for the key is generated and
stored on the card. Note that the Common Name (CN) field is used
to match the certificate to the account. Therefore either the login or
the real name has to be put in the field.

$ openssl genpkey —algorithm RSA —out private_key.key —
pkeyopt rsa_keygen_bits:2048 —outform DER

$ openssl req —out certificate.pern —key private_key.key —
key form DER —new — x509 —days 365

$ openssl x509 —in certificate.pern —out certificate.der —
outform der

28

4- ANALYSIS A N D DESIGN

$ pkcsl l—tool —1 p in 12345 write—object private_key
.key type privkey label " M y Private Key"

$ pkcsl l—tool —1 p in 12345 write—object certificate.
der type cert label " M y certificate"

The created certificate is copied in P E M format to the directory
/etc /pam_pkcsl l /cacerts (self-sign certificate is used) and the list
of C A certificates is rehashed with:

$ cd /etc/pam_pkcsll /cacerts
$ sudo pkcsll_make_hash_link

L i n u x - P A M works correctly wi th the smart card, only when the used
certificate is registered as "trusted" in NSS 5 . The first step is to create
a folder for NSS database and register it:

$ sudo mkdir —p /e tc /pam_pkcs l l /nssdb
$ sudo chmod 700 /e tc /pam_pkcs l l /nssdb
$ certutil — d /e tc /pam_pkcs l l /nssdb — N

The next step is to import the created certificate to the certificate
database. It has to be set as trusted, so that it can be used during au
thorization via the smart card.

$ sudo certutil — A —n "Certificate nickname" —t "CT,C,
C" —a —d /e tc /pam_pkcs l l /nssdb — i / p a t h / t o /
created/certificate

By default, L i n u x - P A M is not set to use the OpenSC module. Hence,
there have to be changes i n the configuration. These variables are
changed i n configuration file /e tc /pam_pkcsl l /pam_pkcsl l . conf:

• the debug property for the root element pam_pkcs 11 is set to be
true, when the verbose debug output is necessary

pam_pkcs l l {
Allow empty passwords
nullok = true;

5. Name Service Switch

29

4. ANALYSIS A N D DESIGN

Enable debugging support.
debug = true;

}

• the PKCS#11 module, has to be specified in the use_pkcs ll_module
property

pam_pkcs l l {
Filename of the PKCS #11 module.
use_pkcsll_module = opensc;

}

• the OpenSC PKCS#11 module, where the path to the p k c s l l - s p y . s o
library and correct paths to C A and C R L directories must be set

pkcs l l_module opensc {
module = /usr / l ib64 /pkcs l l /pkcs l l—spy .so ;
description = "OpenSC PKCS#11 module";

slot_num = 0;

ca_dir = /etc/pam_pkcsll/cacerts ;
crl_dir = /e tc /pam_pkcs l l / cr l s ;

set the certificate policy
cert_policy=ca, signature;

}

• use_mappers specifies mappers, which are used during the smart
card authentication. It is sufficient if there is only the pwent
mapper, which checks only the Common Name field of the X.509
certificate

pam_pkcs l l {
use_mappers = pwent;

}

The last step is to choose which services are using the smart card
authentication. A l l available services are listed i n /etc/pam.d direc
tory as shown in the picture 4.1-5.

30

4- ANALYSIS A N D DESIGN

rnstrharsky@localhost:/etc/pann.d x

Für Edit View Search Terminal Help

[mst rt iarsky@~l(> c a l h o s t pam.d]^
t o t a l 144
- r w - r - - r - - . 1 r o o t r o o t 272 J u n 17 2015 a t d
- r w - r - - r - - . 1 r o o t r o o t 192 Nov 18 12:28 c h f n
- r w - r - - r - - . 1 r o o t r o o t 192 Nov 18 12:28 c h s h
- r w - r - - r - - . 1 r o o t r o o t 232 Aug 12 2015 c o n f i g - u t i l
- r w - r - - r - - . 1 r o o t r o o t 293 J u l 13 2015 c r ond
- r - - r - - r - - . 1 r o o t r o o t 146 F e b 8 12:45 c u p s
1 rwx rwx rwx . 1 r o o t r o o t 19 Dec 18 22:38 f i n g e rp r i n t - a u t h -> f i n g e rp r i n t - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 7Q2 Dec 18 22:38 f i n g e rp r i n t - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 54c. F e b 12 18:30 g d m - a u t o l o g i n
- r w - r - - r - - . 1 r o o t r o o t 561 F e b 12 18:30 g d m - f i n g e r p r i n t
- r w - r - - r - - . 1 r o o t r o o t 3Q3 F e b 12 18:30 g d m - l a u n c h - e n v i r o n m e n t
- r w - r - - r - - . 1 r o o t r o o t 787 F e b 12 18:30 g d m - p a s s w o r d
- r w - r - - r - - . 1 r o o t r o o t 866 F e b 12 18:30 g d m - p i n
- r w - r - - r - - . 1 r o o t r o o t 553 F e b 12 18:30 gdm-sma r t c a rd
- r w - r - - r - - . 1 r o o t r o o t 97 Oct 22 22:03 l i v e i n s t
- r w - r - - r - - . 1 r o o t r o o t 715 Nov 18 12:28 l o g i n
- r w - r - - r - - . 1 r o o t r o o t 154 Aug 12 2015 o t h e r
- r w - r - - r - - . 1 r o o t r o o t 188 J u n 18 2015 p a s s w d
1 r w x rwx rwx . 1 r o o t r o o t 16 Dec 18 22:38 p a s s w o r d - a u t h -> p a s s w o r d - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 974 Dec 18 22:38 pa s swo r d - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 155 J u l 14 2015 p o l k i t - 1
1 r w x rwx rwx . 1 r o o t r o o t 12 Dec 18 22:38 p o s t l o g i n -> p o s t l o g i n - a c
- r w - r - - r - - . 1 r o o t r o o t 326 Dec 18 22:38 p o s t l o g i n - a c
- r w - r - - r - - . 1 r o o t r o o t 144 J u n 18 2015 PPP
- r w - r - - r - - . 1 r o o t r o o t 64Q Nov 18 12:28 r emote
- r w - r - - r - - . 1 r o o t r o o t 143 Nov 18 12:28 r u n u s e r
- r w - r - - r - - . 1 r o o t r o o t 138 Nov 18 12:28 r u n u s e r-1
- r w - r - - r - - . 1 r o o t r o o t 145 J u n 19 2015 s e t u p
1 r w x rwx rwx . 1 r o o t r o o t 17 Dec 18 22:38 s m a r t c a r d - a u t h -> s m a r t c a r d - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 752 Dec 18 22:38 sma r t c a r d - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 9Q4 Mar 10 14:30 s s h d
- r w - r - - r - - . 1 r o o t r o o t 594 Dec 27 14:35 s u
- r w - r - - r - - . 1 r o o t r o o t 238 Dec 25 16:50 sudci
- r w - r - - r - - . 1 r o o t r o o t 21Q F e b 24 23:49 s u d o - i
- r w - r - - r - - . 1 r o o t r o o t 137 Nov 18 12:28 s u - 1
1 r w x rwx rwx . 1 r o o t r o o t 14 Dec 18 22:38 s y s t e m - a u t h -> s y s t e m - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t IQ15 Dec 18 22:38 s y s t e m - a u t h - a c
- r w - r - - r - - . 1 r o o t r o o t 129 F e b 1 15:04 s y s t e m d - u s e r
- r w - r - - r - - . 1 r o o t r o o t 84 Dec 14 10:28 v l o c k
- r w - r - - r - - . 1 r o o t r o o t 276 Oct 2 00:29 v m t o o l s d
- r w - r - - r - - . 1 r o o t r o o t 163 Mar 9 66:55 x s e r v e r

Img. 4.1-5. L i n i x - P A M services

The su service from /etc/pam.d/ is used wi th the pkcsll-spy, be
cause services like l o g i n or sudo clean up the environment before
they start. A s a result, the used environment variables PKCS11SPY and
PKCS11SPY_0UTPUT are not set and there is no output for the pkcsll-
spy.

In order to use su wi th the smart card the pam_pkcsll . so has to
be registered i n the /etc/pam. d/su configuration file:

#%PAM-1.0
auth sufficient pam_pkcsll .so
auth sufficient pam_rootok.so

Finally, everything is set for using L i n u x - P A M authentication with
the pkcs l l - spy module.

$ export PKCSHSPY=/ l ib64 /opensc -pkcs l l . so
$ export PKCSHSPY_OUTPUT=/path/ to /output . log
$ su — 1 mstrharsky

31

5 Implementation

The OpenSC project provides a PKCS#11 library (opensc-pkcsll.so),
which is responsible for a communication wi th smart cards. In order
to communicate wi th a card the specific card driver is used. There
are smart card drivers for PIV (Personal Identity Verification) cards,
PKCS#15 cards and for other types of cards.

The goal of the unit testing application, is to run a set of tests
against specified card drivers. Tested smart card drivers were:

• driver for PIV cards (tested wi th YubiKey Neo)

• driver for PKCS#15 cards (tested wi th Cryptof lex 32k)

A l l tests are part of the forked OpenSC repository 1 and can be exe
cuted during the OpenSC installation. In order to run the test suite,
these steps have to be followed:

• cloning the forked OpenSC repository

$ git clone https:/ /github.com/strho/OpenSC.git

• changing directory to the forked OpenSC and run the bui ld

$ cd OpenSC
$ autoreconf — fvi
$./configure
$ make

• running the tests (Note that the token has to be connected to the
P C , otherwise tests are skipped)

$ make check

At the end of the command "make check", the test suite summary is
reported. It reports number of passed, skipped or failed tests. Two
tests are run:

1. https://github.com/strho/OpenSC

32

http://github.com/
https://github.com/strho/OpenSC

5- IMPLEMENTATION

• yubico_test . sh - tests PIV driver

• cryptof l e x _ t e s t . sh - tests Cryptoflex driver

When the PIV card is connected to the PC (e.g. YubiKey), the test
for the Cryptoflex card is skipped. Likewise, when there is no card
connected, both tests are skipped. This is the output of the "make check"
command:
FAIL: yubico_tes t . sh

Testsuite summary f o r OpenSC 0.15.0

TOTAL: 2
PASS: 0
SKIP: 1
XFAIL: 0
FAIL: 1
XPASS: 0
ERROR: 0

See t e s t s / t e s t - s u i t e . l o g

The log file yubico_test . sh. log contains single results of the in
dividual tests. At the end of the file, there is a summary displaying
the number of launched and failed tests. The example of log file with
failed tests is included in Appendix D .

5.1 Technologies

The smart card test application was implemented i n the C program
ming language. In order to work wi th a smart card, the standard
PKCS#11 A P I (called Cryptoki) is used. The implementation of the
Cryptoki is provided by the opensc-pkcsll.so library. The CMocka is
selected as the unit testing framework. The CLion IDE 2 by JetBrains3

was used during the implementation.

2. Integrated Development Environment
3. https://www.jetbrains.com/

33

https://www.jetbrains.com/

5. IMPLEMENTATION

5.1.1 CMocka

The CMocka is a unit testing framework for C. One of the principles
of the CMocka is that a test application requires only the standard C
library and the CMocka itself [18]. This minimizes conflicts wi th stan
dard C library headers, especially on a variety of different platforms.
The CMocka supports [19]:

• mock objects - mock objects are simulation objects that mimic
the real implementation of actual objects. They are used to sim
ulate dependencies of an interface in order to help testing the
interface in isolation.

• several output formats - by default, the test output is printed to
the s tderr . It is possible to configure several other output for
mats. The configuration is performed by the environment vari
able CMOCKA_MESSAGE_OUTPUT. The supported values are:

- STDOUT - for the default standard output printer.

- SUBUNIT - for subunit output.

- TAP - for Test Anything Protocol (TAP) output.

- XML - for xUnit X M L format.

• test fixtures - test fixtures are setup and teardown functions
that can be shared across multiple tests. They provide common
functions to prepare and destroy the test environment.

The CMocka is released under the Apache License Version 2.0.

5.2 Test cases
The Cryptoki offers many cryptographic functions, which are used
for working wi th tokens. According to PKCS#11 documentation 4 re
leased by RSA Laboratories i n January 2004, functions are organized
into the following categories [20]:

4. ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-207pkcs-llv2-20.pdf

34

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-207pkcs-llv2-20.pdf

5. IMPLEMENTATION

• general-purpose functions (4 functions)

Function Description
C_Initialize* initializes the Cryptoki
C_Finalize* cleans up miscellaneous resources associ

ated wi th the Cryptoki
C_GetInfo* obtains general information about the

Cryptoki
C_GetFunctionList* obtains entry points of the Cryptoki library

functions

• slot and token management functions (9 functions)

Function Description
C_GetSlotList* obtains a list of slots i n the system
C_GetSlotmfo* obtains information about a particular slot
C_GetTokenInfo* obtains information about a particular to

ken
C_WaitForSlotEvent waits for a slot event (token insertion, re

moval, etc.) to occur
C_GetMechanismList* obtains a list of mechanisms supported by

a token
C_GetMechanismInfo* obtains information about a particular

mechanism
C_InitToken initializes a token
C J n i t P I N * initializes a normal user's P I N
C_SetPIN* modifies a P I N of a current user

• parallel function management functions (2 functions)

Function Description
C_GetFunctionStatus legacy function which always returns

CKR_FUNCTION_NOT_PARALLEL
C_CancelFunction legacy function which always returns

CKR_FUNCTION_NOT_PARALLEL

3 5

5. IMPLEMENTATION

• session management functions (8 functions)

Function Description
C_OpenSession* opens a connection between an application

and a particular token or sets up an appli
cation callback for a token insertion

C_CloseSession* closes a session
C_CloseAllSessions* closes all sessions wi th a token
C_GetSessionInfo obtains information about a session
C_GetOperationState obtains a cryptographic operation state of a

session
C_SetOperationState sets a cryptographic operation state of a ses

sion
C_Login* logs into a token
C_Logout* logs out from a token

• object management functions (9 functions)

Function Description
C_CreateObject* creates an object
C_CopyObject creates a copy of an object
C_DestroyObject* destroys an object
C_GetObjectSize obtains the size of an object i n bytes
C_GetAttributeValue* obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit* initializes an object search operation
C_FindObjects* continues an object search operation
C_FindObjectsFinal* finishes an object search operation

• encryption functions (4 functions)

Function Description
C_EncryptInit initializes an encryption operation
C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption ope

ration
C_EncryptFinal finishes a multiple-part encryption opera

tion

36

5. IMPLEMENTATION

• decryption functions (4 functions)

Function Description
C_DecryptInit* initializes a decryption operation
C_Decrypt* decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption ope

ration
CJDecryptFinal finishes a multiple-part decryption opera

tion

• message digesting functions (5 functions)

Function Description
C_DigestInit* initializes a message-digesting operation
C_Digest* digests single-part data
C_DigestUpdate* continues a multiple-part digesting opera

tion
C_DigestKey digests a key
C_DigestFinal* finishes a multiple-part digesting operation

• signing and M A C i n g 5 functions (6 functions)

Function Description
C_SignInit* initializes a signature operation
C_Sign* signs single-part data
C_SignUpdate continues a multiple-part signature opera

tion
C_SignFinal finishes a multiple-part signature operation
C_SignRecoverInit initializes a signature operation, where the

data can be recovered from the signature
C_SignRecover signs single-part data, where the data can

be recovered from a signature

5. Message Authentication Code

3 7

5. IMPLEMENTATION

• functions for verifying signatures and M A C s (6 functions)

Function Description
C_VerifyInit* initializes a verification operation
C_Verify* verifies a signature on single-part data
C_VerifyUpdate* continues a multiple-part verification ope

ration
CJVerifyFina* finishes a multiple-part verification opera

tion
C_VerifyRecoverInit initializes a verification operation that re

covers data from a signature
C_VerifyRecover verifies a signature on single-part data,

where data are recovered from the signa
ture

• dual-purpose cryptographic functions (4 functions)

Function Description
C_DigestEncryptUpdate continues simultaneous multiple-part d i

gesting and encryption operations
C_DecryptDigestUpdate continues simultaneous multiple-part de

cryption and digesting operations
C_SignEncryptUpdate continues simultaneous multiple-part sig

nature and encryption operations
C_DecryptVerifyUpdate continues simultaneous multiple-part de

cryption and verification operations

• key management functions (5 functions)

Function Description
C_GenerateKey generates a secret key
C_GenerateKeyPair* generates a public-key/private-key pair
C_WrapKey wraps (encrypts) a key
C_UnwrapKey unwraps (decrypts) a key
C_DeriveKey derives a key from a base key

38

5. IMPLEMENTATION

• random number generation functions (2 functions)

Function Description
C_SeedRandom* mixes in additional seed material to the ran

dom number generator
C_GenerateRandom * generates random data

A l l data obtained by the utility module pkcsll-spy were processed
and various test cases are created. The test cases cover majority of
commonly used cryptographic functions offered by the Cryptoki (func
tions marked wi th asterisk) and are divided into the following cate
gories, which are elaborated on the next section:

• General tests

• User P I N tests

• Message digest tests

• Key generation tests

• Sign and verify tests

• Encrypt and decrypt tests

• Find objects tests

• Generate random data tests

• Create and delete objects tests

5.2.1 General tests

Test name: Get all mechanisms test

• Called function: get_all_mechanisms_test

• Description: This test checks whether there are any supported
mechanisms on the card

• Tested Cryptoki functions: CGetMechanismList and

C GetMechanismlnfo

3 9

5. IMPLEMENTATION

• Fail condition: The card does not have any supported mecha
nisms

• Side effect: The supported property of token_inf o_t structure
is set. It states, whether there are any sufficient mechanisms for
e.g. encryption, decryption, message digest, etc. or not. When
there is not any mechanisms for currently running test, the test
is skipped.

Test name: Elliptic curves test

• Cal led function: i s e c s u p p o r t e d t e s t

• Description: Tests whether elliptic curves are supported by the
card. It controls if the mechanism with the CKM_EC_KEY_PAIR_GEN
flag exists on the card

• Fail condition: The test cannot fail, but it is skipped when there
is no mechanism with the CKM_EC_KEY_PAIR_GEN flag

5.2.2 User PIN tests

A precondition for tests in this group is that a card is initialized with
the user PIN. The PIV cards (tested wi th YubiKey Neo) are already
initialized wi th the PIN, but for the PKCS#15 card, a new user P I N
has to be created.

Test name: Initialize token wi th user P I N test

• Cal led function: i n i t i a l i z e _ t o k e n _ w i t h _ u s e r _ p i n _ t e s t

• Description: At first the test logs into the card wi th incorrect
P I N and the CKR_PIN_INCORRECT return value is expected. Sub
sequently the correct P I N is used to log into the card and the
CKR_0K is returned.

• Tested Cryptoki functions: C_Login, C_InitPIN for PKCS#15
cards

40

5. IMPLEMENTATION

• Fail condition: The test fails, when an incorrect P I N is used and
the CKR_PIN_INCORRECT value is not returned from the C_Login
function. When the correct P I N is used, the CKROK is expected.

Test name: Change user P I N test

• Called function: change_user_pin_test

• Description: A n existing user P I N is changed. The old P I N is
entered as a password and the CKR_PIN_INCORRECT value is re
turned from the C_Login function. Afterwards the new P I N is
used and the login is successful.

• Tested Cryptoki functions: C S e t P I N

• Fail condition: The function C L o g i n returns other value than
the CKR_PIN_INCORRECT. It is not possible to log into the card
with the newly created user PIN.

5.2.3 Message digest tests

Only two message digest algorithms were tested: MD5 and SHA1. If ei
ther one of these mechanisms is not supported by the card, the test
for a given algorithm is skipped. There are two test variants for both
algorithms:

1. digest a short message (use C_DigestInit and C_Digest func
tions)

2. digest a message, that is read from a file (use C_DigestIni t ,
C_DigestUpdate and C_DigestFinal functions)

The output hash of the message, created by the card, is compared
to the hash obtained by the OpenSSL on the same message.

Test name: Tests of M D 5 digest algorithm

• Called function: create_hash_md5_short_message_test and

create_hash_md5_long_message_test

41

5. IMPLEMENTATION

• Description: At first, the CKM_MD5 mechanism is used to create
a hash of the short string message. The functions C_DigestInit
and C_Digest are used.
Next, the test reads a message from an enclosed file and uses
CKM_MD5 mechanisms to obtain the message digest. The digest
functions C_DigestIni t , C_DigestUpdate and C_DigestFinal
are called.

Output hashes from both tests are compared to hashes obtained
from OpenSSL on the same messages.

• Tested Cryptoki functions: C_DigestIni t , C_Digest and func
tions C_DigestUpdate, C_DigestFinal

• Fail condition: The test fails, when any Cryptoki functions re
turns other value than CKR_0K. Furthermore, when the output
hash obtained by the card is different from the hash, created
with the OpenSSL, the test fails.

Test name: Tests of S H A 1 digest algorithm

• Cal led function: create_hash_shal_short_message_test and
create_hash_shal_long_message_test

• Description: The test is similar to the MD5 digest algorithm test.
However, instead of the CKM_MD5 it uses the CKM_SHA1 mecha
nism.

• Tested Cryptoki functions: C_DigestIni t , C_Digest and func
tions C_DigestUpdate, C_DigestFinal

• Fail condition: Fail conditions are the same as for the Tests of
MD5 digest algorithm test.

5.2.4 Key generation tests

When a card does not support any mechanism for key pair generation
flagged wi th CKF_GENERATE_KEY_PAIR, tests are skipped.

Test name: Generate a RSA key pair on a token wi th a wrong template

42

5. IMPLEMENTATION

• Called function: generate_rsa_key_pair_no_key_generated_test

• Description: The test tries to generate a RSA key pair wi th an in
correct template. After the C_GenerateKeyPair function is used,
the private key and the public key are not generated and stored
on the card

• Tested Cryptoki functions: CGenerateKeyPair

• Fail condition: When either one of the keys is generated on the
card, the test fails.

Test name: Generate a RSA key pair on a token

• Called function: generate_rsa_key_pair_test

• Description: The test generates a RSA key pair on the token,
with given properties (id, label, exponent and modulus for pub
lic key, etc.). After the successful key generation, the test searches
for the objects wi th given i d and object class (CKO_PUBLIC_KEY
and CKO _PRIVATE_KEY).

The CK_OBJECT_HANDLE values that are obtained by the func
tions C_FindObjects and C_GenerateKeyPair are identical.

• Tested Cryptoki functions: CGenerateKeyPair

• Fail condition: When object handles obtained by CFindOb j ects
and C_GenerateKeyPair functions are not the same, the test fails.
Moreover, the value of the modulus of the stored public key
must be the same as the modulus used during the key genera
tion.

5.2.5 Sign and verify tests

The test RSA key pair is pre-generated using the OpenSSL in order to
properly test signing and verification. A private and a public key are
imported to the token before all tests.

Test name: Sign a message and compare the signature

4 3

5. IMPLEMENTATION

• Called function: s i g n m e s s a g e t e s t

• Description: The test searches for a private key wi th specific
properties on the card. Afterwards, it uses the obtained key to
create a signature for the test message. The output signature is
compared to the signature created wi th the same private key, by
the OpenSSL. The comparison of signatures is made on a byte
level.

• Tested Cryptoki functions: C S i g n l n i t , C Sign

• Fail condition: The test fails when:

- the imported private key is not found

- signing the Cryptoki functions return other value than CKR_ OK

- the obtained signature is different from the signature cre
ated by the OpenSSL.

Test name: Verify a signed message

• Called function: v e r i f y_signed_message_test

• Description: Firstly, the imported public key is looked for. Then
the signature created by the OpenSSL is read from the file. The
next step is to use C_Verif y l n i t and C_Verif y functions in or
der to determine whether the verified signature is the same in
the test message that has been signed.

• Tested Cryptoki functions: C V e r i f y l n i t , C V e r i f y

• Fail condition: The test fails when:

- a public key is not found on the card

- the verification of the signature returns other value than
CKR_0K

44

5. IMPLEMENTATION

5.2.6 Encrypt and decrypt tests

A prerequisite for tests i n this group is the same as i n section 5.2.5. A
key pair has to be generated and imported to the token.

The encryption test is not provided, because the majority of cards
does not support encryption and does not contain any mechanisms
flagged wi th CKF_ENCRYPT.

Test name: Decrypt an encrypted message

• Called function: decrypt_encrypted_message_test

• Description: The message is encrypted using the pre-generated
public key and stored to the file. The test finds the private key on
the card and uses it to decrypt the encrypted message. Subse
quently the decrypted message is compared to the test message.

• Tested Cryptoki functions: C_DecryptInit , C_Decrypt

• Fail condition: The test fails when:

- a private key is not found

- decryption functions do not return CKR_0K values

- an output message is different from the test message, that
is encrypted

5.2.7 Find objects tests

Similarly to previous chapters the same RSA key pair is imported to
the card. Additionally, the X. 509 certificate is created from the public
key and also imported to the card.

Test name: Find all imported objects

• Called function: f ind_a l l_ob jec ts_ tes t

• Description: The certificate, the public key and the private key
are imported to the token. The C_Find0bj ects function is used
to find all objects on the card, The object class found is one of
these: CKO_PRIVATE_KEY, CK0_PUBLIC_KEY or CKO_CERTIFICATE.

45

5- IMPLEMENTATION

At the end of the test, there are exactly three (imported) objects
found that respect the criteria.

• Disclaimer: The Cryptoki CFindObjec ts function cannot be
used to find all objects on the token. This is due to the fact that
some tokens (e.g. YubiKey Neo) have predefined objects, which
are present on the card as default.

• Tested Cryptoki functions: C_FindObj e c t s l n i t , C_FindObj ects
and C_FindObjectsFinal

• Fail condition: The test fails when:

- find functions do not return the CKR_0K value

- the number of found objects is not exactly three

Test name: Find an object according to a template

• Called function: f ind_object_according_to_template_test

• Description: A specific template is used to find a specific object
on the card. The C_FindObjects function returns the imported
certificate.

• Tested Cryptoki functions: C_FindObj e c t s l n i t , C_FindOb j ects
and C_FindObjectsFinal

• Fail condition: The test fails when:

- find functions do not return the CKR_0K value

- the certificate is not found

Test name: Find object and read attributes

• Called function: f ind_object_and_read_attributes_test

• Description: A n imported certificate is found on the card. Then
an attribute template is used to read the certificate attributes. F i
nally, all read attributes are checked, whether they have a cor
rect value. The read attributes of the certificate, are:

46

5. IMPLEMENTATION

- certificate type - CKC_X_509 value
- labe l - the " C e r t i f i c a t e " value
- subject, issuer and serial number - all obtained values are

checked on a byte level, since they are returned i n DER6 for
mat, which is binary encoded

• Tested Cryptoki functions: C_FindObj e c t s l n i t , C_FindOb j ects,
C_FindObjectsFinal and C_GetAttributeValue

• Fail condition: The test fails when:

- a certificate is not found
- any of the acquired properties (certificate type, label, sub

ject, issuer and serial number) does not have an expected
value

5.2.8 Generate random data tests

Test name: Generate random data test

• Cal led function: generate_random_data_test

• Description: The test seeds a random data generator and then it
generates 64 bytes of random data. In the end, the random data
are compared to the array containing 64 0x00 bytes.

• Tested Cryptoki functions: C_SeedRandom, C_GenerateRandom

• Fail condition: The random data generation is supported, but
the data are not generated.

5.2.9 Create and delete objects tests

There is no prerequisite for creating object tests. However, i n order
to destroy object tests there has to exist at least one object, which is
being destroyed.

Test name: Create object on a token

6. Distinguished Encoding Rules

4 7

5. IMPLEMENTATION

• Called function: c r e a t e o b j e c t t e s t

• Description: A data object (CK0_DATA object class) is created on
the card wi th the given attributes template. A returned object
handle is a valid handle.

• Tested Cryptoki functions: CCreateObject

• Fail condition: The test is skipped when the CCreateObject
function is not supported. Furthermore, the test fails when the
value of the returned object handle to the created data object is
CK_INVALID_HANDLE.

Test name: Delete an object from a token

• Called function: destroy_object_test

• Description: The test finds an imported certificate object and
calls the C_DestroyObject function. After the certificate dele
tion, it finds the same certificate.

• Tested Cryptoki functions: CDestroyObject

• Fail condition: The test is skipped when the C_DestroyObject
function is not supported. Additionally, the test also fails when
the C_DestroyObject returned value is not CKR_0K or when the
certificate is not deleted from the card.

48

6 Conclusion

The goal of the master thesis was to create smart cards unit testing
applications for the OpenSC project. Foremost, the current situation
of smart card usage i n Fedora distribution of Linux operating sys
tem was mapped. Subsequently, data about smart card usage were
collected and analysed and a set of tests was created.

This goal was achieved and the output is documented i n the pre
vious chapters. In addition the smart card test application for two se
lected smart card drivers (PIV driver and driver for Cryptoflex card),
was developed. The application was created as a part of test coverage
of the OpenSC project. However, it is only part of the forked branch.
In order to integrate the application to the master branch, there w i l l
be some cooperation wi th the OpenSC developers.

The main advantage of the developed applications is the possibil
ity for developers to verify that changes in existing functions d id not
break any functionality.

Although the required functionality was implemented, there are
still many ways how to improve the smart card test application. The
drawback of the current version is, that only two smart card drivers
were tested. In order for the application to cover larger set of drivers,
the selected drivers have to be researched as each driver slightly dif
fers from the others.

Another drawback of the application is the necessity to connect
smart card reader and inserted card. The solution is the usage of a vir
tual smart card. One tested possibility was to use the Vi r tua l Smart
C a r d 1 project from Frank Morgner and Dominik Oepen. However,
the problem with this option was, that the provided virtual Cryptoflex
card is incomplete, hence it is not applicable.

The next tested option was to use a JavaCard instead of hardware
smart card. The JavaCard is also able to run i n virtual environment
using the j C a r d S i m 2 simulator. However, the drawback of this solu
tion is, that there is no existing suitable and working PIV applet for
JavaCards.

1. https://frankmorgner.github.io/vsmartcard/virtualsmartcard/README.html
2. https://jcardsim.org/

49

https://frankmorgner.github.io/vsmartcard/virtualsmartcard/README.html
https://jcardsim.org/

Bibliography

[1] CardLogix Corporation. Types of smart cards. 2010. URL: http :
//www.smartcardbasics.com/smart_card_images/types-of-
smart-cards . g i f (visited on 04/12/2016).

[2] Inc. Jacquinot Consulting. Smart Card Operating System. 2015.
URL: h t tp : / / www . cardwerk . com / smart cards / smart card _
operatingsystems. aspx (visited on 04/12/2016).

[3] Smart Cards and their Operating Systems. Heng Guo H U T , Telecom
munications Software and Multimedia Laboratory, May 3,2015.
URL: h t t p : //www. t m l . t k k . f i / S t u d i e s / T i k - 111. 5 9 0 / 2 0 0 W
papers/heng_guo .pdf (visited on 04/12/2016).

[4] RSA Laboratories. WHAT IS PRCS ? URL: h t t p : //www. emc. com/
e m c - p l u s / r s a - l a b s / s t a n d a r d s - i n i t i a t i v e s / p k c s . h t m (vis
ited on 04/20/2016).

[5] RSA Laboratories. PKCS #11: CRYPTOGRAPHIC TOREN IN
TERFACE STANDARD, URL: ht tp : //www. emc . com/emc-plus/
r s a - l a b s / s t a n d a r d s - i n i t i a t ives /pkcs -11-crypt ographi c-
token-interface-standard.htm (visited on 04/20/2016).

[6] Wikipedia. PRCS #11. URL: https : / / e n . w i k i p e d i a . o r g / w i k i /
PKCS_11 (visited on 04/20/2016).

[7] Microsoft. The Cryptography API, or How to Reep a Secret, URL:
ht tps : / /msdn . microsoft . com/en-us/ l ibrary/ms867086 .
aspx (visited on 04/22/2016).

[8] Microsoft. Smart CardMinidrivers. URL: h t t p s : / /msdn.microsoft .
com/en-us/library/windows/hardware/dn468773(v=vs.85)
. aspx (visited on 04/22/2016).

[9] Secgroup Ca' Foscari. Tookan. URL: https : / / secgroup . dais .
unive. i t / p r o j e c t s / t o o k a n / (visited on 04/22/2016).

[10] R. Behrends et al. Attacking and Fixing PRCS#11 Security Tokens.
Tech. rep. Venezia, Italy: Universita Ca ' Foscari, Oct. 2010, p. 10.
URL: ht tp : //www . l s v . ens-cachan . f r /Publ i s /PAPERS/PDF/
BCFS-ccsl0.pdf (visited on 04/22/2016).

[11] RSA Laboratories. PRCS #15: CRYPTOGRAPHIC TOREN IN
FORMATION FORMAT STANDARD, URL: ht tp : / /www . emc .
c o m / e m c - p l u s / r s a - l a b s / s t a n d a r d s - i n i t i a t i v e s / p k c s - 1 5 -

50

http://www.smartcardbasics.com/smart_card_images/types-of-

B I B L I O G R A P H Y

cryptographic - token- in format ion- format . htm (visited on
04/20/2016).

[12] Magnus Nystrom. PKCS #15 - A Cryptographic Token Information
Format Standard. Tech. rep. Bedford M A 01730, U S A : RSA Lab
oratories, 1999, p. 9. URL: https : //www . usenix . o r g / l e g a c y /
events / smartcard99 / f u l l _ papers / nystrom / nystrom . pdf
(visited on 04/20/2016).

[13] OpenSC. Using OpenSC. URL: https : / / g i t h u b . com/OpenSC/
OpenSC/wiki/Using-OpenSC (visited on 02/12/2016).

[14] Ubuntu documentation. CommonAccessCard. URL: h t t p s : / / h e l p .
ubuntu. com/community/CommonAccessCard (visited on 02/12/2016).

[15] OpenSC. OpenSC - tools and libraries for smart cards, URL: h t tps :
/ / g i t h u b . com/OpenSC/OpenSC/wiki (visited on 02/12/2016).

[16] PAM Authentication, URL: h t t p : //ubuntuf orums . org/showthread.
php?t=1557180#2 (visited on 02/12/2016).

[17] Juan Antonio Martinez et al. PAM-PKCS11 User Manual. Sept.
2005. URL: h t tps : / /opensc .g i thub . io /pam_pkcs l l /doc /pam_
pkcsll.html#mappers (visited on 02/27/2016).

[18] Inc. Eklektix. Unit testing with mock objects in C. 2013. URL: h t tps :
/ / l w n . n e t / A r t i c l e s / 5 5 8 1 0 6 / (visited on 02/27/2016).

[19] Andreas Schneider, cmocka. 2013. URL: https : //cmocka . org/
(visited on 02/27/2016).

[20] RSA Laboratories. PKCS #11 v2.20: Cryptographic Token Interface
Standard. Tech. rep. June 28, 2004, p. 407. URL: f t p : / / f t p .
r sasecur i ty . com/pub/pkcs/pkcs - l l / v 2 - 2 0 / p k c s - l l v 2 -
20 .pdf (visited on 02/27/2016).

51

https://opensc.github.io/pam_pkcsll/doc/pam_

A Pcsc_scan output

The example output of pesc_scan, when Gemalto Twin Reader card
reader and Cryptof lex 32k e-gate smart card are used, looks as fol
lows:
$ pcsc_scan
PC/SC device scanner
V 1.4.23 (c) 2001-2011, Ludovic Rousseau
Compiled with PC/SC l i t e v e r s i o n : 1.8.13
Using reader p l u g ' n play mechanism
Scanning present r e a d e r s . . .
0: Gemalto PC Twin Reader 00 00

Sun Feb 21 15:29:43 2016
Reader 0: Gemalto PC Twin Reader 00 00

Card s ta te : Card removed,

Sun Feb 21 15:29:47 2016
Reader 0: Gemalto PC Twin Reader 00 00

Card s ta te : Card inser ted ,
ATR: 3B 95 18 40 FF 62 04 01 01 05

ATR: 3B 95 18 40 FF 62 04 01 01 05
+ TS = 3B —> Direc t Convention
+ TO = 95, Y (l) : 1001, K: 5 (h i s t o r i c a l bytes)

TA(1) = 18 —> Fi=372, Di=12, 31 cycles/ETU
TD(1) = 40 —> Y(i+1) = 0100, Protocol T = 0

TC(2) = FF
+ H i s t o r i c a l bytes: 62 04 01 01 05

Category i n d i c a t o r byte: 62 (proprietary format)

Poss ib ly i d e n t i f i e d card:
3B 95 18 40 FF 62 04 01 01 05
Schlumberger CryptoFlex 32Ko VI

52

B Pkcsll-tool utility

Mostly every shown pkcsll-tool command is used with arguments
"—module / p a t h / t o / p k c s l l - s p y . s o -1 — p i n 12345", so for sim
plification these arguments are omitted.

• test

$ p k c s l l - t o o l test

• list slots (no need of logging in)

$ p k c s l l - t o o l list—slots

• list mechanisms (no need of logging in)

$ p k c s l l - t o o l list—mechanisms

• list objects (without logging in the private objects are not listed)

$ p k c s l l - t o o l list—objects
$ p k c s l l - t o o l list—objects login pin 12345

• init pin

$ p k c s l l - t o o l login login—type so so—pin
00000000 i n i t - p i n n e w - p i n 12345

• change pin

$ p k c s l l - t o o l change—pin new—pin 12345

• test ec

$ p k c s l l - t o o l test—ec

• key pair gen

$ p k c s l l - t o o l keypairgen key—type rsa:2048
label " M y generated key"

53

B . P K C S I I - T O O L UTILITY

• read object

$ pkcsl l—tool read—object id a l type
pubkey output—file /path/to/output.f i le

• write object

$ pkcsl l—tool write—object /path/to/cert.der
type cert

$ pkcsl l—tool write—object /path/ to/data type
data label " M y data" appl icat ion- id 1.10.0.0

• delete object

$ pkcsl l—tool delete—object type pubkey id
a l

• sign

$ pkcsl l—tool sign id a l input / p a t h / t o /
message_to_sign output / p a t h / t o /
message_to_sign.signature

• decrypt

$ pkcsl l—tool decrypt i d a l input /path/to
/message.encrypted output /path/to/message.
decrypted

• hash

$ pkcsl l—tool hash id a l —m M D 5 input /
path/to/message_to_hash output / p a t h / t o /
message_to_hash.hash

54

C Smart card with Mozilla Firefox

The p k c s l 5 - t o o l -D command is used to dump all objects from the
smart card. Moreover, it also shows the imported certificate, the pr i
vate and the public key.
Pr ivate RSA Key [Imported C e r t i f i c a t e]
Object Flags : [0x3], p r i v a t e , modif iable
Usage : [0x2E], decrypt, s i g n ,

signRecover, unwrap
Access Flags : [0x0]
ModLength : 2048
Key ref : 0 (0x0)
Native : yes
Path : 3f0050154b0130000012
Auth ID : 01
ID : a l

Publ i c RSA Key [Public Key]
Object Flags : [0x2], modif iable
Usage : [0x51], encrypt, wrap, v e r i f y
Access Flags : [0x0]
ModLength : 2048
Key ref : 0 (0x0)
Native : no
Path : 3f0050154b014800
Auth ID : 01
ID : a l

X.509 C e r t i f i c a t e [Imported C e r t i f i c a t e]
Object Flags : [0x2], modif iable
Author i ty : no
Path : 3f0050154500
ID : a l
Encoded s e r i a l : 02 09 00B43EDB58A4E758E7

5 5

D YubiKey OpenSC tests output

The example of yubico_test . s h . l o g log file wi th failed tests looks
as follow:

Testing PKCS#11 implementation on Yubico

Card type: PIV
Module f o r t e s t i n g i s :

. . / s r c / p k c s l l / . l i b s / o p e n s c - p k c s l l . s o

=========] Running 19 t e s t (s) .
RUN] get_all_mechanisms_test

OK] get_all_mechanisms_test
RUN] is_ec_supported_test

SKIPPED] is_ec_supported_test
RUN] i n i t i a l i z e _ t o k e n _ w i t h _ u s e r _ p i n _ t e s t

ERROR: Expected CKR_PIN_INCORRECT was not returned
FAILED] i n i t i a l i z e _ t o k e n _ w i t h _ u s e r _ p i n _ t e s t

RUN] change_user_pin_test
ERROR: User PIN was not c o r r e c t l y changed

FAILED] change_user_pin_test
RUN] create_hash_md5_short_message_test

OK] create_hash_md5_short_message_test
RUN] create_hash_md5_long_message_test

OK] create_hash_md5_long_message_test
RUN] create_hash_shal_short_message_test

OK] create_hash_shal_short_message_test
RUN] create_hash_shal_long_message_test

OK] create_hash_shal_long_message_test
RUN]

generate_rsa_key_pair_no_key_generated_test
SKIPPED]

generate_rsa_key_pair_no_key_generated_test
RUN] generate_rsa_key_pair_test

SKIPPED] generate_rsa_key_pair_test
RUN] sign_message_test

OK] sign_message_test

56

D . Y U B I K E Y O P E N S C TESTS OUTPUT

[RUN] verify_signed_message_test
[FAILED] verify_signed_message_test
[RUN] decrypt_encrypted_message_test
[OK] decrypt_encrypted_message_test
[RUN] f i n d _ a l l _ o b j e c t s _ t e s t
[OK] f i n d _ a l l _ o b j e c t s _ t e s t
[RUN] f ind_object_according_to_template_test
[OK] f ind_object_according_to_template_test
[RUN] f ind_object_and_read_attr ibutes_test
[OK] f ind_object_and_read_attr ibutes_test
[RUN] generate_random_data_test
Seed method i s not supported.
[OK] generate_random_data_test
[RUN] create_object_test
Function C_ CreateObject i s not supported!
[SKIPPED] create_object_test
[RUN] destroy_object_test
Function C_ DestroyObject i s not supported!
[SKIPPED] destroy_object_test
[-] 19 tes t (s) run.
[PASSED] 11 t e s t (s) .
[FAILED] 3 t e s t (s) , l i s t e d below:
[FAILED] i n i t i a l i z e _ t o k e n _ w i t h _ u s e r _ p i n _ t e s t
[FAILED] change_user_pin_test
[FAILED] verify_signed_message_test

3 FAILED TEST(S)

57

