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Abstract—Historically high-end cyberinfrastructure planning
at the campus, regional and national levels has been based on
episodic analysis of limited data and/or projections of demand
with minimal supporting comprehensive usage data. However,
a repository of usage data for the TeraGrid and the follow-on
XSEDE program provides a unique source of extensive data
that can be exploited to guide planning efforts. The XDMoD
tool deployed by the Technology Audit Service (TAS) component
of XSEDE is designed to facilitate access to these data by
multiple stakeholder groups, providing a unique opportunity to
carry out comprehensive analysis of cyberinfrastructure usage.
To complement usage data and strengthen XDMoD’s utility for
overall system analysis, a suite of application kernels has been
developed to help provide control data on system performance.
Current and past utilization metrics, coupled with application
kernel-based performance analysis, can be used to help guide
future cyberinfrastructure investment decisions, plan system up-
grades, tune machine performance, improve user job throughput,
and facilitate routine system operation and maintenance. In
this paper we present analysis of historical usage data from
the TeraGrid and the follow-on XSEDE program and derive
interesting insight into the nature of usage by discipline over
time. The analysis shows the remarkable growth in resources

and the impact this has had on the number of users, the number
and size of allocations, the job size in terms of number of cores,
and the growth in simulation based engineering and science in
many fields. The utility of the XDMoD framework for facilitating
system performance assessment through the implementation of
application kernels is also demonstrated.

I. INTRODUCTION

Planning of high-end cyberinfrastructure (CI) can be done
best when it is based upon reliable, extensive data from past
usage. In addition, as described by Katz et. al. [1], the ability
to readily measure usage modalities for cyberinfrastructure
leads to a greater understanding of the objectives of end
users and accordingly insight into the changes in CI to better
support their usage. The National Science Foundation (NSF)
recognized the value of this data and through the Technology
Audit Service (TAS) of XSEDE made a significant investment
in developing tools and infrastructure to make this sort of data
and data analysis easily accessible to a broader range of users
and resource managers. In this context, the XDMoD (XSEDE
Metrics on Demand) auditing tool provides an extensive



range of metrics that gives users and XSEDE management
the ability to rapidly access historical data broken out by
various categories such as resource, user and field of science.
While XDMoD has made reporting a much simpler and less
time-consuming task, the range of metrics available has also
provided insight into the operation of TeraGrid/XSEDE that
was not readily available, and in some cases not even possible
previously. Thus XDMoD augments qualitative past methods,
such as surveys, one-on-one interviews with users, and work-
shop reports, aimed at better understanding and improving
service to TeraGrid/XSEDE users [2], [3], [4], [5].

Usage data is dependent on the idiosyncrasies of
user/vendor implementation of algorithms – a significant draw-
back in analyzing systems performance based on usage data.
To alleviate this, the TAS XDMoD framework was expanded
to also include an auditing system that utilizes computationally
lightweight application kernels to provide a measure of overall
system performance. These kernels, reminiscent of the “Berke-
ley dwarfs” [6], are representative of the major computational
applications that are routinely run on HPC resources. With the
right selection of kernels, this allows continuous resource au-
diting to measure all aspects of system performance including
file-system performance, processor and memory performance,
and network latency and bandwidth. The deployment of these
application kernels, which are standardized programs run on
XSEDE resources exactly as a typical user runs them, can give
the user insight on potential performance for their application
and provide resource managers with information on how
applications are performing on their systems. Routine use of
such kernels also provides resource managers early warning
of anomalous systems behavior.

The remainder of this paper is organized as follows. We
first provide a brief overview of XDMoD to provide context
for the discussion that follows. We then present the results
of several XDMoD usage case studies, beginning with an
analysis of historical usage data from the TeraGrid and the
follow-on XSEDE program. The second case study demon-
strates the utility of the XDMoD framework for facilitating
system performance assessment through the implementation
of application kernels. The third and final case study shows,
through several examples, how, like most analysis tools, care
must be exercised in the interpretation of data generated by
the XDMoD tool. The final section covers conclusions and
future work.

II. XDMOD OVERVIEW

XDMoD provides a role-based web portal for mining HPC
system usage data and performing statistical analysis. This
role-based framework is designed to meet the following ob-
jectives: (1) provide the user community with a tool to more
effectively and efficiently use their allocations and optimize
their use of resources, (2) provide operational staff with
the ability to monitor and tune resource performance, (3)
provide management with a diagnostic tool to facilitate CI
planning and analysis as well as monitor resource utilization

and performance, and (4) provide metrics to help measure sci-
entific impact. Here we present a brief overview of XDMoD’s
functionality, a more detailed description is contained in the
appendix and an earlier publication [7].

In the present implementation of XDMoD, data is ingested
daily from the XSEDE central data base (XDCDB) and queries
are tuned to provide results within a few seconds. To date,
the focus has been on XSEDE’s compute resources, though
future versions will be extended to include XSEDE’s visual-
ization and storage resources. Furthermore, while XDMoD is
currently tailored to work with the data stored in the XDCDB,
future releases will allow for custom databases containing
similar data collected by individual HPC centers. In the
meantime, the open source package UB Metrics on Demand
(UBMoD) is available to provide useful utilization metrics for
academic HPC centers [8].

The XDMoD portal [9] provides a rich set of features
accessible through an intuitive graphical interface, which is
tailored to the role of the user. Currently five roles are
supported: Public, User, Principal Investigator, Center Director
and Program Officer. Metrics provided by XDMoD include:
number of jobs, service units (see next section for definition)
charged, CPUs used, wait time, and wall time, with minimum,
maximum and the average of these metrics, in addition to
many others. These metrics can be broken down by: field of
science, institution, job size, job wall time, NSF directorate,
NSF user status, parent science, person, principal investigator,
and by resource. A context-sensitive drill-down capability has
been added to many charts allowing users to access additional
related information simply by clicking inside a plot and then
selecting the desired metric. For example, in Figure 1, which
is a plot of total CPU hours in 2011 by job size for all XSEDE
resources, one can select any column in the plot and obtain
additional information (such as field of science) specific to
the range of data represented by the column. Metrics that
focus on scientific impact, such as publications, citations and
external funding, will be incorporated in future versions to
help quantify the important role HPC centers play in advancing
research and scholarship.

 

Fig. 1. The XDMoD interface. For the Program Officer role, seven tabs
near the top of the screen allow for navigation around the site to access the
various metrics. The Plot shows the total CPU hours provided by all XSEDE
resources in 2011 by job size.



III. XDMOD USAGE CASE STUDIES

A. A Data History of TeraGrid/XSEDE Usage: Defining a
Strategy for Advanced Cyberinfrastructure

XSEDE is the most advanced, powerful, and robust collec-
tion of integrated advanced digital resources and services in the
world [10]. It is a single virtual system that scientists can use
to interactively share computing resources, data, and expertise.
XDMoD, through the TeraGrid/XSEDE central database, pro-
vides a rich repository of usage data. Here we demonstrate,
through several examples, the extent of the data as well as its
utility for planning. In what follows, the terminology Service
Units (SUs) is liberally used. It should be understood as
core hours with the caveat that an SU is defined locally in
the context of a particular machine. Thus, the value of an
SU varies across resources utilizing varying technologies and,
by implication, varies over time as technology advances. We
begin with a historical look at utilization. The data displayed
in Figure 2 shows the total number of service units (SUs)
delivered to the community on a year-by-year basis from 2005
through 2011.

	
  
Fig. 2. Total XSEDE usage in millions of service units (SUs) for the
years 2005-2011. Note: for the purpose of this paper, service units should
be understood as core hours with the caveat that the value of an SU varies
across resources utilizing varying technologies and, by implication, varies over
time as technology advances.

The large increase in the number of delivered SUs beginning
in 2008 is not surprising since it was during that period that the
NSF funded two very large computational resources, Ranger
at TACC and Kraken at UTK/ORNL, which provided more
cycles than the previous set of resources combined. Figure 3
is a plot which is designed to provide an indication of the
largest, average and total usage on XSEDE resources, showing
for example that the largest XSEDE allocation has increased
by more than an order of magnitude since 2005 to more than
100M SUs. Thus, the largest allocation of a single user today
exceeds the total usage of all users in 2005 and 2006.

Not surprisingly, over the same time period there has been
a substantial increase in the number of users as shown in

  

 

 

 

 

 

 

 

 

 

Fig. 3. Largest, average and total SU usage over time. Note that the average
and largest allocations have increased by more than an order of magnitude
over the time period shown.

Figure 4. The number of allocations today, which can roughly
be thought of as the number of PIs, is around 1500 with
on average two users per allocation. Thus, not all registered 

 

 Fig. 4. Number of TeraGrid/XSEDE allocations and users. The number
of allocations is roughly analogous to the number of PIs and there are
approximately 2 users per allocation.

users are always active. It is often the case that a project PI
does not actually use SUs, with the hands-on tasks going to
graduate students and postdocs. In fact, historical analysis of
TeraGrid/XSEDE data shows that only a third of registered
users regularly appear in the usage data, that is, this situation
is not abnormal but rather the status quo.

Note that in spite of the increase in computational resources,
Figure 5 indicates that requests are growing but that the
success rate, which is defined here as the ratio of allocation
requested to the allocation actually awarded, has dropped from
a high of about 75%, when the large Track 2 resources became
available, to 40% currently. The success rate shown in Figure 5



is based on the fact that while few proposals are rejected
most proposals are granted substantially less than the requested
number of SUs. This clearly demonstrates that the number
of requests for SUs substantially outstrips currently available
resources.
 

 

 Fig. 5. Allocation Success Rate. The success rate is defined here as the ratio
of the allocation request to the allocation awarded.

The TeraGrid/XSEDE usage by parent science is shown in
Figure 6. Parent Science is an aggregation of fields of science
defined by a previous (ca. 1995) organizational structure of the
NSF and corresponds to NSF divisions (or previous divisions).
This aggregation is used to categorize the TeraGrid/XSEDE
allocations and usage. Given the modest number of organiza-
tional changes at NSF at the divisional level, the classifications
in Figure 6 and Figure 7 can easily be related to current
NSF dirvisions. Physics and molecular biosciences are the top
consumer science fields using between 600M-700M SUs per
year after the Ranger and Kraken resources were deployed.
Usage by the molecular biosciences has become comparable
to physics in recent years as the bioscientists become more
dependent on simulation as a part of their scientific arsenal.
Materials research is also a significant and growing consumer
of CPU time.

However, as Figure 7 shows, the average core count by
parent science varies widely. Note, as shown in [11], [12] and
Section III-C below, when examining the average core counts
run on XSEDE resources, it can be misleading to report only
the average core count for a particular metric or resource.
Accordingly, we find it more informative to compute the
average core count by weighting each job by the total SUs it
consumes. Traditionally, fields in the Mathematical and Phys-
ical Sciences (MPS) directorate of NFS have been thought to
be the largest users of XSEDE computational resources. While
MPS users are still significant, it is clear from Figure 6 that the
molecular biosciences community, which falls predominantly
within the Biological Sciences Directorate, has been on the
rise for some time and has harnessed the capabilities of these

 

 

 

 

 

 

 

Fig. 6. Total SU Usage by Parent Science

 

Fig. 7. Average Core Count (Weighted by SUs) by Parent Science

resources to advance the field. Researchers in this area have
passed their colleagues in all of the divisions within MPS
with the exception of Physics, which it is clearly on par with
at this point. However, from Figure 7 it is also clear that
the type of jobs that are typical of the molecular biosciences
use a relatively small number of compute nodes. Physics and
fluid dynamics (which dominates Chemical Thermal Systems),
fields long characterized by the need to solve complex partial
differential equations typically require careful attention being
paid to parallelization and by default, large core count jobs.
Many of the biological applications are dominated by complex
workflows, involving many jobs but relatively few cores, often
with large memory per core. In general, the average number of
cores used is moderate in size. It is interesting to speculate on
the reasons that is the case. Certainly, it could be algorithmic.
As we know, the development of effective software is an



extremely time consuming and human intensive problem.
Also, there are practical issues of turnaround. Many users
have learned to structure their jobs for optimal turnaround and
that often can be in conflict with optimal core count use. In
addition, the use of average core count as a measure of the
need for machines with many processors, can be misleading.
The job mix submitted by most users ranges over core count.
Often it is necessary to run a significant number of smaller
core count jobs as a preliminary to the single large core count
run. These all contribute to lowering the average core count
number.

 

Fig. 8. Kraken Usage:Total SUs and Average Core Count Weighted by SUs

 

Fig. 9. Ranger Usage:Total SUs and Average Core Count Weighted by SUs

In this section, three of the XSEDE resources, namely
Kraken, Ranger, and Steele, have been chosen as illustrative
of what appears in the current NSF portfolio and importantly,
what each brings to the mix that is unique and valuable to
specific users. This is not an accident. It has been characteristic
of the NSF program to try to provide a mix of compute
systems each designed to be optimal for specific types of
job flows. Figures 8 to 10 show total usage and average core
count (weighted by SUs) on each of these three resources. A
number of scientific disciplines are positioned to use systems
containing very large numbers of cores and requiring fast

 

Fig. 10. Steele Usage:Total SUs and Average Core Count Weighted by SUs

communications. For such users, systems such as Kraken and
to a lesser extent Ranger are ideal, and this is reflected in the
average core count. In the future, Stampede and Blue Waters
will likely be the systems of choice for such users. Lonestar, a
very recent addition to the portfolio (not shown since the data
is limited), is a smaller resource in terms of core count but with
its more modern CPU (Westmere) has become the most highly
requested resource in XSEDE, perhaps as much as 10 times
over-requested. Clearly, users not needing many thousands of
cores can make very effective use of Lonestar (average SU
weighted core usage around 750 for NSF users), and since its
performance is between 2 to 4 times faster than Kraken per
core, it is preferred for those types of jobs. The PSC system,
Blacklight, (also not shown) is a small core-count, very large
shared memory SGI system and also a very recent addition
to the NSF portfolio. It is ideal for users needing random
access to very large data sets and to problems involving the
manipulation of large, dense matrices which must be stored
in central memory. So, problems in graph theory, large data
sorts, quantum chemistry, etc., need such a resource to perform
optimally. While the resources are dominated by disciplines
that can make effective use of what was once called ”big iron”
there are also many users that fall outside that category. This
has always been part of the mantra of the TeraGrid/XSEDE
program (deep and wide) and strong efforts continue in these
directions today with the science gateways, campus champions
and advanced user support programs.

An interesting observation looking at Figures 8 to 10, is the
fact that early on in the life of a resource, the average core
count is larger than in the later life period. In the initial phase,
the resource tends to have fewer users, and by design those
users are chosen to push the capability limits of the resource.
As the machine ages and particularly as newer resources are
deployed, the profile of the user base evolves: the capability
users are moved to the newer resources and the broader
user community has prepared itself to run on the machine.
Thus, again by design, the average core count decreases to
accommodate the larger user base. The leveling off of SU
count in most resources is typical.



B. Facilitating System Operation and Maintenance

Most modern multipurpose HPC centers mainly rely upon
system related diagnostics, such as network bandwidth uti-
lized, processing loads, number of jobs run, and local usage
statistics in order to characterize their workloads and audit
infrastructure performance. However, this is quite different
from having the means to determine how well the computing
infrastructure is operating with respect to the actual scientific
and engineering applications for which these HPC platforms
are designed and operated. Some of this is discernible by
running benchmarks; however in practice benchmarks are so
intrusive that they are not run very often (see, for example,
Reference [13] in which the application performance suite is
run on a quarterly basis), and in many cases only when the
HPC platform is initially deployed. In addition benchmarks
are typically run by a systems administrator on an idle
system under preferred conditions and not a user in a normal
production operation scenario and therefore do not necessarily
reflect the performance that a user would experience.

Modern HPC infrastructure is a complex combination of
hardware and software environments that is continuously
evolving, so it is difficult at any one time to know if optimal
performance of the infrastructure is being realized. Indeed,
as the examples below illustrate, it is more likely than not
that optimal performance across all applications is not being
realized. Accordingly, the key to a successful and robust sci-
ence and engineering-based HPC technology audit capability
lies in the development of a diverse set of computationally
lightweight application kernels that will run continuously on
HPC resources to monitor and measure system performance,
including critical components such as the global filesystem
performance, local processor and memory performance, and
network latency and bandwidth. The application kernels are
designed to address this deficiency, and to do so from the
perspective of the end-user applications.

We use the term ”Kernel” in this case to represent micro-
and standard benchmarks that represent key performance fea-
tures of modern scientific and engineering applications, as
well as small but representative calculations done with pop-
ular open-source high-performance scientific and engineering
software packages. Details can be found in Reference [7]. We
have distilled lightweight benchmarking kernels from widely
used open source scientific applications that are designed to
run quickly with an initially targeted wall-clock time of less
than 10 minutes. However we also anticipate a need for more
demanding kernels in order to stress larger computing systems
subject to the needs of HPC resource providers to conduct
more extensive testing. While a single application kernel
will not simultaneously test all of these aspects of machine
performance, the full suite of kernels will stress all of the
important performance-limiting subsystems and components.

Crucial to the success of the application kernel testing
strategy, is the inclusion of historical test data within the
XDMoD system. With this capability, site administrators can
easily monitor the results of application kernel runs for trou-

bleshooting performance issues at their site. Indeed, as the
cases below illustrate, early implementation of application
kernels have already proven invaluable in identifying under-
performing and sporadically failing infrastructure that would
have likely gone unnoticed, resulting in wasted CPU cycles on
machines that are already oversubscribed as well as frustrated
end users.

While the majority of the cases presented here are the
result of the application kernels run on the large production
cluster at the Center for Computational Research (CCR) at the
University at Buffalo, SUNY, the suite of application kernels
is currently running on some XSEDE resources and will soon
be running on all XSEDE resources as part of the Technology
Audit Service of XSEDE.

20
11

-06
-28

20
11

-07
-05

20
11

-07
-12

20
11

-07
-19

20
11

-07
-26

20
11

-08
-02

0

200

400

600

800

W
al

l T
im

e 
[s

ec
on

ds
]

8 cores (1 node)
16 cores (2 nodes)
32 cores (4 nodes)
64 cores (8 nodes)

Fig. 11. Plot of execution time of NWChem application kernel on 8, 16,
32, and 64 processors over a one month time period on CCR’s production
cluster. The execution time for increasing core count should be consistently
improving. The behavior on 8 cores is as expected but 16, 32 and 64 core
calculations show sporadic performance degradation, later traced to a bug in
the global parallel filesystem.

Application Kernels have already successfully detected run-
time errors on popular codes that are frequently run on XSEDE
resources. For example, Figure 11 shows the execution time
over the course of a month for an application kernel based on
NWChem [14], a widely used quantum chemistry program,
that is run daily on the large production cluster at CCR. While
the behavior for 8 cores is as expected, calculations on 16, 32,
and 64 cores showed widely sporadic behavior, with some
jobs failing out right and others taking as much as seven
times longer to run. The source of performance degradation
was eventually traced to a software bug in the I/O stack of a
commercial parallel file system, which was subsequently fixed
by the vendor in the form of a software patch that is now
part of their standard operating system release. It is important
to note that this error was likely going on unnoticed by the
administrators and user community for sometime and was only
uncovered as a result of the suite of application kernels run at



CCR.
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Fig. 12. Application kernels detect I/O performance increase of a factor of
2 for MPI Tile IO in library upgrade from Intel MPI 4.0 to Intel MPI 4.0.3,
which supported PanFS MPI I/O file hints (in this case for concurrent writes).
Provides an alert to center staff to rebuild scientific applications that utilize
MPI I/O to improve performance.

As a further indication of the utility of application kernels,
consider Figure 12, which shows a performance increase
of a factor of two in MPI Tile IO after a system wide
library upgrade from Intel MPI 4.0 to Intel MPI 4.0.3, which
supports Panasas file system MPI I/O file hints. Since CCR
employs a Panasas file system for its scratch file system,
this particular application kernel alerted center staff to rebuild
scientific applications that can utilize MPI file hints to improve
performance.

Figure 13, shows the unanticipated results brought to light
by a periodically running application kernel based on the popu-
lar NAMD molecular dynamics package [15]. The application
kernel detected a 25% degradation in the NAMD baseline per-
formance that was the unanticipated result of a routine system-
wide upgrade of the application version. Possible strategies for
restoring the pre-upgrade performance include the use of more
aggressive compiler options, but care will need to be exercised
to ensure the desired level of accuracy is maintained. Once
again, without application kernels periodically surveying this
space, the loss in performance would have gone unnoticed.

One of the most problematic scenarios entails a single
node posing a critical slowdown in which the cumulative
resources for a job (possibly running on thousands of pro-
cessing elements) are practically idled due to an unexpected
load imbalance. It is very difficult for system support per-
sonnel to preemptively catch such problems, with the result
that the end-users are the ”canaries” that report damaged or
underperforming resources, often after investigations that are
very expensive both in terms of computational resources and
personnel time. Indeed, as shown in Figure 14, a single loose
cable on a cluster consisting of just 1000 nodes resulted in
the sporadic failure of user jobs that was difficult to diagnose
or even know that a problem existed. However, an analysis
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Fig. 13. Plot of execution time of NAMD based application kernel on 8, 16,
32, and 64 cores over a one month time period. Jump indicates when NAMD
application underwent routine system-wide upgrade in the application version,
which resulted in a performance degradation.
of system log files was able to readily identify the single
faulty node which malfunctioned due to a loose cable. Without
such a capability, the loose cable would have likely gone
undetected, resulting in failed jobs, frustrated users, and under-
performance of the resource. While analysis of system log
files is not currently included within the XDMoD framework,
it is anticipated that future versions will, given its utility in
identifying faulty hardware.

 

Fig. 14. Plot of log file size for each node in CCR’s production cluster. Large
log file size can be indicative of an error. In this case, two nodes produce log
files that are 3 orders of magnitude larger than normal. One node was found
to have a loose cable, causing sporadic errors (failed jobs) and the other had
a error in the job scheduler, again resulting in failed jobs.

C. Interpreting XDMoD Data

While XDMoD provides the user with access to extensive
usage data for TeraGrid/XSEDE, like most analysis tools, care



must be exercised in the interpretation of the generated data.
This will be especially true for XDMoD given its open nature,
the ease at which plots can be created, and the subtleties in the
usage data that can require a fairly detailed understanding of
the operation of TeraGrid/XSEDE [11], [12]. This is perhaps
best understood through the following examples. Consider, for
example, the mean core count across Physics parent science
jobs on XSEDE resources during the period 2006-2011, which
can be misleading given the distribution of job sizes as shown
in Figure 15. The distribution of jobs is highly skewed by the
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Fig. 15. Distribution of job sizes for all parent science Physics jobs in
TeraGrid/XSEDE resources for the period 2006-2011.

presence of large numbers of serial (single-core) calculations,
a situation exacerbated by recent ”high throughput” computing
resources, as we will show.

One should also not be misled into thinking that the overall
resources are dominated by serial or small parallel jobs, a
significant fraction are still ”capability” calculations requiring
thousands of cores, as shown in Figure 7. The breakdown of
core count by quartile is shown in Figure 16. While 75% of
the jobs are for core counts of 100 or fewer processors, 25%
of the jobs utilize very large core counts (thousands to tens of
thousands).

We can elaborate further on this point by considering the
mean core count on XSEDE resources for the field of physics
(considered as a parent science within the scope of the XSEDE
allocations). Figure 17 is a plot of mean job size (core count)
from 2006-2011, showing both the naive mean calculated with
all jobs as well as the mean of all parallel jobs. The mean job
size in this case is highly skewed by a rapid increase in the
number of single core jobs. XDMoD can be used to identify
this contribution of serial calculations, and as can be seen
in Figure 18, the dramatic increase in serial jobs comes from
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showing a significant fraction of very large core count jobs.
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Fig. 17. Mean core count for Physics (parent science) jobs in Tera-
grid/XSEDE resources for the period 2006-2011, including (blue circles) and
excluding (red squares) serial runs.

several physics allocations ramping up on the high-throughput
resources at Purdue during 2010-2011.

XDMoD puts a trove of data in the hands of the public and
policy makers in a relatively easy to use interface. This data
has to be used in the proper context, however, as it can be too
easy to rapidly draw misleading conclusions. Based on the
mean job size for all jobs in Figure 17, one might be tempted
to wonder why the Physics allocations started using fewer
cores on average in the latter half of 2010 - the answer is that
they did not, rather an enterprising subgroup of them started
exploiting high throughput systems on an unprecedented scale
(for TeraGrid/XSEDE at least).

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated, through several case studies, the util-
ity of XDMoD as a tool for providing metrics regarding both
resource utilization and performance of advanced cyberinfras-
tructure, including TeraGrid/XSEDE. The XDMOD platform
already enables systematic data driven understanding of the



Fig. 18. Number of jobs by resource for the parent science of physics and
job size of 1 core.

current and historical usage and planning for future usage. We
believe that this will lead to more appropriate resource man-
agement and resource planning. Users will also benefit from
the availability of relevant benchmark performance data for
their applications from the kernels performance. As additional
data is captured and ingested it will also allow more outcome
centric measures of return on the national cyberinfrastructure
investment.

In the case of TeraGrid/XSEDE, a detailed historical analy-
sis of usage data clearly demonstrates the tremendous growth
in the number of users, overall usage, and scale of the simu-
lations routinely carried out. For example, both the average
allocation and largest allocation on TeraGrid/XSEDE have
increased by more than an order of magnitude since 2005 to
1 million and 100 million SUs respectively. Not surprisingly,
physics, chemistry, and the engineering disciplines were shown
to be heavy users of the resources. However, as the data clearly
show, molecular biosciences are now a significant and growing
user of XSEDE resources, accounting for more than 20 percent
of all SUs consumed in 2011. The resources required by
the various scientific disciplines are very different. Physics,
Astronomical sciences, and Atmospheric sciences tend to solve
large problems requiring many cores. Molecular biosciences
applications on the other hand, require many cycles but do
not employ core counts that are as large. Such distinctions are
important in planning future advanced cyberinfrastructure.

XDMoD’s implementation of an application kernel-based
auditing system that utilizes performance kernels to measure
overall system performance was shown to provide a useful
means to detect under performing hardware and software.
Examples included an application kernel based on a widely
used quantum chemistry program that uncovered a software
bug in the I/O stack of a commercial parallel file system,
which was subsequently fixed by the vendor in the form of
a software patch that is now part of their standard release.

This error, which resulted in dramatically increased execution
times as well as outright job failure, would likely have gone
unnoticed for sometime and was only uncovered as a result of
implementation of a suite of application kernels. Application
kernels also detected a performance increase of a factor of two
in MPI Tile IO after a system wide library upgrade from Intel
MPI 4.0 to Intel MPI 4.0.3, alerting center staff to rebuild
those applications which utilize MPI I/O file hints to improve
performance. Since CCR employs a Panasas file system, a
substantial performance gain can be realized by rebuilding
scientific applications that can utilize MPI file hints.

Many of the more straight-forward usage metrics have
already been incorporated into XDMoD, however it should
still be viewed as a work in progress. There are a number of
features currently being added to enhance the capabilities of
this tool. One example is the addition of TACC Stats data to
XDMoD. TACC Stats records hardware performance counter
values, parallel file-system metrics, and high-speed intercon-
nect usage [16], [17]. The core component is a collector
executed on all compute nodes, both at the beginning and end
of each job. With the addition of application script recording,
this will provide a fine grained job level performance not
currently available for HPC systems. In a different direction
but just as important, we are in the process of adding metrics
to assess scientific impact. While judging scientific impact is
difficult it is nonetheless important to quantify in order to
demonstrate the return on investment for HPC facilities. We
plan on adding publications, citations, external funding and
other metrics to establish the contribution that facilities such
as XSEDE have on science in the U.S.
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APPENDIX – XDMoD Architecture and Use
Figure 19 provides a high-level schematic of the XDMoD

framework architecture. The system is comprised of three ma-
jor components: the XDMoD Data Warehouse, which ingests
data daily from the XSEDE Central Database, the XDMoD
REST API that provides hooks to external applications, and
the XDMoD Portal, which provides an interface to the world
and is described as follows.

As shown in Figure 1, which is a screen capture of the
XDMoD portal for the Program Officer role, the interface is
organized by tabs with different functional tabs displayed for
the XDMoD roles. For illustrative purposes, we will focus
on the Program Officer role. The Summary tab provides a
snapshot overview of XSEDE, with several small summary
charts visible that can be expanded to full size charts through
a simple mouse click. Clicking on the XSEDE button (in the
row underneath the tab row) brings up a drop down menu that
allows one to narrow the scope of the metrics displayed to a
particular service provider. The default is to show utilization
over the previous month, but the user may select from a range



Fig. 19. The XDMoD architecture schematic

of preset date ranges (week, month, quarter, year to date,
etc) or choose a custom date range. Clicking the Usage tab,
as shown in Figure 1, provides access to an expansive set
of XSEDE-wide metrics that are accessible through the tree-
structure on the left-hand side of the portal window. If logged
in under the User role or Center Director role as opposed to
the Program Officer role, then the usage tab provides details
specific to your utilization or that of your center as opposed
to all of XSEDE. Accessing XDMoD through the Public role
requires no password, and while not all the functionality listed
above is available in this view, it does allow users to explore
utilization and performance metrics of XSEDE resources over
an adjustable timeframe.

The Usage Explorer tab provides a powerful tool for orga-
nizing and comparing the XSEDE data from a wide variety
of metrics. The App Kernels tab provides information on the
application kernel performance on XSEDE resources. The data
generated by the application kernels is substantial, making the
exploration of the data challenging. However, the App Kernel
Explorer tab provides an interface that facilitates exploration of
the application kernel performance metrics. Here the user can
easily select a specific application kernel or suite of application
kernels, a specific resource, and a range of job sizes for
which to view performance. The Search Usage tab allows the
Program Officer to view the utilization data for any XSEDE
user.

The Report Generator tab gives the user access to the
Custom Report Builder that allows a user to create and save
custom reports. For example, a user may wish to have specific
plots and data summarized in a concise report that they can
download for offline viewing. The user can also choose to have
custom reports generated at a user-specified interval (daily,
weekly, quarterly, etc) and automatically delivered to them
via email at the specified time interval, without the need to
subsequently log into the portal.

Additional features include: the Export button that allows
data to be output in a variety of formats (CSV, XML, PNG),
the Filter button, which allows the user to select which data
to display and which to supress in a given plot, and the Help
button, which allows the user access to the XDMoD user
guide. The Display button allows the user to customize the
type and appearance of the chart and to toggle between the
display of a given chart or the data set used in its generation
and also to display time series (that is data plotted as a function
of time).
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