Abstract
A monomial-Cartesian code is an evaluation code defined by evaluating a set of monomials over a Cartesian product. It is a generalization of some families of codes in the literature, for instance toric codes, affine Cartesian codes, and J-affine variety codes. In this work we use the vanishing ideal of the Cartesian product to give a description of the dual of a monomial-Cartesian code. Then we use such description of the dual to prove the existence of quantum error correcting codes and MDS quantum error correcting codes. Finally we show that the direct product of monomial-Cartesian codes is a locally recoverable code with t-availability if at least t of the components are locally recoverable codes.
Similar content being viewed by others
References
Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).
Beelen P., Datta M.: Generalized hamming weights of affine Cartesian codes. Finite Fields Appl. 51, 130–145 (2018).
Bras-Amorós M., O’Sullivan M.E.: Duality for some families of correction capability optimized evaluation codes. Adv. Math. Commun. 2(1), 15–33 (2008).
Bulygin S., Pellikaan R.: Decoding error-correcting codes with Gröbner bases. In: Veldhuis, R., Cronie, H., Hoeksema, H. (eds.) Proceedings of the 28th Symposium on Information Theory in the Benelux, WIC 2007, pp. 3–10, Enschede, May 24–25 2007.
Bulygin S., Pellikaan R.: Bounded distance decoding of linear error-correcting codes with Gröbner bases. J. Symbolic Comput. 44, 1626–1643 (2009).
Bulygin S., Pellikaan R.: Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases. In: Sala M., Mora T., Perret L., Sakata S., Traverso C. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 361–365. Springer, Berlin (2009).
Bulygin S., Pellikaan R.: Decoding and finding the minimum distance with Gröbner bases: history and new insights. In: Woungang I., Misra S., Misra S.C. (eds.) Series on Coding Theory and Cryptology, Selected Topics in Information and Coding Theory, vol. 7, pp. 585–622. World Scientific, Singapore (2010).
Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).
Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016).
Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \({{\mathbb{F}}}_q\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).
Carvalho C.: On the second hamming weight of some Reed-Muller type codes. Finite Fields Appl. 24, 88–94 (2013).
Carvalho C., Neumann V.G.: Projective Reed-Muller type codes on rational normal scrolls. Finite Fields Appl. 37, 85–107 (2016).
Carvalho C., Neumann V.G.: On the next-to-minimal weight of affine Cartesian codes. Finite Fields Appl. 44, 113–134 (2017).
Carvalho C., Neumann V.G., López H.H.: Projective nested Cartesian codes. Bull. Braz. Math. Soc. New Ser. 48, 283–302 (2017).
Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2008).
Eisenbud D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150. Springer, New York (1995).
Farr J., Gao S., bases Gröbner: Padé approximation, and decoding of linear codes. Contemp. Math. 381, 3–18 (2005).
Galindo C., Hernando F., Ruano D.: Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015).
Galindo C., Geil O., Hernando F., Ruano D.: On the distance of stabilizer quantum codes from \(J\)-affine variety codes. Quantum Inf. Process. 16(4), 111 (2017).
Geil O., Thomsen C.: Weighted Reed-Muller codes revisited. Des. Codes Cryptogr. 66(1–3), 195–220 (2013).
González-Sarabia M., Rentería C., Tapia-Recillas H.: Reed-Muller-type codes over the Segre variety. Finite Fields Appl. 8(4), 511–518 (2002).
Harris J.: Algebraic Geometry. A First Course, Graduate Texts in Mathematics, vol. 133. Springer, New York (1992).
Hansen J.P.: Toric Surfaces and Error-Correcting Codes, Coding Theory, Cryptography and Related Areas, pp. 132–142. Springer, Berlin (2000).
Huffman W., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).
Joyner D.: Toric codes over finite fields. Appl. Algebra Eng. Commun. Comput. 15(1), 63–79 (2004).
Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006).
López H.H., Rentería-Márquez C., Villarreal R.H.: Affine Cartesian codes. Des. Codes Cryptogr. 71(1), 5–19 (2014).
López H.H., Manganiello F., Matthews G.L.: Affine Cartesian codes with complementary duals. Finite Fields Appl. 57, 13–28 (2019).
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North-Holland (1977).
Massey J.L.: Linear codes with complementary duals. Discret. Math. 106–107, 337–342 (1992).
Munuera C.: Locally Recoverable Codes with Local Error Detection, https://arxiv.org/pdf/1812.00834.pdf.
Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997).
Ruano D.: On the structure of generalized toric codes. J. Symbolic Comput. 44(5), 499–506 (2009).
Soprunov I.: Lattice polytopes in coding theory. J. Algebra Combinatorics Discret. Struct. Appl. 2(2), 85–94 (2015).
Soprunov I., Soprunova J.: Toric surface codes and Minkowski length of polygons. SIAM J. Discret. Math. 23(1), 384–400 (2009).
Soprunov I., Soprunova J.: Bringing toric codes to the next dimension. SIAM J. Discret. Math. 24(2), 655–665 (2010).
Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996).
Tamo I., Barg A.: A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 60(8), 4661–4676 (2014).
Tsfasman M., Vladut S., Nogin D.: Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007).
van Lint J.H.: Introduction to coding theory, Third edition, Graduate Texts in Mathematics, vol. 86. Springer, Berlin (1999).
Villarreal R.H.: Monomial Algebras, Monographs and and Research Notes in Mathematics, 2nd edn. CRC Press, Boca Raton (2015).
Wei V.K., Yang K.: On the generalized hamming weights of product codes. IEEE Trans. Inf. Theory 30(5), 1079–1713 (1993).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Gretchen L. Matthews was supported by NSF DMS-1855136.
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.
Rights and permissions
About this article
Cite this article
López, H.H., Matthews, G.L. & Soprunov, I. Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes. Des. Codes Cryptogr. 88, 1673–1685 (2020). https://doi.org/10.1007/s10623-020-00726-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00726-x
Keywords
- Affine-Cartesian codes
- Evaluation codes
- Monomial-Cartesian codes
- Dual codes
- Linear complementary dual (LCD)
- Quantum codes
- Local recovery
- Availability