Skip to main content
Log in

Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A monomial-Cartesian code is an evaluation code defined by evaluating a set of monomials over a Cartesian product. It is a generalization of some families of codes in the literature, for instance toric codes, affine Cartesian codes, and J-affine variety codes. In this work we use the vanishing ideal of the Cartesian product to give a description of the dual of a monomial-Cartesian code. Then we use such description of the dual to prove the existence of quantum error correcting codes and MDS quantum error correcting codes. Finally we show that the direct product of monomial-Cartesian codes is a locally recoverable code with t-availability if at least t of the components are locally recoverable codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).

    Article  MathSciNet  Google Scholar 

  2. Beelen P., Datta M.: Generalized hamming weights of affine Cartesian codes. Finite Fields Appl. 51, 130–145 (2018).

    Article  MathSciNet  Google Scholar 

  3. Bras-Amorós M., O’Sullivan M.E.: Duality for some families of correction capability optimized evaluation codes. Adv. Math. Commun. 2(1), 15–33 (2008).

    Article  MathSciNet  Google Scholar 

  4. Bulygin S., Pellikaan R.: Decoding error-correcting codes with Gröbner bases. In: Veldhuis, R., Cronie, H., Hoeksema, H. (eds.) Proceedings of the 28th Symposium on Information Theory in the Benelux, WIC 2007, pp. 3–10, Enschede, May 24–25 2007.

  5. Bulygin S., Pellikaan R.: Bounded distance decoding of linear error-correcting codes with Gröbner bases. J. Symbolic Comput. 44, 1626–1643 (2009).

    Article  MathSciNet  Google Scholar 

  6. Bulygin S., Pellikaan R.: Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases. In: Sala M., Mora T., Perret L., Sakata S., Traverso C. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 361–365. Springer, Berlin (2009).

    Chapter  Google Scholar 

  7. Bulygin S., Pellikaan R.: Decoding and finding the minimum distance with Gröbner bases: history and new insights. In: Woungang I., Misra S., Misra S.C. (eds.) Series on Coding Theory and Cryptology, Selected Topics in Information and Coding Theory, vol. 7, pp. 585–622. World Scientific, Singapore (2010).

    Chapter  Google Scholar 

  8. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).

    Article  Google Scholar 

  9. Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016).

    Article  MathSciNet  Google Scholar 

  10. Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \({{\mathbb{F}}}_q\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).

    Article  Google Scholar 

  11. Carvalho C.: On the second hamming weight of some Reed-Muller type codes. Finite Fields Appl. 24, 88–94 (2013).

    Article  MathSciNet  Google Scholar 

  12. Carvalho C., Neumann V.G.: Projective Reed-Muller type codes on rational normal scrolls. Finite Fields Appl. 37, 85–107 (2016).

    Article  MathSciNet  Google Scholar 

  13. Carvalho C., Neumann V.G.: On the next-to-minimal weight of affine Cartesian codes. Finite Fields Appl. 44, 113–134 (2017).

    Article  MathSciNet  Google Scholar 

  14. Carvalho C., Neumann V.G., López H.H.: Projective nested Cartesian codes. Bull. Braz. Math. Soc. New Ser. 48, 283–302 (2017).

    Article  MathSciNet  Google Scholar 

  15. Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2008).

    Google Scholar 

  16. Eisenbud D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150. Springer, New York (1995).

    Google Scholar 

  17. Farr J., Gao S., bases Gröbner: Padé approximation, and decoding of linear codes. Contemp. Math. 381, 3–18 (2005).

    Article  Google Scholar 

  18. Galindo C., Hernando F., Ruano D.: Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015).

    Article  MathSciNet  Google Scholar 

  19. Galindo C., Geil O., Hernando F., Ruano D.: On the distance of stabilizer quantum codes from \(J\)-affine variety codes. Quantum Inf. Process. 16(4), 111 (2017).

    Article  MathSciNet  Google Scholar 

  20. Geil O., Thomsen C.: Weighted Reed-Muller codes revisited. Des. Codes Cryptogr. 66(1–3), 195–220 (2013).

    Article  MathSciNet  Google Scholar 

  21. González-Sarabia M., Rentería C., Tapia-Recillas H.: Reed-Muller-type codes over the Segre variety. Finite Fields Appl. 8(4), 511–518 (2002).

    Article  MathSciNet  Google Scholar 

  22. Harris J.: Algebraic Geometry. A First Course, Graduate Texts in Mathematics, vol. 133. Springer, New York (1992).

    Google Scholar 

  23. Hansen J.P.: Toric Surfaces and Error-Correcting Codes, Coding Theory, Cryptography and Related Areas, pp. 132–142. Springer, Berlin (2000).

    Book  Google Scholar 

  24. Huffman W., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  25. Joyner D.: Toric codes over finite fields. Appl. Algebra Eng. Commun. Comput. 15(1), 63–79 (2004).

    Article  MathSciNet  Google Scholar 

  26. Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006).

    Article  MathSciNet  Google Scholar 

  27. López H.H., Rentería-Márquez C., Villarreal R.H.: Affine Cartesian codes. Des. Codes Cryptogr. 71(1), 5–19 (2014).

    Article  MathSciNet  Google Scholar 

  28. López H.H., Manganiello F., Matthews G.L.: Affine Cartesian codes with complementary duals. Finite Fields Appl. 57, 13–28 (2019).

    Article  MathSciNet  Google Scholar 

  29. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North-Holland (1977).

    MATH  Google Scholar 

  30. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106–107, 337–342 (1992).

    Article  MathSciNet  Google Scholar 

  31. Munuera C.: Locally Recoverable Codes with Local Error Detection, https://arxiv.org/pdf/1812.00834.pdf.

  32. Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997).

    Article  MathSciNet  Google Scholar 

  33. Ruano D.: On the structure of generalized toric codes. J. Symbolic Comput. 44(5), 499–506 (2009).

    Article  MathSciNet  Google Scholar 

  34. Soprunov I.: Lattice polytopes in coding theory. J. Algebra Combinatorics Discret. Struct. Appl. 2(2), 85–94 (2015).

    MathSciNet  MATH  Google Scholar 

  35. Soprunov I., Soprunova J.: Toric surface codes and Minkowski length of polygons. SIAM J. Discret. Math. 23(1), 384–400 (2009).

    Article  MathSciNet  Google Scholar 

  36. Soprunov I., Soprunova J.: Bringing toric codes to the next dimension. SIAM J. Discret. Math. 24(2), 655–665 (2010).

    Article  MathSciNet  Google Scholar 

  37. Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996).

    Article  MathSciNet  Google Scholar 

  38. Tamo I., Barg A.: A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 60(8), 4661–4676 (2014).

    Article  MathSciNet  Google Scholar 

  39. Tsfasman M., Vladut S., Nogin D.: Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007).

    Book  Google Scholar 

  40. van Lint J.H.: Introduction to coding theory, Third edition, Graduate Texts in Mathematics, vol. 86. Springer, Berlin (1999).

    Book  Google Scholar 

  41. Villarreal R.H.: Monomial Algebras, Monographs and and Research Notes in Mathematics, 2nd edn. CRC Press, Boca Raton (2015).

    Google Scholar 

  42. Wei V.K., Yang K.: On the generalized hamming weights of product codes. IEEE Trans. Inf. Theory 30(5), 1079–1713 (1993).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiram H. López.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gretchen L. Matthews was supported by NSF DMS-1855136.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, H.H., Matthews, G.L. & Soprunov, I. Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes. Des. Codes Cryptogr. 88, 1673–1685 (2020). https://doi.org/10.1007/s10623-020-00726-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00726-x

Keywords

Mathematics Subject Classification

Navigation