Abstract
The tropical eastern Pacific (TEP) is a biogeographic region with a substantial set of isolated oceanic islands and mainland shoreline habitat barriers, as well as complex oceanographic dynamics due to major ocean currents, upwelling areas, eddies, and thermal instabilities. These characteristics have shaped spatial patterns of biodiversity between and within species of reef and shore fishes of the region, which has a very high rate of endemism. Scorpaenodes xyris, a small ecologically cryptic reef-dwelling scorpionfish, is widely distributed throughout the TEP, including all the mainland reef areas and all the oceanic islands. This wide distribution and its ecological characteristics make this species a good model to study the evolutionary history of this type of reef fish across the breadth of a tropical biogeographical region. Our evaluation of geographic patterns of genetic (mitochondrial and nuclear) variation shows that S. xyris comprises two highly differentiated clades (A and B), one of which contains four independent evolutionary subunits. Clade A includes four sub-clades: 1. The Cortez mainland Province; 2. The Revillagigedo Islands; 3. Clipperton Atoll; and 4. The Galapagos Islands. Clade B, in contrast, comprises a single unit that includes the Mexican and Panamic mainland provinces, plus Cocos Island. This geographical arrangement largely corresponds to previously indicated regionalization of the TEP. Oceanic distances isolating the islands have produced much of that evolutionary pattern, although oceanographic processes likely have also contributed.
Similar content being viewed by others
References
Acevedo-Álvarez EA, Ruiz-Campos G, Domínguez-Domínguez O (2021) Population-level morphological variation of Anisotremus interruptus (Gill, 1862) (Perciformes: Haemulidae) in the Tropical Eastern Pacific with the description of two new species. Zootaxa 4975:141158. https://doi.org/10.11646/zootaxa.4975.1.5
Allen GR, Robertson R (1997) An annotated checklist of the fishes of Clipperton Atoll, tropical eastern Pacific. Rev Biol Trop 45:813–843
Allen G, Robertson D, (1998) Peces del Pacífico oriental tropical. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Agrupación Sierra Madre, S. C. Peces del Pacífico Oriental Tropical: xiii + 1–311
Alström P, Van Linschooten J, Donald PF, Sundev G, Mohammadi Z, Ghorbani F, Shafaeipour A, van den Berg A, Robb M, Aliabadian M, Wei C, Lei F, Oxelman B, Olsson U (2021) Multiple species delimitation approaches applied to the avian lark genus Alaudala. Mol Phylogenet Evol 154:106994. https://doi.org/10.1016/j.ympev.2020.106994
Bacon C, Silvestro D, Jaramillo C, Smith B, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci 112:6110–6115. https://doi.org/10.1073/pnas.1423853112
Baldwin CC, Pitassy DE, Robertson DR (2016) A new deep-reef scorpionfish (Teleostei, Scorpaenidae, Scorpaenodes) from the southern Caribbean with comments on depth distributions and relationships of western Atlantic members of the genus. Zookeys 2016(606):141–158. https://doi.org/10.3897/zookeys.606.8590
Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Baums IB, Boulay JN, Polato NR, Hellberg ME (2012) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21:5418–5433. https://doi.org/10.1111/j.1365-294X.2012.05733.x
Béarez P, Jiménez-Prado P (2003) New records of serranids (Perciformes) from the continental shelf of Ecuador with a key to the species, and comments on ENSO-associated fish dispersal. Soc Française D’ichtyologie 27:107–115. https://doi.org/10.26028/cybium/2004-272-003
Bernal-Hernández M, (2017) Filogenia, biogeografía y filogeografía sugieren especiación críptica en Scorpaenodes xyris (Scorpaenidae: Teleostei). Master dissertation, Universidad Michoacana de San Nicolás de Hidalgo. http://bibliotecavirtual.dgb.umich.mx:8083/jspui/handle/DGB_UMICH/1779
Bernardi G, Ramon M, Alva-Campbell Y, McCosker JE, Bucciarelli G, Garske LE, Victor BC, Crane NL, Nicole L (2014) Darwin’s fishes: phylogeography of Galápagos Islands reef fishes. Bull Mar Sci 90:533–549. https://doi.org/10.5343/bms.2013.1036
Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:359–366. https://doi.org/10.1016/j.tree.2013.01.018
Briggs JC (1974) Marine zoogeography. McGraw-Hill Book Company, New York, p 475
Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30. https://doi.org/10.1111/j.1365-2699.2011.02613.x
Bruen TC, Philippe H, Bryant D (2005) A quick and robust statistical test to detect the presence of recombination. Genetics 2005(172):2665–2681. https://doi.org/10.1534/genetics.105.048975
Castro-Aguirre JL, Torres-Orozco R (1993) Consideraciones acerca del origen de la ictiofauna de Bahía Magdalena-Almejas, un sistema lagunar de la costa occidental de Baja California Sur, México. Anales De La Escuela Nacional De Ciencias Biológicas 38:67–73
Castro-Aguirre JL, Balart EF, Arvizu-Martínez J (1995) Contribución al conocimiento del origen y distribución de la ictiofauna del Golfo de California, México. Hidrobiológica 5:57–78
Castro-Aguirre JL, González-Acosta AF, De la Cruz-Agüero J (2005) Lista anotada de las especies ícticas anfipacíficas, de afinidad boreal, endémicas y anfipeninsulares del Golfo de California, México. Revista Universidad y Ciencia 21:85–106
Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288. https://doi.org/10.1016/s1055-7903(02)00371-8
Clua E, Planes S (2019) First record of Carolines parrotfish (Calotomus carolinus) and king angelfish (Holacanthus passer) around the Clipperton Atoll—La Passion Island (North-Eastern Tropical Pacific). Cybium 43:285–287. https://doi.org/10.26028/cybium/2019-433-009
Cowie RH, Holland BS (2006) Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J Biogeogr 33:193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x
Craig MT, Hastings PA, Pondella DJ II, Robertson DR, Rosales-Casián JA (2006) Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): IMPLICATIONS for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr 33:969–979. https://doi.org/10.1111/j.1365-2699.2006.01467.x
Cunningham CW, Collins TM (1994) Developing model systems for molecular biogeography: Vicariance and interchange in marine invertebrates. Mol Ecol Evol Approaches Appl. https://doi.org/10.1007/978-3-0348-7527-1_24
Del Moral-Flores LF, Gracian-Negrete JM, Guzmán-Camacho AF (2020) Fishes of archipelago of Revillagigedo Islands a systematics and biogeographic update. BIOCYT 9:596–619. https://doi.org/10.22201/fesi.20072082.2016.9.75910
Dornburg A, Moore J, Beaulieu JM, Eytan RI, Near TJ (2015) The impact of shifts in marine biodiversity hotspots on patterns of range evolution: evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution 69:146–161. https://doi.org/10.1111/evo.12562
Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214
Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Mol Biol Evol 29:1969–1973. https://doi.org/10.1093/molbev/mss075
Duncan KM, Martin AP, Bowen BW, De Couet HG (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251. https://doi.org/10.1111/j.1365-294X.2006.02933.x
Ekman S (1953) Zoogeography of the Sea. Sidgwick & Jackson Ltd., London, p 417
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Fonseca NC, Vélez J, (1998) Clave para identificar los peces marinos del Perú. Inst. del Mar del Peru, Publicación Espec. 496
Fourriére M, Reyes-Bonilla H, Rodríguez-Zaragoza FA, Crane N (2014) Fishes of clipperton atoll, Eastern Pacific: checklist, endemism, and analysis of completeness of the inventory. BioOne 68:375–395. https://doi.org/10.2984/68.3.7
Fourriére M, Reyes-Bonilla H, Ayala-Bocos A, Ketchum JT, Chavez-Comparan JC (2016) Checklist and analysis of completeness of the reef fish fauna of the Revillagigedo Archipelago, Mexico. Zootaxa 4159:436–466. https://doi.org/10.11646/zootaxa.4150.4.4
Fourriére M, Alvarado JJ, Ayala-Bocos A, Cortés J (2017) Update checklist and analysis of completeness of the marine fish fauna of Isla del Coco, Pacific of Costa Rica. Mar Biodiv 47:813–821. https://doi.org/10.25607/ty53k6
Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2012) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181:94–113. https://doi.org/10.1086/668599
Fricke R, Eschmeyer WN, Van del Laan R, (2023) Eshmeyer catalog of fishes: genera, species. Online version: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic versión. Accessed 03 May 2023.
Garrison G, (2005) Peces de la Isla del Coco/Isla del Coco Fishes. Santo Domingo de Heredia. Costa Rica: Instituto Nacional de Biodiversidad. p 392
Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253:769–778. https://doi.org/10.1016/j.jtbi.2008.04.005
Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23. https://doi.org/10.1007/s003380050220
González-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Res 38:14–18. https://doi.org/10.1093/nar/gkq321
Grove J, Lavenberg R (1997) The fishes of the Galápagos islands. Stanford Univ. Press, Stanford, p 863
Hastings P (2000) Biogeography of the tropical Eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc 128:319–335. https://doi.org/10.1111/j.1096-3642.2000.tb00166.x
Hastings PA, Springer VG (2009) Recongnizing diversity in blennioid fish nomenclature (Teleostei: Blennioidei). Zootaxa 2120:3–14. https://doi.org/10.11646/zootaxa.2120.1.2
Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580. https://doi.org/10.1093/molbev/msp274
Henriques R, Potts WM, Sauer WH, Santos CV, Kruger J, Thomas JA, Shaw PW (2016) Molecular genetic, life-history and morphological variation in a coastal warm-temperate sciaenid fish: evidence for an upwelling-driven speciation event. J Biogeogr 43:1820–1831. https://doi.org/10.1111/jbi.12829
Hillis D, Moritz C, Mable B (1996) Molecular systematics, 2nd edn. MA Sinauer Assoc, Sunderland, p 655
Hodge JR, Read CI, Bellwood DR, van Herwerden L (2013) Evolution of sympatric species: a case study of the coral reef fish genus Pomacanthus (Pomacanthidae). J Biogeogr 40:1676–1687. https://doi.org/10.1111/jbi.12124
Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73. https://doi.org/10.1093/bioinformatics/14.1.68
Huson DH, Bryant D (2005) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. https://doi.org/10.1093/molbev/msj030
Jones G, Aydin Z, Oxelman B (2015) DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31:991–998. https://doi.org/10.1093/bioinformatics/btu770
Kamikuri SI, Motoyama I, Nishi H, Iwai M (2009) Evolution of Eastern Pacific Warm Pool and upwelling processes since the middle Miocene based on analysis of radiolarian assemblages: Response to Indonesian and Central American Seaways. Palaeogeogr Palaeoclim Palaeoecol 280:469–479. https://doi.org/10.1016/j.palaeo.2009.06.034
Keith P, Lord C, Lorion J, Watanabe S, Tsukamoto K, Couloux A, Dettai A (2011) Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes. Mar Biol 158:311–326. https://doi.org/10.1007/s00227-010-1560-z
Kong I, Bolados A (1987) Sinopsis de peces asociados al fenómeno El Niño 1982–83 en el norte de Chile. Estud Oceanol 6:25–58
Kumar S, Stecher G, Tarmura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Lanfear R, Calcott B, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. https://doi.org/10.1093/molbev/mss020
Lea RN, Rosenblatt RH (2000) Observations on fishes associated with the 1997–98 El Niño off California. CalCOFI Rep 41:117–129
Lear CH, Rosenthal Y, Wright JD (2003) The closing of a seaway: ocean water masses and global climate change. Earth Planet Sci Lett 210:425–436. https://doi.org/10.1016/S0012-821X(03)00164-X
Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410
Lessios HA (2008) The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu Rev Ecol Evol Syst 39:63–91. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187
Lin HC, Sánchez-Ortíz C, Hastings PA (2009) Colour variation is incongruent with mitochondrial lineages: cryptic speciation and subsequent diversification in a Gulf of California reef fish (Teleostei: Blennioidei). Mol Ecol 18:2476–2488. https://doi.org/10.1111/j.1365-294X.2009.04188.x
Love MS, Bizzarro JJ, Cornthwaite AM, Frable BW, Maslenikov KP (2021) Checklist of marine and estuarine fishes from the Alaska–Yukon Border. Beaufort Sea, to Cabo San Lucas, Mexico, Zootaxa 5053:1–285. https://doi.org/10.11646/zootaxa.5053.1.1
Luiz OJ, Allen AP, Robertson DR, Floeter SR, Kulbicki M, Vigliola L, Becheler R, Madin JS (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. PNAS 110:16498–16502. https://doi.org/10.1073/pnas.1304074110
Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021. https://doi.org/10.1093/oxfordjournals.molbev.a004024
Marko PB, Moran AL (2009) Out of sight, out of mind: high cryptic diversity obscures the identities and histories of geminate species in the marine bivalve subgenus Acar. J Biogeogr 36:1861–1880. https://doi.org/10.1111/j.1365-2699.2009.02114.x
McCosker JE, Rosenblatt RH (2010) The fishes of the Galapagos Archipelago: an update. Proc Calif Acad Sc 61:167–195
Miller M, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T, (2009) The CIPRES Portals. CIPRES. http://www.phylo.org/sub_sections/portal/
Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC et al (2015) Middle miocene closure of the Central American Seaway. Science 348:226–229. https://doi.org/10.1126/science.aaa2815
Mora C, Robertson DR (2005) Factors shaping the range-size frequency distribution of the endemic fish fauna of the Tropical Eastern Pacific. J Biogeogr 32:277–286. https://doi.org/10.1111/j.1365-2699.2004.01155.x
Moser HG, (1996) The early stages of fishes in the California current region: Final report. U. S. Department of the Interior, Minerals Management Sevice, Pacific OCS Region. p 18
Moser HG, Ahlstrom EH, Sandknop EM, (1977). Guide to the Identification of Scorpionfish Larvae (family Scorpaenidae) in the Eastern Pacific With Comparative Notes on Species of Sebastes and Helicolenus From Other Oceans. US Dep. Commer. National Oceanic and Atmospheric Administration, National Marine Fisheries Service. p 402
Motomura H, Kanade Y (2015) Review of the scorpionfish genus Pteroidichthys (Scorpaenidae), with descriptions of two new species. Zootaxa 4057:490–510. https://doi.org/10.11646/zootaxa.4057.4.2
Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572. https://doi.org/10.1111/j.0014-3820.2001.tb00789.x
Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New, p 512
Nichols JT, Murphy RC (1922) On a collection of marine fishes from Peru. Bull Am Mus Nat Hist 46:501–516
O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, De Queiroz A, Farris DW, Norris RD, Stallard RF (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883. https://doi.org/10.1126/sciadv.1600883
Palmerín-Serrano PN, Tavera J, Espinoza E, Angulo A, Martínez-Gómez JE, González-Acosta AF, Domínguez-Domínguez O (2021) Evolutionary history of the reef fish Anisotremus interruptus (Perciformes: Haemulidae) throughout the Tropical Eastern Pacific. J Zoolog Syst Evol 59:148–162. https://doi.org/10.1111/jzs.12392
Palmerín-Serrano PN, Piñeros VJ, Robertson DR et al (2023) Comparative phylogeography and demographic histories of five widely distributed tropical Eastern Pacific fishes. Marine Biol. https://doi.org/10.1007/s00227-023-04299-w
Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572. https://doi.org/10.1146/annurev.es.25.110194.002555
Paulay G, Meyer C (2002) Diversification in the Tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integr Comp Biol 42:922–934. https://doi.org/10.1093/icb/42.5.922
Pazmiño DA, Maes GE, Green ME, Simpfendorfer CA, Hoyos-Padilla EM, Duffy CJ, Meyer CG, Kerwath SE, De Leon PS, Van Herwerden L (2018) Strong trans-Pacific break and local conservation units in the Galapagos shark (Charcharhinus galapagensis) revealed by genome wide cytonuclear markers. Heredity 120:407–421. https://doi.org/10.1038/s41437-017-0025-2
Piñeros VJ, Beltrán-López RG, Baldwin CC, Barraza E, Espinoza E, Martínez JE, Domínguez-Domínguez O (2019) Diversification of the genus Apogon (Lacepède, 1801) (Apogonidae: Perciformes) in the tropical eastern Pacific. Mol Phylogenet Evol 132:232–242. https://doi.org/10.1016/j.ympev.2018.12.010
Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals inthe genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325. https://doi.org/10.1111/j.1365-294X.2010.04939.x
Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399. https://doi.org/10.1111/j.0014-3820.2002.tb01348.x
Rambaut A, (2015) FigTree: Tree Figure Drawing Tool, version 1.4. 2.
Rambaut A, Drummond A, (2010) TreeAnotator version 1.6.1. University of Edinburgh, UK. Available at:http://beast.bio.ed.ac.uk.
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032
Rice WR (1989) Analyzing tables of statistical test. Evolution 43:223–225. https://doi.org/10.2307/2409177
Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10:1439–1453. https://doi.org/10.1046/j.1365-294x.2001.01294.x
Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser 380:1–17. https://doi.org/10.3354/meps07925
Robertson D, Peña EA, Posada JM, Claro R, Estape AC (2023) Peces Costeros del Gran Caribe: sistema de Información en línea. Version 3.0 Instituto Smithsonian de Investigaciones Tropicales, Balboa, República de Panamá.
Robertson DR, Smith-Vaniz WF (2010) Use of clove oil in collecting coral reef fishes for research. Mar Ecol Prog Ser 401:295–302. https://doi.org/10.3354/meps08374
Robertson DR, Allen GR, Peña E, Estapé CJ, Estapé AM, (2024) Peces costeros del Pacífico Oriental Tropical: sistema de información en línea. Versión 3.0. Instituto Smithsonian de Investigaciones Tropicales, Balboa, República de Panamá.
Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72:1101–1121. https://doi.org/10.1111/j.1095-8649.2007.01770.x
Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–251. https://doi.org/10.1046/j.0962-1083.2001.01431.x
Ronquist F, Huelsenbeck J, Teslenko M, (2011) Draft MrBayes version 3.2 manual: tutorials and model summaries. Distributed with the software from http://brahms.biology.rochester.edu/software.html
Ruiz-Campos G, Ramírez-Valdez A, González-Acosta AF, Castro-Aguirre JL, González-Guzmán S, de la Cruz-Agüero J (2010) Composition, density and biogeographic affinities of the rocky intertidal fishes on the western coast of the Baja California Peninsula, Mexico. Calif Coop Ocean Fish Investig Rep 51:210–220
Saarman NP, Louie KD, Hamilton H (2010) Genetic differentiation across eastern Pacific oceanographic barriers in the threatened seahorse Hippocampus ingens. Conserv Genet 11:1989–2000. https://doi.org/10.1007/s10592-010-0092-x
Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O (2019) The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol 130:269–285. https://doi.org/10.1016/j.ympev.2018.10.020
Santini F, Carnevale G, Sorenson L (2014) First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). Ital J Zool 81:55–71. https://doi.org/10.1080/11250003.2013.878960
Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of caribbean reef fishes. Evolution 49:897–910. https://doi.org/10.2307/2410412
Spalding MD, Fox HE, Allen GR, Davinson N, Ferdaña Z, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine Ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583. https://doi.org/10.1641/B570707
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stephens M, Donelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169. https://doi.org/10.1086/379378
Stepien CA, Rosenblatt RH, Bargmeyer BA (2001) Phylogeography of the spotted sand bass, Paralabrax maculatofasciatus: divergence of Gulf of California and Pacific Coast populations. Evolution 55:1852–1862. https://doi.org/10.1111/j.0014-3820.2001.tb00834.x
Tariel J, Longo GC, Bernardi G (2016) Tempo and mode of speciation in Holacanthus angelfishes based on RADseq markers. Mol Phylogenet Evol 98:84–88. https://doi.org/10.1016/j.ympev.2016.01.010
Terry A, Bucciarelli G, Bernardi G (2000) Restricted Gene flow and incipient speciation in disjunct pacific ocean and sea of cortez populations of a reef fish species, Girella nigricans. Evolution 54:652–659. https://doi.org/10.1111/j.0014-3820.2000.tb00066.x
Torres-Hernández E, Betancourt-Resendes I, Díaz-Jaimes P, Angulo A, Espinoza E, Domínguez-Domínguez O (2020) Independent evolutionary lineage of the clingfish Gobiesox adustus (Gobiesocidae) from Isla del Coco, Costa Rica. Rev Biol Trop 68:306–319. https://doi.org/10.15517/rbt.v68is1.41201
Torres-Hernández E, Betancourt-Resendes I, Angulo A, Robertson DR, Barraza E, Espinoza E, Díaz-Jaimes P, Domínguez-Domínguez O (2022a) A multi-locus approach to elucidating the evolutionary history of the clingfish Tomicodon petersii (Gobiesocidae) in the Tropical Eastern Pacific. Mol Phylogenet Evol 166:107316. https://doi.org/10.1016/j.ympev.2021.107316
Torres-Hernández E, Betancourt-Resendes I, Solís-Guzmán MG, Robertson DR, Angulo A, Martínez-Gómez JE, Espinoza E, Domínguez-Domínguez O (2022b) Phylogeography and evolutionary history of the Panamic Clingfish Gobiesox adustus in the Tropical Eastern Pacific. Mol Phylogenet Evol 173:107496. https://doi.org/10.1016/j.ympev.2022.107496
Victor BC, Wellington GM, Robertson DR, Ruttenberg BI (2001) The effects of El Niño-Southern oscillation event on the distribution of reef-associated labrid fishes in the Eastern Pacific Ocean. Bull Mar Sci 61(1):279–288
Walker BW (1960) The distribution and affinities of the marine fish fauna of the Gulf of California. Syst Biol 9:123–133. https://doi.org/10.2307/2411961
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans r Soc B 360:1847–1857. https://doi.org/10.1098/rstb.2005.1716
Williams ST, Reid DG (2004) Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58:2227–2251. https://doi.org/10.1111/j.0014-3820.2004.tb01600.x
Yoneda M, Miura H, Mitsuhashi M, Matsuyama M, Matsuura S (2000) Sexual maduration, annual reproductive cycle, and spawning periodicity of the shore Scorpionfish Scorpaenodes littoralis. Environ Biol Fishes 58:307–319. https://doi.org/10.1023/A:1007627228435
Zapata FA, Robertson DR (2007) How many species of shore fishes are there in the Tropical Eastern Pacific? J Biogeogr 34:38–51. https://doi.org/10.1111/j.1365-2699.2006.01586.x
Acknowledgements
We thank Dr. Phil Hastings for providing us with samples from Islas Marias; Francisco Martínez, Edgar Acevedo, Yareli López, Omar Valencia, Paola Palmerín, and Eloísa Torres for their help in the field collections. Samples were collected under permits 013/2012 PNG (Ecuador), PPF/DGOPA-035/15, PPF/DGOPA-065/21, and PPF/DGOPA-085/22 (México), 78-Panama (Panamá), R056-2015-OT-CONAGEBIO (Costa Rica), MARN-AIMA-004-2013 (El Salvador). All procedures performed, including field sampling techniques, anesthetic usage and euthanasia techniques and laboratory protocols used in this study were reviewed and approved by a committee of Mexican Ministry of Environmental and Natural Resources (SEMARNAT). AFGA thanks to CoFAA and EDI-IPN Programs, AA and the field sampling in Costa Rica were partially supported by the Vicerrectoría de Investigación of the Universidad de Costa Rica through the project C2763. Thanks to the Mexican Navy that provided generous logistical support to work on Revillagigedo Islands (Socorro and Clarion islands). Thanks to CIPRES Cyberinfrastructure for Phylogenetic Research XSEDE for their computational support.
Funding
MEBH and RGBL were suported by posgraduate scolarship from Consejo Nacional de Ciencia y Tecnología 3298882 and 572928 respectively. This work was supported by the Universidad Michoacana de San Nicolás de Hidalgo (CIC-2013-2017), Consejo Nacional de Ciencia y Tecnología (CONACyT, Grant No. CB-2014-240875), Island Endemics Foundation, and INECOL.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Handling editor: Jody Hey
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bernal-Hernández, M.E., Beltrán-López, R.G., Robertson, D.R. et al. Cryptic Diversity in Scorpaenodes xyris (Jordan & Gilbert 1882) (Scorpaeniformes: Scorpaenidae) Throughout the Tropical Eastern Pacific. J Mol Evol (2024). https://doi.org/10.1007/s00239-024-10212-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00239-024-10212-w