Abstract
Cold-active enzymes have recently gained popularity because of their high activity at lower temperatures than their mesophilic and thermophilic counterparts, enabling them to withstand harsh reaction conditions and enhance industrial processes. Cold-active lipases are enzymes produced by psychrophiles that live and thrive in extremely cold conditions. Cold-active lipase applications are now growing in the detergency, synthesis of fine chemicals, food processing, bioremediation, and pharmaceutical industries. The cold adaptation mechanisms exhibited by these enzymes are yet to be fully understood. Using phylogenetic analysis, and advanced deep learning-based protein structure prediction tool Alphafold2, we identified an evolutionary processes in which a conserved cold-active-like motif is presence in a distinct subclade of the tree and further predicted and simulated the three-dimensional structure of a putative cold-active lipase with the cold active motif, Glalip03, from Glaciozyma antarctica PI12. Molecular dynamics at low temperatures have revealed global stability over a wide range of temperatures, flexibility, and the ability to cope with changes in water and solvent entropy. Therefore, the knowledge we uncover here will be crucial for future research into how these low-temperature-adapted enzymes maintain their overall flexibility and function at lower temperatures.
Graphical Abstract
Similar content being viewed by others
Data Availability
The input files and datasets supporting this study’s findings are available on Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.8323196
References
Agarwal V, McShan AC (2024) The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins. Nat Chem Biol. https://doi.org/10.1038/s41589-024-01638-w
Ahmed Z, Zulfiqar H, Tang L, Lin H (2022) A statistical analysis of the sequence and structure of thermophilic and non-thermophilic proteins. Int J Mol Sci 23(17):10116. https://doi.org/10.3390/ijms231710116
Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60(5):685–699. https://doi.org/10.1093/sysbio/syr041
Åqvist J, Isaksen GV, Brandsdal BO (2017) Computation of enzyme cold adaptation. Nat Rev Chem 1(7):0051. https://doi.org/10.1038/s41570-017-0051
Ausaf Ali S, Hassan I, Islam A, Ahmad F (2014) A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Prot Pept Sci 15(5):456–476. https://doi.org/10.2174/1389203715666140327114232
Behera S, Balasubramanian S (2023) Lipase A from Bacillus subtilis: substrate binding, conformational dynamics, and signatures of a lid. J Chem Inf Model 63(23):7545–7556. https://doi.org/10.1021/acs.jcim.3c01681
Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16(9):20774–20840
Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170. https://doi.org/10.1126/science.1853201
Bruley A, Mornon J-P, Duprat E, Callebaut I (2022) Digging into the 3D structure predictions of AlphaFold2 with low confidence: disorder and beyond. Biomolecules 12(10):1467. https://doi.org/10.3390/biom12101467
Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31(1):157–165. https://doi.org/10.1007/BF02705244
Chen Q, Wu Y, Huang Z, Zhang W, Chen J, Mu W (2022) Cold-active enzymes in the dairy industry: insight into cold adaption mechanisms and their applications. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2022.05.005
Cheng C, Jiang T, Wu Y, Cui L, Qin S, He B (2018) Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment. Int J Biol Macromol 119:1211–1217. https://doi.org/10.1016/j.ijbiomac.2018.07.158
Chou PY, Fasman GD (1973) Structural and functional role of leucine residues in proteins. J Mol Biol 74(3):263–281. https://doi.org/10.1016/0022-2836(73)90372-0
Clark JJ, Benson ML, Smith RD, Carlson HA (2019) Inherent versus induced protein flexibility: comparisons within and between apo and holo structures. PLoS Comput Biol 15(1):e1006705. https://doi.org/10.1371/journal.pcbi.1006705
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519. https://doi.org/10.1002/pro.5560020916
Cui R, Che X, Li L, Sun-Waterhouse D, Wang J, Wang Y (2022) Engineered lipase from Janibacter sp with high thermal stability to efficiently produce long-medium-long triacylglycerols. LWT 165:113675. https://doi.org/10.1016/j.lwt.2022.113675
De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517. https://doi.org/10.1002/embr.201338170
Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V (2022) Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential antibiofilm property. Int J Biol Macromol 211:741–753. https://doi.org/10.1016/j.ijbiomac.2022.04.174
Ezema BO, Omeje KO, Bill RM, Goddard AD, Eze SO, Fernandez-Castane A (2023) Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii. J Biomol Struct Dyn 41(6):2587–2601. https://doi.org/10.1080/07391102.2022.2035821
Ferruz N, Schmidt S, Höcker B (2021) ProteinTools: a toolkit to analyze protein structures. Nucl Acids Res 49(W1):W559–W566. https://doi.org/10.1093/nar/gkab375
Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, Lee BKB, Mat Isa MN, Mat-Sharani S, Sulaiman S, Tay LJ, Zolkefli R, Muhammad Noor Y, Law DSN, Abdul Rahman SH, Md-Illias R, Abu Bakar FD, Najimudin N, Abdul Murad AM, Mahadi NM (2018) The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS ONE 13(1):e0189947. https://doi.org/10.1371/journal.pone.0189947
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Proteom Protoc Handb. https://doi.org/10.1385/1-59259-890-0:571
Goldstein RA (2007) Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. Protein Sci 16(9):1887–1895. https://doi.org/10.1110/ps.072947007
Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22(21):2695–2696. https://doi.org/10.1093/bioinformatics/btl461
Grant BJ, Skjærven L, Yao XQ (2021) The Bio3D packages for structural bioinformatics. Protein Sci 30(1):20–30. https://doi.org/10.1002/pro.3923
Hamid B, Bashir Z, Yatoo AM, Mohiddin F, Majeed N, Bansal M, Poczai P, Almalki WH, Sayyed R, Shati AA (2022) Cold-active enzymes and their potential industrial applications—a review. Molecules 27(18):5885. https://doi.org/10.3390/molecules27185885
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35(2):518–522. https://doi.org/10.1093/molbev/msx281
Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
Hong X, Luo X, Wang L, Gong D, Zhang G (2023) New insights into the inhibition of hesperetin on polyphenol oxidase: inhibitory kinetics, binding characteristics. Conformational Change Comput Simul Foods 12(4):905. https://doi.org/10.3390/foods12040905
Höppner A, Bollinger A, Kobus S, Thies S, Coscolin C, Ferrer M, Jaeger KE, Smits SH (2021) Crystal structures of a novel family IV esterase in free and substrate-bound form. FEBS J 288(11):3570–3584. https://doi.org/10.1111/febs.15680
Huang A, Lu F, Liu F (2023). Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1130594
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Huston AL, Haeggström JZ, Feller G (2008) Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A4 hydrolase. Biochim Et Biophys Acta Proteins Proteom 1784(11):1865–1872. https://doi.org/10.1016/j.bbapap.2008.06.002
Ionescu C-M, Svobodová Vařeková R, Prehn JH, Huber HJ, Koča J (2012) Charge profile analysis reveals that activation of pro-apoptotic regulators Bax and Bak relies on charge transfer mediated allosteric regulation. PLoS Comput Biol 8(6):e1002565. https://doi.org/10.1371/journal.pcbi.1002565
Ionescu C-M, Geidl S, Svobodová Vařeková R, Koča J (2013) Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method. J Chem Inf Model 53(10):2548–2558. https://doi.org/10.1021/ci400448n
Ionescu C-M, Sehnal D, Falginella FL, Pant P, Pravda L, Bouchal T, Svobodová Vařeková R, Geidl S, Koča J (2015) Atomic charge calculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminf 7:1–13. https://doi.org/10.1186/s13321-015-0099-x
Iqbalsyah TM, Balqis RC, Febriani F, Wahyudi ST (2022) Effect of temperature variation on the structure of gene-translated thermostable lipase by molecular dynamic simulation. AIP Conf Proceed 2638:1
Jaafar NR, Littler D, Beddoe T, Rossjohn J, Illias RM, Mahadi NM, Mackeen MM, Murad AMA, Abu Bakar FD (2016) Crystal structure of fuculose aldolase from the Antarctic psychrophilic yeast Glaciozyma antarctica PI12. Acta Crystallogr Sect F: Struct Biol Commun 72(11):831–839
Jaafar NR, Mahadi NM, Mackeen MM, Illias RM, Murad AMA, Bakar FDA (2021) Structural and functional characterisation of a cold-active yet heat-tolerant dehydroquinase from Glaciozyma antarctica PI12. J Biotechnol 329:118–127. https://doi.org/10.1016/j.jbiotec.2021.01.019
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2
Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589. https://doi.org/10.1038/nmeth.4285
Kamaruddin S, Ahmad Redzuan R, Minor N, Seman WMKW, Md Tab M, Jaafar NR, Ahmad Rodzli N, Jonet MA, Bharudin I, Yusof NA (2022) Biochemical characterisation and structure determination of a novel cold-active proline Iminopeptidase from the psychrophilic yeast, Glaciozyma antarctica PI12. Catalysts 12(7):722. https://doi.org/10.3390/catal12070722
Karelina M, Kulik HJ (2017) Systematic quantum mechanical region determination in QM/MM simulation. J Chem Theor Comput 13(2):563–576. https://doi.org/10.1021/acs.jctc.6b01049
Kastner DW, Nandy A, Mehmood R, Kulik HJ (2023) Mechanistic insights into substrate positioning that distinguish non-heme Fe (II)/α-ketoglutarate-dependent halogenases and hydroxylases. ACS Catal 13(4):2489–2501. https://doi.org/10.1021/acscatal.2c06241
Kaur A, Pati PK, Pati AM, Nagpal AK (2020) Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE 15(9):e0239836. https://doi.org/10.1371/journal.pone.0239836
Kochnev Y, Hellemann E, Cassidy KC, Durrant JD (2020) Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser. Bioinformatics 36(16):4513–4515. https://doi.org/10.1093/bioinformatics/btaa579
Kolsal F, Akbal Z, Liaqat F, Gök O, Sponza DT, Eltem R (2017) Hydrocarbon degradation abilities of psychrotolerant Bacillus strains. AIMS Microbiol 3(3):467
Kong L, Ju F, Zheng W-M, Zhu J, Sun S, Xu J, Bu D (2022) ProALIGN: Directly learning alignments for protein structure prediction via exploiting context-specific alignment motifs. J Comput Biol 29(2):92–105. https://doi.org/10.1089/cmb.2021.0430
Krieger E, Vriend G (2014) YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30(20):2981–2982. https://doi.org/10.1093/bioinformatics/btu426
Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486. https://doi.org/10.1007/BF00228148
Laye VJ, Solieva S, Voelz VA, DasSarma S (2022) Effects of salinity and temperature on the flexibility and function of a polyextremophilic enzyme. Int J Mol Sci 23(24):15620. https://doi.org/10.3390/ijms232415620
Le TTH, Kellenberger C, Boyer M, Santucci P, Flaugnatti N, Cascales E, Roussel A, Canaan S, Journet L, Cambillau C (2023) Activity and crystal structure of the adherent-invasive Escherichia coli Tle3/Tli3 T6SS effector/immunity complex determined using an AlphaFold2 predicted model. Int J Mol Sci 24(2):1740
Liu L, Cai L, Chu Y, Zhang M (2022) Thermostability mechanisms of β-agarase by analyzing its structure through molecular dynamics simulation. AMB Express 12(1):50. https://doi.org/10.1186/s13568-022-01394-x
Lua RC, Wilson SJ, Konecki DM, Wilkins AD, Venner E, Morgan DH, Lichtarge O (2016) UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures. Nucl Acids Res 44(D1):D308–D312. https://doi.org/10.1093/nar/gkv1279
Lugani Y, Vemuluri VR (2022) Extremophiles diversity, biotechnological applications and current trends. Extremophiles. CRC Press, Boca Raton, pp 1–30
Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85. https://doi.org/10.1038/356083a0
Mangiagalli M, Brocca S, Orlando M, Lotti M (2020) The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. New Biotechnol 55:5–11. https://doi.org/10.1016/j.nbt.2019.09.003
Matinja AI, Kamarudin NHA, Leow ATC, Oslan SN, Ali MSM (2022) Cold-active lipases and esterases: a review on recombinant overexpression and other essential issues. Int J Mol Sci 23(23):15394. https://doi.org/10.3390/ijms232315394
Matinja AI, Kamarudin NHA, Leow ATC, Oslan SN, Ali MSM (2024) Novel recombinant cold-adapted alkaliphilic lipase (Glalip03) from Antarctic yeast, Glaciozyma antarctica PI12. Rend Lincei Sci Fisiche e Nat. https://doi.org/10.1007/s12210-024-01277-2
Medeiros P, Canato D, Braz ASK, Paulino LC (2024) Phylogenetic analyses reveal insights into interdomain horizontal gene transfer of microbial lipases. Mol Phylogenet Evol 195:108069. https://doi.org/10.1016/j.ympev.2024.108069
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, Ferrin TE (2023) UCSF ChimeraX: tools for structure building and analysis. Protein Sci 32(11):e4792. https://doi.org/10.1002/pro.4792
Metpally RPR, Reddy BVB (2009) Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genom 10:1–10. https://doi.org/10.1186/1471-2164-10-11
Mhetras N, Mapare V, Gokhale D (2021) Cold active lipases: biocatalytic tools for greener technology. Appl Biochem Biotechnol 193(7):1–22. https://doi.org/10.1007/s12010-021-03516-w
Mihalek I, Reš I, Lichtarge O (2004) A family of evolution–entropy hybrid methods for ranking protein residues by importance. J Mol Biol 336(5):1265–1282. https://doi.org/10.1016/j.jmb.2003.12.078
Miller MD, Phillips GN (2021) Moving beyond static snapshots: protein dynamics and the Protein Data Bank. J Biol Chem 296:100749. https://doi.org/10.1016/j.jbc.2021.100749
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682. https://doi.org/10.1038/s41592-022-01488-1
Mironenko AV, Voth GA (2020) Density Functional theory-based quantum mechanics/coarse-grained molecular mechanics: theory and implementation. J Chem Theory Comput 16(10):6329–6342. https://doi.org/10.1021/acs.jctc.0c00751
Mocali S, Chiellini C, Fabiani A, Decuzzi S, de Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-00876-4
Moe E, Assefa NG, Leiros I, Torseth K, Smalås AO, Willassen NP (2015) Reduced hydrophobicity of the minor groove intercalation loop is critical for efficient catalysis by cold adapted uracil-DNA N-glycosylase from Atlantic cod. J Thermodyn Catal 6:1–8. https://doi.org/10.4172/2157-7544.1000155
Mohammadi S, Hashim NHF, Mahadi NM, Murad AMA (2021) The cold-active endo-β-1, 3 (4)-glucanase from a marine psychrophilic yeast, Glaciozyma antarctica PI12: heterologous expression, biochemical characterisation, and molecular modeling. Int J Appl Biol Pharm Technol 12(1):279–300
Mondino LJ, Asao M, Madigan MT (2009) Cold-active halophilic bacteria from the ice-sealed Lake Vida, Antarctica. Arch Microbiol 191:785–790. https://doi.org/10.1007/s00203-009-0503-x
Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108(15):4315–4320. https://doi.org/10.1021/ja00275a013
Mosavi LK, Peng ZY (2003) Structure-based substitutions for increased solubility of a designed protein. Prot Eng 16(10):739–745. https://doi.org/10.1093/protein/gzg098
Nandanwar SK, Borkar SB, Lee JH, Kim HJ (2020) Taking advantage of promiscuity of cold-active enzymes. Appl Sci 10(22):8128. https://doi.org/10.3390/app10228128
Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. https://doi.org/10.1006/jmbi.2000.4042
Nowak JS, Otzen DE (2023) Helping proteins come in from the cold: 5 burning questions about cold-active enzymes. BBA Adv. https://doi.org/10.1016/j.bbadva.2023.100104
Olufsen M, Smalås AO, Moe E, Brandsdal BO (2005) Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold-and warm-active uracil DNA glycosylase. J Biol Chem 280(18):18042–18048. https://doi.org/10.1074/jbc.M500948200
Öten AM, Atak E, Taktak Karaca B, Fırtına S, Kutlu A (2022) Discussing the roles of proline and glycine from the perspective of cold adaptation in lipases and cellulases. Biocatal Biotransform. https://doi.org/10.1080/10242422.2022.2124111
Parvizpour S, Razmara J, Ramli ANM, Md Illias R, Shamsir MS (2014) Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12. J Comput Aided Mol Des 28:685–698. https://doi.org/10.1007/s10822-014-9751-1
Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM (2015) Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis. J Mol Model 21:1–14. https://doi.org/10.1007/s00894-015-2617-1
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Bateman A (2022) InterPro in 2022. Nucl Acids Res 51(D1):D418–D427. https://doi.org/10.1093/nar/gkac993
Peccati F, Alunno-Rufini S, Jiménez-Osés G (2023) Accurate prediction of enzyme thermostabilization with rosetta using alphafold ensembles. J Chem Inf Model 63(3):898–909
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82. https://doi.org/10.1002/pro.3943
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854
Qu P, Li D, Lazim R, Xu R, Xiao D, Wang F, Li X, Zhang Y (2022) Improved thermostability of Thermomyces lanuginosus lipase by molecular dynamics simulation and in silico mutation prediction and its application in biodiesel production. Fuel 327:125039. https://doi.org/10.1016/j.fuel.2022.125039
Rabbani G, Ahmad E, Ahmad A, Khan RH (2023) Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins. Int J Biol Macromol 225:822–839. https://doi.org/10.1016/j.ijbiomac.2022.11.146
Rahman MZA, Salleh AB, Rahman RNZRA, Rahman MBA, Basri M, Leow TC (2012) Unlocking the mystery behind the activation phenomenon of T1 lipase: a molecular dynamics simulations approach. Protein Sci 21(8):1210–1221. https://doi.org/10.1002/pro.2108
Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins Struct Funct Bioinf 77:89–99. https://doi.org/10.1002/prot.22540
Ramli ANM, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AMA, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961. https://doi.org/10.1007/s10822-012-9585-7
Rizzello A, Romano A, Kottra G, Acierno R, Storelli C, Verri T, Daniel H, Maffia M (2013) Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter. Proceed Nat Acad Sci US Am 110(17):7068–7073
Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(W1):W320–W324. https://doi.org/10.1093/nar/gku316
Schmidt A, Röner S, Mai K, Klinkhammer H, Kircher M, Ludwig KU (2023) Predicting the pathogenicity of missense variants using features derived from AlphaFold2. Bioinformatics. https://doi.org/10.1093/bioinformatics/btad280
Schrag JD, Cygler M (1997) Lipases and αβ hydrolase fold. Methods in enzymology. Academic Press, Cambridge, pp 85–107
Shin W-R, Um H-J, Kim Y-C, Kim SC, Cho B-K, Ahn J-Y, Min J, Kim Y-H (2021) Biochemical characterization and molecular docking analysis of novel esterases from Sphingobium chungbukense DJ77. Int J Biol Macromol 168:403–411. https://doi.org/10.1016/j.ijbiomac.2020.12.077
Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D’Amico S, Gerday C, Uversky VN, Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation: Modifying lysine to homo-arginine stabilizes the cold-adapted α-amylase from Pseudoalteramonas haloplanktis. Prot Struct Funct Bioinf 64(2):486–501. https://doi.org/10.1002/prot.20989
Song X, Ni M, Zhang Y, Zhang G, Pan J, Gong D (2021) Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid. Food Chem 349:129172. https://doi.org/10.1016/j.foodchem.2021.129172
Tambunan USF, Pratomo H, Parikesit AA (2013) Modification of kampmann A5 as potential fusion inhibitor of dengue virus using molecular docking and molecular dynamics approach. J Med Sci. https://doi.org/10.3923/jms.2013.621.634
Tanabe TS, Grosser M, Hahn L, Kümpel C, Hartenfels H, Vtulkin E, Flegler W, Dahl C (2023) Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes. PLoS Biol 21(6):e3002177. https://doi.org/10.1371/journal.pbio.3002177
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. https://doi.org/10.1038/s41587-021-01156-3
Tribelli PM, López NI (2018) Reporting key features in cold-adapted bacteria. Life 8(1):8. https://doi.org/10.3390/life8010008
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl Acids Res 44(W1):W232–W235. https://doi.org/10.1093/nar/gkw256
Tsuji M (2018) Genetic diversity of yeasts from East Ongul Island, East Antarctica and their extracellular enzymes secretion. Polar Biol 41(2):249–258. https://doi.org/10.1007/s00300-017-2185-1
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A (2021) Highly accurate protein structure prediction for the human proteome. Nature 596(7873):590–596. https://doi.org/10.1038/s41586-021-03828-1
Turchetti B, Thomas Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586. https://doi.org/10.1007/s00792-011-0388-x
Uziela K, Menéndez Hurtado D, Shu N, Wallner B, Elofsson A (2017) ProQ3D: improved model quality assessments using deep learning. Bioinformatics 33(10):1578–1580. https://doi.org/10.1093/bioinformatics/btw819
van der Ent F, Lund BA, Svalberg L, Purg M, Chukwu G, Widersten M, Isaksen GV, Brandsdal BO, Åqvist J (2022) Structure and mechanism of a cold-adapted bacterial lipase. Biochemistry. https://doi.org/10.1021/acs.biochem.2c00087
Vivek K, Sandhia G, Subramaniyan S (2022) Extremophilic lipases for industrial applications: a general review. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2022.108002
Wang L, O’Mara ML (2021) Effect of the force field on molecular dynamics simulations of the multidrug efflux protein P-glycoprotein. J Chem Theory Comput 17(10):6491–6508. https://doi.org/10.1021/acs.jctc.1c00414
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP (2022) Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 204(2):144. https://doi.org/10.1007/s00203-022-02757-5
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucl Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427
Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289(11):7994–8006
Zeldovich KB, Berezovsky IN, Shakhnovich EI (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3(1):e5. https://doi.org/10.1371/journal.pcbi.0030005
Zhang ZB, Xia YL, Dong GH, Fu YX, Liu SQ (2021) Exploring the cold-adaptation mechanism of serine hydroxymethyltransferase by comparative molecular dynamics simulations. Int J Mol Sci 22(4):1781. https://doi.org/10.3390/ijms22041781
Acknowledgements
The authors would also like to thank the Universiti Putra Malaysia for their GP-IPB grant (vote number: 9708100) and TETFUND Nigeria for providing a scholarship to the first author.
Funding
GP-IPB Universiti Putra Malaysia supported this project under Grant Number: 9708100.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Handling editor: Christina Toft.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Matinja, A.I., Kamarudin, N.H.A., Leow, A.T.C. et al. Structural Insights into Cold-Active Lipase from Glaciozyma antarctica PI12: Alphafold2 Prediction and Molecular Dynamics Simulation. J Mol Evol (2024). https://doi.org/10.1007/s00239-024-10219-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00239-024-10219-3