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Abstract. Generation of a reference standard from multiple manually
annotated datasets is a non-trivial problem. This paper discusses the
weighted averaging of 3D open curves, which we used to generate a ref-
erence standard for vessel tracking data. We show how weighted averag-
ing can be implemented by applying the Mean Shift algorithm to paths,
and discuss the details of our implementation. Our approach can handle
cases where the observer centerlines take different branches in a natural
way. The method has been evaluated on synthetic data, and has been
used to generate reference centerlines for evaluation of vessel tracking
algorithms.

1 Introduction

It is commonly understood that thorough evaluation of methodologies and algo-
rithms is essential for progress in the field of medical imaging. Such evaluations
require a set of test data, a reference standard (we prefer to use this phrase if
there is no ground truth available), and a set of measures to quantify the results
for evaluation.

The authors are involved in the coronary artery tracking challenge (fhttp://
cat08.bigr.nl), and therefore these issues were to be addressed in this context.
As no ground truth central lumen lines are available for our clinical datasets,
three observers manually annotated the central lumen lines: from a fixed starting
position, the centerline of the main vessel should be annotated as distal as possi-
ble. However, the observers did not always take the same decision at bifurcations
and also the handling of vessel pathology such as stenoses or regions with non-
circular lumen cross sections was not always consistent. In our efforts to come
to a reference standard from a set of three manually drawn centerlines we there-
fore soon came to the conclusion that plain averaging does not work. The most
important requirement of the averaging process is that it should give reference
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centerlines that are nearly always inside the vessel lumen, i.e. the reference cen-
terline should follow the “majority votes” centerline. The main contribution of
this paper is a method to “average” these centerlines into a reference standard.

Many publications have appeared that implement a way to compare open
curves. If correspondence between centerlines is known, and bifurcations are
not a problem, then approaches to estimate the mean of a set of curves can
be applied [I]. To the best of our knowledge, no work has been published that
addresses how to generate a reference centerline from several manually annotated
lines, if there is no explicit correspondence between the lines.

Warfield et al. [2] address the related issue of generating a ground truth
segmentation and propose a method called STAPLE. They use a Maximum
Likelihood Expectation Maximization algorithm to estimate the performance
parameters of the observers (and possibly software algorithms) given a set of
segmentations, with the reference standard segmentation modelled as hidden
data. This approach is appealing, as it not only determines a reference stan-
dard from multiple segmentations, but also addresses the issue of sensitivity and
specificity of the observers and automated approaches.

More recently, Jomier et al. [3] showed how STAPLE could be used for eval-
uating centerlines in vessel segmentation. They propose to voxelize the open
curves, dilate them and then apply STAPLE to the resulting segmentations,
which yields a probability map of the ground truth segmentation. Their work is
most related to ours.

The remainder of the paper is organized as follows. In Sect. Bl and Bl we
describe our method and the implementation, in Sect. Ml our experiments are
described, followed by Results and Discussion in Sect. [l and Bl and Conclusions
in Sect. [

2 Averaging Via Mean Shift

We propose to perform a weighted averaging to determine the reference center-
line, where the weights depend on the distance from the reference. This suggests
that averaging can be performed via the Mean Shift algorithm [45], which is an
algorithm that iteratively shifts a data point along the gradient of a density that
is determined by a set of data points and kernel functions, until the gradient
vanishes, and the point has arrived at a mode (maximum) of the density.

More formally, the Mean Shift algorithm with Gaussian kernels G, and for a
set of m datapoints can be described by the following iterative procedure (see
e.g. Carreira-Perpinan [5]):

M
Go (X" — pml)
xTH = Hm (1)
mz:l Z%:l Go (X" — pm )

where pip, represents the m*" data point. After convergence of the algorithm, the
mean shifted position x is the weighted average of the data points, where the
weights are determined by the distance to the weighted average and the kernel
function used.
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This Mean Shift algorithm is a well-known algorithm, that has, among oth-
ers, been used to find the modes of clusters in feature space analysis in image
processing []. We adapt Eq. [l for our application to paths (we will use path
instead of centerline to underline that our method is applicable to any open 3D
curve) in the following way.

Let p;(t) with 0 < i < m (m number of paths) and ¢ € [0,1] be the path
annotated by the i*" observer and parametrized by parameter ¢, and r;(t), t €
[0,1] be the mean shifted path to be determined. Furthermore, let s;(¢) be a
bijection from [0, 1] to [0, 1] that defines the correspondence between r; and p;,
i.e. r;(t) corresponds to p; o s; (t). Thus s; relates positions along r; to positions
along p; that will be used in the Mean Shift algorithm. The mean shift r; of path
p; is then given by the following equation:

Go (17 ~ 950 5]
T+1 o i 7] 7]
v, = 08 , 2
=S G 7 —prosel) P .

where the corresondence function s; may change after each iteration, and ) = p;.
This equations states that each point along r; is shifted to the weighted average
of the corresponding points on all paths p;.

We apply this adapted Mean Shift algorithm to each of the manually drawn
paths, using the manually annotated paths as data points. This results in a set
of mean shifted paths, of which some will coincide for some part (following the
same mode), and some may diverge at certain locations. To obtain the final
reference path, the largest common part of the shifted paths is determined in a
post processing step. Implementation details are discussed in the next section.

3 Implementation

3.1 Correspondence

Equation [2 contains correspondence functions s;, which relate points from the
path being shifted to the observer paths and also vice versa, as s; is a bijection.
Point correspondence must be known, as it determines which points of the paths
p; are involved in the mean shift of a position on r;.

In our implementation, we use a discretized version S; of the correspondence
function s;. Equidistant resampling of the input paths is performed before deter-
mining the correspondence. Next, the correspondence is determined by finding
the minimum of the sum of the Euclidean lengths of all point-point connections
that are connecting two paths over all valid correspondences.

Let O be a path, represented by an ordered set of n points {0;}, i € [1,n], and
let @ be a second path, represented of an ordered set of m points {¢;}, j € [1,m].
We define a correspondence C' for paths O and @) as the ordered set of connections
{ck}, k € [1,n+m—1] where ¢ is a tuple [¢, j] that represents a connection from
0; to ¢;, and we define a valid correspondence as a correspondence satisfying the
following conditions:
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Observer path

Mean shift path

Fig. 1. Correspondence between two lines, as determined by the Dijkstra algorithm.
A and B show regions where one point on one path corresponds to multiple points on
the other path.

— The first connection ¢; connects the start points: ¢; = [1,1].

— The last connection ¢, y.,—1 connects the end points: ¢, 4m—1 = [n, m].

— If connection ¢; (k < n+ m — 1) equals [i,j] then connection c,41 equals
either [i + 1, 4] or [i,5 + 1].

These conditions guarantee that each point of O is connected to at least one
point of @ and vice versa. Note that this is not a bijection, as multiple points on
O may be connected to @, and vice versa. A Dijkstra graph search algorithm [6]
on a Cartesian grid with connection lengths as edge costs is used to determine
the global minimum Euclidean length correspondence. See Fig. [l for an example.

3.2 Mean Shift on Paths

Equation [2] shows how to determine the reference path given the positions and
weighting factors, by taking the weighted average over all points involved. The
correspondence as defined in Sect. Blis not a real bijection, see Fig. [} a point
on the mean shifted path may be connected to several points on an observer
path (case A), and vice versa (case B). To account for multiple observer points
connected to one point on the mean shifted path (A), the weights are normalized
with a factor of nlj , where n; is the number of nodes on the observer path that is
connected to a point of the mean shifted path. This means that the total weight
of a path is not affected by the number of points connected to a point on the
mean shifted path. In case one point on the observer path is connected to several
points on the mean shifted path (B), that point is used in the mean shifts for
each of the points of the mean shifted path it is connected to.

Equation [ is thus implemented in our discretized Mean Shift algorithm as
follows, with R;, P; and S; the discretized versions of respectively the mean
shifted path r;, the observer path p; and the correspondence s;:

S (IRT = Py o Si)
T4+1
i ZZZkZ”k ' Gy (|Rf — PkOSkl'\)

POS]la (3)

where n; is the number of connections of path j to the position of R; that is
being evaluated, and S;,; corresponds to the [*!' connection from the position on
R; to P; and 1_ is the weighting factor for point multiplicity. This equation is
evaluated for each of the points along R;. The correspondence S; is redetermined
after each mean shift iteration, i.e. after a shift of all points on R;.
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3.3 Post Processing

The implementation of the Mean Shift algorithm on paths returns three shifted
paths: each observer path is shifted to a mode of all input paths. In a sub-
sequent post processing step, these paths are merged into one resulting path,
representing the “major mode” of the paths. We perform this clustering task in
a straightforward way. The local distance between each tuple of mean shifted
paths is determined via correspondences established as described in Sect. 3.1l
After thresholding this distance, the length of the common part that two paths
share can be determined. The tuple with maximum common path length is sub-
sequently chosen, and the average of the two paths of this tuple over the part of
the paths that they share is determined.

4 Experiments

The method described in the previous section has been implemented and eval-
uated. Evaluation was done visually on synthetic test cases, to inspect the be-
haviour of the algorithms in case of paths ending at different positions, single
bifurcations and double bifurcations. In these experiments, the bandwidth o
was set to 2mm (the path length was around 80 mm, initial sampling distance
as shown in the images was 1 mm). The effect of varying the bandwidth was
also evaluated, with ¢ varying from 1 mm to 16 mm, where o was doubled in
each next experiment. These bandwidth experiments are shown together with
a plain averaged path, i.e. a path that would be obtained if we would average
without weighting factors. This averaging is performed by iteratively averaging
tuples of observer paths over all connections that have been determined by the
same Dijkstra algorithm, i.e. the plain average path is determined by iterating
the following over all i: pZH = é (p{ + pZH) where 7 is the iteration number,
and i+ 1 wraps at 3 in our case. This iterative approach converges to the average
of the three paths.

The method was also used to generate the reference standards from manually
annotated centerlines for evaluation of vessel tracking algorithms. Currently, four
coronaries have been annotated in 24 coronary CTA datasets by three observers.
The method has been tested on all 96 triplets of paths, and the reference paths
generated in this way have been checked visually by displaying them in Curved
Multiplanar Reformatted images and locally orthogonal views (oriented with the
tangential of the centerline), together with interobserver variations. The observer
centerlines contained centerlines that take different branches at bifurcations or
that ended prematurely and also centerlines that have local deviations. For the
mean shift of the centerlines of these coronary arteries we used a o of 2mm,
which is approximately the average radius of the coronary vessels that we are
tracking in this application. This implies that paths running apart much more
than 2mm will not converge to the same mode, which is exactly what we want.
The mean shifted paths were determined at a sampling distance of 0.2 mm, and
the input observer paths were resampled to a sampling distance of 0.03 mm.
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5 Results

Results of the method for the experiments with synthetic data are shown in
Fig. Bh-h. In all cases, the reference path is not much affected by a path that
chooses another vessel, although a small bump is sometimes noticeable, the size
of which depends on the bandwidth of the algorithm. Also paths that end less
distal than others do not affect the reference path.

R
000

i. j. k. 1.

Fig. 2. Examples of the Mean Shift algorithm: a-h to 2D synthetic data, i-1 to the 3D
paths data. a) three paths, where not all paths run to the distal end; b) mean shift
result of a; ¢) bifurcation in observer paths; d) mean shift result of ¢; €), ) and g)
mean shift result for each of the three observer paths separately; h) final result after
clustering the paths; i) centerlines; j) vessels; k) average path; 1) mean shift path.
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The effect of varying ¢ on the final reference path is small if changes in o
are small. When o is large enough, all vessels will be averaged, even if they
follow different branches, and the resulting path will be outside all vessels. A
slight bump can be observed at the bifurcations with low values for o, as the
bifurcating path initially is near enough to also contribute to the major mode.

All the CTA reference paths have been visually inspected, and all could be
used directly for the evaluation of tracking algorithms, none of them needed
additional manual editing. Examples are shown in the bottom row of Fig. 2l

6 Discussion

We have shown how the Mean Shift algorithm can be used to determine a
weighted average of three manually annotated open curves. Correspondence be-
tween two curves was determined by the set of connections with minimal total
Euclidean length. Our application involves averaging of three 3D (spatial) curves,
and the algorithms discussed have been developed for this specific case. Both the
spatial dimensionality and the number of input curves, however, are not essen-
tial to the algorithm: our approach can easily be applied to curves in higher- or
lower-dimensional space, and also on sets of more than three curves.

The choice of a kernel and bandwidth determines the final result of the algo-
rithm. We chose our bandwidth according to the expected variance of the data:
all paths should be in the same vessel, and thus the bandwidth was similar to
the vessel radius. We choose the Gaussian kernels because of their assumed bet-
ter behaviour. The infinite support of the Gaussian kernel, which makes them
computationally expensive in other cases [4], is not an issue in our case.

The resulting paths in our implementation may have slight bumps or kinks
near paths that diverge. Depending on the value of the bandwidth o, the diverg-
ing path will to some extent drag the major mode away from the course of the
other paths. In the future, we may try to resolve this by following an iterative
approach: based on the results of an initial application of our method, we can
detect locations where paths are diverging, and reduce the influence of single
diverging paths with a suitable chosen weighting factor, or vary the bandwidth
along paths.

We do not yet fully exploit all the possibilities of our approach. Instead of
picking the largest overlap between the shifted paths, a more advanced analysis
of the convergence modes could be performed. One could imagine that, in case
of a substantial number of observers, several important modes can be detected,
even consisting of varying sets of observer paths, all of which should be part of
the final reference. In the future, we intend to investigate this issue.

The work most closely related to ours is the STAPLE approach of Jomier et
al. [B]. Our approach differs from theirs in several aspects. First, the STAPLE
approach requires a voxelization of the input centerlines, whereas our approach is
subvoxel accurate. Second, the STAPLE approach yields an explicit probability
map that can be used for evaluation, whereas our approach gives a reference
centerline, that can be used to derive quantitative measures on the position
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of other centerlines. The probability map could be used to derive a reference
path, but this is not trivial, and it is not discussed in the work of Jomier et al.
Third, the STAPLE approach gives a sensitivity and specificity value for the
complete curve, whereas we use a weighting factor that varies along the curve.
The advantage of the latter approach is that in proximal regions, where all curves
track the same vessel, all curves are incorporated in calculating the average with
approximately the same weights, even if one of the curves would track another
part incorrect, e.g. by tracking the wrong branch at a distal bifurcation, and
that weights are decreased locally in case of local errors.

In the future, we want to extend the approach to sets of more than three
vessels. Also, we want to investigate how the analysis of the resulting modes
can contribute to a better definition of the reference standard. Furthermore, a
similar approach could be pursued to determine reference standards for other
types of data.

7 Conclusion

We have shown how the Mean Shift algorithm can be used to determine the
average centerline from a set of centerlines annotated by observers. The method
can handle bifurcating centerlines and centerlines that stop at different distances
along the vessel in a natural way. The technique has been applied successfully
to 96 manually annotated coronary artery centerlines, and will be used in the
evaluation of vessel tracking algorithms.
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