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Abstract The CB2 receptor is the peripheral receptor for

cannabinoids. It is mainly expressed in immune tissues,

highlighting the possibility that the endocannabinoid sys-

tem has an immunomodulatory role. In this respect, the

CB2 receptor was shown to modulate immune cell func-

tions, both in cellulo and in animal models of inflammatory

diseases. In this regard, numerous studies have reported

that mice lacking the CB2 receptor have an exacerbated

inflammatory phenotype. This suggests that therapeutic

strategies aiming at modulating CB2 signaling could be

promising for the treatment of various inflammatory con-

ditions. Herein, we review the pharmacology of the CB2

receptor, its expression pattern, and the signaling pathways

induced by its activation. We next examine the regulation

of immune cell functions by the CB2 receptor and the

evidence obtained from primary human cells, immortalized

cell lines, and animal models of inflammation. Finally, we

discuss the possible therapies targeting the CB2 receptor

and the questions that remain to be addressed to determine

whether this receptor could be a potential target to treat

inflammatory disease.
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Abbreviations

2-AG 2-Arachidonoyl-glycerol

AA Arachidonic acid

AEA N-Arachidonoyl-ethanolamide

AM1241 (2-Iodo-5-nitrophenyl)-(1-(1-

methylpiperidin-2-ylmethyl)-1H-indol-

3-yl)methanone

AM630 6-Iodo-2-methyl-1-[2-(4-

morpholinyl)ethyl]-1H-indol-3-yl](4-

methoxyphenyl)methanone

CB65 N-Cyclohexyl-7-chloro-1-[2-(4-

morpholinyl)ethyl]quinolin-4(1H)-one-

3-carboxamide

cAMP Cyclic adenosine monophosphate

CBD Cannabidiol

CBG Cannabigerol

CBN Cannabinol

COX Cyclooxygenase

CP 55,940 (–)-Cis-3-[2-hydroxy-4-(1,1-

dimethylheptyl)phenyl]-trans-4-

(3-hydroxypropyl)cyclohexanol

D9-THC (–)-D9-Tetrahydrocannabinol

ERK-1/2 Extracellular signal-regulated kinases-1/2

FAAH Fatty acid amide hydrolase

GFP Green fluorescent protein

GIRK G-protein-coupled inwardly rectifying

potassium (channel)

GP 1a N-(Piperidin-1-yl)-1-(2,4-

dichlorophenyl)-1,4-dihydro-

6-methylindeno[1,2-c]pyrazole-

3-carboxamide

GP 2a N-Cyclohexyl-1-(2,4-dichlorophenyl)-

1,4-dihydro-6-methylindeno[1,2-

c]pyrazole-3-carboxamide

GPCR G-protein-coupled-receptor
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HU-210 3-(1,10-Dimethylheptyl)-6aR,7,10,10aR-

tetrahydro-1-hydroxy-6,6-dimethyl-6H-

dibenzo[b,d]pyran-9-methanol

HU-308 4-[4-(1,1-Dimethylheptyl)-2,6-

dimethoxyphenyl]-6,6-

dimethylbicyclo[3.1.1]hept-2-ene-

2-methanol

IP3 Inositol 1,4,5-trisphosphate

JTE 907 N-(1,3-Benzodioxol-5-ylmethyl)-1,

2-dihydro-7-methoxy-2-oxo-8-

(pentyloxy)-3-quinolinecarboxamide

JWH 015 (2-Methyl-1-propyl-1H-indol-3-yl)-1-

naphthalenyl-methanone

JWH 133 (6aR,10aR)-3-(1,1-Dimethylbutyl)-

6a,7,10,10a-tetrahydro-6,6,9-trimethyl-

6H-dibenzo[b,d]pyran

L-759,633 (6aR,10aR)-3-(1,1-Dimethylheptyl)-

6a,7,10,10a-tetrahydro-1-methoxy-6,6,

9-trimethyl-6H-dibenzo[b,d]pyran

L-759,656 (6aR,10aR)-3-(1,1-Dimethylheptyl)-

6a,7,8,9,10,10a-hexahydro-1-methoxy-

6,6-dimethyl-9-methylene-6H-

dibenzo[b,d]pyran

LOX Lipoxygenase

MAG Monoacylglycerol

MAPK Mitogen-activated protein kinases

NADA N-Arachidonoyl-dopamine

PI3K Phosphoinositide 3-kinase

PKC Protein kinase C

PLC Phospholipase C

PTX Pertussis toxin

SER 601 N-(Adamant-1-yl)-6-isopropyl-4-oxo-

1-pentyl-1,4-dihydroquinoline-3-

carboxamide

WIN 55,212-2 [(3R)-2,3-Dihydro-5-methyl-3-(4-

morpholinylmethyl)pyrrolo[1,2,3-de]-

1,4-benzoxazin-6-yl]-1-naphthalenyl-

methanone, monomethanesulfonate

SR141716A N-(Piperidin-1-yl)-5-(4-chlorophenyl)-

1-(2,4-dichlorophenyl)-4-methyl-1H-

pyrazole-3-carboxamide hydrochloride

SR144528 5-(4-Chloro-3-methylphenyl)-1-[(4-

methylphenyl)methyl]-N-[(1S,2S,4R)-

1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-

1H-pyrazole-3-carboxamide

Introduction

The psychotropic effects induced by cannabis promoted

its widespread use among the population. These effects

are mediated by a cannabinoid receptor that is mainly

expressed in the central nervous system, namely CB1.

The identification of a receptor that is selectively acti-

vated by cannabinoids suggested that the human body

synthesizes at least one natural ligand for this receptor.

This hypothesis was confirmed by the discovery of two

high-affinity ligands for the CB1 receptor: arachidonoyl-

ethanolamide (AEA) [1] and 2-arachidonoyl-glycerol (2-

AG) [2]. As these novel lipid mediators were uncovered,

a second cannabinoid receptor (CB2) was being cloned

and characterized. Its expression profile among tissues

was found to be distinct from that of CB1. It was pri-

marily found in immune cells and was initially not

detected in the brain, although this was later proven

incorrect by several studies. In light of these findings, the

CB2 receptor was postulated to be responsible for the

immunomodulatory effects of cannabinoids and endo-

cannabinoids. In the past two decades, this hypothesis

was tested in a wide array of cellular and animal models.

This article offers a comprehensive review of the evi-

dence that was gathered in these studies, with a focus on

peripheral inflammation. The CB2 receptor’s potential as

a therapeutic target in inflammatory disease is also

discussed.

Cloning of the CB2 receptor

The non-psychoactive effects of cannabinoids were ini-

tially believed to be mediated either centrally or through

their interaction with non-receptor proteins. Although

there are phytocannabinoids that exert non-psychoactive

effects without binding to CB2 receptor [e.g., cannabidiol

(CBD), cannabigerol (CBG)], discovering the latter

explained many of the peripheral effects of cannabinoids.

Munro et al. cloned the human CB2 receptor in 1993 from

the promyelocytic leukaemic cell line HL-60 [3]. To

achieve this, cells were treated with dimethylformamide

to induce granulocyte differentiation, a cDNA library was

prepared, polymerase chain reaction (PCR) was per-

formed using degenerated primers, and the amplification

products were cloned and sequenced. One of the clones

showed homology to the G-protein-coupled-receptor

(GPCR) family and was related to the CB1 receptor. The

protein encoded by this sequence was found to have 44 %

homology with the CB1 receptor. This homology

increased to 68 % when only the transmembrane portion

was considered. Binding assays showed that this receptor

had high affinity for the cannabinoid receptor ligands

WIN 55,212-2 and CP 55,940, as well as the endo-

cannabinoid AEA and the phytocannabinoid D9-THC. The

authors suggested that the previously described central

receptor be named CB1 and that this novel, peripheral

receptor be named CB2.
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A few years later, Shire et al. [4] cloned the murine

CB2 receptor from a mouse splenocyte cDNA library.

They found it to be 82 % homologous to the human CB2

receptor and to have similar affinity for the ligands

AEA, CP 55,940, and D9-THC. WIN 55,212-2, however,

bound the mouse CB2 receptor with an affinity six-fold

lower than that documented for human CB2. This was

followed by the cloning of the rat CB2 receptor by

Brown et al. [5]. The authors also compared the

sequence of their clone with those of the mouse and

human CB2 receptor and found significant differences in

protein length, although these were mainly the conse-

quence of disparities in carboxyl termini. Amino acid

conservation was highest in the transmembrane regions

of the three receptors.

In addition to binding the endocannabinoids AEA and

2-AG, the CB2 receptor binds many phytocannabinoids.

The pharmacology of endocannabinoids and that of the

CB2 receptor were rigorously reviewed in the past [6, 7].

Table 1 provides a summary of the various endocannabi-

noids and phytocannabinoids and their affinity for the

human CB2 receptor.

Available tools to study CB2 receptor functions

Pharmacological compounds

Synthetic cannabinoids, such as CP 55,940 and WIN

55,212-2, were already available when the CB2 receptor

was cloned. They were subsequently shown to be potent

CB2 ligands, but also to lack selectivity, as they activate

CB1 with comparable efficiency. In this respect, several

agonists and antagonists were rapidly developed and made

available to the scientific community. The most widely

used compounds are the agonist JWH 133, and the antag-

onists SR144528 and AM630. Still, many compounds

display good potency and selectivity towards CB2. Table 2

contains a comprehensive list of those compounds, as well

as their binding potency towards human CB2, and in some

cases, the other receptors they target.

Knockout mice

The first CB2 receptor-deficient mouse was generated by

Buckley et al. in 2000 [32]. The CNR2 gene was

Table 1 Binding of endocannabinoids and phytocannabinoids to the human CB2 receptor

Ki (nM) Model References

Endocannabinoid

AEA 371 CHO cells [8]

1940 AtT-20 cells [9]

795 Sf9 cells [10]

3500 CHO cells [10]

2-AG 949 Sf9 cells [10]

650 CHO cells [10]

Dihomo-c-LEA 857 AtT-20 cells [9]

Oleamide [100,000 HEK-293 cells [11]

NADA 12,000b Rat spleen [12]

2-AG-ether [3000a COS-7 cells [13]

Phytocannabinoid

D9-THC 34.6 CHO cells [8]

D8-THC 39.3 Mouse spleen [14]

CBN 96.3 CHO cells [8]

301 AtT-20 cells [9]

CBD 2680 CHO cells [8]

b-Caryophyllene 155 HEK293 cells [15]

Ki values were obtained in function of [3H]CP 55,940 displacement unless indicated otherwise

NADA N-arachidonoyl-dopamine, CBN cannabinol
a [3H]HU-243
b [3H]WIN55212-2
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inactivated by homologous recombination, by replacing a

341 bp fragment of its coding sequence with the neomycin

gene. This mutation eliminated part of intracellular loop 3,

transmembrane domains 6 and 7, and the carboxyl

extremity of the receptor. Autoradiography experiments

confirmed the absence of specific binding of [3H]CP 55,940

in the spleen of CB2
-/- mice. No significant difference in

the binding of [3H]CP 55,940 between wild-type and

knockout animals was found in the brain, supporting that

CB1-receptor expression was not altered in CB2-/- ani-

mals. The authors confirmed this by demonstrating that

knockout mice were as responsive to the psychotropic

effects of D9-THC as wild-type animals.

CB2
-/- mice display no morphological differences when

compared to their wild-type counterparts. They are normal

size and weight, are fertile, have normal litter sizes and

care for their young. However, subsequent studies by other

groups show that CB2
-/- mice develop differences at the

cellular level. In this regard, Ofeck et al. have demon-

strated that CB2
-/- mice have lower counts of osteoblast

precursors and increased numbers and activity of osteo-

clasts [33]. In consequence, these mice have a low bone

mass phenotype that worsens with age. They also present

abnormalities in the development of several T and B cell

subsets [34]. While this might impair immune homeostasis,

CB2
-/- mice fail to spontaneously develop any observable

immune disease. Therefore, they are suitable to study CB2

function and have, since, become invaluable tools in

cannabinoid research. In this respect, they have been used

to define the impact of CB2 deficiency in a variety of

inflammatory disease models, and the results of these

studies will be discussed in the section entitled CB2 acti-

vation by endocannabinoids in vivo

Antibodies

As it is the case with numerous GPCRs, CB2 protein

detection is difficult due to the lack of specificity of pri-

mary antibodies. This concept was underscored in a recent

study by Marchalant et al. [35], who showed that a com-

mercially available and widely used CB2 polyclonal

antibody is heavily cross-reactive towards other proteins.

Noteworthy, they demonstrated that some of the proteins

detected by the antibody were not membrane-bound, ruling

out the previously suggested hypothesis that the additional

bands represent glycosylation variants of the CB2 receptor.

Moreover, Graham et al. [36] compared several CB2 pri-

mary antibodies in flow cytometry experiments on human

primary leukocytes. The antibodies which they compared

generated different expression patterns between cell types.

Therefore, data regarding CB2 protein detection must be

interpreted with caution.

Table 2 CB2 agonists and antagonists

Ki (nM) Other targets References

Agonist

AM 1241 3.4 TRPA1 [16, 17]

JWH 133 3.4 TRPV1 [18, 19]

GW 405833 3.6–3.92 – [20]

JWH 015 13.8 – [8]

HU 308 22.7 – [21]

L-759,633 6.4 – [22]

L-759,656 11.8 – [22]

SER 601 6.3 – [23]

GP 1a 0.037 – [24]

GP 2a 7.6 – [24]

CB 65 3.3 – [25]

HU 210 0.061–0.52 CB1, GPR55, 5-HT2 [9, 26, 27]

CP 55,940 0.6–5.0 CB1, GPR55 [26, 28]

WIN 55, 212-2 62.3 CB1,TRPA1 [9, 17, 28]

Antagonist

SR144528 0.6–4.1 – [22, 29]

AM 630 5.6–31.2 TRPA1 [22, 30]

JTE907 35.9 – [31]

– This compound is not known to activate other receptors besides CB2

TRP transient receptor potential ion channel
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The detection of the CB2 receptor using antibodies can be

substituted, to some extent, by the alternate methods. For

example, Schmöle et al. [37], recently, generated a bacterial

artificial chromosome (BAC) transgenic mouse model that

expresses a green fluorescent protein (GFP) under the CB2

promoter. This mouse can be used to determine CB2

expression in mouse tissues in vitro and in situ, by several

techniques, including RT-PCR, qPCR, immunoblot, flow

cytometry, and immunofluorescence. This system, based on

GFP detection, is an alternative to the use of CB2 antibodies

on mouse tissues. It is more reliable in the sense that most

antibodies directed against GFP are specific and yield

reproducible data. However, this kind of approach cannot be

used for CB2 detection in human primary cells and tissues,

which remain problematic. A different strategy that was

evaluated by Petrov et al. involves the synthesis of fluorescent

CB2 agonists [38]. The synthesized compound showed

marked selectivity for CB2 over theCB1, 5-HT2A, and 5-HT2C

receptors. This agonist was validated as a flow cytometry

probe to detect the CB2 receptor in cells, and also to evaluate

CB2-receptor binding using fluorescence microscopy. Other

methods of detection could also be added to CB2 ligands to

use them as probes, such as biotinylation [39].

CB2 expression profiles in human and animal
tissues

Expression profile of CB2 among tissues

Upon cloning the human CB2 receptor from HL-60 cells,

Munro et al. isolated a portion of a rat homologue by PCR

[3]. They used this homologue to probe various rat tissues

and detected high CB2 receptor mRNA levels in the spleen,

but not in the liver, nasal epithelium, thymus, brain, lung,

or kidney. Cell sorting allowed the authors to associate CB2

receptor expression to the monocyte/macrophage popula-

tion of the spleen rather than T cells. Two years later,

Galiègue et al. published the first study describing CB2

receptor expression in various human tissues and isolated

leukocyte populations [40]. The authors found high CB2

mRNA levels in tonsils, spleen, PBMC, and thymus, and

were able to detect the CB2 protein in tonsils by

immunohistochemistry using an anti-CB2 polyclonal anti-

body. They also evaluated CB2 receptor mRNA expression

in numerous human organs and found it to be absent from

most non-immune tissues, with the exception of pancreas,

lung, and uterus, which had relatively low mRNA levels.

Several reports have, since, shown that the CB2 receptor is

expressed in both male [41] and female [42, 43] repro-

ductive tissues. In this regard, the CB2 receptor exerts an

important role in the fertility of both sexes, which has

already been extensively reviewed [44–47].

The pattern of CB2 receptor expression among human

tissues is consistent between studies. More groups have

reported the presence of the CB2 receptor mRNA and

protein in the human spleen [48] and tonsils [49]. More-

over, the high level of CB2 expression in human immune

tissues was also reported in murine and rodent spleen

[37, 50–56] and thymus [37, 54].

The presence and role of the CB2 receptor in the central

nervous system have yet to be fully elucidated, and the

issue was discussed in a review article recently published

by Atwood and Mackie [57]. It was initially believed that it

was not expressed in non-immune cells of the central

nervous system, because Munro et al. did not detect CB2

receptor mRNA in any brain part when they cloned the

receptor [3], which is supported by many studies

[40, 54, 58, 59]. However, we now know that the CB2

receptor is not completely absent from the brain, since it is

expressed in microglia [60]. Still, the concept of the CB2

receptor being a second central cannabinoid receptor is up

to debate for three main reasons: (1) a study showed that

the CB2 receptor agonists JWH-015 and JWH-133 modu-

late peripheral neuron functions [61] and (2) the CB2

receptor was detected in the uninjured brain by immuno-

chemistry on numerous occasions [62–64], and (3) a recent

study found that hippocampal principal neurons express

CB2 mRNA, and that CB2-selective agonist HU-308

modulated the activity of these cells [65]. Conversely, a

study that relied on GFP detection to determine the

expression of the CB2 receptor in the murine brain showed

that the signal is located in microglia [37]. Therefore, the

lack of reliability of the antibodies that were used in

immunochemistry experiments stresses the need for more

research to expand our knowledge on the involvement of

the CB2 receptor in the central nervous system and

neuroinflammation.

In 2009, Liu et al. showed that two distinct isoforms of

the CB2 receptor exist [66]. The novel CB2 isoform was a

splicing variant of the earlier cloned receptor, and was

identified from a human neuroblastoma cDNA library.

Splicing variants were also discovered in mice and rats,

although their genomic structures and transcripts were

different from those found in humans. Furthermore, the two

human variants were found to display tissue-specific

expression patterns. While the classical CB2 isoform was

predominantly found in spleen and other immune tissues,

the novel isoform was detected in higher levels in testis and

brain regions of the reward system. The identification of

this new CB2 variant could shed some light on the con-

fusing expression patterns that were previously reported.

Finally, it underscores the possibility of a role for CB2 in

reproductive and central nervous systems that are distinct

from the immunomodulatory role of the classical CB2

isoform.
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CB2 expression in immune cells

It is well known that the CB2 receptor is widespread among

cells of the immune system. Table 3 provides the literature

associated with the expression of the CB2 receptor in

human leukocytes. Every cell type that has been investi-

gated was found to express both mRNA and protein in at

least one report. However, there is conflicting data asso-

ciated with a few cell types. For example, there is no

consensus in the literature regarding the presence of the

CB2 receptor in human neutrophils. Of note, not every

study was conducted on purified, eosinophil-depleted

neutrophils. Given that eosinophils have very abundant

amounts of CB2 receptor mRNA, a small number of eosi-

nophils among the neutrophil sample could result in a false

positive. This is consistent with the observation that CB2

levels are lower in neutrophils than in eosinophils.

As discussed in the previous section, the scientific

community should always be critical when interpreting

protein data, especially of GPCRs. A large number of

researchers have now reported expression data obtained

with commercially available antibodies, and most of them

relied on a positive control to validate their results. It was

later underscored that in the case of the CB2 receptor, a

reliable negative control is absolutely necessary to confirm

that the signal is not generated by non-specific binding of

the antibody [35, 67].

CB2 receptor signaling

The CB2 receptor was associated to the GPCR family when

it was cloned. However, the signal transduction pathways

induced by CB2 receptor activation are far less character-

ized than those of CB1. CB1 is known to inhibit adenylyl

cyclase, to modulate ion channels, and to activate numer-

ous downstream signaling events, including p38 and p42/

44 MAPK (ERK-1/2), PI3K, calcium mobilization (phos-

pholipase C/IP3), the arachidonic acid cascade, and nitric

oxide production (reviewed in [83]). A few studies have

aimed to compare the signaling events of CB1 and CB2 in a

given cell system and found some divergences between the

Table 3 CB2 receptor expression in human leukocytes

Cell types Data CB2 expression References

B cells mRNA ? [36, 40, 68, 69]

Protein ? [49, 68, 70]

Basophils mRNA ? [71]

Dendritic cells mRNA ? [56]

Protein ? [56]

Eosinophils mRNA ? [71–74]

Protein ? [74]

Mast cells mRNA ? [71]

Macrophages mRNA ? [75]

Protein ? [48, 75, 76]

Microglia mRNA ? [60]

Protein ? [60]

Monocytes mRNA ? [36, 40, 68, 75, 77, 78]

Protein ? [68, 75, 78]

NK cells mRNA ? [36, 40, 69]

Protein ? [49]

Neutrophils mRNA ?

-

[36, 40, 71]

[72–74]

Protein ?

-

[79]

[74]

Platelets mRNA ? [71]

Protein ?

-

[80]

[81]

T cells mRNA ? [36, 40, 68, 69]

Protein ? [49, 68, 82]
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two receptors. This section recapitulates the evidence

regarding the signaling events downstream of the CB2

receptor.

Gi/o protein coupling and adenylyl cyclase inhibition

Like the CB1, the CB2 receptor couples with Gi/o proteins.

This was established by Slipetz et al. who found that in

CB2-transfected Chinese Hamster Ovary (CHO) cells,

pretreatment with pertussis toxin (PTX) abolished the

effect of cannabinoids on forskolin-induced cAMP pro-

duction [84]. Other groups using CB2-transfected cell

models found signaling events to be PTX-sensitive, sup-

porting the involvement of Gi/o proteins [85, 86]. This

interaction was later confirmed in murine microglial cells

[87], the murine macrophage cell line J774-1 [88], the

human promyelocytic cell line HL-60 [89–91], and human

bronchial epithelial cells [92]. Since it has proven to couple

to Gi/o proteins, the impact of CB2 activation on adenylyl

cyclase activity was also investigated. As expected,

adenylyl cyclase was inhibited upon treatment of cells with

CB2 receptor agonists and/or synthetic cannabinoids,

resulting in a decrease in intracellular cAMP levels

[84, 85, 93, 94].

Potassium channels

As opposed to the CB1 receptor, the CB2 receptor does not

appear to couple to potassium channels. A study by Felder

et al. [9] investigated the possible modulation of inwardly

rectifying potassium current (Kir) channels in CB2-trans-

fected AtT-20 cells. In these cells, activation of the CB2

receptor with WIN 55,212-2 failed to have an impact on

Kir. Another study showed that in Xenopus laevis oocytes

co-expressing the CB2 receptor and G-protein-gated

inwardly rectifying potassium (GIRK) channels, WIN

55,212-2 failed to induce consistent coupling of the CB2

receptor to GIRK channels [95]. Of note, the CB1 receptor

was able to couple with GIRK channels and to modulate

agonist-induced currents in the same cellular model. This

important difference between CB1 and CB2 receptors

established CB2 as a functionally distinct receptor.

Mitogen-activated protein kinases (MAPK)

Signal transduction pathways induced by CB2 receptor

activation were first investigated in CB2-CHO cells by

Bouaboula et al. [86]. They found that upon CP 55,940

addition, adenylyl cyclase inhibition was followed by

ERK-1/2 phosphorylation. This effect was significantly

diminished by the protein kinase C (PKC) inhibitor GF

109203X, suggesting that PKC was involved in MAPK

activation. Moreover, they were able to confirm their

findings in HL-60 cells, which express the CB2 receptor.

Another group investigated MAPK activation by various

CB2 ligands in HL-60 cells and found that CP 55,940,

2-AG, and AEA increased ERK-1/2 phosphorylation [89].

This effect was blocked by the CB2 receptor antagonist

SR144528 and was stronger in cells stimulated by 2-AG

and CP 55,940 than in those treated with AEA. MAPK

activation downstream of CB2 activation was also

demonstrated in vitro in murine osteoblasts [96], in

DAUDI leukemia cells [94], murine microglia [97], and

human primary monocytes [78]. Finally, this pathway was

showed to be activated in vivo, in a mouse model of acute

experimental pancreatitis. In this model, a CB2 receptor

agonist reduced inflammation through the p38-MK2 path-

way [98].

Intracellular calcium concentrations

and phospholipase C activity

A study conducted in calf pulmonary endothelial cells

showed that CB2 activation modulates intracellular cal-

cium concentrations [99]. In this model, AEA initiated

phospholipase C (PLC) activation and inositol 1,4,5-

triphosphate (IP3) production, which led to intracellular

Ca2? release from the endoplasmic reticulum, as well as

an increase in mitochondrial Ca2?. This effect of AEA

was not mimicked by arachidonic acid (AA), was blocked

by SR144528, and was unchanged by treatment with

SR141716A, confirming the involvement of the CB2, but

not the CB1 receptor. Another group later confirmed this

in HEK-293 cells co-expressing the CB2 receptor with

chimeric Gi and Go proteins [100]. In this model, treat-

ment with CP 55,940 or other CB receptor agonists was

found to increase intracellular Ca2? levels. The phos-

pholipase C inhibitor U73122 abrogated the effect of CP

55,940 on calcium mobilization, as did thapsigargin. This

evidence shows that in these cells, CB2 receptor activa-

tion induces calcium mobilization via the PLC-IP3
signaling pathway.

In vitro studies of CB2 receptor functions

CB2 activation by endocannabinoids in vitro

The endocannabinoids 2-AG and AEA both act on various

immune cell types through CB2 receptor activation (sum-

marized in Table 4). Interestingly, there is a sharp contrast

between the anti-inflammatory effects that are triggered by

the two lipids. 2-AG was most often found to modulate

functions related to leukocyte recruitment, such as che-

mokine release, adhesion to fibronectin, and migration.

This positive regulation of immune cell recruitment by
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2-AG is the main pro-inflammatory effect of endo-

cannabinoids or cannabinoids in vitro that has been

reported. AEA, on the other hand, was found to down-

regulate leukocyte functions, such as pro-inflammatory

cytokine release and nitric oxide production. A few reports

also show increased production of the anti-inflammatory

cytokine IL-10 by cells treated with AEA. In all cases, the

involvement of the CB2 receptor was confirmed by the use

of a selective antagonist. However, it is still possible that

endocannabinoid metabolites are involved in the reported

effects. Noteworthy, this hypothesis was tested in human

eosinophils which were shown to migrate in response to

2-AG [101]. In this model, the effect of 2-AG on eosino-

phil transmigration was blocked by the pre-incubation of

cells with a CB2 receptor antagonist. However, a CB2-se-

lective agonist failed to mimic the impact of 2-AG, and its

15-LO-derived metabolites were suggested to be necessary

for eosinophils to migrate. Therefore, the successful

blockade of endocannabinoid-induced effects with a CB2

antagonist does not always rule out the possibility that

other mediators, notably endocannabinoid metabolites, are

involved as well [102]. This concept could explain why

endocannabinoids can induce both pro- and anti-inflam-

matory effects.

Table 4 CB2-mediated effects of endocannabinoids on immune cell functions

Cell type Species Endocannabinoid Effects References

Anti-inflammatory effects

Astrocytes Rat AEA ;TNF-a [103]

Dendritic cells Human AEA ; IL-6, IL-12 and IFN-a [104]

Microglia Mouse (BV-2 cell line) AEA ; Nitric oxide [105]

Mouse AEA : IL-10 [106]

: IL-10

; IL-12p70 and IL-23

[107]

Rat AEA LPS-induced nitric oxide release [108]

Neutrophils Human 2-AG ; fMLP-induced migration [79]

Splenocytes Human AEA ; Primary and secondary antibody formation [109]

T cells (not separated) Human AEA ; Cell proliferation [110]

2-AG ; SDF-1-induced migration [111]

CD4? T cells Human AEA ; IL-17, IFN-c and TNF-a [110]

CD8 ? T cells Human AEA ; IFN-c and TNF-a [110]

Human AEA ; SDF-1-induced migration [112]

Pro-inflammatory effects

B cells Human 2-AG : Migration [113]

Mouse 2-AG : Migration [114, 115]

Dendritic cells Human 2-AG : Migration [116]

Eosinophils Human 2-AG : Migration [74, 117]

Human 2-AG : Migration

: LTC4 and EXC4 synthesis

[101]

Macrophages Mouse (peritoneal) 2-AG : Zymosan phagocytosis [118]

Human

(HL-60)

2-AG : Actin polymerization

: Adhesion to fibronectin

[119]

: MCP-1 and IL-8 [120]

Microglia Mouse (BV-2 cell line) 2-AG : Migration [121]

Monocytes Human 2-AG : Adhesion to fibronectin [122]

: Migration [119]

NK cells Human 2-AG : Migration [123]

T cells Human (Jurkat) 2-AG : L- and P-selectin

: Adhesion and transmigration

[124]

TNF tumor necrosis factor, IL interleukin, IFN interferon, LPS lipopolysaccharide, fMLP formyl-Met-Leu-Phe, SDF stromal cell-derived factor,

LTC4 leukotriene C4, EXC4 eoxin C4, MCP monocyte chemoattractant protein
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CB2 activation by exogenous agonists in vitro

In contrast to endocannabinoids, CB2 receptor agonists

have only been shown to exert anti-inflammatory effects on

leukocytes, which are detailed in Table 5. Some of the

studies were performed using a non-selective cannabinoid,

but the involvement of the CB2 receptor was always con-

firmed with an antagonist. In addition to downregulating

leukocyte functions, such as cytokine release, reactive

oxygen species production and migration, CB2 agonists

limited HIV-1 expression, and replication in human mac-

rophages and microglia [75, 125].

In vivo studies of CB2 receptor functions

Impact of CB2 knockout in inflammation models

Transgenic mice have greatly contributed to our under-

standing of this receptor’s role in human disease, including

Table 5 Effects of CB2 agonists on immune cell functions

Cell type Species Agonist Effects References

Astrocytes Human WIN 55,212-2 ; Nitric oxide

; TNF-a, IL-10, MCP-1 and CCL5

[126]

Dendritic cells Mouse D9-THC : NF-jB-dependent apoptosis [127]

GP1a ; MMP-9

; Migration

[128]

Monocytes Human JWH-015 ; CCL2 and CCL3-induced migration [78]

HU-308

JWH-133

; TNF-a-induced transendothelial migration [129]

Macrophages Human (monocyte-derived) JWH-133 ; Expression of 35 genes upregulated by LPS [130]

JWH-133

GP1a

O-1966

; HIV-1 replication [75]

Mouse (RAW264.7) WIN 55,212-2 ; Reactive oxygen species [131]

; Nitric oxide [132]

Mouse (peritoneal) D9-THC ; RANTES-induced migration [133]

JWH-133 : IL-10

; IL-12p40

[134]

Mouse (clone 63) D9-THC ; Activation of CD4? T cells [59]

Mast cells Rat

(RBL-2H3)

WIN 55,212-2

CP 55,940

; b-Hexosaminidase release [135]

Microglia Human WIN 55,212-2 ; HIV-1 expression [125]

Rat JWH-015 ; LPS-induced TNF-a production

; Migration

[136]

Neutrophils Mouse JWH-133 ; MIP-2a-induced migration [137]

Human JWH-133 ; TNF-a-induced MMP-9 release [138]

Splenocytes Human D9-THC ; Primary and secondary antibody formation [109]

T cells Human D9-THC ; Th2 cytokine production [139]

Human (Jurkat) CP 55,940

WIN 55,212-2

JWH-015

; SDF-1-induced migration [140]

Mouse O-1966 ; NF-jB activation

: SOCS5 expression

: IL-10

[141]

CD8? T cells Human JWH-015 ; SDF-1-induced migration [140]

CCL chemokine (C–C motif) ligand, NF-jB nuclear factor kappa-light-chain-enhancer of activated B cells, MMP matrix metallopeptidase, MIP

macrophage inflammatory protein, HIV human immunodeficiency virus, SOCS suppressor of cytokine signaling
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inflammatory conditions. In this regard, several models

have shown that mice that are lacking the CB2 receptor

have exacerbated inflammation (summarized in Table 6).

The effects that were usually observed in CB2
-/- animals

included increased leukocyte recruitment (often neu-

trophils) and pro-inflammatory cytokine production, which

often caused tissue damage. Conversely, one study found

CB2-deficient mice to be in better condition than the wild-

type group [142]. However, the model was cecal ligation-

induced sepsis, a condition in which efficient bacterial

clearance by the immune system is vital. The authors’

observations that the CB2
-/- group had less mortality and

less bacterial invasion was explained by the lower levels of

IL-10 in these mice, which might have led to a better

phagocytic response. Overall, these findings are consistent

with the other reports of increased immune cell functions in

the absence of the CB2 receptor.

CB2 activation by exogenous agonists in vivo

The potential of activating CB2 in vivo to treat inflammation

has been investigated in numerous studies. Two main strate-

gies are employed: (1) the administration of a CB2 receptor

agonist; and (2) the administration of an endocannabinoid

hydrolysis inhibitor to augment endocannabinoid signaling.

The administration of CB2 receptor agonists has been

performed in several inflammation models. Table 7 sum-

marizes the data that were generated with this approach. In

many instances, the chosen agonist was not CB2-selective

and targeted both cannabinoid receptors, in which case, the

involvement of CB2 was confirmed by showing that the

treatment of animals with a CB2 antagonist abrogated the

effects of the cannabinoid receptor agonist. Altogether, the

results of those studies point to the conclusion that CB2

activation improves inflammation in mice. The recruitment

of leukocytes to tissues and the production of pro-inflam-

matory cytokines and reactive oxygen species were

downregulated in various inflammation models. In the case

of atherosclerosis, two studies showed not only a decrease

in inflammatory cells and mediators upon cannabinoid

treatment, but also a slower progression of the disease

[148, 149]. Indeed, oral D9-THC administration, at doses

that are suboptimal for inducing psychotropic effects,

resulted in reduced atherosclerotic lesion development.

Since these effects of D9-THC were shown to be mediated

by the CB2 receptor, this supports that a selective CB2

receptor agonist might be a valuable tool for the treatment

of atherosclerosis.

CB2 activation by endocannabinoids in vivo

The most widely used approach to investigate the impact of

endocannabinoids in vivo is the blockade of their hydrol-

ysis, as it is an efficient way to increase their levels in

tissues. Despite the numerous studies that have used this

method in animal models, it is still unclear whether the

effects of endocannabinoids are pro- or anti-inflammatory.

This is due, in part, to the presence of numerous enzymes

that can metabolize them into other bioactive lipids. The

main pathway is hydrolysis into AA by lipases, such as

MAG lipase for 2-AG [164] and FAAH for AEA [165]. AA

is a precursor for the biosynthesis of leukotrienes, pros-

taglandins, and other lipid mediators of inflammation.

Alternatively, endocannabinoids can undergo oxidation

Table 6 Anti-inflammatory effects of CB2 receptor deletion in inflammation models

Model Species Genotype Effects References

DNFB-induced hypersensitivity Mouse CB2
-/- : Neutrophil recruitment

: Ear swelling

[143]

Hepatic ischemia–reperfusion injury Mouse CB2
-/- : Neutrophil recruitment

: Inflammatory cytokines

: Liver damage

[144]

TNBS-induced colitis Mouse CB2
-/- : Colitis

: TNF-a and IL-1b

[145]

Myocardial ischemia–reperfusion injury Mouse CB2
-/- : Neutrophil and macrophage infiltration

; IL-10

[146]

Traumatic brain injury Mouse CB2
-/- : TNF-a, iNOS and ICAM mRNA

: Blood–brain barrier permeability

[147]

Cecal ligation-induced sepsis Mouse CB2
-/- ; IL-10

; Bacterial invasion

; Mortality

[142]

DNFB 2,4-dinitrofluorobenzene, TNBS trinitrobenzenesulfonic acid, iNOS inducible nitric oxide synthase, ICAM intercellular adhesion molecule
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and the biological effects of the metabolites that originate

from these pathways are not very well characterized [166].

Therefore, it is not possible to conclude that endo-

cannabinoids exert their effects through CB2 in an

inflammation model unless this is confirmed by the genetic

or pharmacological blockade of the receptor. In this

respect, Table 8 only presents studies that have thoroughly

confirmed the involvement of the CB2 receptor in the

effects they observed.

A limited number of studies reported pro-inflammatory

effects of endocannabinoids in vivo, and only three of

those (listed in Table 9) were confirmed to involve the

Table 7 Anti-inflammatory effects of CB2 agonists in animal models of inflammation

Model Species Treatment Effects References

Atherosclerosis Mouse D9-THC ;Atherosclerotic lesions

; Macrophage infiltration

; Leukocyte adhesion

[149]

WIN 55,212-

2

;Atherosclerotic lesions

; Macrophage infiltration

; MCP-1, IL-6 and TNF-a

[148]

Breast cancer cell injection Mouse D9-THC ; Splenocyte proliferation [150]

Brain ischemia Mouse JWH-133 ; Microglia and macrophage infiltration

; IL-6, MCP-1, MIP-1a, CCL-5 and TNF-a

; iNOS

[151]

Experimental autoimmune encephalomyelitis Mouse D9-THC

JWH-133

; Monocyte recruitment

; IFN-c and IL-2

; T cell proliferation

[152]

Hepatic ischemia–reperfusion injury Mouse D8-THCV ; Hepatic injury

; CCL3, CXCL2 and TNF-a

; Neutrophil infiltration

[153]

Germinal matrix hemorrhage-induced

neuroinflammation

Rat JWH-133 ; TNF-a

; Microglia accumulation

[154]

L. pneumophila infection Mouse D9-THC ; IFN-c and IL-12 [155]

Influenza virus infection Mouse D9-THC ; Lymphocyte and monocyte recruitment

; Viral hemagglutinin

[156]

Myocardial ischemia–reperfusion injury Mouse WIN 55,212-

2

;Myeloperoxidase

; IL-1b and IL-8

[157]

Ovalbumin-induced asthma Guinea

pig

CP 55,940 ;Myeloperoxidase

; Mast cell degranulation

; TNF-a and PGD2

[158]

LPS-induced interstitial cystitis Mouse JWH-015 ; Leukocyte infiltration

;Myeloperoxidase

; TNF-a, IL-1a and IL-1b

[159]

Sepsis Mouse HU308 ; Adherent leukocytes in submucosal

venules

[160]

Spinal cord injury Mouse O-1966 ; Leukocyte infiltration

; CXCL9 and CXCL11

; IL-23p19 and IL-23R

; TLR expression

[161]

Stress-induced neuroinflammation Mouse JWH-133 ; TNF-a and MCP-1

; COX-2, iNOS and NF-jB

[162]

Traumatic brain injury Mouse O-1966 ; Microglia and macrophage infiltration

; Blood–brain barrier disruption

[163]

PGD2 prostaglandin D2, COX-2 cyclooxygenase-2
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CB2 receptor. In two models of dermatitis in mice,

treatment with the CB2 antagonist SR144528 improved

inflammation by inhibiting granulocyte recruitment and

pro-inflammatory mediator production [174, 175]. In both

cases, this translated in a measurable decrease in swelling.

As presented above in Table 6, 2-AG has been implicated

in the recruitment and migration of B and T cells, den-

dritic cells, eosinophils, monocytes, and natural killer

cells in a CB2-dependent manner, which could very well

translate to in vivo studies. However, to this day, there is

no published data demonstrating that exogenous

cannabinoids and selective CB2 receptor agonists have

pro-inflammatory effects. Therefore, it is possible that the

pro-inflammatory effects of endocannabinoids that are

presented in Table 9 are a result of CB2 activation and/or

the action of one or more endocannabinoid metabolites

[102].

Of note, many disorders cause a change in CB2 receptor

protein levels, due to pre-existing pro-inflammatory con-

ditions. In multiple sclerosis and amyotrophic lateral

sclerosis, for instance, the expression of CB2 in microglia

is increased, both in human tissues and mouse models

[176, 177]. A similar effect was reported in a rodent model

of neuropathic pain [178]. This certainly facilitates the

impact of CB2 receptor activation by exogenous agonists of

endocannabinoids in these inflammation models.

Table 8 Anti-inflammatory effects of CB2 activation by endocannabinoids in mouse models of inflammation

Model Treatment Effects References

ConA-induced hepatitis AEA ; Inflammatory cytokines [144]

Carrageenan-induced acute inflammation URB602 ; Edema

; Nociception

[167]

Experimental autoimmune encephalomyelitis WWL70 ; iNOS, COX-2, TNF-a and IL-1b

; T cell infiltration

; Microglial activation

; NF-jB activation

[168]

LPS-induced acute lung injury JZL184 ; Leukocyte infiltration

; BALF cytokines and chemokines

[169]

LPS-induced inflammatory pain FAAH KO ; Edema

; TNF-a and IL-1b

[170]

FAAH KO, PF-3845, URB597 or OL-135 ; Allodynia [171]

Kaolin and carrageenan-induced osteoarthritis URB597 ; Leukocyte rolling

; Microvascular perfusion

[172]

TNBS-induced colitis JZL184 ; Submucosa edema

; Leukocyte infiltration

; Mucosal IL-6 and IL-1b

; Circulating inflammatory markers

[173]

ConA concanavalin A, BALF bronchoalveolar lavage fluid

Table 9 Pro-inflammatory effects of CB2 signaling in mouse models of inflammation

Model Treatment Effects References

Primary immunization 2-AG : Delayed-type hypersensitivity

: DC migration to draining lymph nodes

[116]

TPA-induced ear inflammation SR144528 ; Neutrophil recruitment

; Swelling

; LTB4 synthesis

[179]

Oxazolone-induced dermatitis SR144528 ; Eosinophil recruitment

; Swelling

; MCP-1, MIP-1 and TNF-a

[175]

TPA 12-O-tetradecanoylphorbol-13-acetate
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The CB2 receptor as a potential therapeutic target

While there is a large body of evidence supporting that CB2

receptor activation has anti-inflammatory effects, it has yet

to be targeted to treat human disease. In the two previous

sections, we presented in vitro and in vivo studies that

suggested a role for the CB2 receptor in numerous

inflammatory conditions. In this section, we discuss the

potential of the CB2 receptor as a target in the treatment of

chronic inflammatory diseases, such as rheumatoid arthri-

tis, atherosclerosis, and inflammatory bowel disease.

Potential in rheumatoid arthritis

Rheumatoid arthritis (RA) is an inflammatory disease that

affects approximately 1 % of the adult population world-

wide. RA is characterized by chronic inflammation of the

synovium, cartilage destruction, and bone loss. Patients

with RA exhibit an influx of innate (neutrophils, macro-

phages) and adaptive (lymphocytes) immune cells in the

synovial cavity. These cells promote inflammation and

connective tissue damage by producing cytokines (TNF-a,
IL-6, IL-1b), pro-inflammatory lipids, and metallopro-

teinases (MMPs). The synovial lining becomes

hyperplastic and an invasive structure (the pannus) is

formed. Osteoclasts become exaggeratedly activated and

cause bone resorption [180].

2-AG and AEA are present in the synovial fluid of

patients with RA, but not healthy volunteers, suggesting an

involvement of the endocannabinoid system in the disease.

CB1 and CB2 mRNA and proteins were also found in the

synovial tissues of RA patients [181]. CB2 activation can

inhibit the production of pro-inflammatory cytokines and

MMP release from fibroblast-like synoviocytes (FLSs)

[182, 183]. It can also promote osteoblast differentiation

in vitro [33, 184] and inhibit FLS proliferation [182]. These

observations indicate that CB2 receptor activation in RA

joints could improve multiple aspects of the disease,

including inflammation, FLS hyperplasia, and bone loss.

In vivo, CB2 agonists have proven to be beneficial in a

murine model of rheumatoid arthritis, collagen-induced

arthritis (CIA). One study showed treatment with the CB2

receptor agonist JWH 133 to improve arthritis severity and

to reduce bone destruction and leukocyte infiltration in the

joints [183]. Another group investigated the impact of a

different CB2-selective agonist, HU-308. They found that

the agonist decreased swelling, synovial inflammation, and

joint destruction, in addition to lowering circulating anti-

bodies against collagen II [185]. Finally, the agonist HU-

320 ameliorated established CIA [186]. Of note, CB2

agonists did not prevent the onset of RA in any of those

reports, as there were no differences in disease incidence

between groups.

This growing body of evidence establishes the CB2

receptor as a promising target for the treatment of RA. In

all three of the above-mentioned studies, the CIA model

was used to test CB2 agonists. Given that there is no animal

model of RA that perfectly duplicates all aspects the human

condition, these findings should be confirmed in different

models.

Potential in atherosclerosis

Atherosclerosis is an inflammatory disease that is charac-

terized by the presence of arterial plaques. These lesions

contain immune cells, lipid-laden macrophages (foam

cells), cholesterol, smooth muscle cells, and collagen fibres

[187]. The physical rupture of the plaques causes the

occlusion of arteries, which can lead to tissue infarction.

Plaque development is influenced by inflammatory medi-

ators, such as cytokines and chemokines, which are crucial

to the recruitment of immune cells to the intima. In this

respect, therapies that would downregulate the production

of these mediators could reduce the progression of

atherosclerotic lesion development. Since the CB2 receptor

is known to decrease the production of numerous

chemokines and to inhibit leukocyte migration in vitro and

in vivo, it emerged as a potential target to treat

atherosclerosis.

A recent study specifically aimed to characterize the

endocannabinoid system in human foam cells [188]. The

authors found that the CB2 agonist JHW-015 significantly

decreased oxLDL accumulation in these macrophages.

Moreover, it reduced the production of TNF-a, IL-6, and
IL-10 and the expression of CD36, a scavenger receptor

that is responsible for the uptake of modified lipoproteins

by macrophages and the induction of foam cell formation.

The endocannabinoids 2-AG and AEA mimicked these

effects, which were block by the CB2 antagonist

SR144528. These findings are in accordance with a pre-

vious study which showed that CB2 activation by WIN

55,212-2 reduces the oxLDL-induced inflammatory

response in rat macrophages [131].

As briefly discussed in the section entitled In vivo

studies of CB2 receptor functions, the role of the CB2

receptor was investigated in mouse models of atheroscle-

rosis. The first study to demonstrate the benefits of CB2

activation in atherosclerosis was performed in ApoE-/-

mice using low doses of the cannabinoid D9-THC, which

diminished inflammation and blocked the progression of

the disease [149]. These effects were prevented by

SR144528, confirming the involvement of the CB2
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receptor. The anti-atherosclerotic effects of CB2 in the

ApoE-/- model were later confirmed with WIN 55,212-2

as an agonist, and the antagonist AM630 confirmed the

mechanism to be CB2-dependent [148, 189]. In Ldlr-/--

CB2
-/- double knockout mice, lesional macrophage and

smooth muscle cell contents were higher than in

Ldlr-/-CB2
?/? animals [190]. In Ldlr-/- mice deficient for

CB2 in hematopoietic cells only, plaque area after

12 weeks on an atherogenic diet was larger than in mice

with no CB2 deficiency [191].

In summary, a large body of evidence strongly suggests

that CB2 receptor activation is an appropriate target for

atherosclerosis treatment. CB2 agonists have the potential

to be beneficial on many levels, as they were shown to

improve inflammatory cell recruitment and activation, lipid

uptake by macrophages, and the size of atherosclerotic

plaques. However, a few reports show conflicting data,

especially in the Ldlr-/- model. A report shows unaltered

lesion size following WIN 55,212-2 treatment in this

model, although CB2 receptor activation did decrease

lesional macrophage accumulation [192]. Another group

treated Ldlr-/- mice with JWH-133 and found no signifi-

cant effect on lesion size or on their content in

macrophages, lipids, smooth muscle cells, collagen, and T

cells [193]. More investigation is required to determine the

causes of these discrepancies before moving forward in the

development of therapies targeting CB2 for atherosclerosis.

Potential in inflammatory bowel disease

Inflammatory bowel disease (IBD) includes two main

conditions: ulcerative colitis and Crohn’s disease. They are

caused by an excessive immune response and can affect

any part of the gastrointestinal tract [194]. The endo-

cannabinoid system first gained interest in IBD

pathophysiology in light of a study that described a pro-

tective effect of CB1 in DNBS-induced colitis [195].

Cannabinoids were then shown to enhance epithelial

wound healing in a CB1-dependent fashion [76]. The

authors of the latter study also evaluated the expression of

cannabinoid receptors in human IBD tissue by immuno-

chemistry. They found that the CB1 receptor was expressed

in the normal human colon, but that CB2 expression was

higher in IBD tissues and that its presence was concen-

trated in plasma cells and macrophages. These findings

raised the hypothesis that the CB2 receptor was also

involved in the inflammatory component of IBD.

A subsequent study reported that a FAAH inhibitor

decreased inflammation in the TNBS-induced colitis

model, and that the deletion of either CB1 or CB2 abrogated

this effect [196]. In the same colitis model, the use of the

MAG lipase inhibitor JZL184 to increase 2-AG levels also

inhibited the development of colitis [173]. Mice treated

with JZL184 had less colon alteration and lower expression

of pro-inflammatory cytokines, and these effects were

abolished by the antagonists AM251 (CB1) and AM630

(CB2).

Several groups tested the impact of a CB2 receptor

agonist in the IBD models. The CB2-selective agonists

JWH-133 and AM1241 both protected against TNBS-in-

duced colitis, whereas AM630 worsened it [197]. The non-

psychotropic cannabinoid cannabigerol (CBG) was tested

in DNBS-induced colitis and was found to reduce the colon

weight/colon length ratio (an indirect marker of inflam-

mation), MPO activity, and iNOS expression by a CB2-

dependent mechanism [198]. Finally, the plant metabolite

and unconventional CB2 agonist (E)-b-caryophyllene
(BCP) was also evaluated in a model of DSS-induced

colitis. Oral administration of BCP decreased micro- and

macro-scopic colon damage, MPO activity, NF-jB acti-

vation, and pro-inflammatory cytokine production [199].

This wide array of CB2 receptor agonists being able to

improve IBD in animal models prompted the development

of highly selective compounds that could be used to treat

the disease in humans. In this regard, a research group

synthesized a series of CB2-selective agonists and tested

the resulting lead compounds in models of experimental

colitis [200, 201]. Intra-peritoneal injection of the agonists

was effective at protecting mice against colitis. Of note, a

selective compound that is orally effective in experimental

colitis was later synthesized [202].

Conclusion

In light of the evidence that was generated over the past

two decades by the scientific community, we can draw a

few general conclusions regarding the role of the CB2

receptor. First, it is mainly found in immune tissues and is

expressed in most immune cell types. Second, its deletion

in animals usually causes an exacerbated inflammatory

phenotype in several models, due to an upregulation of

immune cell functions. Third, CB2 activation by cannabi-

noids, either in vitro or in vivo, usually decreases

inflammatory cell activation. Finally, the administration of

CB2 agonists in animal models of inflammatory disease can

slow the progression of some diseases, in addition to

reducing inflammation.

Several questions still need to be investigated. For

example, there is no consensus regarding the expression of

the CB2 receptor in non-immune brain cells, and the role

that CB2 might play in brain functions is unknown.

Moreover, the impact of endocannabinoids on immune

cells is still unclear. While most animal studies show that

the blockade of endocannabinoid hydrolysis results in less

inflammation, it is not possible to tell whether these effects
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are caused only by CB2 activation and whether the opposite

would occur in humans. In this respect, endocannabinoids

can induce human leukocyte migration (Table 4). How-

ever, the impact of endocannabinoid metabolites on

leukocyte functions is not well defined, and this should be

addressed before endocannabinoid hydrolysis inhibitors

that can be considered as a valid strategy to enhance CB2

receptor signaling [102]. Finally, the few CB2 agonists that

are currently being developed aim at treating inflammatory

pain [203–205]. Perhaps, these novel compounds are

worthy of sparking new studies to define their putative

beneficial role in inflammatory diseases.
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