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Abstract Global navigation satellite system (GNSS)
carrier phase integer ambiguity resolution is the key to high-
precision positioning and attitude determination. In this con-
tribution, we develop new integer least-squares (ILS) theory
for the GNSS compass model, together with efficient inte-
ger search strategies. It extends current unconstrained ILS
theory to the nonlinearly constrained case, an extension that
is particularly suited for precise attitude determination. As
opposed to current practice, our method does proper jus-
tice to the a priori given information. The nonlinear base-
line constraint is fully integrated into the ambiguity objective
function, thereby receiving a proper weighting in its minimi-
zation and providing guidance for the integer search. Dif-
ferent search strategies are developed to compute exact and
approximate solutions of the nonlinear constrained ILS prob-
lem. Their applicability depends on the strength of the GNSS
model and on the length of the baseline. Two of the presented
search strategies, a global and a local one, are based on the
use of an ellipsoidal search space. This has the advantage
that standard methods can be applied. The global ellipsoidal
search strategy is applicable to GNSS models of sufficient
strength, while the local ellipsoidal search strategy is applica-
ble to models for which the baseline lengths are not too small.
We also develop search strategies for the most challeng-
ing case, namely when the curvature of the non-ellipsoidal
ambiguity search space needs to be taken into account. Two
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such strategies are presented, an approximate one and a
rigorous, somewhat more complex, one. The approximate
one is applicable when the fixed baseline variance matrix is
close to diagonal. Both methods make use of a search and
shrink strategy. The rigorous solution is efficiently obtained
by means of a search and shrink strategy that uses non-
quadratic, but easy-to-evaluate, bounding functions of the
ambiguity objective function. The theory presented is gener-
ally valid and it is not restricted to any particular GNSS or
combination of GNSSs. Its general applicability also applies
to the measurement scenarios (e.g. single-epoch vs. multi-
epoch, or single-frequency vs. multi-frequency). In particu-
lar it is applicable to the most challenging case of unaided,
single frequency, single epoch GNSS attitude determination.
The success rate performance of the different methods is also
illustrated.

Keywords GNSS · Attitude determination ·
Integer ambiguity resolution · Constrained integer least
squares

1 Introduction

Global navigation satellite system (GNSS) integer ambigu-
ity resolution (IAR) is the process of resolving the unknown
cycle ambiguities of the carrier phase data as integers. The
sole purpose of ambiguity resolution is to use the integer
ambiguity constraints as a means of improving significantly
on the precision of the remaining model parameters. Once
this has been done successfully, the carrier phase data will
act as very precise pseudo range data, thus making very pre-
cise positioning and navigation possible. IAR applies to a
great variety of current and future GNSS models (e.g., GPS,
modernized GPS, Galileo), with a wide range of applications,
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such as those in surveying, navigation, geodesy, and
geophysics. These models may differ greatly in complexity
and diversity. They range from single-baseline models used
for kinematic positioning to multibaseline models used as a
tool for studying geodynamic phenomena. An overview of
these models can be found in textbooks, such as Parkinson
and Spilker (1996), Strang and Borre (1997), Teunissen and
Kleusberg (1998), Hofmann-Wellenhof et al., Leick (2003),
Misra and Enge (2006), Hofmann-Wellenhof et al. (2008).

In this contribution, we consider the problem of precise
GNSS attitude determination. GNSS attitude determination
is a rich field of current studies, with a wide variety of chal-
lenging (terrestrial, sea, air, and space) applications. The ear-
liest methods of attitude IAR are the so-called motion-based
methods (see e.g. Cohen and Parkinson 1992; Chun and Park
1995; Tu et al. 1996; Crassidis et al. 1999). These methods
take advantage of the change in receiver–satellite geometry
that is induced by the platform’s motion. They are not appli-
cable however on an epoch-by-epoch basis, as the presence
of motion is needed per se.

Another class of methods is the class of search-based
methods (see e.g. Knight 1994; Park et al. 1996; Juang and
Huang 1997). These methods are not necessarily dependent
on motion and can therefore be used instantaneously in prin-
ciple. They differ in the search-domain used and in the objec-
tive function to be optimized. The method of Knight (1994),
for instance, searches for the optimal relative antenna posi-
tions. It requires some initial knowledge of the platform’s
attitude, in the absence of which the method is reported to
become problematic (Gomez and Lammers 2004). Also in
the method of Park et al. (1996), relative antenna positions
are searched. This method divides, just like some of the older
baseline ambiguity resolution methods, the n-dimensional
integer ambiguity vector into a three-dimensional so-called
independent part and an (n − 3)-dimensional dependent part
(see e.g. Hatch 1990). The independent part is then used in
the baseline search.

In Juang and Huang (1997), the ambiguity function
method is used. Counselman and Gourevitch (1981) pro-
posed this principle, Mader (1990) and Remondi (1990) fur-
ther investigated it for surveying applications. The method
has the attractive property of being invariant for integer cycle
slips. However, it has a complex multi-peak search space,
based on a multivariate summation of trigonometric func-
tions. Therefore, its integer search still poses a major chal-
lenge (see e.g. Li et al. 2004; Wang et al. 2007). Hence, just
as in case of surveying, the ambiguity function method for
attitude determination is not yet widely used.

More recent attitude determination methods, search in
the ambiguity domain. Several of them make use of the
LAMBDA method (see e.g. Furuno 2003; Lin et al. 2004;
Monikes et al. 2005; Kuylen et al. 2006; Hauschild et al.
2008; Wang et al. 2009a). This method is known to be effi-

cient and known to maximize the ambiguity success rate
(Teunissen 1995, 1999). However, since the method has
been developed for unconstrained and/or linearly constrained
GNSS models, it is not necessarily optimal for the nonlin-
ear GNSS attitude model. The nonlinearity stems from the
a priori given baseline length. Many of the existing meth-
ods make use of this additional information, by checking
whether or not the candidate baselines satisfy the given base-
line length. Although this usage of the given baseline length
indeed improves ambiguity resolution, such methods are still
ad hoc as this validity check does not do full justice to the
given information.

This observation has motivated the present author to
develop a new and rigorous attitude IAR method based on
the integer least-squares principle as optimality criterium. In
this contribution, we develop a nonlinear constrained integer
least-squares theory, together with integer search strategies,
for an optimal and efficient estimation of the integer ambigu-
ities. As opposed to current practice, our method does proper
justice to the a priori given information. The nonlinear base-
line constraint is fully integrated into the ambiguity objective
function, thereby receiving a proper weighting in its minimi-
zation and providing guidance for the integer search. The
theory presented is generally valid and it is not restricted to
any particular GNSS or combination of GNSSs. Its general
applicability also applies to the measurement scenarios (e.g.
single-epoch vs. multi-epoch, or single-frequency vs. multi-
frequency).

This contribution is organized as follows. In Sect. 2, we
briefly review IAR for the standard GNSS model. When
considering IAR for attitude determination, one should keep
in mind that the difficulty of computing and estimating the
integer ambiguities depends very much on the strength of
the underlying model. In case such models have sufficient
strength, standard IAR methods can be used directly for pre-
cise attitude determination. This will be the case, for instance,
when GNSS is externally aided with additional sensors (e.g.
inertial measurement unit IMU). It will also be easier when
multiple epochs and/or multiple frequencies are used. The
challenge, however, is to be able to perform successful and
efficient IAR for the unaided, single frequency, single epoch
case. Since the standard version of these models lack the nec-
essary strength, additional information in the form of given
baseline lengths is often used in case of attitude determina-
tion. The incorporation of this constraint leads to the GNSS
compass model, as discussed in Sect. 3. Although the use of
baseline length information for IAR is not new, our model
formulation and method of solution are new. We introduce
our nonlinear constrained integer least-squares principle and
derive the corresponding new ambiguity and baseline esti-
mators. As a result, we obtain a new ambiguity objective
function, that clearly reveals how the baseline length con-
straint and the integer ambiguity constraints are integrated
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in the estimation process. By comparison of ambiguity
objective functions, we also show the difference between
our estimators and the ones used in the literature.

Our ambiguity objective function is nonquadratic, which
implies that its search space is nonellipsoidal. Straightfor-
ward application of the LAMBDA method is, therefore, not
possible. This means that a new search strategy needs to be
devised. However, if it is possible, in one way or the other, to
make use of an ellipsoidal search space, one would be in the
agreeable position that the standard LAMBDA method can
be used again. In Sect. 4, two different ellipsoidal search strat-
egies are presented; a global one and a local one. The global
search strategy works for GNSS models of sufficient strength,
while the local one works for GNSS models of which the
baselines are sufficiently long. Our IAR derivations will be
based on the weighted constrained integer least-squares prin-
ciple. This has the advantage that our methods and analysis
hold true for both the unconstrained and the hard constrained
case.

In Sect. 5, we start by introducing a useful simplification
of the nonellipsoidal search space. This results in another
two search strategies, an approximate one and an exact one.
Both strategies explicitly exploit the geometry of the nonel-
lipsoidal search space and they both avoid the computational
intensive evaluation of the ambiguity objective function dur-
ing the search. The first one, being somewhat simpler than
the second, solves the integer minimizer in an approximate
sense, while the second strategy solves the integer minimizer
in a global and exact sense. The advantage of the first strat-
egy over Sect. 4 local ellipsoidal search is that its perfor-
mance is not dependent on how long the baseline is. The
second strategy is designed for the most challenging case,
being unaided, single-epoch, single-frequency attitude IAR.
Due to the complexity involved, particular attention is given
to the size setting of the nonellipsoidal search space and to the
search and shrink strategy employed. We also show the sig-
nificant improvement in success rate performance that can be
expected of this method when compared to the unconstrained
case.

2 The standard GNSS model

2.1 Heading and elevation

In principle, all the GNSS baseline models can be cast in the
following frame of linear(ized) observation equations,

E(y) = Aa + Bb, a ∈ Z
n, b ∈ R

p, D(y) = Qyy (1)

where y is the given GNSS data vector of order m, and a
and b are the unknown parameter vectors of order n and p
respectively. E(·) and D(·) denote the expectation and disper-
sion operators, respectively, and A and B are the given design

matrices that link the data vector to the unknown parameters.
Matrix (A, B) is assumed to be of full rank. Matrix A con-
tains the carrier wavelengths and the geometry matrix B
contains the receiver–satellite unit line-of-sight vectors. The
variance matrix of y is given by the positive definite matrix
Qyy . The data vector y will usually consist of the ‘observed
minus computed’ single- or multi-frequency double- differ-
ence (DD) phase and/or pseudorange (code) observations.
The entries of vector a are then the DD carrier phase ambi-
guities, expressed in units of cycles rather than range. They
are known to be integers, a ∈ Z

n . The entries of the vector
b will consist of the remaining unknown parameters, such as
baseline components (coordinates) and possibly atmospheric
delay parameters (troposphere, ionosphere). They are known
to be real-valued, b ∈ R

p. Vectors a and b are referred to as
the ambiguity vector and the baseline vector, respectively.

Since we consider the GNSS-compass application in the
present contribution, we restrict attention to the case of satel-
lite tracking with two near-by antennas. The short distance
between the two antennas implies that we may neglect the
(differential) atmospheric delays. Thus p = 3 and b =
(b1, b2, b3)

T ∈ R
3 consists then only of the three coordi-

nates of the baseline vector between the two antennas. If
the baseline vector is parametrized with respect to the local
North-East-Up frame, the heading H and elevation E can be
computed from the baseline coordinates b1, b2 and b3 as

H = arctan
b2

b1
and E = arctan

b3√
b2

1 + b2
2

(2)

To obtain the most precise estimates of heading and eleva-
tion, use needs to be made of the very precise carrier phase
data. The inclusion of the carrier phase data into the model
accounts for the presence of the unknown integer ambiguity
vector a in (1).

2.2 Integer least squares

To solve for the unknown parameter vectors a and b, we
apply the estimation principle of least-squares (LS) to model
(1). This gives the minimization problem

min
a,b

‖y − Aa − Bb‖2
Qyy

, a ∈ Z
n, b ∈ R

p (3)

where ‖ · ‖2
Qyy

= (·)T Q−1
yy (·). This minimization problem,

first introduced in (Teunissen 1993), is called a (mixed) inte-
ger least-squares (ILS) problem.

Before presenting the solution to (3), we first consider
two simpler, but related, solutions, namely the case that a
is known and the case that a is completely unknown. If we
assume a known, then the problem to be solved becomes
minb∈Rp ‖y − Aa − Bb‖2

Qyy
, which has the LS-solution

b̂(a) = (BT Q−1
yy B)−1 BT Q−1

yy (y − Aa) (4)
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The notation b̂(a) is used to show the dependence on a and
to emphasize that we consider b̂(·) to be a function.

Now we consider the case that a is completely unknown.
Then the problem to be solved becomes mina∈Rn ,b∈Rp ‖y −
Aa − Bb‖2

Qyy
, the solution of which follows from solving

the normal equations
[

AT Q−1
yy A AT Q−1

yy B
BT Q−1

yy A BT Q−1
yy B

] [
â
b̂

]
=

[
AT Q−1

yy y
BT Q−1

yy y

]
(5)

This solution is given as

â = ( ĀT Q−1
yy Ā)−1 ĀT Q−1

yy y

b̂ = (BT Q−1
yy B)−1 BT Q−1

yy (y − Aâ)
(6)

where Ā= P⊥
B A, P⊥

B = Im − PB , and PB = B(BT Q−1
yy B)−1

BT Q−1
yy . With respect to the metric Qyy , matrix PB is the

projector that projects orthogonally onto the range space of
B. The solution (6) is referred to as the float solution of the
GNSS model (1).

The baseline solutions, b̂(a) of (4) and b̂ of (6), and their
variance matrices, are related as

b̂(a) = b̂ − Qb̂â Q−1
ââ (â − a)

Qb̂(a)b̂(a)
= Qb̂b̂ − Qb̂â Q−1

ââ Qâb̂

(7)

Note, assuming a known, that b̂(a) is more precise than b̂,
i.e. Qb̂(a)b̂(a)

≤ Qb̂b̂. In case of real time kinematic (RTK)
GNSS, this difference is very significant, since Qb̂(a)b̂(a)

is
then driven by the very precise carrier phase data, while Qb̂b̂
is dominated by the relatively poor precision of the code data.
In addition, note that b̂ = b̂(â).

In our case, cf. (3), the ambiguity vector a is neither known
nor completely unknown. The unknown vector a is namely
known to be integer a ∈ Z

n . To find the corresponding
LS-solution, we first introduce a useful decomposition of the
objective function with the help of (4) and (6). According
to Teunissen (1993), we can use â and b̂(a) to orthogonally
decompose the objective function of (3) as

‖y − Aa − Bb‖2
Qyy

= ‖ê‖2
Qyy

+ ‖â − a‖2
Qââ

+‖b̂(a) − b‖2
Qb̂(a)b̂(a)

(8)

where ê = y − Aâ − Bb̂ is the float LS residual vector, and
Qââ = ( ĀT Q−1

yy Ā)−1 and Qb̂(a)b̂(a)
= (BT Q−1

yy B)−1 are

the variance matrices of â and b̂(a), respectively. From the
orthogonal decomposition (8), it is clear that the third term
on the right side can be made zero for any a ∈ Z

n ; simply
choose b equal to b̂(a). The solution to the ILS minimization
problem (3) follows therefore as

ǎ = arg min
a∈Zn

||â − a||2Qââ
and b̌ = b̂(ǎ) (9)

These (mixed) ILS-solutions are referred to as the fixed solu-
tions of the GNSS model (1).

The computation of ǎ involves a search for the integer
vector that is closest to â in the metric of Qââ . This search is
trivial when matrix Qââ is diagonal, in which case the solu-
tion is found from a componentwise integer rounding of the
float solution â. In the case of GNSS, however, matrix Qââ

is nondiagonal and the search becomes nontrivial. The inte-
ger minimizer ǎ can then be computed efficiently with the
LAMBDA method (Teunissen 1993, 1995).

2.3 Model strength

Once the ILS solution ǎ has been computed, the baseline
solution b̌ follows from substituting ǎ for a in (4). To take
full advantage of the very high precision of the carrier phase
data, the uncertainty in ǎ needs to be as small as possible.
Only then will the precision of the fixed solution b̌ be com-
parable to the high precision of b̂(a). The uncertainty in ǎ is
negligibly small if the probability of correct integer ambigu-
ity estimation, the so-called ambiguity success rate, is suf-
ficiently close to 1. The success rate is determined by the
strength of the underlying GNSS model; the stronger the
model, the higher the success rate. Clearly, the strength of
the GNSS model improves when the number of tracked sat-
ellites gets larger, when the measurement precision improves,
when the number of measurement epochs increases, or when
the number of used frequencies gets larger.

It is well-known that dual-frequency, short-baseline RTK
ambiguity resolution is possible. It is therefore also possi-
ble to obtain precise GNSS RTK Compass readings, when
two or more frequencies are observed. For these cases, one
can therefore rely on the standard LAMBDA method for suc-
cessful ambiguity resolution. However, successful ambiguity
resolution is generally not possible if only single-frequency
data is observed. This is shown in Table 1. This table shows
typical values of single-epoch, single-frequency, short-base-
line, ILS success rates for different measurement precisions
and different number of tracked satellites. It shows that
single-frequency, single-epoch ambiguity resolution is not
possible when using the standard GNSS model (1), unless
the number of tracked satellites is high and the code pre-
cision is very good. Hence, a further strengthening of the
GNSS model is needed if one wants to achieve successful,

Table 1 Single-frequency, single-epoch, short-baseline, ILS success
rates (%) for different measurement precision (undifferenced σφ and
σp) and different number of tracked satellites (N )

σφ(mm) 3

σp(cm) 30 15 5

N = 5 3.3 19.1 86.7
N = 6 24.8 66.7 96.9
N = 7 50.2 79.7 99.5
N = 8 86.2 94.5 99.9
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single-frequency, epoch-by-epoch ambiguity resolution. A
practical way of strengthening the GNSS model in the case
of attitude determination is to make use of the known base-
line length. In the following section, it will be shown how this
information can be integrated rigorously into the ambiguity
objective function.

3 The GNSS compass model

3.1 Constrained integer least squares

If we may assume that the two GNSS antennas are firmly
attached to the rigid body of the moving platform, the con-
stant length of the baseline vector may be determined a priori.
This allows one to strengthen the GNSS model (1) by includ-
ing the additional constraint ||b|| = l, with l the given base-
line length (to denote the unweighted norm, we use instead
of || · ||I , the simpler notation || · ||). The use of the baseline
length information is of course not new, but our model for-
mulation and method of solution are new. In the literature,
the baseline information is usually used to check whether or
not the candidate baselines satisfy the given baseline length.
It is therefore not included as a rigorous constraint in the esti-
mation principle (see e.g. Park et al. 1996; Hayward et al.;
DeLorenzo et al. 2004; Monikes et al. 2005; Wang et al.
2009a).

If we want to include the a priori given baseline informa-
tion as a constraint, we need to extend the standard GNSS
model (1) to

E(y) = Aa + Bb , ||b|| = l , a ∈ Z
n, b ∈ R

p,

D(y) = Qyy
(10)

This nonlinearly constrained model will be referred to as the
GNSS Compass model. It is a linear(ized) GNSS model with
a nonlinear constraint on the baseline vector.

Again we apply the LS estimation principle. This time,
however, we need to take care of two types of constraints:
the integer constraints on the ambiguities, a ∈ Z

n , and the
length constraint on the baseline vector, ||b|| = l. The lat-
ter constraint implies that the baseline vector is constrained
to lie on a sphere with radius l. We denote this sphere as
Sl = {b ∈ R

p| ||b|| = l}. With the baseline length con-
straint included, the LS minimization problem becomes

min
a∈Zn ,b∈Sl

‖y − Aa − Bb‖2
Qyy

(11)

This LS-problem is coined a quadratically constrained
(mixed) integer least-squares (QC-ILS) problem (Park and
Teunissen 2003).

To determine the solution of (11), we again make use of
the orthogonal decomposition (8). The minimization prob-
lem (11) can then be formulated as

Fig. 1 The geometry of minimizing ||b̂(a) − b||2Qb̂(a)b̂(a)
for b ∈ Sl

min
a∈Zn ,b∈Sl

‖y − Aa − Bb‖2
Qyy

= ||ê||2Qyy
(12)

+ min
a∈Zn

(
‖â − a‖2

Qââ
+ min

b∈Sl

‖b̂(a) − b‖2
Qb̂(a)b̂(a)

)
(13)

Note that now the third term on the right side does not vanish
anymore. This is due to the presence of the baseline length
constraint b ∈ Sl . We denote the minimizer of the third term
as

b̌(a) = arg min
b∈Sl

‖b̂(a) − b‖2
Qb̂(a)b̂(a)

(14)

It is the vector on the sphere of radius l that has smallest
distance to b̂(a), where distance is measured with respect
to the metric as defined by the variance matrix Qb̂(a)b̂(a)

.

Recall that b̂(a) (c.f. 4) is the conditional baseline solu-
tion (conditioned on assuming a known). The solution b̌(a),
having length ||b̌(a)|| = l, is therefore the baseline-length
constrained, conditional baseline solution. Geometrically, it
can be depicted as the point where the ellipsoid E = {b ∈
R

p| ‖b̂(a) − b‖2
Qb̂(a)b̂(a)

= constant} just touches the sphere

Sl (see Fig. 1).
If we substitute b̌(a) for b in the objective function of (13),

it follows that the minimizers ǎ and b̌ of the QC-ILS problem
(13) are given as

ǎ = arg min
a∈Zn

(
||â − a||2Qââ

+||b̂(a)−b̌(a)||2Qb̂(a)b̂(a)

)
and

b̌ = b̌(ǎ) (15)

These (mixed) QC-ILS solutions are referred to as the fixed
solutions of the GNSS Compass model (10) (the fact that we
use the same notation as used for the fixed solutions of the
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standard GNSS model (1) should not be a cause of confu-
sion).

To get a first appreciation of the additional complexity that
the IAR of the GNSS compass model brings, we compare the
QC-ILS ambiguity objective function,

F(a) = ||â − a||2Qââ
+ ||b̂(a) − b̌(a)||2Qb̂(a)b̂(a)

(16)

(cf. 15), with that of our earlier ILS ambiguity objective func-
tion, E(a) = ||â − a||2Qââ

(cf. 9). First note that F(a), in
contrast to E(a), not only depends on the ambiguity solution
â, but also on the baseline solution b̂. Thus both â and b̂ are
needed as input for the integer minimizer of F(a). Also note
that F(a), in contrast to E(a), is nonquadratic in a. Hence,
its contour surfaces will not be ellipsoidal, thus complicating
the integer search for ǎ.

F(a) differs from E(a) by a term that measures the dis-
tance, in the metric of Qb̂(a)b̂(a)

, between b̂(a) and the sphere
Sl . Hence, potential integer candidates a ∈ Z

n are now not
only downweighted if they are further away from the float
solution â, as is the case with E(a), but also if their corre-
sponding conditional baseline b̂(a) is further apart from the
sphere Sl . It is this additional penalty in the objective function
that allows for higher success rates.

Finally, note that the presence of the second term makes
the evaluation of F(a) more time consuming than that of
E(a). Its presence implies that b̌(a) of (14) needs to be com-
puted every time F(a) is evaluated. Since the computation of
the minimizer b̌(a) is already nontrivial by itself, the presence
of this second term is a potential threat for the computational
efficiency of the integer search. In Sect. 5, we come back to
this issue and we show how the evaluation of the ambiguity
objective function can be handled efficiently.

3.2 Other ambiguity objective functions

Although our integer ambiguity objective function F(a) is
new, other least-squares type ambiguity objective functions
have been used in the literature for the GNSS compass prob-
lem. It is, therefore, important to understand in what way
they differ from our ambiguity objective function.

As mentioned earlier, the use of the baseline length con-
straint ||b|| = l is not new. All of the existing methods also
try, in one way or another, to make use of this constraint, so
as to aid the IAR process. However, none of these methods
have rigorously incorporated this constraint into the con-
strained ILS principle. In Han and Rizos (1999), the uncon-
strained ILS principle is applied with the use of an improved
float solution. They first use the baseline length constraint to
obtain an improved float solution and then use the standard
LAMBDA method to solve for the integer ambiguities as in
(9). Also in Dai et al. (2004), Kuylen et al. (2005), Hauschild
and Montenbruck (2007), and Hauschild et al. (2008), the

standard LAMBDA method is used. Although good results
are reported, the baseline constraints are still not used to their
fullest. They are used to improve the float solution and/or to
check the validity of the integer solution.

Proposals that explicitly incorporate the baseline con-
straint into the ambiguity search, can be found in Park and
Kim (1998), Monikes et al. (2005), Povalyaev et al. (2006)
and Wang et al. (2009b). As a result a quadratic inequal-
ity constraint is found for the ambiguities. In Park and Kim
(1998), Monikes et al. (2005) and Wang et al. (2009b), the
quadratic inequality is obtained after the ambiguities have
been divided into a primary and secondary set. Hence, as
correctly pointed out by Povalyaev et al. (2006), not all ambi-
guities are incorporated into the inequality constraint and not
all information is used in the formation of the inequality con-
straint. As shown below, this ad hoc division into so-called
primary and secondary ambiguity sets is also not needed to
construct the quadratic inequality.

Although these latter contributions do use the baseline
constraint to explicitly constrain the ambiguity search space,
they still do not result in rigorously solving the properly con-
strained ILS problem. In fact, as we will now show, they still
aim at integer minimizing the standard ambiguity objective
function, but now in a reduced search space. The idea of these
publications is as follows. Since ||b|| = l and b̂(a) is a very
precise estimator, one can expect the length of b̂(a) to be very
close to l, provided a is the correct integer ambiguity vec-
tor. Thus one would expect that the correct integer ambiguity
vector lies within a set as

C = {a ∈ Z
n| (l − ε)2 ≤ ||b̂(a)||2 ≤ (l + ε)2} (17)

for some user-defined positive tolerance value ε.
The set (17) can be described geometrically as a cylin-

drical tube. To see this, we first show how ||b̂(a)||2 can
be written as a quadratic form in the ambiguity vec-
tor a ∈ Z

n . If we write (4) as b̂(a) = M(a0 − a),
with the p × n matrix M = (BT Q−1

yy B)−1 BT Q−1
yy A, the

p-vector m = (BT Q−1
yy B)−1 BT Q−1

yy y and the n-vector
a0 = MT(M MT)−1m, we obtain

||b̂(a)||2 = (a0 − a)T MT M(a0 − a) (18)

Since matrix M is of order p × n and rank p ≤ n, the n × n
matrix MT M is also of rank p ≤ n. Thus MT M has p positive
eigenvalues and n− p zero eigenvalues. This implies that the
set C, for ε = 0, is a degenerate ellipsoidal surface, having
p axes of finite length and n − p axes of infinite length. It is
therefore a cylindrical surface in R

n having a p-dimensional
ellipsoidal base. For ε �= 0, one obtains two such cylindrical
surfaces and the set C becomes then the region in between
these two surfaces, i.e. a cylindrical tube.

In Monikes et al. (2005) and Povalyaev et al. (2006),
the standard (unconstrained) ambiguity objective function
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is integer minimized over the restricted set C. Their minimi-
zation problem can therefore be formulated as

ã = arg min
a∈C∩Zn

||â − a||2Qââ
(19)

Hence, they still integer minimize the quadratic form ||â −
a||2Qââ

, but now over the region of the cylindrical tube C ⊂
Z

n , instead over the complete integer space Z
n , as is done in

the unconstrained ILS case (9). In Park and Kim (1998) and
Wang et al. (2009b), a similar problem is solved, but then
only based on the so-called primary set of ambiguities. To
speed up the computation of (19), Monikes et al. (2005) and
Wang et al. (2009b) also use the decorrelation property of
the LAMBDA method.

The ambiguity objective function of (19), although of the
ILS type, is clearly different from both that of the uncon-
strained ILS problem, (9), and the constrained ILS prob-
lem, (15). Hence, in general, their solutions will also differ.
Although the solution of (19) is often an improvement over
earlier solutions given in the literature, the underlying prin-
ciple still lacks rigor. There is no rigorous derivation from
first principles that produces (19). Although the step from
||b|| = l to the boundedness of ||b̂(a)|| (cf. 17) may make
sense, it is not a derivation. In fact, contrary to (15), the
solution produced by (19) does not even use the fact that
||b|| = l. Furthermore, with (19), the integer ambiguity solu-
tion is required to lie in C, but the size of it, as determined
by ε, is usually chosen in an ad hoc manner.

4 Global and local ellipsoidal search

Although the ambiguity objective function F(a) (cf. 16) is
nonquadratic, it would be helpful if its integer minimizer
could still be obtained by means of standard ambiguity
resolution methods. Since the standard methods have been
devised for quadratic objective functions, we now discuss
the potential of using an ellipsoidal search for integer mini-
mizing F(a). Two such ellipsoidal search strategies will be
presented, a global one and a local one.

4.1 Weighted constrained integer least squares

To make our results of the present and following sections
valid for both the unconstrained and constrained GNSS mod-
els, (1) and (10), we assume from now on that the baseline
length constraint is weighted. One may even view this as a
more realistic approach. After all, the given baseline length
l will usually be the result of an a priori measurement. If we
consider the baseline length as an observable, the ‘baseline
length constraint’ takes the form of a nonlinear observation
equation E(l) = ||b||, with variance D(l) = σ 2

l . The integer

least-squares solution of this extended model is given by the
following Theorem.

Theorem 1 Let ǎ ∈ Z
n and b̌ ∈ R

p denote the LS parameter
solution of the model

E(y) = Aa + Bb, D(y) = Qyy, a ∈ Z
n

E(l) = ||b||, D(l) = σ 2
l , b ∈ R

p
(20)

where y and l are assumed uncorrelated. Then

ǎ = arg min
a∈Zn

F(a), b̌ = arg min
b∈Rp

H(ǎ, b) (21)

with the ambiguity objective function F(a) and the condi-
tional baseline objective function H(a, b) given as

F(a) = ||â − a||2Qââ
+ min

b∈Rp
H(a, b)

H(a, b) = ||b̂(a) − b||2Qb̂(a)b̂(a)
+ σ−2

l (l − ||b||)2
(22)

Proof Application of the LS principle to (20) gives the min-
imization problem

min
a∈Zn ,b∈Rp

{
‖y − Aa − Bb‖2

Qyy
+ σ−2

l (l − ‖b‖)2
}

(23)

By making use of the orthogonal decomposition (8), this
minimization problem can be formulated as

min
a∈Zn ,b∈Rp

‖y − Aa − Bb‖2
Qyy

= min
a∈Zn ,b∈Rp

(
||ê||2Qyy

+ ‖â − a‖2
Qââ

+ H(a, b)
)

= ||ê||2Qyy
+ min

a∈Zn ,b∈Rp

(
‖â − a‖2

Qââ
+ H(a, b)

)

= ||ê||2Qyy
+ min

a∈Zn

(
||â − a||2Qââ

+ min
b∈Rp

H(a, b)

)
(24)

This shows indeed that ǎ is given as the integer minimizer of
F(a) and that b̌ is given as the minimizer of H(ǎ, b). 	


Compare (23) with the ILS solution (9) and with the QC-
ILS solution (15). Although we used the same notation ǎ, b̌
and b̌(a) as before, this should not be a cause for confusion.
For σ 2

l → ∞, the weight of the baseline length constraint
reduces to zero and the solution of (23) reduces to that of
(9). In case of the other extreme, σ 2

l → 0, the weight of the
baseline length enforces a hard constraint and the solution of
(23) reduces to that of (15).

The baseline solution from which the final compass-
information is derived is b̌ (cf. 21). Similar baseline com-
putations, namely

b̌(a) = arg min
b∈Rp

H(a, b) (25)

are needed when evaluating the ambiguity objective function
F(a). Since H(a, b) (cf. 22) is the least-squares objective
function of the nonlinear model E(b̂(a)) = b, E(l) = ||b||,
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with y and l uncorrelated and D(b̂(a)) = Qb̂(a)b̂(a)
, D(l) =

σ 2
l , methods for solving nonlinear least-squares problems

can be used for computing b̌(a) and b̌ = b̌(ǎ). These meth-
ods are, for instance, the iterative descent methods (e.g. the
steepest descent method, the Gauss–Newton method, or the
Newton method) or globally convergent methods based on
the singular value decomposition (see e.g. Teunissen 1990;
Golub and Van Loan 1989).

4.2 A global ellipsoidal search

The integer minimizer of F(a) can be computed by means
of an integer search in the search space

�F

(
χ2

)
=

{
a ∈ Z

n | F(a) ≤ χ2
}

(26)

First one sets the size of the search space by choosing a value
for χ2. This value should be such that the search space is non-
empty. In order to guarantee that �F (χ2) is nonempty, one
can choose χ2 = F(z) for some z ∈ Z

n . A preferable choice
of z is one that returns a small enough value for χ2.

After the size of the search space is set, one collects all
integer vectors that lie inside �F

(
χ2

)
and from this set one

then selects the integer vector that returns the smallest value
for F(a). This integer vector will be the solution sought, i.e.
the integer minimizer of F(a). Thus the global search for the
integer minimizer ǎ has the following components:

1. Set size: choose small χ2 such that �F (χ2) nonempty.
2. Enumerate: find all integer vectors inside �F (χ2).
3. Minimize: select ǎ such that F(ǎ) ≤ F(a) for all a ∈

�F (χ2).

Since the search space (26) is nonellipsoidal, one cannot
apply the standard search strategies directly. This compli-
cation can be circumvented by working with an ellipsoidal
search space instead. But in order to ensure that the global
minimizer is included in the enumeration, the ellipsoidal
search space needs to encompass (26). Since F(a) ≥ E(a) =
||â − ǎ||2Qââ

for all a, this is true for the ellipsoidal set (see
Fig. 2),

�E (χ2) = {a ∈ Z
n| E(a) ≤ χ2} ⊃ �F (χ2) (27)

Hence, the enumeration now consists of finding the inte-
ger candidates in the ellipsoidal set �E (χ2) that also lie
in �F (χ2). Finding the integer candidates in �E (χ2) can
be done efficiently with the LAMBDA method. Checking
whether such z ∈ �E (χ2) also lies in �F (χ2), amounts
then to checking the inequality

G(z) = min
b∈Rp

H(z, b) ≤ χ2 − ||â − z||2Qââ
(28)

If this inequality is satisfied, then F(z) ≤ χ2 and thus z ∈
�F (χ2).

Fig. 2 Two-dimensional example of �F (χ2) ⊂ �E (χ2)

Clearly this ellipsoidal-based search is rigorous, simple
and rather straightforward to apply. This search is, therefore,
an attractive method for finding ǎ, provided it can be per-
formed in a timely manner. The search becomes inefficient
though if the ellipsoidal search space contains too many inte-
ger vectors. Both the enumeration and minimization will then
contribute to a slow down of the computational process. The
larger the search space, the more integer vectors need to be
enumerated and the more often the function F(a) needs to
be evaluated.

A too large search space �E (χ2) can be avoided if one is
able to compute a small enough value for χ2. This is possible
if the underlying unconstrained GNSS model has sufficient
strength. This is the case, for example, with short-baseline,
multi-frequency models. For such models, bootstrapping (or
rounding) the float solution â usually already gives an inte-
ger close to the sought for integer solution (Teunissen 1998).
Such a bootstrapped (or rounded) integer vector can then be
used to compute χ2. Thus for GNSS models that have suf-
ficient strength, the above LAMBDA-based search is attrac-
tive.

This is generally not the case however, for models that are
based on single-frequency, single-epoch data. These mod-
els are generally too weak to permit such a straightfor-
ward approach as described above. To understand this, we
first show that for such models, the second term, G(a) =
minb H(a, b), in F(a) = E(a) + G(a), is usually some
orders of magnitude larger than the first term, E(a) =
||â − a||2Qââ

. This is due to the different weighting in the
terms of F(a). The ambiguity residual in E(a) is weighted
by the inverse of the ambiguity variance matrix, while the
residuals of G(a) are weighted by the inverse conditional
baseline variance matrix and the inverse of σ 2

l , respectively.
As the following example shows, these weights differ by
some orders of magnitude.

In the single epoch, single frequency case, the design
matrices A and B of the model (10) are structured as
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A = [λIn, 0]T and B = [GT, GT]T, with λ the wave-
length and G the geometry matrix, that contains the unit
direction vectors to the satellites. With σ 2

φ Q and σ 2
p Q being

the variance matrices of the single-frequency DD phase
and code data, respectively, the ambiguity variance matrix
Qââ = ( ĀT Q−1

yy Ā)−1 follows as

Qââ = σ 2
p

λ2

(
σ 2

φ

σ 2
p

Q + G(GT Q−1G)−1GT

)

≈ σ 2
p

λ2 G(GT Q−1G)−1GT (29)

and the conditional baseline variance matrix Qb̂(a)b̂(a)
=

(BT Q−1
yy B)−1 follows as

Qb̂(a)b̂(a)
= σ 2

φ

1 + σ 2
φ/σ 2

p

(GT Q−1G)−1

≈ σ 2
φ (GT Q−1G)−1 (30)

This shows, since σ 2
φ � σ 2

p and σ 2
l is usually chosen very

small as well, that for most a, the first term E(a) of F(a) will
be much smaller than its second term G(a). Thus F(z) �
E(z) for most z ∈ Z

n . As a consequence, the value χ2 =
F(z), which is used to set the size of �E (χ2), will be large
too. This implies that �E (χ2) will contain many integer vec-
tors, most of which will be rejected again by the inequality
check (28). Thus, in this case many of the collected integer
vectors will be computed with no avail (search halting) and,
moreover, for the many integer vectors inside �E (χ2), one
will have to compute b̌(a), which may considerably slow
down the estimation process. The conclusion is therefore,
that for the single epoch, single frequency case, an alternative
approach is needed for selecting χ2. Moreover, it would be
helpful, if, in the evaluation of the integer candidates, one can
avoid the necessity of having to compute ‖ b̂(a)−b̌(a) ‖2

Qb̂(a)

too often.

4.3 A local ellipsoidal search

Instead of trying to integer minimize F(a) rigorously, one can
also try to solve it in an approximate sense, i.e. by minimizing
an approximation to the ambiguity objective function. The
idea is therefore to make use of a quadratic approximation,
such that standard IAR methods can be applied again. For
such a quadratic approximation, the first and second order
partial derivatives of the ambiguity objective function are
needed. They are given by the following Lemma.

Lemma 1 The gradient vector and the Hessian matrix of the
ambiguity objective function F(a) (cf. 22) are given as

∂a F(a) = −2 ĀT Q−1
yy Ā

(
â − a

) − 2AT Q−1
yy B

(
b̂(a) − b̌(a)

)

∂2
aa F(a) = 2AT Q−1

yy A − 2AT Q−1
yy B

×
[

BT Q−1
yy B + σ−2

l X (b̌(a))
]−1

BT Q−1
yy A

(31)

with b̂(a) given by (7), b̌(a) by (25) and where X (b) is the
p × p matrix function

X (b) = Pb + (1 − l

||b|| )P⊥
b (32)

with the orthogonal projectors Pb = b(bTb)−1bT and P⊥
b =

Ip − Pb.

Proof Since the proof is rather lengthy, we only give a sketch.
First, the first order and second order partial derivatives of
H(a, b) (cf. 22) are determined. Then the gradient and Hes-
sian of G(a) = arg minb∈Rp H(a, b) are expressed in the
partial derivatives of H(a, b). Combining these results and
recognizing that ∂b H(a, b̌(a)) = 0 for all a ∈ R

n , gives
(31). 	


With (31), we still have the option of choosing the point
of approximation freely. Here we will choose the real-val-
ued minimizer of F(a) as the point of approximation. Since
it is the least-squares solution of the GNSS Compass model
(10) without the integer constraints a ∈ Z

n , it is in fact the
’best’ float solution one can get. This constrained float solu-
tion, denoted as ā and b̄, is related to the unconstrained float
solution, â and b̂, as

ā = â − Qâb̂ Q−1
b̂b̂

(b̂ − b̄)

b̄ = arg min
b∈Rp

(
||b̂ − b||2Qb̂b̂

+ σ−2
l (l − ||b||)2

)
(33)

Thus, once b̄ has been solved as a nonlinear least-squares
problem, only a linear correction on â is needed to obtain ā.

We are now in the position to show how the standard IAR
methods can be used to solve for the approximate integer
minimizer of the ambiguity objective function.

Theorem 2 The integer minimizer of the quadratic approx-
imation of F(a) at ā, is given by the ILS solution

ǎ′ = arg min
a∈Zn

||ā − a||2Q (34)

where

Q = [1

2
∂2

aa F(ā)]−1 = Qââ −Qâb̂[Qb̂b̂+σ 2
l X (b̄)−1]−1 Qb̂â

= Qâ(b)â(b)+Qâb̂ Q−1
b̂b̂

[Q−1
b̂b̂

+σ−2
l X (b̄)]−1 Q−1

b̂b̂
Qb̂â

(35)
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Proof With the use of (31), we develop F(a) in a Taylor
series at ā. Since ∂a F(ā) = 0 (recall that ā is the minimizer
of F(a)), we obtain the quadratic approximation F(a) ≈
F(ā) + ||ā − a||2Q , which proves (34). The two expres-
sions of (35) follow from applying the well-known matrix
inversion Lemma (M − N R−1 P)−1 = M−1 + M−1 N (R −
P M−1 N )−1 P M−1 to the expression of the Hessian in (31)
evaluated at ā, thereby recognizing that b̄ = b̌(ā). 	

It follows from (35) that

Qâ(b)â(b) ≤
[

1

2
∂2

aa F(a)

]−1

≤ Qââ (36)

if X ≥ 0. These matrix lower and upper bounds are under-
standable, since Qâ(b)â(b) is the ambiguity variance matrix
would b be completely known, while Qââ is the ambiguity
variance matrix for b completely unknown.

The results of the above Theorem can be used in three
different ways. First, the ILS solution ǎ′ may be used in its
own right as a replacement of ǎ. This is meaningful if one
can show that the success rate of ǎ′ is already high enough.
Second, instead of using ǎ′ as a replacement of ǎ, one may
also think of using bootstrapping or rounding on the qua-
dratic approximation. In the case of bootstrapping, one would
then integer bootstrap the decorrelated version of ā using[ 1

2∂2
aa F(ā)

]
as weight matrix (Teunissen 1998). Finally, one

may also use ǎ′, or its bootstrapped or rounded version, to
set the size of the nonellipsoidal search space through χ2 =
F(ǎ′).

Whether the above quadratic approximation can be used
as a basis for computing a useful integer solution depends to
a large extend on the length of the baseline. The longer the
baseline, the better the quadratic approximation. Hence, if
the baseline is long enough, one can perform successful, sin-
gle-frequency, single-epoch ambiguity resolution with the
standard LAMBDA method, but now applied to the above
quadratic approximation of the GNSS Compass model.
Table 2 gives for a typical single-frequency, single-epoch
GPS scenario, the ambiguity success rates for different base-
line lengths and for different measurement precisions. These

Table 2 Single-frequency, single-epoch, ILS GPS ambiguity success
rates (%) based on a quadratic approximation of F(a) for different mea-
surement precision (undifferenced σφ and σp) and for different baseline
lengths (||b||) using six tracked satellites (σl = 0)

σφ(mm) 3

σp(cm) 30 15 5

||b|| = 0.5 m 8.2 18.2 71.8
||b|| = 1 m 8.5 23.6 87.6
||b|| = 2 m 11.5 38.1 97.1
||b|| = 5 m 21.4 63.7 99.8
||b|| = 20 m 53.5 94.3 99.9
||b|| = 50 m 77.5 99.3 99.9

results show, for σφ = 3 mm and σp = 15 cm, that baseline
lengths of 50 m or longer will give success rates higher than
99% (for long baselines, the possible lack of platform rigidity
may be captured through σl ). Hence, with this approximate
method one can not expect instantaneous IAR to be success-
ful for small platforms. For larger platforms however, such
as vessels, the method is indeed promising. Moreover, one
should keep in mind that as the code precision improves (as
is the case with the future GNSSs), the baseline length is
allowed to become shorter to achieve the same success rate
performance.

5 A search and shrink strategy using bounding
functions

5.1 On the geometry of the search space

We already remarked, that contrary to the contour surfaces of
the standard ambiguity objective function, the contour sur-
faces of F(a) are nonellipsoidal. To get a better insight into
this geometry, we consider the contour surfaces of F(a), but
now under the simplifying assumption that the conditional
baseline variance matrix is diagonal. This allows us to obtain
a closed form expression for the second term in F(a), the
b-minimum of H(a, b) (cf. 22).

Lemma 2 If Qb̂(a)b̂(a)
= 1

λ
Ip and b̂(a) �= 0, then the

b-minimizer and the b-minimum, respectively, of H(a, b) =
||b̂(a) − b||2Qb̂(a)b̂(a)

+ σ−2
l (l − ||b||)2, are given as

b̌(a) = arg min
b∈Rp

H(a, b) = l + σ 2
l λ||b̂(a)||

1 + σ 2
l λ

b̂(a)

||b̂(a)|| (37)

and

min
b∈Rp

H(a, b) = λ

1 + σ 2
l λ

(
l − ||b̂(a)||

)2
(38)

If b̂(a) = 0, then the minimizer is not unique, but the mini-
mum still is.

Proof Let b̂(a) �= 0. Since the contour surfaces of ||b̂(a) −
b||2Q are spheres centred at b̂(a) (if Q = 1

λ
) and the contour

surfaces of σ−2
l (l − ||b||)2 are spheres centred at the origin,

it follows directly from the geometry of the problem that
the b-minimizer of H(a, b) must lie in between the origin
and b̂(a), on the straight line connecting these two points.
Thus b̌(a) = μb̂(a)/||b̂(a)|| for some scalar μ in the inter-
val 0 ≤ μ ≤ ||b̂(a)||. Substitution of this expression into
H(a, b) reduces the problem to a minimization of a qua-
dratic function in the scalar μ. This μ-minimizer is given

as μ̂ = l+σ 2
l λ||b̂(a)||
1+σ 2

l λ
. Hence, it is the weighted average of

||b̂(a)|| and l. This proves (37). The minimum (38) simply
follows from substituting the b-minimizer into H(a, b).
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If b̂(a) = 0, then H(a, b) is constant for constant ||b||.
Hence, the b-minimizer is then not unique, but the minimum
still is, minb∈Rp H(a, b) = λ

1+σ 2
l λ

l2. 	

This Lemma shows that if the conditional baseline vari-

ance matrix is a scaled unit matrix, the solution b̌(a) follows
from an orthogonal projection of b̂(a) onto the origin cen-
tred sphere, with radius equal to the weighted average of l
and ||b̂(a)||. For σ 2

l → 0, the projection is onto the sphere
with radius l, which corresponds to the hard constraint case.
For σ 2

l → ∞, which corresponds to the unconstrained case,
the projection is trivial, since then b̌(a) = b̂(a).

In reality, of course, the actual conditional baseline vari-
ance matrix will not be diagonal. Still, for a properly chosen
scalar λ, the above result can be seen as a useful approxima-
tion. For instance, the solution (37) may be used to initialize
the iterative schemes for solving the nonlinear least-squares
problem (25).

A useful choice for λ is the average of the eigenvalues
of the inverse of Qb̂(a)b̂(a)

. Thus λ = 1
p trace(BT Q−1

yy B).
This choice corresponds to the LS approximation of matrix
BT Q−1

yy B by λIp in the Frobenius norm.
Using the closed form expression for the b-minimum of

H(a, b) in (38), the expression for the ambiguity objective
function F(a) simplifies and further insight into the geome-
try of its search space can be gained.

Theorem 3 If Qb̂(a)b̂(a)
= 1

λ
Ip, then the search space of

F(a) simplifies to

�F (χ2) = {a ∈ Z
n| F(a) = E(a) + min

b∈Rp
H(a, b) ≤ χ2}

= {a ∈ Z
n| F(a) = E(a) + μ(l − ||b̂(a)||)2 ≤ χ2}

={a ∈ Z
n| E(a) ≤ χ2 and L(a)2 ≤||a0 − a||2R+ ≤U (a)2}

⊂ �E (χ2) ∩ C0(χ
2) (39)

with the subsets

�E (χ2) = {a ∈ Z
n| E(a) = ||â − a||2Qââ

≤ χ2}
(40)

C0(χ
2) = {a ∈ Z

n| L2
0 ≤ ||a0 − a||2R+ ≤ U 2

0 }
and where

L(a) = 2l − U (a), U (a) = l +
√(

χ2 − E(a)
)
/μ

R = MT M, M = (BT Q−1
yy B)−1 BT Q−1

yy A
(41)

a0 = M+m, m = (BT Q−1
yy B)−1 BT Q−1

yy y

L0 = L(â), U0 = U (â), μ = λ/(1 + σ 2
l λ)

Proof With (38), we have F(a)= E(a)+minb∈Rp H(a, b)=
E(a)+μ(l −||b̂(a)||)2. Therefore, F(a) ≤ χ2 is equivalent
to (l − ||b̂(a)||)2 ≤ (χ2 − E(a))/μ, or to L(a)2 ≤ ||a0 −
a||2R+ ≤ U (a)2, since ||b̂(a)||2 = (a0 − a)T MT M(a0 − a).
The last line of (39) follows from observing that L2

0 ≤ L(a)2

and U 2
0 ≥ U (a)2 for all a. 	


To get an appreciation of the search space geometry,
consider the one-dimensional case n = p = 1 first. From
(39) follows then that F(a) is formed from two different
parabolas, one parabola for the interval a ≤ a0 and another
parabola for the interval a ≥ a0. This shows, depending
on the value of χ2, that the one-dimensional search space
�F (χ2) may consist of a single interval or of two separate
intervals. The latter case may also be viewed as a single inter-
val with a hole in the middle. This type of geometry extends
itself to the higher dimensional case too, as can be verified by
taking one-dimensional sections of �F (χ2) ⊂ R

n . Hence,
the search space is not convex and it may even have a hole in
it. This hole may be located somewhere in the middle or at
the side, in which case the search space becomes somewhat
moon-shaped.

Despite the complex geometry of the search space, the last
expression of (39) shows that the search space stays confined
in the intersection of two well-defined spaces, the intersec-
tion of an ellipsoid with a cylindrical tube, namely �E (χ2)

and C0(χ
2), respectively.

5.2 A nonellipsoidal search and shrink for an approximate
integer minimizer

In Sect. 4.3, we introduced an approximate integer mini-
mizer of F(a) by means of a quadratic approximation. This
approach has the advantage that the standard LAMBDA
method can be used. To obtain large enough success rates,
however, the method requires not too small baselines. In
this section, we introduce another approximate integer min-
imizer, namely the one that integer minimizes F(a) for
Qb̂(a)b̂(a)

= 1
λ

Ip. This integer minimizer is thus defined as

ǎ′′ = arg min
a∈Zn

(
||â − a||2Qââ

+ λ

1 + σ 2
l λ

(l − ||b̂(a)||)2

)

(42)

This solution will be a good integer approximation of ǎ (cf.
21), if Qb̂(a)b̂(a)

is close to 1
λ

Ip. Note that the performance
of ǎ′′ is now not dependent on how long the baseline is, as
it is the case with the integer approximation ǎ′ (cf. 34), but
rather on how well the conditional baseline variance matrix
can be approximated by a diagonal matrix.

According to Theorem 3, the solution ǎ′′ can be obtained
by searching for the integer minimzier of F(a) in the inter-
section of ellipsoid �E (χ2) and cylindrical tube C0(χ

2).
We now describe our search and shrink strategy for com-
puting this approximate integer minimizer. First consider
the case n = p. The two quadratic forms, ||â − a||2Qââ

and ||a0 − a||2R+ , are then both of full rank and can there-
fore both be written as a sum-of-squares. These sum-of-
squares structures are then used to replace the quadratic form
inequalities of (39) by a set of p scalar inequalities, each
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describing a sequential interval (possibly with holes). This
is similar to how the sequential search intervals are formu-
lated in the LAMBDA method (Teunissen 1995; de Jonge
and Tiberius 1996). The p sequential intervals are denoted
as I (a1), I (a2|a1), . . . , I (ap|a1, . . . , ap−1). The interval
I (ai |a1, . . . , ai−1) is an interval for ai and it can be computed
once a1, . . . , ai−1 are given. Together, the p scalar intervals
describe the same set as the intersection of ellipsoid and cylin-
drical tube. By working through the intervals sequentially,
i.e. starting with I (a1) and ending with I (ap|a1, . . . , ap−1),
one can collect all integer candidates. To make this search
more efficient, one chooses each time that one arrives at the
last interval I (ap|a1, . . . , ap−1), the value of ap such that it
minimizes F(a). This allows one to shrink the search space,
i.e. compute a smaller value for χ2, and to repeat the search
in a smaller search space. This process is repeated until only
one integer vector is left, the integer minimizer of F(a).

For n > p, one can still use the above procedure, be
it that one first needs to find candidate values for the first
n − p entries of a. They will need to come from the ellip-
soid �E (χ2), since the cylindrical tube is degenerate in n− p
dimensions. Thus a is partitioned as a = (aT

I , aT
I I )

T and since
||â−a||2Qââ

= ||âI −aI ||2QâI âI
+||âI I (aI )−aI I ||2QâI I |I âI I |I

≤
χ2, we first use ||âI − aI ||2QâI âI

≤ χ2 to find integer candi-

dates aI and then use âI I (aI ) to find integer candidates aI I

in a similar way as done above for n = p. Once a candidate
integer vector, say z = (zT

I , zT
I I )

T is found, the size of the
search space is reset, χ2 = F(z), and the process is repeated
in the shrunken search space. This process is repeated until
only one integer vector is left, the integer minimizer of F(a).

5.3 Upper/lower bounding of search space

Both of our approximations of F(a) (cf. Sects. 4.3, 5.2) have
the advantage that they avoid the complexity of having to
compute b̌(a) (cf. 25) during the search. But they do of course
not guarantee a global integer minimizer as result. In order to
avoid computing b̌(a) too often and still be able to guarantee
that we can find the global minimizer, let us for the moment
assume to have functions that are easy to evaluate and that
bound F(a) from below and from above:

F1(a) ≤ F(a) ≤ F2(a) (43)

With such bounding functions correspond the two search
spaces

�1

(
χ2

)
=

{
a ∈ Z

n | F1(a) ≤ χ2
}

�2

(
χ2

)
=

{
a ∈ Z

n | F2(a) ≤ χ2
}

(44)

They bound �F (χ2) as

�2(χ
2) ⊂ �F (χ2) ⊂ �1(χ

2) (45)

Fig. 3 Lower and upper bounding of objective function F(a) and
search space �F (χ2)

Note that the set ordering is the reverse of the function order-
ing. Also note that the sizes of the three sets are defined by
the same χ2. Thus by varying χ2, all three sets change in
size, but the set ordering (45) remains intact (see Fig. 3).

Now recall that the global minimizer ǎ is found by evalu-
ating F(a) for all vectors in �F (χ2), followed by selecting
the vector that returns the smallest function value. Hence,
one would like �F (χ2) to be small and nonempty. The non-
emptiness of �F (χ2) guarantees that it contains ǎ, and the
smallness helps avoiding a multitude of function evaluations
F(a). These two requirements are met if �2(χ

2) ⊂ �F (χ2)

is nonempty and �1(χ
2) ⊃ �F (χ2) is small.

To obtain a small �1(χ
2) while ensuring that �2(χ

2) is
nonempty, we compute the smallest χ2 for which �2(χ

2) is
nonempty. Hence, we determine χ2 from the integer min-
imizer of F2(a). This integer minimizer is determined by
means of a search and shrink strategy. Starting with an initial
χ2

0 , we search for an integer vector in the space:

�2

(
χ2

0

)
=

{
a ∈ Z

n | F2(a) ≤ χ2
0

}
⊂ �F

(
χ2

0

)
(46)

As soon as such an integer vector is found, say ã, the space is
shrunk to the value χ̃2 = F2(ã) < χ2

0 and the search contin-
ues in this smaller set. In this way the search proceeds rather
quickly towards the integer minimizer of F2(a), which we
denote as ǎ2. Note that this integer vector is not necessarily
the integer minimizer of F(a), but we do know that it lies
inside the set

�F

(
χ2

1

)
⊂ �1

(
χ2

1

)
=

{
a ∈ Z

n | F1(a) ≤ χ2
1

}
(47)

with χ2
1 = F2(ǎ2). The sought for minimizer ǎ is then found

as the integer vector of �1
(
χ2

1

)
that returns the smallest value

of F(a).
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In principle, different choices for the bounding functions
can be made. For instance, it is possible to choose F1(a) and
F2(a) as quadratic forms so that �1(χ

2) and �2(χ
2) of (45)

become ellipsoidal regions. With the search and shrink strat-
egy, this gives the possibility to speed up the global ellipsoidal
search strategy of Sect. 4.2.

The goal of working with the bounding sets is that we
end up with a set �1(χ

2) ⊃ �F (χ2) that is small and non-
empty. This can be achieved better if we work with bounding
functions that have similar properties as F(a) and therefore
also produce similar search spaces. We therefore make use
of Lemma 2, but now with λ taken as the smallest and larg-
est eigenvalue of the inverse conditional baseline variance
matrix. Our choice of bounding functions is, therefore, given
by the following Lemma.

Lemma 3 Let the smallest and largest eigenvalue of the
inverse conditional baseline variance matrix BT Q−1

yy B be
given as λmin and λmax , respectively. Then F(a) is bounded
from below and from above by the functions

F1(a) = ‖â − a‖2
Qââ

+ λmin

1 + σ 2
l λmin

(
l − ||b̂(a)||

)2

(48)

F2(a) = ‖â − a‖2
Qââ

+ λmax

1 + σ 2
l λmax

(
l − ||b̂(a)||

)2

Proof Since ||b̂(a) − b||2 1
λmin

Ip
≤ ||b̂(a) − b||2Qb̂(a)b̂(a)

≤
||b̂(a) − b||2 1

λmax
Ip

for all b̂(a) and for all b, it follows that

F1(a) ≤ F(a) ≤ F2(a) for all a. 	

It is our experience, that this chosen set of bounding func-

tions, combined with the above described search and shrink
strategy, is a very efficient way for computing the global
integer minimizer of our ambiguity objective function F(a).
Typical run times are comparable to that of the standard
LAMBDA method. The efficiency of the method is also illus-
trated by the effectiveness of the shrinkage. In our experience,
the final number of integer vectors in the reduced search space
�1(χ

2
1 ), χ2

1 = F1(ǎ2), is very small and often simply equal
to one.

Next to the methods fast numerical performance, it also
achieves a very significant increase in success rate when com-
pared to the unconstrained method. This is shown in Table 3
where the single-frequency, single-epoch ILS success rates
(σ 2

l → ∞) are compared with the corresponding QC-ILS
success rates (σ 2

l → 0), for different measurement preci-
sions and different number of tracked satellites.

6 Summary and conclusions

In this contribution, we developed new ILS theory for the
GNSS compass. It extends current unconstrained ILS the-
ory to the quadratically constrained case. This extension is

Table 3 Single-frequency, single-epoch, GPS ambiguity success rates
for the unconstrained (U ) and constrained (C) LAMBDA methods

σφ[mm] 3

σp[cm] 30 15 5

# Sats Method Success rate (%)

5 U 3.50 20.0 86.2
C 73.7 86.4 99.5

6 U 23.3 67.4 96.8
C 96.6 99.6 99.9

7 U 49.9 80.4 99.4
C 99.4 99.9 100

8 U 86.0 93.9 100
C 99.7 100 100

particularly suited for GNSS compass IAR problems, since
for such problems the baseline length may often be assumed
known a priori. In our development, we have treated the qua-
dratic constraint in a weighted form, thus allowing the con-
straint to be either hard (infinite weight), soft (small weight)
or absent (zero weight). In this way, our results include the
standard unconstrained IAR results as special case.

Although the use of baseline length information for IAR
is not new, our model formulation and method of solution are
new. Following the quadratically constrained ILS principle,
we derived the corresponding ambiguity and baseline esti-
mators. Our ambiguity estimator ǎ is the integer minimizer
of the ambiguity objective function

F(a) = ||â − a||2Qââ
+ min

b∈Rp
H(a, b) (49)

where H(a, b) = ||b̂(a) − b||2Qb̂(a)b̂(a)
+ σ−2

l (l − ||b||)2.

Both type of constraints, the integer ambiguity constraints
and the baseline length constraint, are rigorously integrated
in the ambiguity objective function. They both contribute to
the search and to the success rate.

Once the integer minimizer of F(a) is found, precise
directional information (e.g. heading, elevation) can be com-
puted from the fixed baseline estimator. It is given as

b̌ = arg min
b∈Rp

H(ǎ, b) (50)

The inclusion of the baseline length constraint increases the
strength of the GNSS model and in particular enables one to
obtain higher ambiguity success rates. The inclusion of the
constraint also introduces, however, an additional curvature
which results in a more complex ambiguity resolution pro-
cess, in particular in the case of very short baselines. Since the
non-quadratic second term of (49) prohibits the use of stan-
dard search methods, a new search strategy was devised. Our
search and shrink strategy makes use of bounding functions
of F(a) that avoid the usually computational intensive eval-
uation of minb∈Rp H(a, b) during the search. We described
the search and the shrinking steps of our strategy, including
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the different ways of setting the initial size of the search
space. We also indicated the very high success rates that can
be achieved with the method. We believe that it will be dif-
ficult to devise a method that, with the same information, is
capable of achieving higher success rates.

We also presented different special cases and approxima-
tions to the integer minimization problem (49). Whether they
are practically useful depends on the strength of the uncon-
strained GNSS model, the length of the baseline and on the
precision of the conditional baseline. For the precise deter-
mination of GNSS-compass information, we may therefore
discriminate between the following four classes of problems:

Class I: If already the unconstrained GNSS model has
sufficient strength, one can base the fixed base-
line computation on the standard ILS estimator

ǎ = arg min
a∈Zn

||â − a||2Qââ
(51)

In this case, no baseline length constraint is
needed (σ−2

l = 0) and the standard LAMBDA
method can be applied. This situation does gen-
erally not apply to the single-frequency, single-
epoch case (cf. Table 1), but is applicable in the
multi-frequency case.

Class II: Since the nonlinearity of F(a) gets smaller
for longer baselines, one may use a quadratic
approximation of (49) if the baseline is not too
short (cf. Table 2). The integer ambiguity vector
is then computed as

ǎ = arg min
a∈Zn

||ā − a||2
(∂2

aa F(ā))−1 (52)

with ∂2
aa F(ā) the Hessian matrix evaluated at the

constrained float ambiguity vector ā. As with the
problems of Class I, this class permits the appli-
cation of the standard LAMBDA method. The
input is differently though: ā and ∂2

aa F(ā) ver-
sus â and Q−1

ââ .
Class III: If the conditional baseline variance matrix is

close enough to a scaled unit matrix, one
may approximate the constrained ILS ambiguity
solution as

ǎ =arg min
a∈Zn

(
||â − a||2Qââ

+μ(l − ||b̂(a)||)2
)

(53)

This approximation has the advantage over (52)
that no restrictions are put on the baseline length.
Its computation, however, is more complex than

the standard LAMBDA method. It is somewhat
simpler though, than solving for (54).

Class IV: If the underlying unconstrained GNSS model is
not of sufficient strength, or if the baseline length
is not long enough, or if the conditional baseline
variance matrix is not close enough to a scaled
unit matrix, then the above approximate ambi-
guity solutions will not achieve a large enough
success rate. Hence, in that case one will have to
compute the constrained ILS ambiguity vector
rigorously as

ǎ =arg min
a∈Zn

(
||â−a||2Qââ

+ min
b∈Rp

H(a, b)

)

(54)

This solution can be efficiently computed by
means of the given search and shrink strategy.
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