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Abstract The thrombospondins (TSPs) are a family of five
matricellular proteins that appear to function as adapter
molecules to guide extracellular matrix synthesis and tissue
remodeling in a variety of normal and disease settings.
Various TSPs have been shown to bind to fibronectin,
laminin, matrilins, collagens and other extracellular matrix
(ECM) proteins. The importance of TSP-1 in this context is
underscored by the fact that it is rapidly deposited at the
sites of tissue damage by platelets. An association of TSPs
with collagens has been known for over 25 years. The
observation that the disruption of the TSP-2 gene in mice
leads to collagen fibril abnormalities provided important in
vivo evidence that these interactions are physiologically
important. Recent biochemical studies have shown that
TSP-5 promotes collagen fibril assembly and structural
studies suggest that TSPs may interact with collagens
through a highly conserved potential metal ion dependent
adhesion site (MIDAS). These interactions are critical for
normal tissue homeostasis, tumor progression and the
etiology of skeletal dysplasias.

K. Tan

The Midwest Center for Structural Genomics and Structural
Biology Center, Biosciences Division,

Argonne National Laboratory,

Argonne, 1L, USA

J. Lawler (D<)

Division of Experimental Pathology, Department of Pathology,
Beth Israel Deaconess Medical Center,

330 Brookline Ave., EC/CLS-503,

Boston, MA 02215, USA

e-mail: jlawler@bidmc.harvard.edu

J. Lawler
Harvard Medical School,
Boston, MA, USA

Keywords Thrombospondin - Matricellular - Extracellular
matrix - Cartilage oligomeric matrix protein

Abbreviations

TSP thrombospondin

ECM extracellular matrix

MIDAS metal ion dependent adhesion site
ADMIDAS adjacent to MIDAS

PG proteoglycan

GAG glycosaminoglycan

MMP matrix metalloproteinase

LRP low density receptor-related protein
EGF epidermal growth factor

TGFf transforming growth factor 3
LAP latency associated peptide
Introduction

The TSPs are a family of five extracellular calcium-binding
proteins. The functions of TSP-1 have been explored in the
greatest detail because it was the first to be discovered and
because it is readily purified from human blood platelets
(Chen et al. 2000). TSP-1 and -2 are similar to extracellular
matrix proteins in that they contain distinct domains that
bind to proteoglycans (PGs), membrane proteins, including
integrins, and other matrix proteins. TSP-1 is expressed at
the cell surface during tissue genesis and remodeling. In the
extracellular matrix (ECM) and at the cell surface, TSP-1
and -2 are transiently expressed to orchestrate the intermo-
lecular interactions that are essential for dynamic remodel-
ing of tissues. These properties have led to the proposal that
TSP-1 and -2, as well as the other proteins described in this
compendium of reviews, comprise a new class of proteins,
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designated matricellular proteins (Bornstein and Sage
2002). Matricellular proteins participate in development
and tissue remodeling by regulating the structure and
function of the ECM and by modulating cellular phenotype.
To accomplish these functions, matricellular proteins
interact with a wide array of proteins and PGs. Whereas
TSP-1 and -2 are archetypal matricellular proteins, it is now
clear that other TSPs have the properties of a matricellular
protein. TSP-5 (also known as cartilage oligomeric matrix
protein or COMP) affects cellular attachment and survival,
and interacts with multiple ECM molecules (Briggs and
Chapman 2002; Budde et al. 2005; Chen et al. 2007). TSP-
5 also influences chondrogenesis and affects ECM structure
through interactions with collagens, matrilins, and PGs
(Chen et al. 2007; Halasz et al. 2007; Mann et al. 2004).
The characterization of TSP-3 and -4 are in their infancy
and their complete credentials as matricellular proteins have
not been fully established.

In general, ECM proteins interact with each other to
form a structural framework that supports tissue organiza-
tion and cellular processes. The matrix provides environ-
mental and positional cues that regulate cellular behavior.
This is a dynamic process in that the cell synthesizes
proteins and PGs that comprise the matrix and proteases
that degrade it. Thus, physiological and pathophysiological
stimuli that modulate cellular phenotype lead to matrix
remodeling. Most ECM proteins probably participate in this
dynamic reciprocity to some extent; however, matricellular
proteins are principally involved in these remodeling
processes. In the tumor microenvironment, TSP-1 regulates
angiogenesis, matrix metalloproteinase 9 (MMP9) activity,
the activation of transforming growth factor 3 (TGFf3) and
metastasis (Lawler and Detmar 2004). In the growth plate
microenvironment, TSP-5 orchestrates collagen fibril for-
mation, extracellular matrix organization, and chondrocyte
survival and differentiation. In this review, we will
summarize the interactions of TSPs with ECM molecules
and discuss their role in ECM formation and degradation.

Early studies

In 1982, Lahav et al. (1982) performed experiments that
were designed to identify proteins that mediate the
interaction of platelets with ECM. In these studies, either
fibronectin or type I collagen was treated with a chemical
crosslinker and adsorbed to glass cover slips. The cover
slips were then incubated with either platelets or the
supernatant from collagen-treated platelets. With this
method, TSP-1 was found to be associated with either
fibronectin- or type I collagen-coated cover slips. Whereas
the bound protein was simply referred to as TSP because
these studies preceded the identification of other family
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members, it has been shown that platelets only contain
TSP-1 (Kyriakides et al. 2003). A direct interaction of
fibronectin with TSP-1 that is secreted from endothelial
cells was also demonstrated (Lahav et al. 1982).

In 1984, Mumby et al. (1984) observed a specific
interaction of TSP-1 with type V collagen but not with
type I, type III or type IV collagen. Interactions with
laminin, fibronectin, fibrinogen, von Willebrand factor
(VWF), Factor IXa, and Factor Xa were also detected in
this study. A subsequent study by Galvin et al. (1987)
confirmed the interaction of type V collagen with TSP-1
and showed that binding is considerably higher in the
absence of calcium ions. The authors performed the binding
assays with proteolytic fragments of TSP-1 in order to map
the type V collagen binding site. The binding of TSP-1 to
type V collagen was reported to be mediated by a 70,000-
dalton proteolytic fragment of TSP-1 that includes the
procollagen homology region, the TSRs and the type 2
repeats. Like most large ECM glycoproteins, the TSPs are
composed of multiple distinct structural and functional
domains that reflect exon shuffling during evolution
(Fig. 1) (Lawler and Hynes 1986). TSP-1, -2, -3 and -4
have N-terminal (3-sandwich domains that mediate heparin
binding (Tan et al. 2006) and references therein). The N-
terminal domain is followed by a region where the chains
are assembled into trimers (TSP-1 and -2, Subgroup A) or
pentamers (TSP-3, -4 and -5, Subgroup B). In TSP-1 and -
2, three type 1 repeats (TSRs) follow a region of homology
with procollagen that probably facilitates subunit assembly.
Many of the activities of TSP-1, including the inhibition of
angiogenesis and the activation of TGF(3, are mediated by
the TSRs (Tucker 2004; Good et al. 1990; Schultz-Cherry
and Murphy-Ullrich 1993). In TSP-1 and -2, the TSRs are
followed by three epidermal growth factor (EGF)-like
repeats. The Subgroup B TSPs lack the region of homology
with procollagen and the three TSRs, and have four EGF-
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Fig. 1 Schematic representation of the members of the TSP gene
family. TSP-1 and -2 (Subgroup A) have equivalent domain structures
and are trimeric. TSP-3, -4 and -5 (Subgroup B) assemble into
pentamers. The vertical lines represent the disulfide bonds that
connect the subunits



The interaction of Thrombospondins

179

like repeats instead of three. In all TSPs, the EGF repeats
are followed by thirteen type 3 repeats that are a series of
contiguous calcium binding sites and a C-terminal [3-
sandwich (Carlson et al. 2005; Kvansakul et al. 2004; Tan
et al. 2009). The latter EGF repeats, the type 3 repeats and
the C-terminal (3-sandwich fold into a structure that has
multiple interactions between the various types of se-
quence. This region has been designated the “signature
domain” because it is highly conserved and characteristic of
the TSPs (Carlson et al. 2005). Below, we will summarize
the interactions of ECM proteins with each TSP individu-
ally and conclude with a discussion of common features
and properties.

Thrombospondin-1

TSP-1 affects ECM structure and function through direct
interactions and through indirect effects on other compo-
nents that are secreted by the cell (Fig. 2). It affects the
composition of the extracellular matrix by activating TGFf3,
which induces the synthesis of collagens and other matrix
molecules (Wynn 2008). Fibrinogen was one of the first
proteins to be shown to bind TSP-1 and the formation of
the fibrin clot was the first demonstration that the presence
of TSP-1 can affect matrix assembly (Bale and Mosher
1986a, b). Fibrin fibrils form more rapidly in the presence
of TSP-1, and are thinner and more numerous than those
formed in the absence of TSP-1. TSP-1 is covalently bound
to fibrin clots through its TSRs by the activity of Factor
Xllla (Bale and Mosher 1986b; Panetti et al. 1999). TSP-1
can also become incorporated into ECM through an
interaction with fibronectin (Lahav et al. 1982; Leung and
Nachman 1982; Sottile and Hocking 2002). Fibronectin
reportedly binds to the N-terminal domain of TSP-1 and to
a proteolytic fragment that contains the EGF-like repeats
and the TSRs (Dardik and Lahav 1999). The existence of
two sites is consistent with data that indicates that the
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Fig. 2 The matricellular functions of TSP-1

binding of fibronectin to TSP-1 is a two step process in
which binding to one site induces a conformational change
that renders the second site available (Dardik and Lahav
1999). The fibronectin-induced conformational change in
TSP-1 promotes the interaction of TSP-1 with 331
integrin (Rodriguez-Manzaneque et al. 2001). The binding
of fibronectin to TSP-1 also stabilizes calcium-dependent
structures and protects TSP-1 from degradation (Dardik and
Lahav 1999).

TSP-1 is the only member of the TSP gene family with
the ability to activate TGF (Young and Murphy-Ullrich
2004a, b). The activation of TGF3 by TSP-1 has been
shown to involve the second TSR and the amino acid
sequence RFK has been reported to be essential (Young
and Murphy-Ullrich 2004a, b). The RFK sequence is
thought to compete with the sequence RKPK in active
TGFf for a binding site in the latency-associated protein
(LAP). The binding of TSP-1 to the LAP presumably
induces a conformational change that allows the active
domain to bind to its receptor. Whereas the precise
molecular mechanism for the activation of TGF{ by
TSP-1 is uncertain, the significance of the effect has been
demonstrated in vivo in a wide range of biological
processes including fibrosis, neoplasia and the response
to injury. Cutaneous wounds in TSP-1-null mice exhibited
decreased total and active TGFf, decreased collagen
content, decreased macrophage recruitment and delayed
wound closure (Agah et al. 2002). Consistent with this
result, anti-sense knockdown of TSP-1 decreases re-
epithelialization of wounds (DiPietro et al. 1996). By
contrast, wounds in TSP-2-null mice heal more rapidly
(Kyriakides et al. 1999). Wound healing in TSP-1 and -2
double-null mice is similar to the TSP-1-null mice indicating
that the initial deposition of TSP-1 by platelets determines
the temporal pattern of healing (Agah et al. 2002). More
effective recovery is also observed in TSP-1-null mice in the
cutaneous flap assay where tissue ischemia is rate limiting
(Isenberg et al. 2007). Consistent with the observation that
TSP-1 antagonizes tissue perfusion that is induced by nitric
oxide, TSP-1-null mice, as well as CD47-null mice, display
decreased necrosis and improved healing in this model. A
similar effect is seen with full thickness skin grafts where
those done onto wild-type mice fail, while the majority of
those performed with TSP-1-null or CD47-null mice survive
(Isenberg et al. 2008).

Repair of heart tissue after myocardial infarction
involves the formation of granualtion tissue and the
recruitment of inflammatory cells (Frangogiannis et al.
2005). Effective cardiac repair requires that the immune
response be limited spatially to the infracted myocardium.
The interface between the injured tissue and the surround-
ing unaffected myocardium is referred to as the boarder
zone. TSP-1 is expressed in the border zone where it is
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thought to limit the expansion of fibrosis in healing
myocardial infarcts (Chatila et al. 2007). TSP-1-null mice
exhibit increased inflammation and expansion of granula-
tion tissue into adjacent, non-infarcted areas. Thus, activa-
tion of TGF(3 by TSP-1 may suppress the recruitment of
inflammatory cells and secretion of cytokines in wild-type
hearts (Frangogiannis et al. 2005; Sezaki et al. 2005).

It has recently been reported that TSP-1 is deposited in
matrix-associated puncta below C2C12 skeletal myoblasts
grown in monolayer culture (Adams et al. 2008). The
incorporation into puncta is a general property of TSPs in
that Drosophila TSP and the subgroup B member, TSP-5,
are also located to these structures when they are expressed
on COS-7 cells. The incorporation of TSP-1 into these
puncta is diminished when the RGD sequence or the
potential metal ion-dependent adhesion site (MIDAS) motif
is mutated. Whereas 31 integrin does enhance the inclusion
of TSP-1 into puncta, it is not essential. How these puncta
relate to 3-D matrix assembly in vivo remains to be
determined (see below).

Proteoglycans are a major constituent of the ECM and
also function as cell-surface receptors for a wide range of
molecules. In most cases, the binding of TSPs to PGs is
mediated by the glycosaminoglycan (GAGs) side chains,
which, in the form of heparin, were one of the first binding
partners of TSP-1 to be identified (Lawler et al. 1978).
Quantitative analysis revealed that the N-terminal domain
of TSP-1 binds to heparin with high affinity and crystal
structures of the N-terminal domain in complex with
various-sized heparins have been reported (Tan et al.
2006, 2008). These structures reveal that amino acids
R42, R76 and R77 are important for heparin binding and
that heparin can bridge two N-terminal domains in multiple
ways. Heparin also binds to the TSRs, however, the
significance of this interaction has been debated because it
may not be of sufficient affinity to occur in physiological
salt concentrations (Panetti et al. 1999; Yu et al. 2000). An
additional site for heparin binding is present in the signature
domain because a recombinant protein that lacks both the
N-terminal domain and the TSRs is retained on heparin-
Sepharose columns (Lawler et al. 1992). In addition, TSP-
5, which lacks the N-terminal domain and the TSRs, binds
heparin and the PG aggrecan (see below).

TSP-1 binds to heparan sulfate with affinities of 180—
262 nM, depending on the tissue source of the heparan
sulfate (Herndon et al. 1999). The affinity of TSP-1 for
chondroitin sulfate is 235-648 nM. Through interactions
with these GAGs, TSP-1 binds to syndecan-1, -3 and -4,
perlecan, cerebroglycan, and versican (Elzie and Murphy-
Ullrich 2004; Ferrari do Outeiro-Bernstein et al. 2002;
Herndon et al. 1999; Kuznetsova et al. 2006). Proteogly-
cans function as receptors for TSP-1 in vitro, and TSP-1
and syndecan-1 display similar tissue distributions during
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murine development (Adams and Lawler 1994; Corless et
al. 1992; Sun et al. 1992). The pro-angiogenic effects of the
N-terminal domain of TSP-1 are mediated by syndecan-4
on endothelial cells (Nunes et al. 2008). The interaction of
TSP-1 with decorin involves the binding of amino acids 61
to 95 of TSP-1 to the dermatan side chains and the binding
of a yet-to-be determined domain with the core protein
(Merle et al. 1997; Winnemoller et al. 1992). Taken
together, the data indicate that PGs are essential mediators
of TSP-1 function.

The regulation of extracellular proteases is a critical
component of ECM remodeling. TSP-1 inhibits the activity
of plasmin, urokinase plasminogen activator, neutrophil
elastase, and MMPs (Anonick et al. 1993; Hogg 1994;
Rodriguez-Manzaneque et al. 2001). The regulation of
MMPs by TSP-1 contributes to the regulation of angiogen-
esis and tumor cell invasion (Robinet et al. 2008;
Rodriguez-Manzaneque et al. 2001). TSP-1 reportedly
mediates the uptake and clearance of MMPs and thus
reduces tumor cell invasion through Matrigel (Robinet et al.
2008). Through an interaction that involves the type 3
repeats, TSP-1 also binds to and inhibits the activity of
cathepsin G (Hogg et al. 1993). The ability of TSP-1 to
inhibit a broad spectrum of proteases may enable it to
protect and stabilize newly formed ECM during tissue
remodeling. The phenotype of TSP-2-null mice is due in
part to its interaction with MMPs (see below).

Thrombospondin-2

The importance of TSP-2 for collagen matrix assembly
can be seen in the skin and tendon of TSP-2-null mice
(Kyriakides et al. 1998). The collagen fibrils in the skin
are less tightly packed and less organized as compared to
wild-type skin. The collagen fibrils in the tendon of the
TSP-2-null mice are larger, have irregular contours and
display a wider size distribution than their wild-type
counterparts. Analysis of heterozygous mice reveals that
these changes in collagen structure are directly correlated
with gene dose. The skin of TSP-2-null mice is more
elastic and the tails display greater flexibility. TSP-2-null
mice also exhibit increased total bone density and cortical
thickness.

The effects of TSP-2 on collagen fibrils appear to reflect
both direct effects of TSP-2 on fibrillogenesis and more
global effects on cellular phenotype. In the hind limb flexor
tendon of TSP-2-null mice, fibroblast-associated compart-
ments that host collagen fiber assembly are less organized
than those of wild-type mice (Bornstein et al. 2004). The
fibroblast membrane processes that outline these compart-
ments are shorter and more variable in orientation. In
addition, some fibroblasts appear to be undergoing apopto-
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sis, suggesting that TSP-2 promotes cell survival. The
observation that TSP-2-null skin fibroblasts display defec-
tive cellular adhesion to vitronectin, type I collagen, TSP-2
and fibronectin suggests that TSP-2 also affects cellular
phenotype (Bornstein and Sage 2002; Kyriakides et al.
1998). The cells that did attach displayed a significant
defect in their ability to spread and organize their actin
cytoskeleton. Consistent with a decreased ability of TSP-2-
null fibroblasts to organize the cytoskeleton, they also
display a decreased ability to contract collagen gels
(Maclauchlan et al. 2009). These changes in adhesion and
spreading correlated with an increase in the amount of
MMP?2 in the conditioned media of TSP-2-null fibroblasts
(Yang et al. 2001). Both TSP-1 and -2 are cleared from the
extracellular environment though an interaction with low
density lipoprotein receptor-related protein (LRP). This
process results in the concomitant uptake and clearance of
proteins that bind to TSP-1 and -2, including MMP2,
MMP9 and VEGF (Greenaway et al. 2007; Maclauchlan et
al. 2009). Cutaneous wounds in TSP-2-null mice exhibit
increased levels of these proteins, as well as increased
levels of tissue inhibitors of metalloproteinase-1 and -2
(Maclauchlan et al. 2009). The increase in extracellular
MMP2 probably decreases collagen fibril stability. An
effect of increased MMP2 in TSP-2-null mice is seen in
the cervix where premature softening during pregnancy is
associated with an up to 19-fold increase in MMP2
(Kokenyesi et al. 2004).

Thrombospondin-3

Although the characterization of TSP-3 has just begun,
its similarities to other TSPs suggest that it will have
many common functions with other family members.
TSP-3 is principally expressed in the lung, cartilage and
brain at the latter stages of development of mouse and
chicken embryos (Iruela-Arispe et al. 1993; Qabar et al.
1995; Tucker et al. 1997). In cartilage, TSP-3 is expressed
in the early proliferative zone and hypertrophic cartilage.
TSP-3 is also expressed in osteoblasts and TSP-3-null
mice display accelerated bone maturation (Hankenson et
al. 2005). Chondrocytes in the growth plate of TSP-3-null
mice exhibit a significant decrease in columnar alignment
(Posey et al. 2008b). Whereas single knockouts of TSPs
do not affect stature, mice that lack TSP-3, TSP-5 and
type IX collagen display a 20% reduction in limb length
(Posey et al. 2008b). These data suggest that TSP-3
contributes to ECM structure and function, however,
direct binding of TSP-3 to ECM molecules has not been
demonstrated. Like other TSPs, TSP-3 does bind heparin,
suggesting that it is able to bind to proteoglycans (Qabar
et al. 1994).

Thrombospondin-4

TSP-4 was first identified in Xenopus laevis embryos as a
constituent of the myotome and skeletal muscle (Urry et al.
1998). It is also expressed in tendon where it can form
mixed penatmers with TSP-5 (Hecht et al. 1998). TSP-4
expression is highly induced at the neuromuscular junction
following injury and it promotes neurite outgrowth of chick
retinal neurons in vitro (Arber and Caroni 1995). The effect
of TSP-4 on neurite outgrowth may require co-factors or be
species-dependent because purified TSP-4 does not support
neurite outgrowth of embryonic murine retinal neurons
(Dunkle et al. 2007). A caveat here is that the TSP-4 was
not purified in the presence of calcium. This may have
resulted in an irreversible change in conformation like that
seen in TSP-1 because both proteins have a free sulthydryl
group in their C-terminal globular domains (Huang et al.
1997). Addition of purified TSP-4 to laminin significantly
promotes neurite outgrowth as compared to substrates
covered with laminin alone. TSP-4 also increased adhesion
of retinal neurons to fibronectin or laminin. These results
suggest that TSP-4 affects the organization of ECM
proteins to enhance their activity, or activates signal
transduction pathways that synergize with those that are
activated by ECM proteins. A role for TSP-4 in the
remodeling of the central nervous system is supported by
comparative genomic studies that show that TSP-2 and -4
are more highly expressed in the brains of humans as
compared to those of our close primate relative, chimpan-
zees (Caceres et al. 2007). {See review by Eroglu in this
issue}

Narouz-Ott et al. (2000) have reported the results of
binding assays of TSP-4 with various ECM proteins.
Binding to collagen type I, II, III, and V is observed in
the presence of zinc, but not calcium or EDTA. A similar
pattern of binding is observed with intact TSP-4 or with the
signature domain. In addition, the signature domain of
intact TSP-4 is observed to associate with the N- and C-
terminal ends of type I collagen by electron microscopy
(Narouz-Ott et al. 2000). In a minority of cases, the TSP-4
appears to be bound to internal sites within the collagen
type I molecules. In these studies, a similar distribution of
bound TSP-5 molecules is observed. Whereas comparable
levels of TSP-4 binding to laminin are observed in the
presence and absence of cations, zinc and calcium enhance
the binding of TSP-4 to fibronectin and matrilin-2 (Narouz-
Ott et al. 2000).

Thrombospondin-5

Whereas the function of TSP-5 is not well understood, it is
clear that it interacts with other cartilage extracellular
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matrix proteins and PGs, including fibronectin, collagen I,
II and IX, matrilin-3, and aggrecan (Fig. 3) (Briggs and
Chapman 2002; Budde et al. 2005; Chen et al. 2007; Di
Cesare et al. 2002; Thur et al. 2001). The physiological
relevance of these interactions is supported by the fact that
TSP-5 colocalizes with fibronectin, matrilin-3 and colla-
gens in vivo, and by the fact that mutations in TSP-5,
collagen IX, and matrilin-3 result in multiple epiphyseal
dysplasia (Briggs and Chapman 2002; Hecht et al. 2005).
Whereas the interaction of TSP-5 with fibronectin and
various collagens involves the C-terminal domain, like
TSP-4, these interactions display different dependencies on
divalent cations (Di Cesare et al. 2002; Holden et al. 2001;
Rosenberg et al. 1998). Manganese and calcium support the
binding of TSP-5 to fibronectin but not to collagens.
Binding to collagens requires the presence of zinc or
nickel. Divalent cations may affect these interactions
through direct effects on the C-terminal domain or by
inducing conformational changes in the type 3 repeats that,
in turn, have an impact on the orientation or conformation
of the C-terminal domain.

Electron microscopic studies have revealed that TSP-5
binds to discrete sites within the collagen and procollagen
molecules (Rosenberg et al. 1998). The C-terminal domain
of TSP-5 is observed to associate with the 300 nm-long
type I and II collagen molecules at the two ends and at sites
that are approximately one-third and two-thirds of the
length of the molecules. TSP-1 also reportedly binds to the
ends of collagen L, I1I, IV and V, and to a site approximately
one-third of the length from the ends of collagen V (Galvin
et al. 1987). Thus, at least some of the TSP-1 and -5
binding sites in collagens fall in the triple-helical regions.
The binding site for TSP-5 within collagen IX is different
from that in collagen II because TSP-5 has been reported to
bind to the NC4 and other noncollagenous domains of
collagen IX (Holden et al. 2001; Pihlajamaa et al. 2004).
However, the binding site within TSP-5 for both collagens
appears to be the same (Holden et al. 2001). In electron
micrographs, TSP-1 molecules adopt multiple orientations
with either the N- or C-terminal, or the stalk region
associating with collagens (Galvin et al. 1987). The
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majority of interactions appear to involve the stalk region.
Taken together, it appears that the subgroup B TSPs bind to
collagen through their signature domains, while TSP-1 is
able to bind through this domain and others. The TSRs,
which are not present in the subgroup B TSPs, may serve as
one of the additional sites. The observation that the binding
of TSP-1 to collagens is inhibited by calcium suggests that
calcium-dependent folding of the signature domain may
limit accessibility of the collagen binding site in the stalk
region when the protein is in the calcium-bound conforma-
tion (Galvin et al. 1987). This conclusion is consistent with
the observation that the binding of collagen V to the stalk
region is not affected by calcium.

TSP-5 also interacts with GAG and PG constituents of
the ECM. The affinity of TSP-5 for GAGs that is
commonly found in cartilage, tendon and ligament has
been determined using affinity co-electrophoresis in the
presence and absence of calcium (Chen et al. 2007). In the
presence of calcium, TSP-5 bound to low molecular weight
heparin with a comparable affinity to that of TSP-1
(41 nM). TSP-5 also binds to chondroitin 6 sulfate (C6S),
chondroitin 4 sulfate (C4S) and dermatan sulfate (DS),
while the binding to heparan sulfate was weaker and no
binding to keratan sulfate was observed. Depletion of
calcium reduced the affinity of TSP-5 for heparin to a Ky
of 477 nM and an interaction with C6S could no longer be
detected. Aggrecan is a major secreted chondroitin sulfate
PG of cartilage. Soluble C4S and C6S, as well as heparin,
are able to inhibit the binding of TSP-5 to aggrecan, with
the level of inhibition paralleling the affinity of TSP-5 for
these GAGs (Chen et al. 2007). These studies also
demonstrated that a recombinant version of the signature
domain of TSP-5 binds to aggrecan.

The ability to partner with multiple matrix constituents
raises the possibility that TSP-5 participates in ECM
assembly by forming a molecular bridge between the
various matrix components or between the matrix and the
cell surface (Budde et al. 2005). A role for TSP-5 in matrix
remodeling is suggested by the observations that its
expression is up-regulated by subjecting chondrocytes to
long-term cyclic compression (Giannoni et al. 2003).
Furthermore, over-expression of wild-type TSP-5 results
in less organized collagen fibrils with a greater number of
electron dense nodules (Dinser et al. 2002). These data
suggest that TSP-5 is involved in collagen fibril organiza-
tion. Indeed, pentameric TSP-5 has recently been shown to
promote collagen fibrillogenesis(Halasz et al. 2007). These
results are consistent with the observation that the growth
plate is disorganized in the TSP-5-null mice (Posey et al.
2008b). The ability of TSP-5 to bridge ECM proteins,
including type II collagen may be important for the
formation of inclusions of endoplasmic reticulum in
pseudoachondroplasia (Briggs and Chapman 2002; Hecht
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et al. 2005). The inclusions that form in affected individuals
eventually fill the cytoplasm of the chrondrocytes, causing
them to die. Deconvolution microscopy indicates that ECM
begins to assemble in the ER (Merritt et al. 2007).

Abnormal matrix structure is observed when some
naturally-occurring mutant forms of TSP-5 are expressed
(Dinser et al. 2002; Schmitz et al. 2006). This effect is
observed whether or not the mutant protein is retained in
the ER. When mutants that are retained in the ER are over-
expressed, reduced TSP-5 secretion may underlie the
observed defects in matrix structure (Schmitz et al. 2006);
however, for mutants that are not retained, the defect is
likely to arise from altered interaction with cell surface and
matrix proteins. The decrease in growth-plate organization
that has been observed in the TSP-5-null mice may reflect a
defect in matrix structure (Posey et al. 2008a).

Potential common features of the interaction of ECM
proteins with TSPs

Whereas TSP-1 may have multiple collagen-binding sites,
the subgroup B TSPs appear to bind collagen through their
signature domains. The specific molecular interactions that
mediate the association of collagens with TSPs are
unknown, although recent structural studies identify an
intriguing possibility. Crystal structures of the C-terminal
regions of TSP-1, -2 and -5 reveal that there are three
highly conserved Ca®" binding sites (designated Cal, Ca2
and Ca3) in the C-terminal domain of these molecules, in
addition to the predicted Ca*" binding sites that are
associated with the type 3 repeats. The first two Ca®" ions
(Cal and Ca2) in the C-terminal domain are only about
3.8-4.3 A apart, forming an extended Ca®" binding site.
The third Ca®" is about 8.4 A to 9.7 A away from the first
two. The triangular geometry of these three Ca®' ions
seems to be quite conserved and all three Ca”" sites are
solvent-exposed (Fig. 4). Interestingly, the molecular con-
tacts that involve Cal and Ca2 in the crystals of TSP-1 and
-5 suggest that the extended Ca®'-binding site may act like
a metal ion-dependent adhesion site (MIDAS) (Kvansakul
et al. 2004; Tan et al. 2009). In the structure of the C-
terminal region of TSP-1, an aspartic acid (D825) from type
3 repeat 7C of a neighboring symmetry-related molecule
interacts with the extended Ca®" binding site in such a way
that it completes the coordination of Cal and contributes one
coordinate to Ca2 (Kvansakul et al. 2004). The aspartic acid
ligand also forms multiple hydrogen bonds with residues
forming or surrounding the extended Ca®’-binding site,
including a residue (Q954) from a 31 {32 loop. This loop
is not a part of the extended Ca**-binding site. However, in
TSP-1, the B1_P2 loop itself comprises an extra Ca®'-
binding site on the C-terminal domain (Kvansakul et al.

=

4C repeat

Ty £

[
Q £

Q619 = e,

4%

e J1_[32 Toop

%

Fig. 4 The binding of a mimetic ligand to the MIDAS-like motif of
TSP-5. a Stereo ribbon drawing of the MIDAS-like motif of TSP-5 and
its interaction with a mimetic ligand (E341) from type 3 repeat 4C of a
neighboring molecule in the crystal structure. The MIDAS-like motif is
on the top of C-terminal domain and includes an extended Ca®" (purple
spheres) binding site involving Cal and Ca2 of C-terminal domain. The
Ca3 binding site is next to the extended Ca site, sharing an aspartic acid
residue, D593. The adjacent Ca site may form an ADMIDAS-like motif
as discussed in the text. A water molecule is shown as a green sphere
and marked with a W. There are two other water molecules that are
required to complete Ca2 and Ca3 coordinates and are not resolved in
the TSP-5 structure due to low-resolution limit. b A zoom in view of
MIDAS-like motif and the interacting glutamic acid. For clarity, the
view is slightly different from that in Fig. 4a. The figure was prepared
using the program PyMOL (http://www.PyMOL.org)

2004). Type 3 repeat 7C is at the beginning of the
recombinant TSP-1 construct and the repeat has significant
conformational differences from that in its highly conserved
counterparts, TSP-2 and -5.

The MIDAS-like motif of TSP-5 is shown in Fig. 4 and
is discussed in a previous publication (Tan et al. 2009). In
the crystal structure of the signature domain of TSP-5,
molecular packing again shows intermolecular interactions
that involve the MIDAS-like motif. In TSP-5, the side-
chain of a glutamic acid from type 3 repeat 4C (E341)
interacts with the extended Ca®"-binding site of a neigh-
boring TSP-5 molecule. It seems that the glutamic acid
primarily interacts with Cal and weakly binds to Ca2,
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having less contact with other protein atoms from the
MIDAS-like motif, as compared to the D825 of TSP-1.
There are no residues from the 31 32 loop of TSP-5 that
interact with the E341. The 31 32 loop of TSP-5, as well
as that in TSP-2, does not host a Ca®*-binding site (Carlson
et al. 2005; Tan et al. 2009). The fact that all three TSP-5
molecules in one asymmetric unit are independently
involved in such MIDAS-mediated interactions with their
neighboring molecules shows a strong tendency for the
MIDAS-like motif of TSP-5 to participate in glutamic acid-
centered ligand binding. The primary sequences that form
the extended Ca®'-binding site are highly conserved
(T592DDDYAG in TSP-5) throughout the members of the
TSP gene family and the MIDAS-like motif is expected to
also exist in the two other family members, TSP-3 and -4,
for which structures are not currently available. All TSP
family members may utilize the MIDAS-like motif in
ligand binding by accepting a glutamic acid or even an
aspartic acid from the ligand. This type of interaction is
similar to the way in which collagen II binds to the integrin
«2f31 and ICAMs bind to «Lf32 (Arnaout et al. 2002;
Emsley et al. 2000; Shimaoka et al. 2003; Song et al. 2005).
Since all five human TSPs have been reported to bind to
collagen, it is possible that TSP/collagen binding is in part
through the highly conserved MIDAS-like motif in the C-
terminal globular domain.

The potential MIDAS-like motifs of the TSPs have both
similarities and differences with those of integrins. These
sites in the TSPs are unique in that they contain two calcium
ions that interact with the acidic amino acid from the ligand,
as opposed to the single divalent metal ion (Mg®*, Mn*",
Co*" etc.) (Arnaout et al. 2002; Luo et al. 2007). In contrast,
Ca”" seems to be a low affinity, or even inhibitory cation for
the MIDAS site in the integrins. The extended cation binding
sites in the MIDAS-like motifs of the TSPs may permit
variation of ligand-binding modes, such that an aspartic acid
mediates the interaction in TSP-1 and a glutamic acid
mediates the interaction in TSP-5. In the integrin (3 subunits,
an additional cation-binding site that is occupied by a Ca®" is
designated as ADMIDAS for adjacent to MIDAS. This
cation binding site is reported to regulate the activity of the
MIDAS (Valdramidou et al. 2008). A similar site, Ca3 is
found in the TSPs close to their MIDAS-like motifs (Tan et
al. 2009). It is currently unknown whether Ca3 of the TSPs
can function like the ADMIDAS of the integrins to regulate
ligand docking.

Conclusions and future directions
Matricellular proteins act at the interface of the ECM and

the cell surface to facilitate tissue remodeling. They provide
environmental cues to cells, which, in turn, modulate the
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composition of proteins that that are secreted into the
extracellular environment. TSPs participate in the forma-
tion, organization and turnover of the ECM. Their multi-
meric structure enables them to act as bridges between
fibers or between the cell surface and fibrillar structures.
For TSP-2 and -5, experimental evidence that these proteins
affect collagen fibril assembly has already been obtained.
At the cell surface, early collagen fibrils are associated with
extensions of the plasma membrane called fibripositors
(Canty and Kadler 2005). Once secreted, collagen fibrils
enlarge through lateral and end-to-end associations. It has
been proposed that five collagen molecules associate to
form a 3-D fiber (Perumal et al. 2008; Herr and Farndale
2009). Thus, the pentameric TSPs may facilitate collagen
fibrillogenesis by co-localizing five collagen molecules
(Halasz et al. 2007). 31 integrins have also been reported
to participate in collagen fibrillogenesis (Anonick et al.
1993; Halasz et al. 2007). Since collagen matrix assembly
is initiated at the cell surface, it will be interesting to
determine whether or not integrin binding activity of the
TSPs is needed for matrix assembly (Bornstein et al. 2004;
Canty and Kadler 2005). Thus, a defect in the ability of
TSPs to engage integrins may affect collagen fibril
formation in fibripositors. The incorporation of TSP-1 into
the puncta that form below cells is diminished when the
RGD sequence is mutated to VGD (Adams et al. 2008). It
is possible that these puncta are a 2-D manifestation of sites
for matrix assembly at the cell surface.

The structural studies suggest that the potential MIDAS-
like motif of the TSPs functions as a binding site for
collagen. Biochemical and structural studies are needed to
establish that the binding of TSPs to collagen does indeed
parallel the interaction of collagen to the MIDAS of
integrins. These studies are best performed with subgroup
B TSPs because experiments performed with TSP-1
suggest that the subgroup A TSPs have multiple collagen
binding sites. The importance of the MIDAS can be
established by showing that site-directed mutagenesis of
the calcium-binding residues within the MIDAS affects
collagen binding. In addition, collagen peptide libraries
could be used to ask if a glutamic acid residue is required
for TSP binding. A determination of the molecular basis for
the zinc dependence of TSP binding to collagen should also
be a goal of future studies. Does zinc occupy the MIDAS of
the TSPs and directly participate in collagen binding or
does it regulate the activity of the MIDAS? Further studies
are also needed to determine if the ADMIDAS of the TSPs
is functional. It will also be interesting to determine if zinc
affects collagen binding by occupying this site.

Taken together, the data indicate that the TSPs serve as
extracellular adapter molecules that are able to bind to a wide
range of ECM proteins. The diversity of these interactions
enables the TSPs to guide tissue remodeling in a variety of
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settings. The importance of TSP-1 in this context is
underscored by the fact that it is rapidly deposited by platelets
at the sites of tissue damage. An association of TSPs with
collagens has been known for over 25 years, and the
disruption of the TSP-2 gene in mice leads to collagen fibril
abnormalities. Recent biochemical studies have shown that
TSP-5 promotes collagen fibril assembly and structural
studies have shed new light on how the TSPs may interact
with collagen (Kvansakul et al. 2004; Tan et al. 2009).
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