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Abstract. The information transfer rate (ITR) of steady-state visual evoked
potential (SSVEP)-based brain-computer interfaces (BCIs) has been signifi-
cantly improved in the past few years. Recent studies have demonstrated the
efficacy of advanced signal processing methods, which incorporate preliminarily
recorded individual training data in SSVEP detection. However, conducting
experiments for collecting training data from each individual is cumbersome
because it is time-consuming and may cause visual fatigue. To simplify the
training procedure, this study employs a session-to-session transfer method,
which uses transfer templates obtained from datasets collected from the same
subjects on a different day. The proposed approach was evaluated with a
40-class SSVEP dataset from eight subjects, each participated in two sessions on
two different days. Study results showed that the proposed transfer method
achieved significantly higher performance than conventional method based on
canonical correlation analysis (CCA). In addition, by employing online adap-
tation, the proposed method reached high performance that is comparable with
the most efficient approach in previous studies. These results indicate the fea-
sibility of a high-performance SSVEP-based BCI with no or little training.
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1 Introduction

Steady-state visual evoked potentials (SSVEPs) are the brain’s electrical responses to
flickering visual stimuli. SSVEPs have been widely used in electroencephalogram
(EEG)-based brain-computer interface (BCI) systems due to the advantage of high
information transfer rate (ITR) [1, 2]. In SSVEP-based BCls, users are required to gaze at
one of multiple visual stimuli tagged with different stimulation properties such as fre-
quencies and/or phases [1]. A target visual stimulus can be identified through analyzing
the elicited SSVEPs using target identification methods. In this way, an SSVEP-based
BCI can translate intentional brain activities into commands to control external devices.
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Performance of SSVEP-based BCIs can be attributed to several factors including
stimulus presentation, multiple target coding, and target identification algorithm [3]. In
recent studies, advanced stimulus presentation and target coding methods significantly
increased the number of stimuli that can be presented on a computer monitor [3-6]. For
instance, 32-target and 40-target spellers that employed hybrid frequency and phase
coding were designed [3, 6, 7]. The target identification method also plays an important
role in improving the performance of SSVEP-based BCIs. Recent advances in signal
processing methods, which incorporate individual training data, have been proposed to
improve the performance of SSVEP detection [8]. Although these methods achieved
better performance than conventional training-free methods, the training procedure can
be time consuming and may cause visual fatigue because multiple trials have to be
recorded before online operation.

To address this issue, Yuan et al. employed a transfer-learning approach, which
transfers SSVEP templates from existing subjects to a new subject, and demonstrated
the effectiveness of the method to improve the target identification accuracy compared
with other training-free approaches [9]. However, since it is known that there is
individual difference in anatomical shape and extent of area V1, where the source of
SSVEPs is located at [10, 11], the performance improvement of transferring SSVEP
data from different subjects might be limited. Therefore, this study employs a
session-to-session transfer method (i.e., training data collected from the same subjects
on a different day) to reduce training time and investigated the performance of the
proposed approach in terms of the classification accuracy and ITRs.

2 Material and Method

2.1 Experimental Design

EEG data were recorded in a simulated online BCI experiment. 40 visual stimuli were
presented on a 23.6-in. liquid-crystal display screen with a resolution of 1,920 X 1,080
pixels and a refresh rate of 60 Hz. The stimuli were arranged in a 5 X 8 matrix, and
tagged with 40 different frequencies (8.0 Hz to 15.8 Hz with an interval of 0.2 Hz)
with 4 different phases (0, 0.5, , 1.5m). The stimulation frequencies and phases were
generated using the joint frequency-phase modulation (JFPM) method [7].

Eight healthy subjects with normal or corrected-to-normal vision participated in this
study. Each subject performed the experiment on two different days. All subjects read
and signed an informed consent form before participating in the experiment. The
subjects sat in a comfortable chair positioned approximately 70 cm from a computer
monitor, and gazed at one of the visual stimuli. From each subject, six 5 s-long data
and fifteen 1 s-long data of SSVEPs for each visual stimulus were recorded in two
experiments conducted on different days. The intervals of two experiment days differed
across individuals. After stimulus offset, the screen was blank for 0.5 s before the next
trial began. EEG data were acquired using a Synamps2 system (Neuroscan, Inc.) at a
sampling rate of 1,000 Hz. Nine electrodes placed over the parietal and occipital areas
(Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) were used to measure SSVEPs.
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2.2 Target Identification

This study employed the canonical correlation analysis (CCA) based target identifi-
cation algorithm with individual calibration templates and transferred templates from a
different day [8, 9]. The online transferred template-based CCA proposed by Yuan
et al., which updates the transferred templates adaptively in online operation, was also
tested in this study [9]. In addition, we tested the standard CCA, which is an unsu-
pervised approach, as a comparative method. In all methods, filter bank analysis was
applied [12].

Standard CCA. CCA has been widely used to detect the frequency of SSVEPs [13,
14]. In the CCA-based SSVEP detection method, canonical correlation between mul-
tichannel EEG signals X € RY*™ and sine-cosine reference signals ¥ € R*M>Ms are
calculated as:

E[wIXY"w,]

p(X,Y) = max,, . (1)

\/E [WJZXXTWX] -E [wyTYYTwy]

Here, N., Ny and N;, denote the number of channels, the number of sampling points,
and the number of harmonics being considered, respectively. The maximum of p with
respect to w, and w, is the maximum canonical correlation. The reference signal ¥,
corresponding to the stimulus frequency f,, are defined as:

sin(27f,1)
cos(2xf; 1)
Y, = : ,t:[l,z,...,Nx}i. (2)
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Where, f; is the sampling frequency. The frequency of the reference signals with
maximal correlation was selected as the frequency of the SSVEPs.

CCA with Individual Training Data. Our recent studies proposed an extended
CCA-based method which incorporates individual training data [3, 8, 15]. This method
exploits important signal characteristics from existing training data for improving the
target identification. In this method, a spatial filter W that maximizes the

signal-to-noise ratio (SNR) of training set X, for n-th target was first obtained by
performing CCA with )A(n and Y;,. Also, a spatial filter w,, that maximizes the SNR of
test EEG data X was obtained by performing CCA with X and Y, . After that, Pearson’s

correlation coefficients between test data X and training data )A(n projected onto these
two spatial filters and CCA with test data X and reference signal Y, were calculated as:
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Where, r(a,b) indicates the Pearson’s correlation analysis between two
one-dimensional signals @ and b. The following ensemble classifier can be used as the
final feature in target identification:

pu=3 " sign(ri) 72, )

The template X,, that maximizes the weighted correlation value p,, is selected as the
reference signal corresponding to the target. In this study, two training datasets were
used to make separate templates to evaluate the intra-day and inter-day variability in the
SSVEP detection. These methods are termed individual template-based CCA (it-CCA)
and transfer template-based CCA (tt-CCA), respectively [9].

Online transfer-template CCA (ott-CCA). In this study, the online tt-CCA
(ott-CCA) proposed by Yuan et al. was also tested to investigate the efficacy of
online adaptation in session-to-session transfer SSVEP detection [9]. The ott-CCA
updates the transferred templates in online operation as follows: (1) Calculate the
difference between the first and second largest feature value p, among all candidate
targets, (2) If the difference is higher than a pre-defined threshold thr, update the
template via Eq. (5).

~ 1 ~
X = (miR 1 x) (5)
n

where X and X" are old and new templates for n-th target. m®'4 is the number of

the trials that have been used to get the averaged template and m)"™" = mgld + 1.
According to the previous study [9], the threshold #hr was set to 0.1.

Performance Evaluation. In this study, the performance of aforementioned methods
was tested with the test dataset, which consisted of nine (the seventh to fifteenth) trials
from day 2. To evaluate the performance of session-to-session transfer learning
approaches, we prepared two separate templates from first six trials from day 2 for
it-CCA, and all six trials from day 1 for tt-CCA.

The performance was evaluated by the target identification accuracy and infor-
mation transfer rate (ITR) calculated as [16]:

Ny —1 T

ITR = <log2Nf+Plog2P+(l )logz{l _PD X <6O> (6)
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where Ny is the number of visual stimulus (i.e., Ny = 40 in this study), P is the target
identification accuracy, and T (seconds/selection) is the average time for a selection.
This study calculated the performance with different T (Target gazing time: 0.1 s to
1.0 s with an interval of 0.1 s; Gaze shifting time: 1.0 s).

3 Results

Figure 1 shows the averaged accuracy of target identification and the ITR across subjects
with different data lengths. In general, template-based CCA methods outperformed the
filter bank CCA (FBCCA) regardless of the data length. One-way repeated measure
analysis of variance (ANOVA) showed there was significant difference in the target
identification accuracy between four methods under all data length (p < 0.05). Although
the performance of tt-CCA was lower than that of it-CCA, tt-CCA significantly improved
the performance over FBCCA. With longer data length (e.g., >0.6 s), ott-CCA signifi-
cantly improved the accuracy over tt-CCA (ott-CCA vs. tt-CCA; 0.6 s: 82.50 £ 4.42 %
vs. 78.54 £ 4.20 %, p < 0.05, 0.7 s: 89.97 £ 3.02 % vs. 85.59 £ 3.42 %, p < 0.05,
0.8 s: 93.30 £ 2.42 % vs. 90.56 £ 2.89 %, p <0.05, 0.9s: 94.79 £ 1.77 % vs.
92.43 £ 2.50 %, p =0.05, 1.0 s: 95.03 £ 2.02 % vs. 92.85 £+ 2.35 %, p < 0.05).
Although there was significant difference in the accuracy between ott-CCA and it-CCA,
ott-CCA achieved comparable accuracy to it-CCA (ott-CCA vs. it-CCA; 0.9 s:
9479 £ 1.77 % vs. 9632 £ 1.67 %, p<0.05 1.0s: 9503 +£2.02% vs.
96.88 £+ 1.41 %, p < 0.05). The difference of ITRs between these methods was con-
sistent with that of the accuracy. The data length corresponding to the highest ITR was
different for each method (FBCCA: 1.0 s, 92.451 4+ 5.26 bits/min, it-CCA: 0.7 s,
164.38 £ 8.93 bits/min, tt-CCA: 0.8 s, 147.16 £ 7.68 bits/min, ott-CCA: 0.8 s,
155.10 £ 6.84 bits/min).
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Fig. 1. Averaged accuracy of target identification and ITRs across subjects with different data
lengths. The error bars indicate standard errors.
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Fig. 2. Amplitude spectra of SSVEP signals at 10 Hz recorded from different days for each
subject. The dash lines indicate the fundamental and harmonic frequencies (Color figure online).

4 Discussions

To compare the difference of SSVEP characteristics recorded from different days, the
amplitude spectra of SSVEPs were calculated by the fast Fourier transform (FFT).
Figure 2 depicts examples of the amplitude spectra of single-channel SSVEPs at 10 Hz
for all eight subjects and the average spectrum. The spectra show that the fundamental
and harmonics frequency components have higher amplitude than the background EEG
signals. Interestingly, in two out of eight subjects (Subjects 6 and 7), the amplitude at
the second harmonic frequency was higher than that at the fundamental frequency on
both days. Despite of this consistency in the fundamental and harmonic components in
response to flickering visual stimuli, background EEG signals are different between
different days. Therefore, to improve the performance of session-to-session transfer
learning in SSVEP-based BCls, background signals should be removed prior to CCA.
Although it might be nearly impossible to put electrodes on exactly the same location
between different days, the CCA-based spatial filtering could enhance the performance
of template matching by extracting components being correlated with artificially
generated reference signals.

The BCI performance in the present study showed that tt-CCA can achieve sig-
nificantly higher target identification accuracy and ITR than FBCCA. Although the
performance of tt-CCA was lower than it-CCA, it can be improved to a comparable
level as it-CCA by employing the online adaptation (ott-CCA) with long data length.
These results indicate that collecting training data was no longer required to optimize
the performance of SSVEP-based BCIs since after the first run. By combining
subject-to-subject transfer template [9] with the session-to-session transfer learning,
higher BCI performance could be obtained without any preliminary experiment to
record training data.
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Conclusion

This study showed that a session-to-session transfer method could facilitate the training
procedure in an SSVEP-based BCI using individual calibration data. In addition, the
adaptive approach can further optimize individual templates while users are operating
the system. These findings suggest that session-to-session transfer is efficient for
implementing a high-speed SSVEP-based BCI system with zero training.
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