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1 Introduction

Classification of Symmetry Protected Topological Phases has been a subject of intensive

activity over the last few years. In the case of free fermions, a complete classification has

been achieved in [1, 2] using such ideas as Anderson localization and K-theory. In the case

of bosonic systems, all SPT phases are intrinsically interacting, so one has to use entirely

different methods. Interactions are also known to affect fermionic SPT phases [3–5, 8].

Recently it has been proposed that cobordism theory can provide a complete classification

of both bosonic and fermionic interacting SPT phases in all dimensions. This improves on

the previous proposal that group cohomology classifies interacting bosonic SPT phases [6],

while “group supercohomology” [7] classifies interacting fermionic SPT phases. For bosonic

systems with time-reversal and U(1) symmetries the cobordism proposal has been tested

in [9] and [10] respectively. Cobordism theory has been found to describe all known bosonic

SPT phases with such symmetries in D ≤ 3. In this paper we test the proposal further by

studying fermionic SPT phases with Z2 symmetry.

The Z2 symmetry in question can be either unitary or anti-unitary. In the former case

we will assume that the symmetry is internal (does not act on space-time). In the latter
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case it must reverse the direction of time, so we will call it time-reversal symmetry. In either

case, the generator can square either to 1 or to (−1)F (fermion parity). Fermionic SPT

phases with time-reversal symmetry are also known as topological superconductors, so in

particular we describe a classification scheme for interacting topological superconductors.

Compared to the bosonic case, fermionic SPT phases present several related difficulties.

First of all, one needs to decide what one means by a fermionic system. In a continuum

Lorentz-invariant field theory, anti-commuting fields are also spinors with respect to the

Lorentz group, but condensed matter systems are usually defined on a lattice and lack

Lorentz invariance on the microscopic level. Thus the connection between spin and statis-

tics need not hold. A related issue is that all fermionic systems have Z2 symmetry called

fermionic parity, usually denoted (−1)F . But all observables, including the Hamiltonian

and the action, are bosonic, i.e. invariant under (−1)F . In a sense, every fermionic sys-

tem has a Z2 gauge symmetry, which means that the partition function must depend on a

choice of a background Z2 gauge field. It is tempting to identify this gauge field with the

spin structure. However, it is not clear how a spin structure should be defined for a lattice

system, except in the case of toroidal geometry.1

Instead of dealing with all these difficult questions, in this paper we take a more “phe-

nomenological” approach: we make a few assumptions about the long-distance behavior

of SPT phases which parallel those for bosonic SPT phases, and then test these assump-

tions by comparing the results in space-time dimensions d ≤ 4 with those available in the

condensed matter literature. For various reasons, we limit our selves to the cases of no

symmetry, time-reversal symmetry, and unitary Z2 symmetry. Having found agreement

with the known results, we make a conjecture about the classification of fermionic SPT

phases with any symmetry group G.
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2 Spin and pin structures

A smooth oriented d-manifold M equipped with a Riemannian metric is said to have a

spin structure if the transition functions for the tangent bundle, which take values in

SO(d), can be lifted to Spin(d) while preserving the cocycle condition on triple overlaps

of coordinate charts. Let us unpack this definition. On a general manifold one cannot

choose a global coordinate system, so one covers M with coordinate charts Ui, i ∈ I. If

over every coordinate chart Ui one picks an orthonormal basis of vector fields with the

correct orientation, then on double overlaps Uij = Ui
⋂

Uj they are related by transition

1In 2d, there is a good combinatorial description of spin structures via so called Kasteleyn orienta-

tions [11]. But a generalization of this construction to higher dimensions is unknown.
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functions gij which take values in the group SO(d) and satisfy on Uijk = Ui
⋂

Uj
⋂

Uk the

cocycle condition:

gijgjk = gik. (2.1)

The group SO(d) has a double cover Spin(d), i.e. one has SO(d) = Spin(d)/Z2. One can

lift every smooth function gij : Uij → SO(d) to a smooth function hij : Uij → Spin(d), with

a sign ambiguity. Thus on every Uijk one has

hijhjk = ±hik. (2.2)

M has a spin structure if and only if one can choose the functions hij so that the sign on

the right-hand side is +1 for all Uijk. We also identify spin structures which are related by

Spin(d) gauge transformations:

hij 7→ h′ij = hihijh
−1
j , hi : Ui → Spin(d).

A spin structure allows one to define Weyl spinors on M .

For d < 4 every oriented d-manifold admits a spin structure, but it is not unique, in

general. Namely, given any spin structure, one can modify it by multiplying every hij by

constants ζij = ±1 satisfying

ζijζjk = ζik.

Such constants define a Cech 1-cochain on M with values in Z2. The same data also

parameterize Z2 gauge fields on M , thus any two spin structures differ by a Z2 gauge

field. It is easy to see that gauge fields differing by Z2 gauge transformations lead to

equivalent transformations of spin structures, so the number of inequivalent spin structures

is equal to the order of the Cech cohomology group H1(M,Z2), whose elements label gauge-

equivalence classes of Z2 gauge fields.

In dimension d > 3 not every oriented manifold admits a spin structure. For example,

the complex projective plane CP
2 does not admit a spin structure. Nevertheless, if a spin

structure on M exists, the above argument still shows that the number of inequivalent spin

structures is given by |H1(M,Z2)|. The necessary and sufficient condition for the existence

of a spin structure is the vanishing of the 2nd Stiefel-Whitney class w2(M) ∈ H2(X,Z2).

This condition is purely topological and thus does not depend on the choice of Riemannian

metric on M .

If M is not oriented, the transition functions gij take values in O(d) rather than SO(d).

They still satisfy (2.1). An analog of Spin group in this case is called a Pin group. In the

absence of orientation, fermions transform in a representation of the Pin group. In fact,

for all d > 0 there exist two versions of the Pin group called Pin+(d) and Pin−(d). They

both have the property Pin±(d)/Z2 = O(d). The difference between Pin+ and Pin− is

the way a reflection of any one of coordinate axis is realized on fermions. Let r ∈ O(d)

be such a reflection. It satisfies r2 = 1. If r̃ ∈ Pin±(d) is a pre-image of r, it can satisfy

either r̃2 = 1 or r̃2 = −1. The first possibility corresponds to Pin+, while the second one

corresponds to Pin−.

If we are given an unoriented d-manifoldM , we can ask whether it admits Pin+ or Pin−

structures (that is, lifts of transition functions to either Pin+(d) or Pin−(d) so that the
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condition (2.2) on triple overlaps is satisfied). The conditions for this are again topological:

in the case of Pin+ it is the vanishing of w2(M), while in the case of Pin− it is the vanishing

of w2(M) + w1(M)2. Note that if M happens to be orientable, then w1(M) = 0, so the

two conditions coincide and reduce to the condition that M admit a Spin structure.

Note that these topological conditions are nontrivial already for d = 2. More precisely,

for d = 2 one has a relation between Stiefel-Whitney classes w2
1 + w2 = 0, so every 2d

manifold admits a Pin− structure, but not necessarily a Pin+ structure. For example the

real projective plane RP
2 admits only Pin− structures, while the Klein bottle admits both

Pin+ and Pin− structures. Similarly, not every 3-manifold admits a Pin+ structure, but

all 3-manifolds admit a Pin− structure.

3 Working assumptions

We assume that fermionic SPTs in d space-time dimensions without time-reversal symmetry

can be defined on any oriented smooth d-manifold M equipped with a spin structure.

Similarly, we assume that fermionic SPTs with time-reversal symmetry can be defined

on any smooth manifold M equipped with a Pin+ or Pin− structure (we will see below

that Pin+ corresponds to T 2 = (−1)F while Pin− corresponds to T 2 = 1). If there are

additional symmetries beyond (−1)F and time-reversal, M can carry a background gauge

field for this symmetry.

We also assume that given such M , a long-distance effective action is defined. The

action is related to the partition function by Z = exp(2πiSeff), thus Seff is defined modulo

integers. The trivial SPT phase corresponds to the trivial (zero) action. The effective action

is additive under the disjoint union of manifolds. It also changes sign under orientation-

reversal. In the case of SPT phases with time-reversal symmetry, this implies 2Seff ∈ Z.

The effective action, in general, is not completely topological: it may depend on the

Levi-Civita connection on M . Such actions are gravitational Chern-Simons terms and can

exist if d = 4k−1. Since we will be interested only in low-dimensional SPT phases, the only

case of interest is d = 3. The correspond gravitational Chern-Simons term has the form

SCS =
k

192π

∫

Tr

(

ωdω +
2

3
ω3

)

,

where the trace is in the adjoint representation of SO(3). Note that such a term makes

sense only on an orientable 3-manifold and therefore can appear only if the symmetry group

of the SPT phase does not involve time reversal.

In the bosonic case, one can show that k must be an integral multiple of 16. In

the fermionic case, k can be an arbitrary integer. The quantization of k is explained in

the appendix.

The physical meaning of SCS is that it controls the thermal Hall response of the SPT

phases [12]. The thermal Hall conductivity is proportional to k [12]:

κxy =
kπk2BT

12~
,
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d = D + 1 ΩSpin
d (pt) ΩPin−

d (pt) ΩPin+

d (pt) ΩSpin
d (BZ2)

1 Z2 Z2 0 Z
2
2

2 Z2 Z8 Z2 Z
2
2

3 0 0 Z2 Z8

4 Z 0 Z16 Z

5 0 0 0 0

6 0 Z16 0 0

7 0 0 0 Z16

8 Z
2

Z
2
2 Z2 × Z32 Z

2

9 Z
2
2 Z

2
2 0 Z

4
2

10 Z
2
2 × Z Z2 × Z8 × Z128 Z

3
2 Z

4
2 × Z

Table 1. Spin and Pin± bordism groups.

where T is the temperature and kB is the Boltzmann constant. Thus for both bosonic

and fermionic SPT phases the quantity κxy/T is quantized, but in the fermionic case the

quantum is smaller than in the bosonic case by a factor 16. This is derived in the appendix.

SPT phases with a particular symmetry form an abelian group, where the group op-

eration amounts to forming the composite system. The effective action is additive under

this operation. Taking the inverse corresponds to applying time-reversal to the SPT phase.

The effective action changes sign under this operation. Thus the effective action can be

regarded as a homomorphisms from the set of SPT phases to R/Z ≃ U(1).

The difference of two SPT phases with the same thermal Hall conductivity is an SPT

phase with zero thermal Hall conductivity. Thus it is sufficient to classify SPT phases

with zero thermal Hall conductivity. In such a case the action is purely topological. Our

final assumption is that this topological action depends only on the bordism class of M .

Equivalently, we assume that if M is a boundary of some d + 1-manifold with the same

structure (Spin or Pin±, as the case may be), then Seff vanishes. This assumption is

supposed to encode locality.

We assume that all possible effective field theories of this sort are realized by mi-

croscopic field theories with local interactions. In low dimensions with simple symmetry

groups these phases can be realized by a free fermion. In other cases it is unknown whether

all the cobordism invariant TQFTs come as the IR limit of a field theory with a local La-

grangian. Likewise one can ask whether all these TQFTs can emerge from some local lattice

Hamiltonian. It remains to construct these given some arbitrary cobordism invariant.

4 Fermionic SPT phases without any symmetry

In the case when the only symmetry is (−1)F , the manifold M can be assumed to be

a compact oriented manifold with a spin structure. As explained above, without loss of

generality we may assume that the action is purely topological (depends only on the spin
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d = D + 1 no symmetry T 2 = 1 T 2 = (−1)F unitary Z2

1 Z2 Z2 0 Z
2
2

2 Z2 Z8 Z2 Z
2
2

3 Z 0 Z2 Z8 × Z

4 0 0 Z16 0

5 0 0 0 0

6 0 Z16 0 0

7 Z
2 0 0 Z16 × Z

2

8 0 Z
2
2 Z2 × Z32 0

9 Z
2
2 Z

2
2 0 Z

4
2

10 Z
2
2 Z2 × Z8 × Z128 Z

3
2 Z

4
2

Table 2. Interacting fermionic SPT phases.

d = D + 1 mod 8 no symmetry T 2 = 1 T 2 = (−1)F unitary Z2

1 Z2 Z2 0 Z

2 Z2 Z Z2 0

3 Z 0 Z2 Z

4 0 0 Z 0

5 0 0 0 Z

6 0 Z 0 0

7 Z 0 0 Z

8 0 Z2 Z 0

Table 3. Free fermionic SPT phases. Classification of free fermionic SPT phases according to [1]

and [2]. The “no symmetry” case corresponds to class D, the case T 2 = 1 corresponds to class BDI,

the case T 2 = (−1)F corresponds to class DIII, and the case of unitary Z2 to class A.

bordism class of M). Thus possible effective actions in space-time dimension d are classified

by elements of the group Hom(ΩSpin
d (pt),U(1)), where ΩSpin

d (pt) is the group of bordism

classes of spin manifold of dimension d.

The spin bordism groups ΩSpin
d (pt) have been computed by Anderson, Brown, and

Peterson [16]. In low dimensions, one gets

ΩSpin
1 (pt) = Z2, ΩSpin

2 (pt) = Z2, ΩSpin
3 (pt) = 0, ΩSpin

4 (pt) = Z,

If a bordism group contains a free part, its Pontryagin dual has a U(1) factor. This means

that the corresponding effective action can depend on a continuous parameter. If we want

to classify SPT phases up to homotopy, we can ignore such parameters. This is equivalent

to only considering the torsion subgroup of ΩSpin
d (pt). Thus we propose that SPT phases
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in dimension d are classified by elements of the Pontryagin dual of the torsion subgroup of

ΩSpin
d (pt). We will denote this group Ωd,tors

Spin (pt).

The groups ΩSpin
d are displayed in table 1. The classification of interacting fermionic

SPT phases can be deduced from it in the manner just described and is displayed in table

2. For comparison, the classification of free fermionic SPT phases described in [1] and [2]

is shown in table 3. We see that there are nontrivial interacting fermionic SPT phases

with zero thermal Hall response in D = 0 and 1 but not in D = 2 and 3. However, for

D = 2 there is a phase with a nontrivial thermal Hall response; it is also present in the

table of free fermionic SPT phases. In higher dimensions the number of phases grows

rapidly. For instance, the effective action can be any combination of the Stiefel-Whitney

numbers modulo w1 and w2 (such effective actions correspond to fermionic phases which are

independent of the spin structure on M and thus can also be regarded as bosonic phases).

Let us consider the cases d = 1 and d = 2 in slightly more detail. For d = 1, there is

only one connected closed manifold, namely, the circle. There are two spin structures on

a circle: the periodic one and the anti-periodic one. The nontrivial effective action assigns

a different sign to each spin structure and is multiplicative over disjoint unions. From the

point of view of quantum mechanics, such an effective action corresponds to the d = 1 SPT

phase whose unique ground state is fermionic.

In two space-time dimensions, the situation is more complicated. Spin structures on

an oriented 2d manifold X can be thought of as Z2 valued quadratic forms on H1(X,Z2)

satisfying q(x + y) = q(x) + x ∩ y + q(y) mod 2, where x ∩ y denotes the Z2 intersection

pairing. The bordism invariant is the Arf invariant, which is the obstruction to finding a

Lagrangian subspace for this quadratic form. The effective action for the nontrivial SPT

phase in D = 1 is given by the Arf invariant [14]

S(q) =
1

√

|H1(X,Z2)|

∑

A∈H1(X,Z2)

exp(2πiq(A)/2). (4.1)

Another way to describe the Arf invariant is to consider zero modes for the chiral Dirac

operator. Their number modulo 2 is an invariant of the spin structure and coincides with

the Arf invariant [22]. In string theory, spin structures for which the Arf invariant is even

(resp. odd) are called even (resp. odd).

The spin cobordism classification is consistent with existing results in condensed matter

literature. Fidkowski and Kitaev [3] have considered the Majorana chain with just fermion

parity. There are two distinct phases: one where all sites are decoupled and unoccupied in

the unique ground state and one with dangling Majorana operators which can be paired

into a gapless Dirac mode representing a two-fold ground state degeneracy. In the absense

of any symmetry beyond (−1)F , a four-fermion interaction can gap out the dangling modes

in pairs, so these are the only two phases.

5 Fermionic SPT phases with time-reversal symmetry

5.1 General considerations

In the presence of time-reversal symmetry, the manifold M can be unorientable. As dis-

cussed in section 2, there are two distinct unoriented analogs of a spin structure, called

– 7 –
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Pin+ and Pin− structures. They should correspond to the two possibilities for the action

of time-reversal: T 2 = 1 and T 2 = (−1)F .

Naively, it seems that T 2 = 1 should correspond to Pin+ and T 2 = (−1)F should

correspond to Pin−. Indeed, for Pin+ the reflection of a coordinate axis acts on a fermion

by an element r̃ satisfying r̃2 = 1, while for Pin− it acts by r̃ satisfying r̃2 = −1. However,

one should take into account that the groups Pin± are suitable for space-time of Euclidean

signature. A reflection of a coordinate axis in Euclidean space is related to time-reversal

by a Wick rotation. Let r be a reflection of the coordinate axis which is to be Wick-

rotated. The corresponding element of Pin± acts on the fermions by a Dirac matrix γd
which satisfies γ2d = ±1. Wick rotation amounts to γd 7→ iγd, hence Pin+ corresponds to

T 2 = (−1)F , while Pin− corresponds to T 2 = 1. This identification will be confirmed by

the comparison with the results from the condensed matter literature.

5.2 T
2 = (−1)F

We propose that interacting fermionic SPT phases protected by time-reversal symmetry T

with T 2 = (−1)F are classified by elements of

Ωd
Pin+

(pt) = Hom(ΩPin+

d (pt),U(1)).

We will call this group the Pin+ cobordism group with U(1) coefficients.

The Pin+ bordism groups have been computed by Kirby and Taylor [18]

ΩPin+

1 (pt) = 0, ΩPin+

2 (pt) = Z2, ΩPin+

3 (pt) = Z2, ΩPin+

4 (pt) = Z16,

Pin+ bordism groups grow quickly with dimension, soon having multiple cyclic factors.

In one space-time dimension, the Pin+ cobordism group vanishes. This is easily in-

terpreted in physical terms. Recall that without time-reversal symmetry, the ground state

can be bosonic or fermionic, and the latter possibility corresponds to a nontrivial fermionic

d = 1 SPT phases. However, if time-reversal symmetry T with T 2 = (−1)F is present,

fermionic states are doubly-degenerate, and since by definition the ground state of an SPT

phase are non-degenerate, the ground state cannot be fermionic.

In two space-time dimensions, there is an isomorphism

ΩPin+

2 (pt) → ΩSpin
2 (pt),

see [14]. The isomorphism arises from the fact that a Pin+ structure on an unoriented

manifold induces a spin structure on its orientation double cover. Thus there is a unique

nontrivial fermionic SPT phase in d = 2, and the corresponding effective action is simply

the action (4.1) on the orientation double cover:

S(q) =
1

√

|H1(X̃,Z2)|

∑

A∈H1(X̃,Z2)

e2πiq(A)/2.

The classification of the free fermionic SPTs in d = 2 also predicts a unique nontrivial

phase with time-reversal symmetry T 2 = (−1)F [1, 2]. It can be realized by a time-

reversal-invariant version of the Majorana chain and is characterized by the presence of a

pair of dangling Majorana zero modes on the edge.

– 8 –
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In three space-time dimensions, a similar map is not an isomorphism, as ΩSpin
3 = 0.

However, there is a map

[∩w1] : Ω
Pin+

3 → ΩSpin
2 (5.1)

taking a Pin+ manifold to a codimension 1 submanifold Poincaré dual to the orientation

class w1. This submanifold is defined to be minimal for the property that the complement

can be consistently oriented. With this choice of partial orientation, crossing this subman-

ifold reverses the orientation, so it can be thought of as a time-reversal domain wall. For

Pin+ 3-manifolds, we have w2
1 = 0, so this domain wall is oriented and inherits a Spin

structure from the ambient spacetime.

The map (5.1) is an isomorphism [14]. From the physical viewpoint this means that

away from the time-reversal domain walls the SPT is trivial and the boundary can be

gapped, but on the domain walls there is a d = 2 fermionic SPT, the Majorana chain, so

at locations where the domain walls meet the boundary there are Majorana zero modes.

This is a special case of a construction of SPT phases discussed in the bosonic case in [15].

One starts with a system with symmetry G in a trivial phase, breaks the G symmetry,

decorates the resulting domain walls with an SPT in 1 dimension lower, and finally prolif-

erates the domain walls to restore the symmetry G. One can also do this with defects of

higher codimension. A mathematical counterpart of this general construction is the Smith

homomorphism discussed below.

The classification of free fermionic SPT phases also predicts a unique nontrivial d = 3

SPT phase. It can be realized by a spin-polarized p ± ip superconductor [1, 2]. It is

characterized by the presence of a pair of counter-propagating massless Majorana fermions

on the edge of the SPT phase.

In four space-time dimensions, the cobordism classification says that fermionic SPT

phases are labeled by elements of Z16. Free fermionic SPTs in d = 4 are classified by Z [1, 2],

but with interactions turned on Z collapses to Z16 [8]. The generator of ΩPin+
4 = Z16 is the

eta invariant of a Dirac operator [21]. The corresponding free fermionic SPT phase can be

realized by a spin-triplet superconductor [1, 2]. It is characterized by the property that on

its boundary there is a single massless Majorana fermion.

Two layers of the basic phase can be constructed from the d = 2 phase with time-

reversal symmetry T 2 = 1, via the map

[∩w2
1]

:ΩνPin+

4 → ΩνPin−

2 .

The map sends a the bordism class of a manifold X on the left hand side to the bordism

class of a codimension-2 submanifold of X representing w2
1(TX). From the physical view-

point, the order 8 phase with T 2 = (−1)F can be obtained from the trivial SPT phase by

decorating certain codimension 2 defects (self-intersections of time-reversal domain walls,

see the 3d case above) with the order 8 D = 1 phase with T 2 = 1, i.e. the Kitaev chain.

Eight copies of this fermionic SPT phase are equivalent to a bosonic SPT phase with

time-reversal symmetry and the effective action
∫

w4
1 (the bosonic SPT phase predicted

by group cohomology, see [9]). To show this, we need to show 8η = w4
1 for every Pin+

4-manifold. The space RP
4 generates the Pin+ bordism group in 4 dimensions, so every

– 9 –
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such manifold X is Pin+ bordant to a disjoint union of k RP
4s. Since η is a Pin+ bordism

invariant, it follows 8η(X) = 8kη(RP4). Now w4
1 is also a bordism invariant, so w4

1(X) =

kw4
1(RP

4). Thus, we just need to show 8η(RP4) = w4
1(RP

4). We know the left hand side

is −1 since the bordism group is Z/16 and η generates the dual group, and it is simple to

show w4
1(RP

4) = −1 as well. The equivalence of these two phases was also argued in [4].

Note that the eta-invariant cannot be written as an integral over a Lagrangian density L

naturally associated to a lattice configuration on the underlying manifold M . In particular,

if we have a covering map, we can pullback configurations to the cover. If the Lagrangian

density were to simply pull back, then the action would just be multiplied by the number

of sheets of the cover. However, for M = RP
4 the eta-invariant associated to the standard

Dirac operator is order 16 but trivial for its orientation double cover, S4.

This signals that the effective field theory requires a certain amount of non-locality. It

cannot have a description where each Pin+ structure corresponds to a lattice configuration

which respects covering maps of spacetimes up to gauge transformations.

It is interesting to note that the topological Pin+ bordism group in 4d is Z8 rather than

Z16. There is a manifold homeomorphic to the smooth generator RP
4 but not smoothly

Pin+ cobordant to it which has a Z16 invariant equal to 9 as opposed to RP
4’s 1 (these

numbers are equal mod 8). The eta-invariant distinguishes these two manifolds. Since the

classification of topological insulators in 3+1d is known to be at least Z16, this example

shows that the spacetimes relevant to these systems always carry smooth structure.

5.3 T
2 = 1

We propose that interacting fermionic SPT phases protected by time-reversal symmetry

with T 2 = 1 are classified by the Pin− cobordism groups with U(1) coefficients. In low

dimensions the Pin− bordism groups are [14]

ΩPin−

1 (pt) = Z2, ΩPin−

2 (pt) = Z8, ΩPin−

3 (pt) = 0, ΩPin−

4 (pt) = 0,

and the cobordism groups are their Pontryagin duals.

In one space-time dimension, fermionic SPT phases are classified by Z2. This is easily

interpreted in physical terms: the non-degenerate ground state can be either bosonic or

fermionic, without breaking T .

In two space-time dimensions, a Pin− structure can be thought of as a Z4-valued

quadratic enhancement of the intersection form which in the oriented (Spin) case is even and

reduces to our description above [14]. Such a form q satisfies q(x+y) = q(x)+2x∩y+q(y)

mod 4, where 2x ∩ y represents the mod 2 intersection of x and y mapped to Z4. The

bordism group ΩPin−
2 = Z8 is generated by RP

2. The effective action is a generalization of

the Arf invariant, the Arf-Brown-Kervaire invariant:

S(q) =
1

√

|H1(X,Z2)|

∑

A∈H1(X,Z2)

exp(2πiq(A)/4). (5.2)

It takes values in Z8 ∈ U(1). If q(x) is even for all x (that is, if q is Z2-valued), it reduces

to the Arf invariant. This situation occurs when the space-time is orientable.
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From the physical viewpoint, the generator of Z8 is the Majorana chain, which can

be regarded as a time-reversal invariant system with T 2 = 1. Time-reversal protects

the dangling Majorana zero modes from being gapped out in pairs. Instead, interactions

can only gap out octets, yielding a Z8 classification of phases labeled by the number of

dangling modes [3]. Moreover, four copies of the Majorana chain with T 2 = 1 have states

on the boundary on which T acts projectively, T 2 = −1 [3]; hence, four copies of the basic

fermionic SPT phases with time-reversal T 2 = 1 are equivalent to the basic bosonic SPT

phase in d = 2 with time-reversal symmetry. We can easily see this from the cobordism

viewpoint. The generator of the Pin− bordism group in d = 2 is RP2, so the fourth power

of the generator of the cobordism group is −1 for this spacetime (here we are thinking

about Z8 as a subgroup of U(1)). Meanwhile, w2
1 is also −1 on RP

2. Since both of these

are Pin−-bordism invariants, they are equal on all d = 2 spacetimes.

As with the eta-invariant discussed above, the Arf-Brown-Kervaire invariant does not

admit a local expression. There is a νPin+ structure on RP
2 for which the Arf-Brown-

Kervaire invariant is a primitive 8th root of unity. However, the corresponding Spin struc-

ture on the orientation double cover S2 has Arf-Brown-Kervaire invariant 1 (the unique

Spin structure on the 2-sphere extends to a 3-ball).

6 Fermionic SPT phases with a unitary Z2 symmetry

Let g denote the generator of a unitary Z2 symmetry. There are two possibilities: either

g2 = 1 or g2 = (−1)F . In this section we discuss the former possibility only; the other one

is discussed in the next section.

We propose that interacting fermionic SPT phases with unitary Z2 symmetry g, g2 = 1,

are classified by

Ωd
Spin,tors(BZ2) = Hom(ΩSpin,tors

d (BZ2),U(1))

The analogous group in the bosonic case is Ωd
SO,tors(BZ2). In all dimensions there is an

isomorphism called the Smith isomorphism

Ω̃Spin
d (BZ2) → ΩPin−

d−1 (pt),

where on the left hand side we use the tilde to denote reduced bordism: the kernel of the

forgetful map to ΩSpin
d (pt). The torsion part of reduced bordism is dual to SPT phases

which can be made trivial after breaking the symmetry. Not all SPT phases are of this

sort. One could imagine that after breaking the symmetry the system is reduced to some

non-trivial SRE like the Kitaev chain. In general,

ΩSpin
d (BG) = Ω̃Spin

d (BG)⊕ ΩSpin
d (pt),

so these effects can be separated consistently and the Smith isomorphism is enough to

classify the G = Z2 phases. This splitting fails if any elements of G are orientation reversing

or if G acts projectively on fermions.

The Smith isomorphism is defined as follows. Starting with a Spin manifold X and

some A ∈ H1(X,Z2) representing a class on the left hand side, we produce a submanifold Y
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Poincaré dual to A. (That we can do this is a special fact about codimension 1 classes with

Z2 coefficients. Not all homology classes are represented by submanifolds.) The manifold

Y is not necessarily orientable. The Spin structure on TX restricts to a Spin structure on

TY ⊕ NY , where NY is the normal bundle of Y in X. In fact, NY is classified by the

restriction of A to Y . We compute

0 = w1(TX)|Y = w1(TY ⊕NY ) = w1(TY ) +A,

so on Y the gauge field A restricts to the orientation class, ie. the Z2 symmetry is

orientation-reversing for Y . We also have

w2(TY ⊕NY ) = w2(TY ) + w1(TY )2,

so the Spin structure on X becomes a Pin− structure on Y .

Physically, the submanifold Y Poincaré dual to A represents Z2 domain walls. The

dual map from the Pin− cobordism of a point in d−1 dimensions to the Spin cobordism of

BZ2 in d dimensions has the following physical meaning. Picking an element of the Pin−

cobordism group gives us a d− 1-dimensional fermionic SPT with time-reversal symmetry

T 2 = 1. To obtain a d-dimensional SPT, we decorate Z2 domain walls with this d − 1-

dimensional SPT and then proliferate the walls.

The inverse map can be described via compactification. One takes the d-dimensional

SPT on a spacetime which is a circle bundle over the d − 1-dimensional (perhaps unori-

entable) spacetime. This circle bundle is the unit circle bundle of the orientation line

plus a trivial line, and is therefore oriented. We give the gauge field nontrivial holonomy

around this circle and compactify. The effective field theory in d − 1 dimensions is the

d− 1-dimensional SPT phase with time-reversal symmetry.

Fermionic SPT phases with a unitary Z2 symmetry have not been much studied in the

physics literature. In one space-time dimension, they are classified by Z2 × Z2, since the

ground state can be either bosonic or fermionic, as well as g-even or g-odd. In three space-

time dimensions, Levin and Gu [5] argued that fermionic SPT phases with Z2 symmetry

and zero thermal Hall conductance are classified by Z8. Both of these results agree with

the cobordism approach.

7 Fermionic SPT phases with a general symmetry

A choice of spin structure gives a lift of the oriented frame bundle PSO(d) to a spin frame

bundle PSpin(d). Neutral Dirac spinors are sections of the bundle S associated to this one by

the complex spin representation. For Dirac spinors charged under some G representation

ρ, they are sections of the tensor bundle

ψ ∈ Γ(S ⊗C A∗ρ),

where A∗ρ denotes the vector bundle associated to the gauge bundle by ρ. Bosonic ob-

servables are composed of fermion bilinears which are sections of the tensor square of this
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bundle or the tensor product of this bundle with its dual. These are composed of integral

spin representations of SO(d) and exterior powers of ρ2.

However, the situations where the spacetime is not a spin manifold are still physically

important if ρ is a projective representation. That is, while the spin frame bundle PSpin(d)

or charge bundle A∗ρ may not exist, the tensor product above does. For example, when

ρ is a half-charge representation of G = U(1) the choice of a tensor product bundle is the

same as a Spinc structure with determinant line ρ2. One also knows that such a Spinc

structure is the same as a spin structure on TX ⊕A∗ρ2.

One way to deal with this situation is to regard the fermions in d dimensions as di-

mensional reduction of fermions in d+n dimensions. Under such a reduction, the rotation

group SO(n + d) decomposes into SO(d) × SO(n) (for the moment we assume that the

d-dimensional theory does not have orientation-reversing symmetries, and accordingly the

d-dimensional space-time is orientable). We imagine that the symmetry group G is em-

bedded into SO(d), and denote by ξ the G-representation in which the n-vector of SO(n)

transforms. We can think of ξ as a particular G-bundle over BG. Spinors in d+ n dimen-

sions are elements of an irreducible module over the Clifford algebra built from R
n ⊕ ξ.

Consider now the theory on a curved space-time X equipped with a G-bundle A. As

usual, we can think of A as a map from X to BG, defined up to homotopy. To define the

theory on such a space-time we must specify the bundle in which the fermions take value.

This bundle must have the same rank as the spinor of SO(d + n) and be a module over

a bundle of Clifford algebras T ∗X ⊕ A∗ξ. Such a bundle is called a spin structure on the

SO(d+ n)-bundle T ∗X ⊕A∗ξ.

If some of the symmetries are orientation-reversing, we need to allow X to be un-

orientable, so that the structure group of the tangent bundle is O(d) rather than SO(d).

But we can compensate for this by embedding G into O(n) so that the generators of the

Clifford algebra transform as a vector of SO(d+n). Then fermions must take values in the

irreducible Clifford module over the corresponding bundle of Clifford algebras, as before.

This discussion leads us to the following proposal Given a bosonic symmetry group

G, and its representation ξ, fermionic SPT phases in d space-time dimensions with this

symmetry structure are classified by

Ωd
Spin(♭BG, ξ),

a cobordism theory dual to the torsion part of the bordism theory of d-manifolds X with

a map A : X → ♭BG (the gauge field) and a spin structure on TX ⊕A∗ξ. It is important

for continuous groups to use ♭BG rather than BG since gauging the G symmetry means

coupling to a flat G gauge field. Turning on curvature for the gauge field requires a kinetic

term which is non-canonical. One model for ♭BG is to take the classifying space of G as a

discrete group. For finite G this is of course automatic.

The data (G, ξ) may seem to depend on some uphysical details, like the embedding of

G into SO(n), but one can show that cobordism groups thus defined depend only on w1(ξ) :

G → Z2, which picks out the orientation reversing elements, and w2(ξ) ∈ H2(G,Z2) [19],

which determines how G is extended by fermion parity.
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Let us illustrate this with some examples. For G = Z2, first there is the trivial

representation, for which this twisted cobordism group is the ordinary ones classifying

fermionic SPTs with an internal Z2 symmetry acting honestly on the fermions, so the total

symmetry group is Z2 × Z
F
2 .

The other irreducible is the 1d sign representation. For this representation we have w1

equal to the generator of H1(BZ2,Z2), this being the determinant of the representation,

and w2 = 0 since ths representation is 1 dimensional. We compute

w1(TX ⊕A∗ξ) = w1(TX) +A∗w1(ξ) = w1(TX) +A,

so an orientation of TX ⊕A∗ξ identifies A with the orientation class of X. We also have

w2(TX ⊕A∗ξ) = w2(TX) + w1(TX)A∗w1(ξ) = w2(TX) + w1(TX)2,

a trivialization of which is a Pin− structure on TX. Thus,

Ωd
Spin(BZ2, sign) = Ωd

Pin−
.

Since w1(ξ) 6= 0 and w2(ξ) = 0 we interpret this group as classifying fermionic SPTs with

an orientation-reversing symmetry such as time reversal which satisfies T 2 = 1. Note that

the same group classifies SPT phases with a reflection symmetry squaring to 1.

We can also consider a sum of two sign representations, for which we have w1(ξ) = 0

and w2(ξ) 6= 0. This gives a bordism theory of oriented manifolds with A2 = w2(TX).

This symmetry structure is that associated to an orientation preserving symmetry such as

particle-hole symmetry which squares to the fermion parity.

The sum of three sign representations has both w1(ξ) and w2(ξ) nonzero. The coho-

mology of BZ2 implies also w2(ξ) = w1(ξ)
2. With this we compute

w1(TX ⊕A∗ξ) = w1(TX) +A

and

w2(TX ⊕A∗ξ) = w2(TX) +A2 +A2 = w2(TX).

The first implies that A equals the orientation class of X. The second says that a spin

structure on TX ⊕A∗ξ is the same as a Pin+ structure on TX. Thus

Ωd
Spin(BZ2, 3× sign) = Ωd

Pin+
.

Therefore fermionic SPT phases with an orientation reversing Z2 symmetry squaring to

the fermion parity are classified by Pin+ cobordism.

For G = U(1) there are no continuous representations with w1 6= 0 and w2 6= 0 for a

continuous representation precisely when the sum of charges is odd. In this case A∗w2(ξ)

is the mod 2 reduction of the gauge curvature FA. A spin structure on w2(TX ⊕ A∗ξ) is

therefore the same thing as a Spinc structure with determinant line FA. Note that these

are not the Spinc cobordism groups studied in most of the mathematical literature since

we require the determinant line to be flat.
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For G = U(1)×Z2 we now have representations where the Z2 is orientation reversing.

For example, consider ξ = charge 1 ⊗ trivial ⊕ trivial ⊗ sign. For this representation,

w1(ξ) is the map to Z2 which is trivial on U(1) and the identity on Z2. We also find

w2(TX ⊕A∗ξ) = w2(TX) + w1(TX)2 + FA.

If we instead used three copies of the sign representation, we would have

w2(TX ⊕A∗ξ̃) = w2(TX) + FA.

It may first appear that these give different cobordism theories, but note that w1(TX)2 lifts

to an integral class, so a redefinition of the U(1) field produces an equivalence between the

two bordism groups. This is the same redefinition used in [4] to show that the T 2 = 1 and

T 2 = (−1)F classifications agree, a result verified here in cobordism. This is also reflected

in the uniqueness of the Pinc(d) group and we find that both types of phase are classified

by Pinc bordism with flat determinant line.

Now consider G = U(1)⋊Z2 with Z2 acting by conjugation. This group can be thought

of as SO(2)⋊ Z2 = O(2). Consider first the standard 2d representation ξ. For this, w1(ξ)

is the determinant O(2) → Z2 and w2(ξ) is the obstruction to finding a section of

Pin+(2) → O(2),

ie. it is the class in group cohomology H2(BO(2),Z2) classifying Pin+(2). The ring

H∗(BO(2),Z2) is generated by the universal Stiefel-Whitney classes w1 and w2, and w2(ξ)

is the universal w2. This representation corresponds to T 2 = 1 since T 2 = 1 in Pin+(2).

One can also consider T 2 = (−1)F by using the representation ξ̃ = ξ + 2 × sign.

For this, w1(ξ̃) = w1(ξ), but w2(ξ̃) is the universal w2 + w2
1, which differs from the other

representation, demonstrating that these two classifications differ when time reversal does

not commute with U(1).

8 Decorated domain walls

The formulation above in terms of the global symmetry representation ξ carried by fermion

bilinears highlights some interesting features of the so-called decorated domain wall con-

struction described in [15].

Let us start with a concrete example with a unitary Z2 symmetry which squares to

fermion parity. We consider in 1+1d a massless Dirac fermion ψ coupled to a massless

real scalar φ by the Yukawa coupling φψ̄ψ. The Z2 symmetry we consider is φ 7→ −φ,

ψ 7→ γ5ψ, where γ5 = iγ0γ1. We condense φ, making the domain wall infinitely heavy,

and we consider the system on a line with boundary conditions φ → ∞ on the right and

φ → −∞ on the left. Then there is a domain wall at some fixed position and a ψ zero

mode bound to it. The point is to define the quantum mechanical theory of this zero mode,

we need to pick a time direction. The ambient 2 dimensional space-time is oriented, so we

can orient the domain wall if we can orient its normal direction. This orientation has to

come from which side has the boundary condition φ → ∞ and which side has the boundary
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condition φ → −∞. We choose some convention such as the φ → ∞ side is the positive

side and thus orient the domain wall. However, if we now perform a global Z/2 symmetry

transformation, it swaps the boundary conditions but not the ambient orientation, so it

reverses the time direction on the domain wall.

We can understand what happened in terms of the representation theory of Z2. We

have to find the representation of Z2 on the fermion bilinears. There are three of them:

ψ̄ψ, ψ̄γµψ, and ψ̄γ5ψ. The first and the last transform as the sign representation, while the

vector is invariant. Thus, ξ is two copies of the sign representation. As calculated in the

previous section, we have w1(ξ) = 0, w2(ξ) 6= 0, meaning that we have a unitary symmetry

squaring to the fermion parity. Recall now that to define fermions in a background G gauge

field A we used a spin structure on TX⊕A∗ξ. If Y is a curve in X, then TX = TY ⊕NY . If

Y is Poincaré dual to A, then NY is A∗sign. Altogether then, our fermions restricted to Y

are defined using a spin structure on TY ⊕A∗sign⊕A∗ξ = TY ⊕A∗(ξ⊕sign). That is, for the

fermions on the domain wall, ξ is effectively shifted by a copy of the sign representation.

To understand how the domain wall operators have different transformation properties,

consider the operator ψ̄γxψ, where γx is the Clifford operator in the oriented normal to

the domain wall. Because we need to use the oriented normal to define this operator in the

0+1d theory, we have γx 7→ −γx under the Z2 symmetry, so ψ̄γxψ 7→ −ψ̄γxψ, contributing

another copy of the sign representation. So for the example just described we now have

ξ′ = 3× sign. Accordingly, as computed in the previous section, w1(ξ
′) 6= 0 and w2(ξ

′) 6= 0,

so on the domain wall, Z2 has been transmuted into an orientation-reversing symmetry

squaring to the fermion parity.

We pause before considering the general case to note that this feature is independent

of dimension and for Z2 has an interesting order 4 periodicity as we cycle through each

type of Z2 symmetry:

. . . → unitary, squaring to (−1)F → antiunitary, squaring to (−1)F

→ unitary, squaring to 1 → antiunitary, squaring to 1 → . . .

where the arrow denotes restriction to the Z2 domain wall.

Now let’s consider the general case of G symmetry with fermion bilinear representation

ξ. In order to study a domain wall as we did above, we need a real scalar φ transforming

in some 1 dimensional representation of G. This is the same as a group homomorphism

σ : G → Z2. In any decorated domain wall picture, the degrees of freedom bound to the

wall are defined in a symmetry broken regime where the domain wall is infinitely tense.

This choice of regime corresponds to the choice of σ. After the coupling is made in this

regime, domain walls are again proliferated, restoring the G symmetry. For such a σ, in the

phase where φ is condensed, the domain wall Y is Poincaré dual to the Z/2 gauge field σ(A)

induced from the G gauge field A. In particular, the normal bundle to the domain wall is

A∗σ. Thus, the ambient spin structure restricts to a spin structure on TY ⊕ A∗(ξ ⊕ σ).

That is, the G symmetry properties on the domain wall correspond to the fermion bilinear

representation ξ ⊕ σ.
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In terms of cobordism groups, every map σ : G → Z2 induces a map

ΩSpin
d (BG, ξ) → ΩSpin

d−1 (BG, ξ ⊕ σ)

and thus a map

Ωd−1
Spin(BG, ξ ⊕ σ) → Ωd

Spin(BG, ξ).

Note that domain walls may be coupled to different degrees of freedom in different sym-

metry breaking sectors, corresponding to adding the images of maps from different σs.

It is also possible to couple domain defects of higher codimension through higher

dimensional representations σ. These representations may be irreducible over R, so this

procedure is not always equivalent to merely iterating the above construction. For example,

if G = Z4, then we can take σ to be the 2-dimensional representation rotating the plane

by π/2. This representation is irreducible over R since the eigenvectors of this rotation are

imaginary. This representation defines a map

Ωd−2
Spin(BZ4, ξ ⊕ σ) → Ωd

Spin(BZ4, ξ).

One must be careful in defining these maps in general, however, since not every homology

class Poincaré dual to A∗σ is representable by a manifold if the dimension of σ is too large.

Happily this does not occur until the ambient dimension is at least 6.

9 Concluding remarks

We have seen that cobordism correctly predicts the known classification of interacting

fermionic SPT phases in D ≤ 3 with Z2 symmetry, either unitary or anti-unitary. We find

that for 0 ≤ D ≤ 3, all phases are realized by free fermions. However, in higher dimensions

new phenomena occur. First of all, while the classification of free fermionic SPT phases

with a fixed symmetry exhibits mod 8 periodicity in dimension [2], in the interacting case

there is no periodicity. Second, the deviations from the free fermionic classification occur

for high enough D, but the precise point depends on the symmetry group. For example, for

SPT phases with time-reversal symmetry T , T 2 = (−1)F , deviations start at D = 3. For

SPT phases with no symmetry beyond (−1)F deviations start at D = 6. (In D = 6 the free

fermionic classification predicts Z, but in the interacting case it is Z×Z because there are

two different gravitational Chern-Simons terms possible based on the Pontryagin numbers

p21 and p2, respectively.) Starting in D = 7 one has as well all the bordism invariants

formed from the Stiefel-Whitney numbers (modulo w1 and w2). Unlike the gravitational

Chern-Simons terms, these invariants are torsion.

Third, while in low dimensions the effect of interactions is to truncate the free fermionic

classification, in high enough dimension inherently interacting fermionic SPT phases ap-

pear. For example, in D = 7 free fermionic SPT phases with time-reversal symmetry T ,

T 2 = (−1)F , are classified by Z, while the cobordism approach predicts Z2 × Z32. The

latter group is not a quotient of the former, so truncation alone cannot explain the dis-

crepancy. The most likely interpretation is that Z32 is a truncation of Z, while the Z2

factor corresponds to an inherently interacting fermionic SPT phase. Similarly, in D = 6
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there should exist inherently interacting fermionic SPT phases with only fermion parity as

a symmetry.

We have found that the correct classification requires the use of smooth manifolds

rather than topological manifolds. It would be interesting to determine whether there is

some physical difference between the smooth and piecewise linear categories.

We find also that the fermionic SPT effective action has a degree of non-locality that

was not present in the case of bosonic SPTs. For D = 1, the effective action can be written

in terms of a sum over an auxiliary Z2 gauge field. It is tempting to interpret it as a gauge

field which couples to the fermion parity, but this needs to be tested. We leave this and the

determination of possible boundary behaviors of fermionic SPT phases to further work.

A Quantization of gravitational Chern-Simons terms

In this appendix we discuss the quantization of the coefficient of the gravitational Chern-

Simons action. For all topological facts used here, the reader may consult [13]. Let X be

an oriented 3-manifold whose tangent bundle is equipped with a connection ω. We can take

ω to be a Levi-Civita connection for some Riemannian metric on X, so ω can be thought

of as an SO(3) connection.

We define the gravitational Chern-Simons action to be

Sgrav(ω) =
κ

192π

∫

M
Tr

(

ωdω +
2

3
ω3

)

.

The choice of the normalization coefficient will be explained shortly. This formula is only

schematic, since ω is not a globally-defined 1-form, in general. A more precise definition

requires choosing a compact oriented 4-manifold M whose boundary is X (this is always

possible, since ΩSO
3 (pt) = 0). We also extend ω to X and define

SX
grav(ω) =

k

192π

∫

X
TrR ∧R.

We need to ensure that exp(iSX
grav(ω)) does not depend on the choice of X or the way ω is

extended from M to X. If we choose another X ′ with the same boundary M , the difference

between the two ways of defining the gravitational Chern-Simons action is

k

192π

∫

X′∪X̄
TrR(ω) ∧R(ω),

where X̄ is X with orientation reversed, and R(ω) is the curvature 2-form of ω. This

expression can be rewritten as

πk

24
p1(X

′ ∪ X̄) =
πk

8
σ(X ′ ∪ X̄). (A.1)

Here p1(Y ) denotes the first Pontryagin number of a closed oriented 4-manifold Y , σ(Y )

denotes its signature, and we used the Hirzebruch signature theorem p1(Y ) = 3σ(Y ). Since

the signature is an integer, we conclude that exp(iSgrav(ω)) is well-defined provided k is an
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integer multiple of 16. This determines the quantization of the thermal Hall conductivity

for d = 3 bosonic SPTs with time-reversal symmetry.

Now suppose M is given a spin structure. We can exploit it to define exp(iSgrav) for

arbitrary integral k. We merely require the spin structure to extend to X. It is always

possible to find such an X, since ΩSpin
3 (pt) = 0. The difference between SX

grav(ω) and

SX′

grav(ω) is again given by (A.1). Since now X ′ ∪ X̄ is a closed spin 4-manifold, we can

appeal to the Rohlin theorem which says that the signature of a closed spin 4-manifold

is divisible by 16, and conclude that exp(iSgrav(ω)) is well-defined if k is integral. This

determines the quantization of the thermal Hall conductivity for d = 3 fermionic SPTs

with time-reversal symmetry. Note that in the fermionic case the quantum of conductivity

is 16 times smaller than in the bosonic case.
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