
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 33, APRIL 2016, 411–432

Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in
Post-ENSO Summer: A Review

Shang-Ping XIE∗1,2, Yu KOSAKA3, Yan DU4, Kaiming HU5, Jasti S. CHOWDARY6, and Gang HUANG5

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0206, USA
2Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology,

Ocean University of China, Qingdao, Shandong 266100
3Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan

4State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,

Chinese Academy of Sciences, Guangzhou 510301
5State key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics and Center for

Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
6Indian Institute of Tropical Meteorology, Pune 411 008, India

(Received 5 August 2015; revised 23 October 2015; accepted 5 November 2015)

ABSTRACT

ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies
of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provides historical
accounts of major milestones and synthesizes recent advances in the endeavor to understand summer variability over the
Indo-Northwest Pacific region. Specifically, a large-scale anomalous anticyclone (AAC) is a recurrent pattern in post-El
Niño summers, spanning the tropical Northwest Pacific and North Indian oceans. Regarding the ocean memory that anchors
the summer AAC, competing hypotheses emphasize either SST cooling in the easterly trade wind regime of the Northwest
Pacific or SST warming in the westerly monsoon regime of the North Indian Ocean. Our synthesis reveals a coupled ocean–
atmosphere mode that builds on both mechanisms in a two-stage evolution. In spring, when the northeast trades prevail, the
AAC and Northwest Pacific cooling are coupled via wind–evaporation–SST feedback. The Northwest Pacific cooling persists
to trigger a summer feedback that arises from the interaction of the AAC and North Indian Ocean warming, enabled by the
westerly monsoon wind regime. This Indo-western Pacific ocean capacitor (IPOC) effect explains why El Niño stages its last
act over the monsoonal Indo-Northwest Pacific and casts the Indian Ocean warming and AAC in leading roles. The IPOC
displays interdecadal modulations by the ENSO variance cycle, significantly correlated with ENSO at the turn of the 20th
century and after the 1970s, but not in between. Outstanding issues, including future climate projections, are also discussed.
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1. Introduction
ENSO is the dominant mode of interannual variability.

Arising from Pacific ocean–atmosphere interaction, ENSO
affects climate around the globe through atmospheric tele-
connections and by inducing SST responses in other ocean
basins. The atmospheric response to SST anomalies in the
tropical Pacific has been extensively studied, including the
Pacific–North American (PNA) teleconnection pattern (Tren-
berth et al., 1998; Alexander et al., 2002). Not as well-known
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but of regional importance are ENSO-correlated climate
anomalies after ENSO has peaked. Here, we focus on the
summer climate of the Indo-Northwest Pacific region, which
encompasses South, Southeast and East Asia, home to more
than three billion people. Summer is the rainy season for the
Asian monsoon region, often accounting for more than 50%
of the annual precipitation. The leading EOF mode of sum-
mer rainfall variability in the Indo-Northwest Pacific region
(north of 10◦N) is significantly correlated with ENSO—not
concurrently, but at a two-season lag. Such pronounced cli-
mate anomalies develop in post-ENSO summers when equa-
torial Pacific SST anomalies have largely dissipated. Our re-
view tells the story of how these anomalies were identified,
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and their patterns and mechanisms unraveled.
In summer, the Indo-Northwest Pacific oceans are occu-

pied by some of the warmest water of the global ocean. SST
generally exceeds 28◦C or even 29◦C, except in the west-
ern Arabian Sea and during intraseasonal upwelling events
off South Vietnam in the South China Sea (SCS). Atmo-
spheric convection is active over this Indo-Northwest Pacific
warm pool, organized into several regional centers (off the
west coast of India, in the Bay of Bengal and SCS; Fig. 1).
The southwest monsoon winds prevail from the Arabian Sea
through the SCS up to 140◦E, while the easterly trade winds
prevail to the east. The division of the westerly monsoon
and easterly trade wind regimes proves important for SST
variability, as will become clear. Over East Asia, there is
a northeastward-slanted rain band called Mei-yu in China,
Changma in Korea, and Baiu in Japan. It brings the rainy
season and is the single most important climate phenomenon
to the region (Ding and Chan, 2005). ENSO is a major driver
for climate variability over the Indo-Northwest Pacific region.

ENSO is phase-locked to the annual cycle. Typically,
eastern Pacific (Niño3.4) SST anomalies begin to develop
in June–August [JJA(0)], peak in December(0), and decay
rapidly in April(1) (Fig. 2a). Here, the numerals in paren-
theses denote the ENSO developing (0) and decay (1) years.
Seasons refer to those in the NH. Compared to the well-
known concurrent [JJA(0)] anomalies of the Indian summer
monsoon that are anchored by tropical Pacific SST anoma-
lies, JJA(1) anomalies in the atmosphere may seem peculiar
without robust Niño3.4 SST anomalies, but are well docu-
mented. Over the tropical Northwest (TNW) Pacific, rain-
fall variability is better correlated with ENSO in JJA(1) than
JJA(0) (Fig. 2b), and there are fewer tropical cyclones (TCs)
in post-El Niño summers (Du et al., 2011). These JJA(1) at-
mospheric anomalies are consistent with the result of Harri-
son and Larkin (1996) that ENSO-induced anomalies of SLP
last through September(1) over the TNW Pacific, the longest
persistence in their surface meteorological analysis. The
long-lasting SLP anomalies turn out to be part of a large-scale

anomalous anticyclone over the TNW Pacific, which devel-
ops at the peak of El Niño and persists through JJA(1) (Wang
et al., 2003). The summer anomalous anticyclone (AAC) is
associated with suppressed local convection and part of the
Pacific–Japan (PJ) pattern Nitta (1986) identified originally
from analysis of reflective cloud cover.

The identification of the AAC development following El
Niño is a major advance in Asian monsoon research. The
AAC affects the East Asian summer monsoon to the north
(Huang and Wu, 1989; Chang et al., 2000) via the PJ pat-
tern and the Indian summer monsoon to the west (Mishra
et al., 2012). In post-ENSO summers without robust SST
anomalies in the equatorial Pacific, the recurrent AAC must
be anchored by ocean memory elsewhere. Identifying this
ocean memory proved not straightforward and took many
turns. The initial search naturally focused on the TNW Pa-
cific, but with mixed results (Nitta, 1987). Wang et al. (2000)
proposed a wind–evaporation–SST (WES) feedback mecha-
nism acting on the prevailing winter northeasterly monsoon
winds. The challenge is how to apply this winter mechanism
to summer when the northeast trade wind regime retreats east
of 140◦E (Fig. 1).

In JJA(1), the most robust El Niño-induced SST anoma-
lies of the global ocean are found in the tropical Indian Ocean
(IO) and SCS. It is well known that the tropical IO warms up
a season after El Niño (Weare, 1979) but the IO warming
has previously been viewed as a passive response to El Niño
without a climatic effect. This idea is supported by the obser-
vations that in the developing and mature stages of El Niño,
atmospheric convection is suppressed, instead of being ener-
gized, over the warming tropical IO. The second difficulty in
invoking SST anomalies in the IO–TNW Pacific warm pool
as the ocean memory for JJA(1) atmospheric anomalies is the
fact that the local SST–precipitation relationship is weak in
the region (Wang et al., 2005; Wu and Kirtman, 2007). This
difficulty notwithstanding, observational analysis reveals a
Matsuno (1966)–Gill (1980) pattern in the free troposphere
that is consistent with the forcing by a warming IO and can

JJA SST, precipitation & sfc wind climatology 1979-2014 5 m s–1
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Fig. 1. Summer (JJA) climatology over the Indo-western Pacific for 1979–2014: SST (black
contours; interval = 1◦C; thick contours for 10◦C, 15◦C, 20◦C and 25◦C and dashed con-
tours for 29.5◦C), precipitation (gray shading representing >5 mm d−1, and white contours for
7,9,11, . . . mm d−1), and surface wind velocity (arrows, m s−1) [based on ERSST.v3b (Smith
et al. 2008), CMAP (Xie and Arkin, 1997) and JRA-55 (Kobayashi et al., 2015)].
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give rise to an AAC over the TNW Pacific (Xie et al., 2009).
Modeling studies support this IO forcing of the TNW Pacific
AAC (Wu and Liu, 1995; Li et al., 2008; Huang et al., 2010;
Wu et al., 2010; Chowdary et al., 2011).

The perception that the tropical IO is largely passive also
stems from the observational result that the North IO re-
sponse to ENSO can be largely explained from surface heat
flux adjustments (via the cloud radiative effect and wind-
induced latent heat flux) without invoking ocean dynamics.
Challenging this passive IO view is the recent observational
result that the SST response to El Niño features two peaks
over the North IO (Du et al., 2009) and SCS (Wang et al.,
2006); the first peak coincides with the peak phase of El
Niño but the second one is in the post-El Niño summer (Fig.
2a). The summer peak is peculiar as it cannot be forced di-
rectly by El Niño. Instead, it results from positive feedback
of the Indo-TNW Pacific ocean–atmosphere interaction that
prolongs the response to El Niño (Du et al., 2009; Kosaka
et al., 2013; Wang et al., 2013). In a post-El Niño summer,
JJA(1), the North IO is kept warm by the anomalous easterlies
on the south flank of the TNW Pacific AAC, which oppose
the prevailing southwest monsoon and reduce surface evapo-
ration (Du et al., 2009). Meanwhile, the North IO warming
anchors the AAC via an atmospheric Kelvin wave adjustment
(Xie et al., 2009). This new coupled mode of Indo-TNW Pa-
cific cross-basin interaction explains why ENSO anomalies
last longest over the Indo-TNW Pacific and the AAC is the
preferred pattern (Kosaka et al., 2013). This is analogous to
the Indian Ocean dipole (IOD) mode (Saji et al., 1999), which
is excited by El Niño but takes up a distinctive pattern char-
acteristic of Bjerknes feedback.

Major advances have been made in describing and ex-
plaining post-ENSO ocean–atmospheric anomalies over the
Indo-TNW Pacific warm pool. A new paradigm is emerging
that depicts an IO that is more dynamically and climatically
active than previously thought. It reveals a new kind of inter-
basin interaction between the tropical IO and TNW Pacific
mediated by the AAC. Elements of the paradigm have been
published over more than a decade, and here we synthesize
these advances with outlooks for further progress.

This review aims to summarize recent progress in study-
ing how ENSO forces the Indo-TNW Pacific oceans and how
this response develops and persists to exert climatic influ-
ences. The rest of the paper is organized as follows: Section
2 introduces post-ENSO anomalies in the ocean and atmo-
sphere. It addresses questions of what are the major anoma-
lies and how they are related to each other. Historical per-
spectives are provided of how progress has been made. Sec-
tion 3 presents the coupled view and discusses the evidence.
Section 4 explores the extent to which IO–TNW Pacific cli-
mate is predictable and highlights the challenges facing extra-
tropical East Asian countries in developing skillful seasonal
forecasts. Section 5 examines interdecadal variations in post-
ENSO summer anomalies, based on historical observations
that go back to the late 19th century. Section 6 is a sum-
mary with a conceptual model. It also discusses challenges
in simulating Indo-Northwest Pacific climate and projecting
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Fig. 2. Lagged correlations with ND(0)J(1) Niño3.4 SST: (a)
SST in the Niño3.4 region (black), North IO (5◦–25◦N, 40◦–
100◦E; red), and TNW Pacific under the easterly trade wind
regime (10◦–20◦N, 150◦–170◦E; blue); (b) SLP (purple) and
precipitation (green) over the TNW Pacific around Guam (10◦–
20◦N, 135◦–155◦E) [thick curves indicate the >95% confi-
dence level, based on the t-test; three-month running averag-
ing has been applied; based on ERSST, Hadley Centre sea level
pressure, version 2 (Allan and Ansell, 2006) and CMAP for
1979–2014 (detrended)].

its change in the face of increasing greenhouse gas forcing.

2. Ocean–atmosphere anomalies in post-ENSO
summer

This section highlights major anomalies over the summer
tropical IO–TNW Pacific, with an historical account of how
research has developed in the area, and a discussion of atten-
dant anomalies in the extratropical East Asia.

2.1. Long persistence of IO response to ENSO
Using EOF analysis, Weare (1979) showed that positive

IO SST anomalies are often associated with a warmer eastern
tropical Pacific, even though observations were quite sparse
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in those early days (Kent et al., 2007). Accompanying the
SST mode are coherent anomalies of rainfall and SLP over
the Arabian Sea (Weare, 1979). The maximum warming of
the IO occurs from March to May, lagging the peak of SST
anomalies over the eastern Pacific by about 3 months (Nigam
and Shen, 1993). Traditionally, the IO warming is considered
basin-wide (Liu and Alexander, 2007; Schott et al., 2009) and
due to surface heat flux changes induced by El Niño via an at-
mospheric bridge (Klein et al., 1999; Alexander et al., 2002).
Recent studies have revealed that the IO warming is mecha-
nistically distinct among sub-basins.

The early study of Klein et al. (1999) pointed out that sur-

face flux anomalies cannot explain the warming in the South-
west IO. Atmospheric models coupled to a motionless mixed
layer ocean, forced by observed SST over the tropical Pa-
cific, underestimate the Southwest IO warming (Alexander
et al., 2002; Lau and Nath, 2003). There is growing con-
sensus that Southwest IO SST variability is caused by ther-
mocline displacements forced by ENSO through an atmo-
spheric bridge (Xie et al., 2002; Du et al., 2009). During the
developing (September–November) and mature (December–
February) phases of El Niño, an anomalous anticyclone forms
in the Southeast IO (Fig. 3a; Wang et al., 2000), associated
with a weakened Walker circulation. In the South IO, the
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Fig. 3. Schematic representation of the major SST anomalies and atmospheric
teleconnection over the Indo-Pacific oceans associated with El Niño events:
(a) El Niño impacts on the South IO through westward Rossby waves dur-
ing December–February; (b) Rossby waves inducing Southwest IO warming,
which in turn induces an anti-symmetrical wind pattern over the tropical IO
during March–May; (c) the second IO warming exciting a tropospheric Kelvin
wave propagating into the western Pacific, forcing the AAC and PJ/EAP pattern
to affect East Asia during the following summer.
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AAC forces downwelling ocean Rossby waves that propagate
westward (Fig. 3b; Perigaud and Delecluse, 1993; Masumoto
and Meyers, 1998; Ueda and Matsumoto, 2000). The South-
west IO is unique where the meridional shear of the trade
winds maintains a thermocline ridge where thermocline feed-
back on SST is strong (Xie et al., 2002). The El Niño-induced
downwelling Rossby waves deepen the thermocline, causing
the Southwest IO to warm (Fig. 3b). The slow-propagating
ocean Rossby waves anchor the Southwest IO warming, al-
lowing it to persist through the following summer.

The Southwest IO warming anchors an asymmetrical pat-
tern of anomalous atmospheric circulation over the tropical
IO in the spring following El Niño, with the northeaster-
lies north and northwesterlies south of the equator (Figs. 3c
and 4). The anti-symmetrical atmospheric pattern can be ex-
plained by the WES feedback of Xie and Philander (1994).
During winter and the following spring, the Southwest IO
warming induces wind anomalies across the equator, and the
wind anomalies turn northeasterly over the North IO due to
the Coriolis effect. The anomalous northeasterlies over the
North IO intensify the climatological northeast winter mon-
soon and cool the sea surface (Kawamura et al., 2001; Wu
et al., 2008). The anti-symmetrical pattern is also obvious
in precipitation. The rainfall increases over the anomalously
warm South IO with enhanced convection and decreases
over the relatively cool North IO. With the wind reversal to
the southwest monsoon in May, the anomalous northeasterly
winds change to have a warming effect on the North IO by
reducing latent heat flux (Du et al., 2009; Fig. 4). Although
wind-induced latent heat flux is the mechanism, the second
warming of the North Indian Ocean in the early summer fol-
lowing El Niño results from ocean–atmosphere interaction
within the tropical IO as the anti-symmetric wind pattern
is anchored by the slow-propagating downwelling Rossby
waves south of the equator. This deviates from the previous
paradigm that the tropical IO is climatically dormant and can
be modeled as a motionless mixed layer. Section 3 shows that
the ocean–atmosphere interaction for the second warming of
the North IO and SCS extends beyond the IO and involves
the TNW Pacific.

The largest SST anomalies in post-El Niño summer take
place over the SCS because of ocean dynamic effects such
as upwelling and gyre adjustments (Wang et al., 2002; Xie et
al., 2003; Wang et al., 2006). The slow ocean dynamic ad-
justments also make SCS SST anomalies last longest of the
global ocean (Yang et al., 2015). The shortwave cloud radia-
tive effect also contributes to SCS SST variability (Klein et
al., 1999; Wu et al., 2014).

2.2. The PJ pattern
The success of the thermally forced atmospheric Rossby

wave theory of Hoskins and Karoly (1981) in explaining the
observed excitation of the PNA pattern in winter by ENSO
(Horel and Wallace, 1981) triggered a boom of research on
tropical–extratropical teleconnections. From a teleconnec-
tivity map based on six summers of monthly satellite cloud
data, Nitta (1986) discovered a meridional dipole pattern of
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Fig. 4. Time–latitude section of regression upon ND(0)J(1)
Niñ3.4 SST: SST (shaded; ◦C) and surface wind velocity (vec-
tors), zonally averaged in the tropical IO (40◦–100◦E) [zonal
wind climatology plotted in black contours (2 m s−1 intervals
with zero omitted)]. Reprinted from Du et al. (2009).

cloudiness between the tropical (15◦–25◦N) and midlatitude
(30◦–40◦N) Northwest Pacific: weaker-than-normal convec-
tive activity over the South China and Philippine seas is as-
sociated with an increase in Mei-yu frontal rainfall (Fig. 5b).
Nitta (1987) named this teleconnection the PJ pattern [also
known as the East Asia–Pacific (EAP) pattern, as per Huang
and Sun (1992)]. Figure 5 shows the PJ pattern extracted
as the leading EOF of 850 hPa zonal wind over the sum-
mer Northwest Pacific multiplied by the Coriolis parameter,
equivalent to the meridional pressure gradient. It is highly
correlated with the principal components of the leading EOF
modes of precipitation and lower-tropospheric vorticity in the
region. Anomalous circulation in the lower troposphere ex-
hibits a tripolar pattern (Fig. 5a). The PJ pattern refers to the
dipole between the tropical and midlatitude lobes (associa-
tion of the tropical and high-latitude lobes is weak). The PJ
pattern dominates on intraseasonal to interannual time scales
and affects summer temperature, precipitation, and TC land-
fall in East and Southeast Asia.

2.2.1. Atmospheric dynamics

Analogous to the winter PNA pattern, Nitta (1987), Kuri-
hara and Tsuyuki (1987) and Huang and Sun (1992) sug-
gested that the PJ pattern is a Rossby wave train excited by
anomalous convection over the TNW Pacific. Nitta (1987)
further speculated that the convection anomalies are forced
by local SST anomalies. The PJ pattern has withstood the
test of time but the excitation mechanism turns out to differ
from what these early studies suggested.

An alternative view to linear Rossby waves riding on the
zonal mean flow regards dominant teleconnection patterns
such as the PNA as barotropically unstable modes that gain
energy from the zonally varying background flow (Simmons
et al., 1983). From this viewpoint, the PNA pattern is an in-
ternal dynamical mode of the atmosphere while external forc-
ing such as ENSO modulates its probability. Along this line,
Tsuyuki and Kurihara (1989) suggested that over the mid-
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Fig. 5. Structure of the PJ pattern. Anomalies of (a) SLP, (b) precipitation, (c) 2 m air temperature, and (d) TC
occurrence regressed against the leading principal component of JJA seasonal-mean zonal wind velocity at 850
hPa multiplied by the Coriolis parameter over (10◦–55◦N, 100◦–160◦E) for 1979–2014 (detrended), based on
JRA-55. The mode explains 35% of the variance. Panels (a, c) are based on JRA-55, and (b) is based on CMAP.
For (d), TC occurrence is defined as the duration for which TCs are centered within 500 km from each grid point
in a season, based on the best track data of the Regional Specialized Meteorological Center Tokyo–Typhoon
Center. TCs and TC-originated extratropical cyclones with maximum wind speed exceeding 17.2 m s−1 are
examined. Stippling indicates the >95% confidence level, based on the t-test.

latitude Northwest Pacific in summer, a barotropically un-
stable mode and Rossby wave propagation from the tropics
constitute the PJ pattern. A problem was that the prevailing
winds in the upper troposphere over the summer Northwest
Pacific are northeasterly, preventing stationary Rossby waves
from propagating poleward. Poleward Rossby-wave disper-
sion is, however, possible in the lower troposphere (Kosaka
and Nakamura, 2006). Kosaka and Nakamura (2010) and Hi-
rota and Takahashi (2012) suggested that the PJ pattern is an
internal regional mode of the atmosphere, fueled by tropical
convective variability and gaining energy also from the back-
ground state via barotropic and baroclinic energy conversion.
The anomalous circulation feeds back to tropical convective
anomalies by dynamically inducing vertical motion. In the

midlatitudes, there is a similar feedback between latent heat-
ing and the PJ circulation: local latent heating is both a cause
of circulation formation (Lu and Lin, 2009; Sun et al., 2010)
and a result of the anomalous circulation through horizontal
temperature advection (Kosaka et al., 2011). A variety of ex-
ternal perturbations, both in and out of the tropics, can trigger
the PJ pattern (Arai and Kimoto, 2008; Hirota and Takahashi,
2012).

2.2.2. SST forcing

The local correlation between SST and precipitation
anomalies of the PJ pattern is weak over the TNW Pacific
(Wang et al., 2005; Wu et al., 2009a; Lu and Lu, 2014)
and even negative over the SCS (Fig. 5), challenging Nitta’s
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month running averaged). Thick curves represent the >95%
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hypothesis of local SST forcing. The PJ pattern is not signif-
icantly correlated with the concurrent ENSO index (Kosaka
and Nakamura, 2006), but with ENSO in the preceding win-
ter (Fig. 6; Wang et al., 2003). The impact of ENSO on the
summer East Asian monsoon in ENSO decay years has been
related to the PJ pattern (Huang et al., 2004). The tropical
lobe of the PJ pattern in post-El Niño summer is the AAC
with suppressed convection over the TNW Pacific (Fig. 5).
The latter is often called the Philippine Sea AAC (Wang et
al., 2000, 2003), but we note that it extends into the North
IO with easterly wind anomalies on the south flank (Fig. 7a),
enabling inter-basin interactions between the IO and North-
west Pacific. The western extent of the AAC reaches the Bay
of Bengal and India, and northeasterly anomalies over the
Arabian Sea appear to be part of the anti-symmetric pattern
across the equator tied to the Southwest IO warming induced
by the downwelling ocean Rossby wave (section 2.1). Re-
garding the oceanic anchor for the AAC, there are two hy-
potheses pointing to SST anomalies of the TNW Pacific and
tropical IO, respectively.

In boreal winter of an El Niño event, an AAC devel-
ops rapidly east of the Philippines (Fig. 2b; Zhang et al.,
1996) and is coupled with local SST (Wang et al., 1999,
2000). The AAC cools the ocean on the southeastern flank
by strengthening the prevailing northeast trade winds. The
ocean cooling suppresses atmospheric convection, reinforc-
ing the AAC with a Rossby wave response. Alternatively,
Stuecker et al. (2013, 2015) suggested that nonlinear interac-
tions of atmospheric response to slowly evolving SST anoma-
lies of the eastern tropical Pacific with the background an-
nual cycle dominate and cause the rapid growth of the TNW
Pacific AAC. This nonlinear mechanism explains the mys-
terious biennial tendency of atmospheric variability over the
TNW Pacific (Li and Wang, 2005), e.g., the rapid transition

from negative JJA(0) to positive JJA(1) anomalies of atmo-
spheric pressure (Fig. 2b). This so-called combination mode
effect is weak in post-ENSO summer when eastern Pacific
SST anomalies have dissipated (M. Stuecker et al., 2015, per-
sonal communication).

The TNW Pacific air–sea coupling helps the AAC to per-
sist but requires background northeasterly winds for positive
feedback. In summer, the trade winds retreat eastward over
the TNW Pacific (Fig. 1), limiting negative SST anomalies
and the local air–sea feedback to a narrow region east of
140◦E (Fig. 7a). Wang et al. (2003) suggested that the lo-
cal coupling can help the AAC to persist from winter to sum-
mer. Difficulties extending this hypothesis to summer include
the weakening and contraction of the negative SST anomalies
(Fig. 2a) associated with the eastward retreat of the easterly
trade wind regime, reducing the relative importance of air–
sea interaction in the easterly regime (Wu et al., 2010).

The second hypothesis, called the IO capacitor effect,
considers the IO memory of ENSO influence. Recognizing
that the El Niño-induced IO warming persists through sum-
mer (Fig. 2), Yang et al. (2007) suggested that it anchors the
TNW Pacific AAC like a discharging capacitor. Xie et al.
(2009) proposed a discharging mechanism for this IO capac-
itor. The IO warming excites a Matsuno–Gill-type response
in tropospheric temperature, with a Kelvin wave wedge pen-
etrating into the equatorial western Pacific (Fig. 7b). The
warm equatorial Kelvin wave is accompanied by surface Ek-
man convergence on, and divergence off, the equator, thereby
suppressing convection over the TNW Pacific (Fig. 7a). Terao
and Kubota (2005) considered a similar mechanism but em-
phasized the inter-basin gradient between the IO warming
and a developing La Niña in the equatorial Pacific (Yun et al.,
2013). An apparent paradox is that the couplet of AAC and
suppressed convection in the western Pacific is found only
on the northern flank of the tropospheric Kelvin wave, al-
though the Kelvin wave itself is symmetric about the equa-
tor (Fig. 7). This interhemispheric asymmetry arises because
convection is stronger in the summer than winter hemisphere,
and a strong convective feedback preferentially amplifies the
Kelvin wave perturbations in the summer NH (Xie et al.,
2009).

AGCM experiments show that the IO warming and TNW
Pacific cooling contribute cooperatively to the summer TNW
Pacific AAC (Ohba and Ueda, 2006; Wu et al., 2014). Wu
et al. (2010) found that the AAC is mainly due to local air–
sea interaction in early summer but the IO effect dominates
in the mid to late summer. A caveat is that AGCMs tend to
exaggerate the local SST effect by simulating a positive local
SST–precipitation relationship over the TNW Pacific, while
the correlation is insignificant in observations (Wang et al.,
2005; Wu and Kirtman, 2007). In a CGCM experiment, sup-
pressing tropical IO SST variability reduced the intensity of
the summer TNW Pacific AAC by roughly 50% (Chowdary
et al., 2011). It remains to be investigated what accounts for
the other 50% of the AAC intensity—a question to be revis-
ited in section 3. Therein, we propose a unifying view that
combines the local air–sea interaction hypothesis of Wang et
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al. (2003) and the IO capacitor of Xie et al. (2009).
Statistically, eastern tropical Pacific SST anomalies di-

minish in JJA(1) (Fig. 2a) but individual ENSO events differ
among themselves during the decay. For example, a strong
La Niña event developed in 1998 summer (with Niño3.4 SST
at −1.2◦C) following a record El Niño. Such variability in the
SST gradient between the IO and tropical Pacific contributes
to the TNW Pacific AAC (Terao and Kubota, 2005; Chen et
al., 2012; Cao et al., 2013; Xiang et al., 2013). Recent studies
have also suggested a contribution from the tropical Atlantic
(Rong et al., 2010; Hong et al., 2014; Chen et al., 2015; Yu
et al., 2015). All these—IO warming, the TNW Pacific AAC,
tropical Pacific cooling, and tropical Atlantic warming—may
not be mutually independent (Kug and Kang, 2006; Stuecker
et al., 2015; Li et al., 2015c), highlighting the need for a gen-
eralized view of inter-basin interactions.

2.3. Impacts on terrestrial climate
2.3.1. Northwest Pacific TCs and Indian rainfall

Coherent anomalies of summer TC activity over the
Northwest Pacific accompany the PJ pattern (Fig. 5d; Choi
et al., 2010; Kim et al., 2012). In post-El Niño summer,
the AAC is unfavorable for TC development. TC genesis

decreases over most of the TNW Pacific while slightly in-
creasing over the SCS, consistent with the pattern of vertical
wind shear change (Du et al., 2011). TC occurrences drop
in a region centered on Okinawa, with significantly reduced
landfall on the coasts of eastern China and Korea (Fig. 5d;
Wang et al., 2013). These TC anomalies are captured in high-
resolution AGCM simulations, pointing to the importance of
SST boundary conditions (Mei et al., 2015). Using a regional
atmospheric model, Zhan et al. (2011) showed that eastern
IO SST anomalies affect TC genesis over the TNW Pacific
by modulating the western Pacific summer monsoon via the
equatorial Kelvin wave.

The TNW Pacific AAC extends into the North IO, affect-
ing South Asia (Mishra et al., 2012). In post-El Niño summer,
most of the South Asian region receives normal to above-
normal rainfall despite weak monsoon winds (Park et al.,
2010; Chowdary et al., 2013). The anomalous warm SST pro-
motes evaporation and increases atmospheric moisture over
the North IO (e.g., Saha, 1970). Enhanced moisture transport
(Izumo et al., 2008) and moist stability increase rainfall in
the Western Ghats and southern peninsular of India (Yang et
al., 2007; Park et al., 2010), while the westward extension of
the TNW Pacific AAC acts to reduce rainfall over the eastern
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Indo-Gangetic Plain (Chowdary et al., 2013).

2.3.2. Summer variability over East Asia

The PJ pattern provides a pathway for tropical influences
on the East Asian summer monsoon. In the polarity shown
in Fig. 5 (corresponding to a post-El Niño summer), the PJ
pattern brings anomalously wet and cool conditions to the
Yangtze River valley, Korea, and Japan. It prevents the sea-
sonal northward migration of the Northwest Pacific subtropi-
cal high and Mei-yu rainband, resulting in a prolonged rainy
season with reduced sunshine in these regions. The mega El
Niño of 1997/98 caused the great Yangtze River flood in 1998
through the PJ pattern (Chowdary et al., 2011).

Huang and Wu (1989) suggested that summer rainfall
anomalies in East Asia depend on the phase of the ENSO
cycle, relating the differences between the ENSO develop-
ing and decay summers to tropical convection over the South
China and Philippine seas. Subsequent studies (Shen and
Lau, 1995; Chang et al., 2000; Wang et al., 2000; Wu et al.,
2003) showed that in post-El Niño summer the TNW Pacific
AAC causes above-normal rainfall in the Yangtze River val-
ley. The relationship between East Asian summer rainfall and
ENSO is unstable over time (Wu and Wang, 2002; Ye and Lu,
2011), possibly due to the slow modulations by variations in
ENSO amplitude and/or type (Xie et al., 2010; Feng et al.,

2011; Yuan and Yang, 2012; Li et al., 2014). Further compli-
cations include apparent asymmetry between polarities in the
leading mode of East Asian summer rainfall variability (Hsu
and Lin, 2007).

In post-El Niño summer, anomalous vertical motions as-
sociated with the PJ pattern cause positive surface temper-
ature anomalies in southern China and negative anomalies
in northeast China by changing shortwave radiation and adi-
abatic warming (Hu et al., 2011). The circulation anoma-
lies also cause more frequent heat waves than normal across
the southern Yangtze River Valley in late summer (Hu et al.,
2012). In Japan, the PJ pattern is one of dominant modes
for summer temperature (Fig. 5c; Wakabayashi and Kawa-
mura, 2004; Yasunaka and Hanawa, 2006), contributing to
heat waves (e.g., in 2004) and extreme cool summers (e.g.,
in 1993). The record cool and wet summer of 1993 caused a
major rice harvest failure in Japan, pushing the nation to open
its domestic rice market.

3. A coupled perspective
In post-El Niño summer, the warming of the North IO and

SCS causes the AAC via the warm tropospheric Kelvin wave
(section 2.2), while anomalous easterly winds on the southern
flank of the AAC cause the second warming of the North IO
and SCS. The circular argument indicates that the two are a

30ºN

20ºN

10ºN

Eq

10ºN

60ºE 90ºE 120ºE 150ºE

60ºE 90ºE 120ºE 150ºE

30ºN

20ºN

10ºN

Eq

10ºN

1 m s–1

0.3

0.2

0.1

–0.1

–0.2

–0.3

[ºC]

1.9

1.5

1.1

0.7

0.3

–0.3

–0.7

–1.1

–1.5

–1.9
[mm day–1]

(a)

(b)

(c)

SST, tropospheric temperature

Precipitation, surface wind

–2 –1 0 1 2

0.4

0.2

0

–0.2

–0.4

[months]

atmos. lead SST lead

Lag correlations

North IO
SST

TNW Pacific SST

Fig. 8. Air–sea coupling of the IPOC mode in a 200-year partial coupling experiment called NoENSO, which artificially suppresses
SST variability over the tropical eastern Pacific: (a, b) anomalies of (a) SST (shading), normalized tropospheric temperature (con-
tours for ±0.05, ±0.15, ±0.25, . . . ◦C), (b) precipitation (shading) and surface wind (arrows) regressed against the leading principal
component of monthly 850 hPa vorticity over (0◦–60◦N, 100◦–160◦E) for JJA (stippling indicates the >95% confidence level of
shaded fields, based on the t-test); (c) lag cross-correlation of the corresponding principal component with SST in the northern
IO (0◦–25◦N, 60◦–120◦E; red) and TNW Pacific easterly regime (10◦–20◦N, 150◦–170◦E; blue) [error bars represent the 95%
confidence intervals; based on Kosaka et al. (2013) with slight model updates].



420 CLIMATE ANOMALIES IN POST-ENSO SUMMER VOLUME 33

coupled phenomenon. Kosaka et al. (2013) identified such a
coupled mode that involves inter-basin interaction between
the North IO and TNW Pacific, using the Pacific Ocean–
Global Atmosphere partial coupling framework, where SST
variability in the tropical Pacific is strongly damped towards
zero (“NoENSO” experiment).

Even without ENSO, the PJ pattern is coupled with posi-
tive SST anomalies over the North IO and SCS, along weak
negative anomalies in the easterly regime of the TNW Pa-
cific (Fig. 8a). Negative precipitation anomalies peak on the
boundary between positive and negative SST anomalies in
the westerly and easterly regimes of the TNW Pacific, respec-
tively. The anomalous diabatic cooling over the TNW Pacific
forces an AAC as a cold atmospheric Rossby wave that prop-
agates into the North IO. The associated easterly anomalies
on the southern flank (Fig. 8b) weaken the monsoon west-
erlies and reduce surface evaporation, causing the North IO
and SCS to warm. The ocean feedback to the AAC is non-
local, as the spatial correlation between SST and precipitation
anomalies is weak (Fig. 8). By forcing tropospheric tempera-
ture to follow a moist adiabatic profile in the vertical direction
(Neelin and Su, 2005), the North IO warming then excites a
warm atmospheric Kelvin wave (Fig. 8a), suppressing con-
vection and energizing the AAC over the TNW Pacific. The
inter-basin air–sea interaction supports positive feedback be-
tween the North IO warming and AAC. Indeed, the cross-
correlation between the PJ pattern and North IO SST peaks
at zero lag (Fig. 8c), indicating positive feedback. As an-
other manifestation of the ocean–atmosphere feedback, both
the magnitude and temporal persistence of PJ variability sub-
stantially increases in the coupled relative to the atmospheric
experiment (Kosaka et al., 2013).

Kosaka et al. (2013) focused on the IO–PJ coupling and
suggested the prevailing monsoon westerlies as the necessary
condition. Here, we extend their analysis to examine the pre-
season evolution. Note that equatorial Pacific SST anomalies
are kept near zero all the time in the NoENSO experiment.
The JJA IO–PJ coupling is preceded by negative anomalies of
SST and precipitation over the TNW Pacific (Fig. 9a). In the
pre-season (April–May) TNW Pacific, negative SST anoma-
lies are collocated with northeasterly wind anomalies on the
southeastern flank of an AAC that extends into the North IO
(Fig. 10a). The interaction of negative SST anomalies and the
AAC under the northeast trades over the spring TNW Pacific
constitutes positive feedback, as envisioned by Wang et al.
(2000). The seasonal variation in the background wind over
the TNW Pacific alters the type of feedback that prevails in
different seasons. The monsoon westerly regime appears in
the North IO in May and expands eastward through the SCS
into the TNW Pacific (Fig. 9b). The eastward seasonal ex-
pansion of the monsoon westerlies leaves a clear signature in
the boundary between the expanding positive and contract-
ing negative SST anomalies in the coupled IO–TNW Pacific
mode (Fig. 9a). The easterly anomalies of the AAC induce
negative SST anomalies under the easterly trades but create
positive anomalies under the monsoon westerlies (Fig. 10b).
This seasonally evolving coupled mode unifies the local air–

sea interaction mechanism of Wang et al. (2000) that domi-
nates in spring under the northeast trades over the TNW Pa-
cific, and the IO capacitor effect of Xie et al. (2009) that takes
over in summer under the southwest monsoon.

This Indo-western Pacific inter-basin coupling itself does
not require ENSO forcing, but El Niño excites this mode by
inducing the IO warming (Kosaka et al., 2013) and TNW Pa-
cific cooling (Wang et al., 2013; Stuecker et al., 2015) as
initial perturbations. This coupled mode generalizes the ca-
pacitor concept and constitutes an Indo-western Pacific ocean
capacitor (IPOC). In the peak phase of ENSO, the tropi-
cal Pacific is the center of action featuring, globally, the
most pronounced anomalies of SST, precipitation, and sur-
face wind. By contrast, in JJA(1), the discharging IPOC shifts
the ENSO’s center of action to the Indo-TNW Pacific re-
gion, where the most pronounced and coherent anomalies are
found. The positive feedback among the TNW Pacific cool-
ing, North IO warming and AAC prolongs ENSO anomalies
and explains why the decay of El Niño follows the spatiotem-
poral pattern of the IPOC mode, both in JJA(1) (Fig. 7) and
the pre-season (Fig. 10a). Thus, the IO “basin mode” (Yang
et al., 2007) is truly a dynamic mode, as the inter-basin in-
teraction sustains it against dissipation. While observations
suggest cross-basin ocean–atmosphere interaction (Du et al.,
2009; Wang et al., 2013), the NoENSO partial coupling ex-
periment of Kosaka et al. (2013) shows that IPOC is an intrin-
sic mode of the region with a distinctive seasonal evolution
dictated by monsoon. The PJ pattern is an atmospheric inter-
nal mode (Lu et al., 2006) but energized by ocean coupling
and ENSO forcing. The seasonally varying IPOC brings sea-
sonal predictability to the region (section 4). The mode also
emerges from the inter-member spread of ensemble seasonal
predictions (Li et al., 2012) as differences in initial conditions
grow on the IPOC feedback.

4. Predictability
4.1. Tropics

CGCMs, properly initialized with observations, show
skill in predicting precipitation and circulation anomalies
over the TNW Pacific during summer following El Niño
at monthly to seasonal leads (Liang et al., 2009; Wang et
al., 2009; Chowdary et al., 2010; Lee et al., 2011). Figure
11 compares 11-model mean forecasts with observations in
composites of three post-El Niño summers with a significant
IO warming (in 1983, 1992 and 1998). At one month lead
(initialized on 1 May), the multi-model ensemble captures
the salient features of the IPOC mode, i.e., the collocated
anomalies of SST increase and weakened monsoon winds
over the North IO and SCS, the warm tropospheric Kelvin
wave wedge into the western Pacific, as well as the AAC
that extends from the TNW Pacific into the North IO. Models
have good skill in predicting summer monsoon rainfall over
the Indo-TNW Pacific, as well as South and East Asia (Fig.
11d). At three-month (initialized on 1 March) lead, signifi-
cant skill remains in predicting the AAC and rainfall anoma-
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lies over the TNW Pacific (Chowdary et al., 2010; Li et al.,
2012, Lu et al., 2012; Jiang et al., 2013).

The IO effect on the prediction is studied with a “No-
TIO” experiment, where climatological SST is prescribed
over the tropical IO. Figure 12 shows the JJA(1) compos-
ite difference in circulation, precipitation and SLP between
control (CTL) and NoTIO runs in one-month lead forecasts.
Seasonal anomalies are strengthened by IO SST variability.
Specifically, the IO warming increases local precipitation and
induces an AAC with reduced precipitation over the TNW
Pacific. The CTL−NoTIO differences clearly illustrate the
importance of tropical IO air-sea interaction in predicting cir-
culation and rainfall over the Indo-TNW Pacific region. An
interactive tropical IO extends the useful anomaly correlation
coefficient (r > 0.5) in predictions of circulation anomalies
over the TNW Pacific by 1–2 months (Chowdary et al., 2011).

4.2. Midlatitudes
To the extent that atmospheric circulation and rainfall

anomalies are predictable over the IO–TNW Pacific, the PJ
pattern allows these tropical anomalies to influence the mid-
latitude East Asian and Northwest Pacific region and conceiv-
ably enhances predictability there. Indeed, prediction stud-
ies show some skill, i.e., increased rainfall and southwesterly
wind anomalies over eastern China and the south of Japan in
post-El Niño summer (Fig. 11). Generally, however, the pre-
dictability in East Asia is limited, both due to model errors in
simulating the Mei-yu rain band and to pronounced internal
variability of the atmosphere that is unpredictable at monthly
and longer leads.

For the summer of 2010, a multi-model ensemble pre-

dicted a PJ mode but the prediction was verified only in the
tropics: Monsoon rainfall intensified over the Arabian Sea
and weakened over the TNW Pacific, typical of a post-El
Niño summer. Deviating from the dipolar PJ pattern, how-
ever, Korea and Japan experienced extreme hot weather while
northwest Pakistan was devastated by heavy floods. These
floods are attributed to unusual atmospheric events in the
tropics, with deep convection shifted from the Bay of Ben-
gal to northern Pakistan (Houze et al., 2011; Pai and Sreejith,
2011; Webster et al., 2011). Midlatitude circulation triggered
by a blocking high that caused the Russian heat wave also
contributed to the Pakistan heavy rains downstream (Lau and
Kim, 2012; Kosaka et al., 2012). Models show some skill in
predicting the distinct seasonal rainfall anomalies in summer
2010 from the northern Arabian Sea to northern Pakistan, but
this predictability comes from the tropical region (Chowdary
et al., 2014). Models failed to predict the extreme intensity of
northern Pakistan rainfall and positive precipitation anoma-
lies in western Pakistan due to the inadequate representation
of subtropical circulation, such as the Silk Road pattern.

The Silk Road pattern is the wavy component of the sum-
mer circumglobal teleconnection pattern in the Eurasian sec-
tor, trapped in the waveguide of the subtropical Asian jet
(Fig. 13; Wu, 2002; Enomoto, 2004; Ding and Wang, 2005;
Kosaka et al., 2009). In summer 2010, the Silk Road pattern
caused an anomalous anticyclonic circulation over Japan and
a cyclonic circulation over west-central Asia around 40◦N.
Coupled models can simulate the stationary wave pattern of
the Silk Road teleconnection (anchored by zonal variations
of the Asian jet) but not the temporal phase (Kosaka et al.,
2012; Chowdary et al., 2014). This indicates that the Silk
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Road pattern is an internal mode of the midlatitude atmo-
sphere, whereas the zonal-mean component of the summer
circumglobal teleconnection pattern is correlated with devel-
oping ENSO (Ding et al., 2011) and hence is predictable (Lee
et al., 2011, 2014). Because chaotic phase variations of the
Silk Road pattern are not strongly tied to SST forcing, it lim-
its the predictability at monthly and longer leads over East
Asia even though the PJ pattern transmits predictable tropical
influences. Some recent studies, however, suggest an associ-
ation of the Silk Road pattern with Atlantic SST (Wu et al.,
2009b; Yamaura and Tomita, 2011; Otomi et al., 2013). This
is a potential source of predictability that can benefit midlati-
tude Asian countries.

5. Interdecadal modulations
ENSO teleconnections to the IO–TNW Pacific and East

Asia show substantial interdecadal variations over the second
half of the 20th century, a period of relatively abundant ob-
servations. The relationship of the East Asian summer mon-
soon and TNW Pacific AAC to the preceding ENSO was
strong after the late 1970s but insignificant from the 1950s
to 1970s (Wu and Wang, 2002; Wang et al., 2008; Xie et al.,

2010). Consistent with the IO capacitor mechanism, the El
Niño-induced IO warming persists through summer only af-
ter the 1970s as the thermocline in the tropical Southwest IO
shoaled to strengthen thermocline feedback (Xie et al., 2010).
Tracking the tropospheric Kelvin wave that connects the IO
warming and western Pacific, tropospheric temperature in
long-term sounding observations over Singapore shows a cor-
responding increase in correlation with ENSO. An AGCM
forced with observed SST successfully simulated the increase
in the ENSO–AAC correlation and AAC variance throughout
the 1970s (Huang et al., 2010). Using an AGCM coupled
with an ocean mixed layer, Ding et al. (2015) reproduced
the interdecadal modulation in partial coupling experiments
that restored SST towards observations over the equatorial
Pacific.

Chowdary et al. (2012) used surface ocean–atmospheric
observations along a busy shipping track across the North IO
and SCS to extend the analysis back to 1871—the year of
Suez Canal opening, which consolidated IO shipping lanes.
The correlation between summer North IO SST and preced-
ing winter ENSO was high at the turn of the 20th century and
since the mid-1970s, but was low in between (Fig. 14a). The
North IO SST modulations were accompanied by consistent
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modulations in local wind, as well as in remote pressure and
rainfall over the TNW Pacific. Kubota et al. (2015) used sta-
tion data of atmospheric pressure to reconstruct the PJ pattern
from 1897 and found similar modulations in correlation with

the preceding winter ENSO, with significant correlations be-
fore the 1910s, around the 1930s, and since the 1970s (Fig.
14c). As similar modulations happened before, the recent
increase in correlation between the IPOC mode and ENSO
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appears to be due to natural variability, rather than to anthro-
pogenic climate change (Zheng et al., 2011). In support of
this notion, interdecdal modulations of the ENSO effect on
Indo-TNW Pacific summer climate are common in climate
model simulations under constant radiative forcing (Hu et al.,
2014). The interdecadal modulations indicate that the sea-
sonal predictability of summer IO–WNP climate varies from
one decade to another.

ENSO amplitude can affect the strength of ENSO tele-
connection to the Indo-TNW Pacific region. The period, am-
plitude, spatial structure, and temporal evolution of El Niño
events can cause significant changes in ENSO teleconnec-
tions (Diaz et al., 2001). When ENSO variance is high (at
the turn of the 20th century and after the 1970s) (Fig. 14b),
correlations of atmospheric anomalies in the Indo-TNW Pa-
cific with ENSO are high (Chowdary et al., 2012; Kubota et
al., 2015; Yang et al., 2015). Variations in El Niño to La Niña
transition and the persistence of IO warming may also affect
the TNW Pacific AAC in summer (Xie et al., 2010). For ex-
ample, the intensified ENSO–PJ correlation in the 1930s is
not associated with an ENSO amplitude increase, but rather
with an increase in IO warming persistence (Fig. 14d). The
Pacific Decadal Oscillation is an additional factor that can
modulate the ENSO impact on Indo-TNW Pacific climate
(Wang et al., 2008; Feng et al., 2014).

6. Summary and outlook
ENSO is a climate phenomenon that opens on the center

stage of the equatorial Pacific. The last act of El Niño drama
is played over the Indo-western Pacific in JJA(1) after the cur-
tain falls on the main stage. The main cast of the last act in-
cludes the surface warming in the westerly monsoon regime
of the Indo-western Pacific warm pool, and the AAC that ex-

tends from the TNW Pacific into the North IO. Here, we have
reviewed recent advances, with a historical perspective, in the
investigation of how the last act is staged.

Our synthesis has revealed the IPOC mode sustained by
inter-basin ocean–atmosphere interaction (Fig. 15). IPOC
unifies two separate ideas for the post-El Niño summer AAC
that emphasize either the sea surface cooling in the easterly
trade regime of the TNW Pacific (Wang et al., 2000), or the
sea surface warming in the westerly monsoon regime over the
IO and SCS (Xie et al., 2009). The zonal contrast between
the IO warming and Pacific cooling was previously recog-
nized (Terao and Kubota, 2005; Ohba and Ueda, 2006) as
important for the AAC, but the discussion was limited to an
atmospheric, not coupled, perspective. The coupled perspec-
tive further recognizes that the North IO warming and TNW
Pacific cooling are caused by the easterly wind anomalies on
the southern flank of the AAC that weaken the westerly mon-
soon and strengthen the easterly trade winds (Du et al., 2009).
The interaction of the SST anomalies and AAC yields posi-
tive feedback.

The IPOC is an internal mode arising from inter-basin
ocean–atmosphere feedback, as illustrated by the NoENSO
partial coupling experiment of Kosaka et al. (2013). In mid-
summer, IO SST anomalies are the major cause of the AAC
(Wu et al., 2010) as the easterly trade regime retreats east-
ward over the TNW Pacific, reducing the area of the SST
cooling. The free IPOC mode shows a seasonal evolution pre-
ceded by the TNW Pacific cooling–AAC coupling in spring.
Remarkably, the TNW Pacific cooling–AAC coupling in the
free mode happens to resemble what is observed during the
El Niño decay in spring (Wang et al., 2000, 2003). This in-
dicates that ENSO preferentially excites the IPOC mode be-
cause of the reduced damping. In addition to the TNW Pacific
cooling, the El Niño-induced downwelling Rossby waves in
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based on the t-test; grey contours indicate JJA climatological zonal wind velocity at 200 hPa for 20, 25 and 30 m s−1;
based on JRA-55 for 1979–2014) (detrended).
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the South IO also help initialize the IPOC mode by anchor-
ing a meridional anti-symmetric wind pattern with anoma-
lous easterlies over the Arabian Sea (Fig. 15; Du et al., 2009).
The easterly wind anomalies, induced by the ocean Rossby
waves, and as part of the AAC, cause the second warming of
the North IO and SCS upon the onset of the westerly mon-
soon. The second warming manifests the unstable interaction
of the North IO and AAC.

An atmospheric bridge allows ENSO to imprint upon the
SST in other ocean basins (Lau and Nath, 1996; Alexander et
al., 2002). The IO capacitor emphasizes that IO SST anoma-
lies induced by the atmospheric bridge outlast ENSO forcing
itself and discharge regional climatic influences (Yang et al.,
2007; Xie et al., 2009). Our work here extends the ocean ca-
pacitor concept by revealing the coupled ocean–atmosphere
feedback beyond a simple persistence due to ocean thermal
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inertia. The positive feedback of IPOC explains why El Niño
stages its last act over the Indo-Northwest Pacific region in
JJA(1), why the North IO–SCS warming peaks twice, and
why the AAC is the dominant mode of summer atmospheric
variability over the Northwest Pacific. These results, along
with the recognition that the IOD is a coupled mode of Bjerk-
nes feedback excited by ENSO (Saji et al., 1999), transform
our view of the IO from a slave to ENSO to a dynamic player
shaping regional climate variability (Annamalai et al., 2005;
Kug and Kang, 2006; Luo et al., 2012; Han et al., 2014; Li et
al., 2015c).

Models show skill in predicting the IPOC mode at

monthly to seasonal leads, especially after a major El Niño
event (Wang et al., 2009; Chowdary et al., 2010). Although
the PJ pattern transmits tropical signals poleward, seasonal
predictability is limited over extratropical East Asia due to
the interference by stationary wave trains trapped along the
Asian westerly jet (Kosaka et al., 2012). Models simulate
these stationary wave patterns well, but not their tempo-
ral phase. Further work is needed to quantify seasonal pre-
dictability over East Asia, including the contribution from
the PJ pattern and limitations imposed by the Silk Road pat-
tern. Extra predictability might be achieved by improving
the simulation of the Mei-yu rain band in light of the im-
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(shaded ellipses). The easterly wind anomalies associated with the AAC cause SST to increase
over the North IO–SCS (blue vectors) and to decrease in the easterly regime of the Northwest
Pacific (red vectors), while the SST anomalies anchor the AAC by suppressing atmospheric
convection over the TNW Pacific. The slow propagating oceanic Rossby waves in the South IO
(red wavy arrow) also contribute to the easterly wind anomalies over the North IO (box arrow).
Convection is suppressed in the AAC but enhanced over East Asia in the anomalous cyclonic
circulation (ACC) of the PJ pattern.

Fig. 16. Scatter diagrams (a) between zonal wind (m s−1) and SST (◦C) anomalies in the North IO (0◦–15◦N,
50◦–100◦E) in AMJ(1) and (b) between the standard deviation of NDJ(0/1) Niño3.4 index [STD(Niño)] and the
correlation of the JJA(1) tropical IO basin-mean SST [r(IOB, Niño)], based on historical runs with 20 CMIP5
models (error bars give ranges of one standard deviation). Reprinted from Du et al. (2013).
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portance of midlatitude latent heating for the PJ pattern (Lu
and Lin, 2009). Prediction systems with a high-resolution (50
km or finer grid spacing) atmospheric model component hold
the promise of predicting TC track density and even landfall
probability at seasonal leads (Vecchi et al., 2014; Mei et al.,
2015).

Historical correlations of summer anomalies over the
Indo-TNW Pacific with the preceding winter ENSO were not
stable over time—high at the turn of the 20th century and af-
ter the 1970s, but low in between. The ENSO variance cycle
seems to be a driver: strong ENSO excites a robust IPOC
mode with enhanced PJ variance (Chowdary et al., 2012;
Kubota et al., 2015). Bursts of strong ENSO events tend to
cluster in time to form a variance cycle (Li et al., 2013). Be-
cause it affects the seasonal predictability, work is needed to
investigate the mechanism for the ENSO variance cycle and
its modulations of teleconnective effects (Ogata et al., 2013;
Wittenberg et al., 2014).

CGCMs are an important tool for seasonal prediction and
future projection. Many CGCMs show skill in simulating
the El Niño-induced IO warming (Saji et al., 2006), its sea-
sonal evolution, and the underlying mechanisms (e.g., ocean
Rossby waves in the South IO) (Du et al., 2013). Consis-
tent with the IPOC mechanism, the SST warming and east-
erly wind anomalies in early summer of the El Niño decay
year are correlated in the inter-model spread of CMIP5, and
ENSO variance modulates the magnitude of the post-El Niño
IO warming (Fig. 16). A common bias of CMIP5 models
is that the El Niño-induced IO warming and AAC terminate
1–2 months too early and do not persist through summer as
in observations (Du et al., 2013; Hu et al., 2014). This bias
of weak summer persistence might be due to a weak thermo-
cline feedback of slow-propagating Rossby waves over the
southwest IO—a mechanism that contributes to the persis-
tence of the IPOC mode (Du et al., 2009). The thermocline
ridge is too deep due to a downwelling Ekman pumping bias
related to too weak westerly winds in the equatorial IO (Li et
al., 2015a). The equatorial wind biases can be further traced
back to biases in simulating the southwest summer monsoon
(Li et al., 2015b), illustrating the importance of IO–monsoon
interaction.

The tropical IO has experienced a robust warming since
the 1950s—a change due to anthropogenic radiative forcing
(Alory et al., 2007; Du and Xie, 2008). While there are some
uncertainties in the magnitude and spatial pattern of the IO
warming trend in observations (Tokinaga et al., 2012; Han et
al., 2014), CMIP5 models project a robust IOD-like warm-
ing pattern over the equatorial IO, with anomalous easter-
lies blowing from the reduced warming in the east to the en-
hanced warming in the west (Zheng et al., 2013; Christensen
et al., 2013). The easterly wind change under global warm-
ing deepens the thermocline ridge in the Southwest IO, and
can potentially reduce the IPOC persistence. Recent studies
have questioned the reliability of the IOD-like projection on

the grounds that the easterly errors in the mean wind over the
equatorial IO bias Bjerknes feedback too strongly in models
(Cai and Cowan, 2013; Li et al., 2016a). Consistent with this
argument, the variance of the interannual IOD mode is too
high in models (Liu et al., 2014).

The IO is projected to warm more in response to anthro-
pogenic radiative forcing. An early study based on a single
model (Zheng et al., 2011) showed that in a warmer climate
both the IO warming and AAC persist longer in post-El Niño
summer, indicating a strengthening of the positive feedback
from the interaction of these interannual ocean–atmosphere
anomalies. A similar strengthening of the IPOC mode takes
place in a subset of CMIP5 models that are deemed to simu-
late the mode well in current climate (Chu et al., 2014). Hu et
al. (2014) showed that by changing the moist adiabatic lapse
rate, climate warming amplifies the tropospheric Kelvin wave
that connects the Indo-western Pacific oceans in post-El Niño
summer. Other competing mechanisms, e.g., the increased
dry stability of the troposphere acting to reduce the circula-
tion response to latent heating, may cause models to differ in
their IPOC response to global warming. Developing a pre-
dictive understanding of regional climate change (including
modes of variability) is a grand challenge facing the climate
research community (Xie et al., 2015), where climate dynam-
ics can be applied and extended.
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