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Exosomes: vesicular carriers for intercellular communication
in neurodegenerative disorders
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Abstract The intercellular transfer of misfolded proteins
has received increasing attention in various neurodegenera-
tive diseases characterized by the aggregation of specific
proteins, as observed in Alzheimer’s, Parkinson’s and
Huntington’s disease. One hypothesis holds that intercellu-
lar dissemination of these aggregates within the central
nervous system results in the seeded assembly of the cog-
nate soluble protein in target cells, similar to that proposed
for transmissible prion diseases. The molecular mechanisms
underlying the intercellular transfer of these proteinaceous
aggregates are poorly understood. Various transfer modes of

misfolded proteins including continuous cell-cell contacts
such as nanotubes, unconventional secretion or microve-
sicle/exosome-associated dissemination have been sug-
gested. Cells can release proteins, lipids and nucleic acids
by vesicular exocytosis pathways destined for horizontal
transfer. Encapsulation into microvesicular/exosomal
vehicles not only protects these molecules from degradation
and dilution in the extracellular space but also facilitates
delivery over large distances, e.g. within the blood flow or
interstitial fluid. Specific surface ligands might allow the
highly efficient and targeted uptake of these vesicles by
recipient cells. In this review, we focus on the cell biology
and function of neuronal microvesicles/exosomes and dis-
cuss the evidence for pathogenic intercellular protein trans-
fer mediated by vesicular carriers.
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Cell biology of microvesicles and exosomes

Microparticles have been isolated from various body fluids
such as urine, ascites, saliva, breast milk and blood by ultracen-
trifugation, ultrafiltration or immunoprecipitation (Simpson
et al. 2009). A consensus regarding the nomenclature of these
heterogeneous vesicular populations is still missing because of
experimental difficulties in separating and distinguishing the
various extracellular vesicles based on their biochemical or
morphological properties. The terminology mainly refers to
the cellular origin (e.g. aggrosomes, prostasomes, promino-
somes), their attributed function (e.g. apoptotic body), size
(ranging from 40 nm to 4 μm) or subcellular origin (exosomes,
shedding vesicles; see Table 1). Whereas exosomes are built
within the endosomal system, shedding vesicles (or ectosomes)
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bud directly from the plasma membrane into the extracellular
space. Shedding vesicles can be further divided into micro-
vesicles, with variable diameters of 0.1 to 1 μm and the larger
apoptotic bodies.

Exosomes

Exosomes are generated within the (late) endosomal com-
partments by inward vagination and fission of the limiting
membrane. Endosomes that are filled with these intralumi-
nal vesicles (ILV) are termed multivesicular endosomes
(MVE). ILVs can serve as storage compartments for
proteins and signalling complexes and can re-enter the cy-
tosol by backfusion with the MVE limiting membrane
(Abrami et al. 2004; Le Blanc et al. 2005; Dobrowolski
and De Robertis 2011). In addition to a mere storage func-
tion, the MVE can either fuse with the lysosome, followed
by the degradation of ILVs, or with the plasma membrane to
release the ILVs as exosomes into the extracellular space.
Whether these different pathways correspond to distinct
subclasses of MVEs or whether each MVE can switch
between the different itineries described above is unknown.
Exosomes contain cytosol and feature a membrane topology
that is inverse to the endosomal membrane. The inner exo-
somal membrane leaflet faces the cytosol, whereas the outer
leaflet adjoins the extracellular space. Exosomes are secret-
ed by a variety of cells in vitro and in vivo under physio-
logical and pathological conditions. On transmission of
electron or cryo-electron microscopic images, exosomes
appear as vesicles of 40–100 nm in diameter with a charac-
teristic round or cup-shaped morphology (Thery et al. 2006;
Conde-Vancells et al. 2010). Exosomes differ in their origin
and in their protein and lipid composition. Depending on
their cellular ancestry, they carry cell-type-specific proteins,
such as major histocompatibility complex (MHC) when
released from antigen-presenting cells, or myelin proteins,
when derived from oligodendrocytes (Kramer-Albers et al.
2007; Thery et al. 2001). Several proteins are specifically
enriched in exosomes and serve as marker proteins. These
include the integrins and tetraspanins CD63, CD89, CD81,
CD9 and CD82, the MVE proteins alix and tsg101, the
endosomal and endosome maturation-related proteins
flotillin and annexin and the heat shock proteins hsp70 and
hsp90 (Simons and Raposo 2009). Proteins derived from the
nucleus, mitochondria or endoplasmic reticulum are mainly
excluded from the exosomal pathway.

Shedding vesicles

Shedding vesicles (or ectosomes) are generated by shedding at
the plasma membrane and include microvesicles with a het-
erogeneous size range from 100 nm to 1 μm and apoptotic
bodies. Apoptotic bodies are released from the plasma mem-
brane during the breakdown of apoptotic cells. They carry
DNA, histones, organelles and surface markers that allow
their recognition and internalization by phagocytic and other
subsequent cells, thereby preventing the release of intracellu-
lar content and inflammatory reactions (Nunez et al. 2010;
Thery et al. 2001). Their diameter varies between 1 and 4 μm.
Shedding particles with a diameter of 100 nm cannot be
distinguished from endosomally derived exosomes on a mor-
phological or biochemical basis, including density gradient
centrifugation. Some authors refer to these vesicles as exo-
somes derived from the direct pathway as compared with
exosomes that stem from the endosomal indirect pathway
(Booth et al. 2006; Simons and Raposo 2009). Further com-
plexity is added by the finding that several proteins can bud
either into exosomes or shedding vesicles in a cell-type-
dependent manner (Shen et al. 2011a). Throughout our re-
view, we will therefore use the umbrella term “exosomes and
microvesicles” (EMV) to describe extracellular vesicles that
are of 40-100 nm in size and that are generated within both
pathways as suggested by Shen et al. (2011a). Despite the
experimental difficulties in distinguishing between exo-
somes and microvesicles, they might still represent distinct
entities with different properties and functions.

Physiological function of EMVs

Exosomes were first identified as a pathway for shuttling
superfluous material out of the cell, especially from cells with
low lysosomal activity or lysosome number. Only recently has
their role as an alternative exocytosis pathway for cytosolic or
transmembrane proteins and their function in the targeted de-
livery of molecules destined for intercellular communication
and signalling been recognized (Mathivanan et al. 2010b).
Targeting mechanisms for the selective sorting of proteins,
lipids, mRNA and small non-coding RNA are under intense
investigation since certain cellular subsets of these molecules
are specifically enriched in EMVs. There is ample evidence for
a role of EMVs in intercellular communication; however, the
mechanisms for target cell recognition, entry and the intracel-
lular itinery in recipient cells are far from being understood.

Table 1 Extracellular vesicles
and their characteristics Microparticles Origin Size Flotation

Exosomes Multivesicular endosome 40–100 nm 1.13–1.19 g/ml

Shedding vesicles
(ectosomes)

Microvesicle Plasma membrane 0.1–1 μm

Apoptotic body Plasma membrane 1–4 μm 1.24–1.28 g/ml
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Regarding the central nervous system (CNS), EMV release has
been shown in vitro for oligodendrocyte, microglia, astrocyte
and neuronal cell cultures (Faure et al. 2006; Kramer-Albers et
al. 2007; Potolicchio et al. 2005; Taylor et al. 2007).

Neuronal EMVs

Origin

Primary neurons release vesicles which can be isolated from
conditioned medium in vitro (Faure et al. 2006). Their size
and morphology as assessed by gradient centrifugation and
electron microscopy closely resemble EMVs and the prep-
arations are positive for exosomal marker proteins, such as
hsp70 and flotillin (Bulloj et al. 2010; Faure et al. 2006;
Lachenal et al. 2011). Because of the lack of specific exo-
somal marker proteins, difficulties abound when trying to
establish whether these vesicles represent bona fide exo-
somes derived from the indirect endosomal pathway. Re-
cently, Lachenal et al. (2011) have demonstrated the
presence of tetanus toxin in EMV preparations derived from
neuronal culture medium. Tetanus toxin is endocytosed
from the cell surface and is present in endosomes. The
authors therefore speculate that these tetanus-toxin-positive
EMVs originate from the indirect pathway (Lachenal et al.
2011). However, the presence of tetanus toxin does not
exclude direct budding from the plasma membrane, since
tetanus toxin primarily binds to membrane gangliosides and
would also be expected in vesicles that bud directly from the
plasma membrane.

Neuronal MVEs are predominantly distributed within the
somatodendritic compartment where they are 50 times more
abundant than in the axon (for a review, see Von Bartheld and
Altick 2011). The accumulation of MVEs at the postsynapse
indicates that MVE fusion and exosome release might occur
from dendritic spines. Electron-microscopic examination of
stimulated primary neuronal cultures has demonstrated vesic-
ular structures with the size and morphology of exosomes in
close proximity to somatodendritic compartments (Lachenal
et al. 2011).More experiments, e.g. with chamber systems, are
needed to improve the characterization of the sites of EMV
release in polarized neurons. In addition, knowledge of wheth-
er MVEs released from different neuronal subcompartments
are distinct with regard to their molecular composition and
cargo would be of interest.

Function

Neuronal MVEs have been shown to carry glutamate receptor
(GluR2) subunits. MVE-mediated release could therefore be a
mechanism to eliminate α-amino-3-hydroxy-5-methyl-4-iso-
xazoleproprionic acid (AMPA) receptors in response to

glutamatergic stimulation (Lachenal et al. 2011). Thus, exo-
somes released from the postsynaptic site might modulate syn-
aptic transmission and plasticity. This notion is further
supported by the finding that the number of dendritic MVEs
and EMV release increase in electrically stimulated neurons
(Kadota et al. 1994; Kraev et al. 2009). Likewise, prolonged
potassium-induced depolarization of neuronal cultures potenti-
ates EMV secretion (Faure et al. 2006). Further evidence for
activity-dependent EMVrelease has been provided by Lachenal
et al. (2011) who have demonstrated that neuronal EMV secre-
tion is regulated by calcium influx and glutamatergic activity.
Not only treatment with ionomycin to raise intracellular calcium
concentrations but also increased glutamatergic activity after
pharmacological inhibition of γ-aminobutyric acid (GABA)-A
receptors results in enhanced EMV secretion from neuronal
cultures. Interestingly, treatment with AMPA- or N-methyl D-
aspartate (NMDA)-receptor antagonists counteract the glutama-
tergic effect on EMV release. Hence, the authors speculate that
neurons modulate their number of ionotropic postsynaptic
receptors, synaptic plasticity and strength by activity-
dependent EMV release (Lachenal et al. 2011).

In vivo evidence of neuronal exosome release and its
functional significance is still lacking. The transduction of
wnt signalling by exosome-like vesicular structures has
been reported in Drosophila. The palmitoylated wnt pro-
teins are membrane-bound and thus unlikely to be released
as soluble proteins to the extracellular space. Instead, the
Drosophila wnt1 homolog wingless (wg) has been shown to
be transported trans-synaptically with vesicles resembling
exosomes, followed by the binding of wg to Drosophila
frizzled 2 (DFz2) receptors at the postsynapse (Korkut
et al. 2009). Further in vivo evidence for neuronally derived
EMVs is based on their presence in cerebrospinal fluid
(CSF). Vella et al. (2008) have described the isolation of
microparticles, which are enriched in the native prion protein
PrPc, from ovine CSF. Harrington et al. (2009) have identi-
fied, in human CSF, nanostructures including exosome-like
vesicles that can be labelled with antibodies against various
exosomal marker proteins in immuno-transmission electron
microscopy. Whereas these vesicles might be derived from
CSF immune cells or ventricular ependymal cells, we have
been able to fractionate, from human CSF, exosome-shaped
vesicles positive for GluR2, indicating their neuronal origin
(own unpublished data).

Exosomes in neurodegenerative diseases

Although definitive evidence for intercellular EMV transfer
within the CNS is still lacking, EMVs have been repeatedly
discussed as potential carriers in the dissemination of disease
pathology in neurodegenerative disorders (for a review, see
Aguzzi and Rajendran 2009).
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Prions

This hypothesis evolved first in the context of the interneu-
ronal spreading of transmissible prion disorders such as the
new variant of Creutzfeld-Jacob disease (CJD), bovine
spongiform encephalitis (BSE) and scrapie. Prions exist in
two different conformational states: the natively folded PrPc

and the disease-associated misfolded PrPsc. PrPsc is charac-
terized by an abnormal conformation, which can serve as a
template to induce the misfolding of PrPc (a mechanism
called permissive templating). In infectious prion diseases,
PrPsc can enter the organism by the gut, followed by the
invasion of lymphoid tissue from where it spreads into the
peripheral nervous system and finally the CNS. In addition
to intercellular transfer by tunneling nanotubes, as discussed
by Gousset et al. (2009), a role for exosomes as a carrier for
PrPsc in this intercellular dissemination has been proposed.
Tunnelling nanotubes are transient membranous connec-
tions that can connect cells over distances of up to 100
μm. Two types of nanotubes can be distinguished based
upon their diameter and cytoskeleton, which includes either
actin or actin and microtubules. The transport of vesicles
and organelles has been demonstrated within nanotubes that
can bridge the distance between numerous cell types (Gurke
et al. 2008). PrPsc-bearing exosomes can travel either with
the blood stream or after internalization within blood cells to
reach their target cells. This hypothesis has been triggered
by the finding that cell culture medium from a scrapie-
infected hypothalamic GT1 cell line can induce PrPsc for-
mation in recipient cells, indicating a cell-free transfer mode
(Schatzl et al. 1997). Both PrPc and PrPsc are released from
cells expressing ovine PrP together with vesicles that, based
on their morphology, biochemical properties and protein
composition, closely resemble exosomes (Fevrier et al.
2004). Exosomal PrPsc and PrPc secretion from an endoge-
nously PrP-expressing neuronal cell line has been reported
upon infection with PrPsc (Veith et al. 2009; Vella et al.
2007). Incubation of target cells with exosome preparations
from prion-infected neuronal cells is sufficient to induce the
conformational shift to PrPsc in various target cell lines. Fur-
thermore, intracerebral injection of PrPsc-positive exosomal
membranes triggers neurodegeneration and death in recipient
mice transgenic for ovine PrP (Fevrier et al. 2004). Both PrPc

and PrPsc have been detected in late endosomes and MVEs on
an ultrastructural level, indicating an exosomal pathway
(Ersdal et al. 2009; Godsave et al. 2008; Laine et al. 2001;
Marijanovic et al. 2009).

The subcellular compartment in which the conformation-
al shift from PrPc to PrPsc takes place remains unclear;
however, speculation that the MVE/EMV system is in-
volved via local protein enrichment, favourable pH and the
lipid environment is tempting. Macromolecular crowding
has been shown to promote the conversion to β-sheet

structure and the oligomerization of prions (Huang et al.
2010). Exosomal enrichment of PrPc and PrPsc might gen-
erate a high local concentration and close proximity between
template and PrPc, thereby facilitating the conformational
shift to PrPsc. Furthermore, the conversion of PrPc to PrPsc

requires the partitioning of PrP into sphingolipid- and
cholesterol-rich membrane domains, which are present in
exosomal membranes (Baron et al. 2002; Laulagnier et al.
2004; Subra et al. 2007). Along this line, the in vitro gen-
eration of infectious PrPsc from bacterially expressed recom-
binant PrPc has been shown to require the presence of lipid
cofactors, such as the synthetic anionic phospholipid POPG
(1-palmitoyl-2-oleoylphosphatidylglycerol; Wang et al.
2010). In addition, several studies have indicated that con-
version takes place in acidic endosomal compartments, ar-
guing again for a conversion within the late endosome/MVE
(Peters et al. 2003). Alternatively, the fusion of PrPsc-posi-
tive exosomes with the recipient cell membrane might in-
duce the conversion of PrPc at the target cell surface, as has
been indicated by Baron et al. (2002) who have shown that
the conversion of PrPc to PrPsc requires the insertion of PrPsc

into target cell membranes and the formation of a contiguous
membrane layer.

AA-amyloidosis

Similar to transmissible prion diseases, an exosome-
mediated transfer of misfolded proteins has been shown
for systemic AA-amyloidosis in vivo. Serum amyloid-A
(SAA) proteins are apolipoproteins that are expressed in
the liver and that circulate in the blood stream bound to
high density lipoproteins. Under inflammatory conditions
and interleukin-1 and -6 and tumor necrosis factor stimula-
tion, the expression of these acute phase proteins is in-
creased up to 1000-fold. During chronic inflammation
such as rheumatoid arthritis, high concentrations of SAA
eventually lead to the formation of a nucleus and polymer-
ization of otherwise soluble SAA proteins into amyloid
fibrils. Deposits of SAA fibrils can be found in the intersti-
tial space of many organs. Similar to prion protein misfold-
ing, this SAA fibrillation involves a conformational shift of
SAA protein into a β-sheet structure followed by aggrega-
tion. Mouse models of experimental AA-amyloidosis devel-
op systemic amyloid deposits under chronic inflammatory
conditions triggered by the intravenous, intraperitoneal or
oral application of SAA-containing tissue or circulating
blood monocytes derived from murine SAA mouse models.
This process is reminiscent of transmissible prion diseases
(Axelrad et al. 1982; Werdelin and Ranlov 1966). The
“seeding” factor, also termed amyloid-enhancing factor
(AEF), has been shown to consist in either SAA oligomers
or SAA fibrils (Lundmark et al. 2002; Senthilkumar et al.
2008; Sponarova et al. 2008). Tasaki et al. (2010) have
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demonstrated that blood and plasma derived from experi-
mental murine SAA amyloidosis models can induce pathol-
ogy in recipient animals and that freeze-thaw cycles abolish
the seeding activity of these plasma samples. The authors
have been able not only to show that plasma EMVs isolated
from mice with SAA amyloidosis carry oligomeric and
prefibrillar SAA but also that these EMVs are sufficient to
transmit disease pathology to recipient animals (Tasaki et al.
2010). Noteworthy, though, is that not all exosome prepa-
rations possess seeding capacity, which might be a result of
shearing forces or the clumping of EMVs during the prep-
aration process. Another possible explanation is that only
EMVs derived from SAA-positive organs can induce
amyloidosis in recipient mice and that these EMVs are
not present in the plasma in sufficiently high numbers
all the time.

An oral transmission of SAA amyloidosis among cheetahs,
which secrete SAA fibrils in their faeces, has been reported
(Zhang et al. 2008). Potentially infectious SAA fibrils have
also been detected in foie gras (Solomon et al. 2007). Several
lines of evidence point to an uptake of exogenous SAA
amyloid seeds via the epithelial cells in Peyer’s plaques,
followed by transepithelial transport, internalization into
follicular dendritic cells and transfer to the spleen where
amyloid replication and deposition occurs (for a review, see
Westermark and Westermark 2009). This itinery most likely
reflects a selective targeting pathway rather than random
uptake and release of free circulating fibrils. The exosomal
transfer of SAA aggregates could help to explain this repro-
ducible route of seed propagation attributable to tissue- or cell-
specific uptake signals on the surface of EMVs. Similar to
transmissible prion diseases, cells from the lymphomoncytic
lineage could mediate amyloid transport by the uptake of
SAA-positive EMVs via specific receptors, followed by trans-
port within the circulation and release through another round
of exocytosis in the target tissue. In support of this notion,
macrophages have been shown in vitro to be able to internal-
ize AEF from the culture medium and SAA has been detected
in various endocytic compartments (Kluve-Beckerman et al.
2001). Immunoelectron analysis has revealed fibrillar SAA
protein in lysosomes and LAMP-positive structures in mono-
cytoid cells from SAA amyloidosis mice (Chronopoulos et al.
1994). Taken together, these findings are compatible with
endocytic uptake, transport with the blood stream and the
exocytosis and transfer of SAA aggregates via the MVE/
EMV pathway.

Neurodegenerative aggregopathies

The transneuronal spreading of oligomers or fibrillar aggre-
gates is increasingly recognized in a variety of neurodegener-
ative disorders including tau protein and amyloid-β peptide in
Alzheimer’s disease, superoxide dismutase 1 (SOD1) in

amyotrophic lateral sclerosis (ALS), huntingtin in Hunting-
ton’s disease (HD) and α-synuclein in Parkinson’s disease
(PD). Aggregopathies do not belong to the class of prion
diseases, since infectious transmission between two individu-
als has never been observed. However, intra- and inter-
individual spreading of disease pathology in several of these
aggregopathies has led to their classification as possible prio-
noid disorders (Aguzzi and Rajendran 2009). Strikingly, all
proteins involved in the pathogenesis of these diseases seem to
be present in EMVs.

α-Synuclein

PD is characterized by intracellular aggregates of α-synuclein,
which are refered to as Lewy bodies. Lewy bodies appear first
in the brainstem followed by the subsequent deposition of
aggregates in higher brain regions. The spatial distribution of
Lewy body pathology over time follows a predictable anatom-
ical course that reflects patterns of neuronal connectivity
(Braak et al. 2004). Similarily, anatomically connected spread-
ing patterns have been observed in prion models of the Syrian
hamster after the oral uptake of prions, starting in the dorsal
vagus nerve and followed by the medulla, pons, midbrain and
cerebellum (Natale et al. 2011). Likewise, after the injection of
infectious prions into the eye, the pathology develops along the
optical tracts (Liberski et al. 1990). The hypothesis of inter-
neuronal disease propagation in synucleinopathies has been
fuelled by the finding that transplanted fetal neurons in PD
patients accumulate intraneuronal α-synuclein aggregates, in-
dicating a possible transfer of pathology from substantia nigra
host neurons to grafted striatal neurons (Kordower et al. 2008;
Li et al. 2008). In a similar fashion, host to graft transmission of
α-synuclein has been observed in an α-synuclein transgenic
mouse model in which green-fluorescent-protein-labelled neu-
ronal stem cell transplants incorporate the host’s transgenically
expressed α-synuclein (Desplats et al. 2009). The induction of
α-synuclein aggregation and the worsening of behaviour and/
or motor phenotype have been demonstrated in transgenic
mice after the intracerebral injection of brain extracts derived
from older littermates that exhibited α-synuclein aggregates
(Mougenot et al. 2011). Interneuronal transfer of α-synuclein
aggregates could serve as a seed to induce aggregation in the
host neuron and contribute to the dissemination of aggregates
throughout the brain, similar to prion-like self-propagation.
Intercellular transfer and the induction of disease pathology
have recently been described for PrPsc. Intercellular propaga-
tion of α-synuclein seeds could either be mediated by tunnel-
ling nanotubes, which connect neighbouring neurons, by
extracellular α-synuclein species passively released from
dying neurons or by active secretion, including EMV-based
release (Fig. 1; Agnati et al. 2010; Danzer et al. 2011;
Emmanouilidou et al. 2010). An atypical secretion mechanism
has been discussed, as has passive release from dying neurons,

Cell Tissue Res (2013) 352:33–47 37



to explain the extracellular presence of this cytosolic protein,
which lacks conventional secretion signals. Extracellular non-
vesicular α-synuclein has been detected in tissue culture me-
dium and in CSF and its concentration is increased under
cellular stress conditions suggesting a regulated release mech-
anism (Jang et al. 2010). In addition, α-synuclein has been
demonstrated in EMVs derived from neuronal cultures
(Emmanouilidou et al. 2010). To date, the form of extracellular
α-synuclein that is relevant for the disease pathology and the
way that the cytosolic protein can be actively secreted from
cells are unknown. EMVs could act as “Trojan horses” in the
transneuronal propagation of α-synuclein aggregates (Brundin
and Olsson 2011). Speculation that α-synuclein-containing
EMVs are internalized into target cells at a much higher effi-
ciency than non-vesicular α-synuclein species is tempting. In
addition, the exosomal compartment could favour the aggrega-
tion of α-synuclein by increased local protein concentrations,
pH and high membrane curvature, similar to the situation that
we discussed for the case of prion protein transconformation.
Aggregates ofα-synuclein are well established to be able to act
as seeds to trigger the aggregation of the monomeric protein.
For example, Hansen et al. (2011) have demonstrated cellular
release, endocytic uptake, co-dimerization and aggregate for-
mation of α-synuclein in recipient cells within a co-culture
system. The transfer of α-synuclein is independent of direct
cell-cell contacts; however, despite the presence of α-synuclein
in EMVs, they have yet to be shown to be the carriers for
intercellular α-synuclein transfer. In vivo evidence of a func-
tionally active uptake of exosomes into postmitotic neurons has

recently been provided by Alverez-Eviti et al. (2011), although
only with exosomes that have been produced in transgenic cells
that transgeneously express a rabies glycoprotein construct that
is sorted into exosomes and confers neuroglia-specific uptake.
Alternatively, α-synuclein might reach the target cell upon
unconventional secretion or passive release from dying cells
(Nickel and Rabouille 2009). The trans-synaptic transmission
of toxic α-synuclein oligomers has been demonstrated in tissue
culture models (Danzer et al. 2011). The proportion of extra-
cellular α-synuclein that is localized in EMVs and the form
(free or EMV-encapsulated) of α-synuclein that confers toxic-
ity and/or seeding capacity remain unknown.

Tau

In AD and other tauopathies such as corticobasal degener-
ation, progressive supranuclear palsy and a subgroup of
frontotemporal dementias, intracellular aggregates of the
microtubule-associated protein tau are assumed to mediate
neuronal dysfunction and subsequently neurodegeneration.
Tau aggregates in AD emerge first in the entorhinal cortex
followed by propagation to hippocampal regions, temporal
lobes and more distant neocortical areas (Bancher et al.
1993). Recently, the interneuronal transmission of tau pa-
thology was reported in vitro whereby exogenously added
tau fibrils were internalized into host cells and induced the
aggregation of endogenous tau protein (Frost et al. 2009;
Guo and Lee 2011). In addition, tau aggregates have been
shown to be transferred between cells in a co-culture system

Fig. 1 Mechanisms of
intercellular transfer of
aggregates in
neurodegenerative disorders.
Misfolded proteins could either
be transported via tunnelling
nanotubes between cells, within
EMVs or by unconventional
secretion of free protein.
Extracellular misfolded protein
moieties could be cleared by the
microglia or internalized into
neurons where they might serve
as seeds to induce
protein aggregation
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(Clavaguera et al. 2009). Similar results have been obtained
in vivo in mice that express a human wild-type tau transgene
and that do not develop tau filaments under normal condi-
tions (Clavaguera et al. 2009). Here, the intracerebral injec-
tion of brain extracts derived from mutant P301S tau
transgenic mice leads to the aggregation of wild-type human
tau in host mice. The seeding capacity is dependent on the
solubility of the tau aggregates. Insoluble tau fractions pos-
sess a much higher seeding capacity compared with soluble
fractions. Interestingly, upon injection of tau aggregates into
non-transgenic wild-type mice, aggregates have been con-
firmed as being localized to the injection site. In contrast,
after injection into tau transgenic animals, aggregates devel-
op not only at the injection site but spread to anatomically
connected brain regions mirroring the highly predictable
histopathological pattern of disease dissemination observed
in AD patients (Clavaguera et al. 2009). Taken together,
these findings indicate that tau aggregation in host animals
can be induced by exogenously administered tau aggregates
and that their spreading requires the process of aggregate
induction and is not simply caused by passive diffusion
from the injection site and endocytosis of aggregates.

Similar to α-synuclein, tau is present in the extracellular
space, e.g., in the interstitial fluid of the brain, CSF and cell
culture supernatant (Yamada et al. 2011). Tau does not contain
a conventional secretion signal, although its release seems to
be a physiological process that occurs in the absence of neuro-
degeneration, since tau has been detected in the interstitial
fluid of wild-type mice brains and is abundantly present in the
CSF of healthy persons, althoughCSF concentrations increase
dramatically after neuronal damage (Tarawneh and Holtzman
2010; Yamada et al. 2011). Exosome-associated tau has re-
cently been described in culture medium and CSF, indicating
an active exocytosis process. However, the intracellular sort-
ing mechanisms for exosomal/microvesicular release are un-
clear, as is the percentage of extracellular tau that stems from
this pathway (Saman et al. 2011). As in the case of α-
synuclein, no comparative data regarding the neurotoxicity
and seeding capacity of free and EMV-associated tau have been
obtained so far.

Exosomes from M1C cells contain tau and are enriched
in dimeric and trimeric tau species and in threonine 181
phosphorylated tau (Saman et al. 2011). This supports the
hypothesis that exosomes might carry oligomeric species that
serve as a template or seed to induce aggregation in recipient
cells. Whether oligomerization occurs within the exosome,
promoted by the high local protein concentration and pH, or
whether oligomerized protein is specifically sorted to exo-
somes, as has been described for membrane-bound proteins
(Shen et al. 2011b), is unclear.

Tau protein has been detected by immuno-electron micros-
copy at the surface of EMVs derived from M1C cells and
human CSF; however, these results have to be consideredwith

caution, since the CSF was obtained postmortem and could
therefore have contained intracellular vesicles and organelles
that were derived from dying cells and that would be co-
purified with the EMV fraction (Saman et al. 2011). Because
of the topology of EMVs, the cytosolic protein tau would be
expected to reside within the vesicle and not at the outer
vesicle membrane. The reported results could therefore indi-
cate that tau is leaking from degrading cells and attaches to the
EMV surface within the extracellular space, rather than during
EMV biogenesis. In order to answer the question of whether
tau might also be present within EMVs, further studies are
required, including proteinase K digestion or immune electron
microscopy of EMV preparations after detergent solubiliza-
tion. The demonstration of intravesicular tau would indicate
an active packaging and secretion pathway, rather than extra-
cellular binding to the surface.

Nevertheless, even by extracellular association with the
EMV membrane, tau could be delivered into neurons and
contribute to disease spreading. In this context, speculation that
the beneficial effect of tau-directed immunotherapy approaches
in transgenic mouse models relies on the antibody-mediated
targeting of extracellular free and EMV-bound tau species is
tempting, since an explanation as to how antibodies could enter
the cytosol and be directed against intracellular tau aggregates
is not readily forthcoming (Asuni et al. 2007; Boutajangout
et al. 2011; Sigurdsson 2009).

Based on the temporospatial progress of tau pathology in
AD, Braak and Del Tredici (2011) have proposed a sequen-
tial pathway of neurofibrillary tangle propagation affecting
the brainstem/locus coeruleus, transentorhinal cortex, neo-
cortical association area and primary and secondary cortical
areas and followed by the so-called “return pathway” of
corticocortical projections to primary cortical fields. The
hierarchical vulnerability of scarcely affected layer IV py-
ramidal neurons compared with heavily affected layer Va
pyramidal neurons has remained enigmatic so far, since it
could not be explained by the differential vulnerability of
the various cell types. The hypothesis of trans-synaptic
transmission, however, could explain the observed sparing
of pyramidal neurons in layer IV; these are rarely targeted by
the projections from the return pathway (Braak and Del
Tredici 2011). The anatomical distance between the locus
coeruleus and cortical neurons additionally suggests a pre-
to postsynaptic transmission of tau pathology similar to the
case of experimental transmissible mink encephalopathy, a
prion disease of the mink, in which the retrograde spreading
of PrPsc along the sciatic nerve and the spinal cord to the
brain stem has been observed in a Syrian hamster model
(Bartz et al. 2002). However, this route of transport rather
indicates trans-synaptic spreading from the post- to presynap-
tic sites.Whether tau-positive EMVs are indeed released at the
presynapse is unknown, as are the sites of uptake (dendritic/
somatic) in recipient cells.
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Amyloid-beta

Intracerebral injection of human AD brain extracts or extracts
prepared from human amyloid precursor protein (APP) trans-
genic mouse brains containing aggregated amyloid-β into the
brains of APP transgenic mice induces the formation of
amyloid-β plaques in the host brains (Eisele et al. 2010;
Meyer-Luehmann et al. 2006). A seeding mechanism is likely,
since the immunodepletion of amyloid-β or denaturation by
formic acid abolishes the capacity of extracts to induce plaque
formation. Furthermore, the induction of amyloid-β deposi-
tion requires the combination of human APP transgenic host
mice and human APP-derived amyloid-β assemblies in the
extract. These experiments also indicate the possibility of
interneuronal cell-autonomous disease propagation, since the
induction of amyloid-β deposits is not restricted to the injec-
tion site but includes axonally connected areas that are not
adjacent to each other (Eisele et al. 2010; Meyer-Luehmann
et al. 2006). The concept of disease spreading is further
supported by the finding that the intraperitoneal administra-
tion of brain extracts is sufficient to trigger amyloid-β aggre-
gation in the APP transgenic mouse brain (Eisele et al. 2010).
Initiation of rapid amyloid-β assembly by exogenous seeds
containing amyloid-β aggregates has also been described after
inoculation into the brains of primates (Baker et al. 1994).

In vitro assembled aggregates of either synthetic amyloid-β
40 or 42 fail to induce seeding and a so far unknown co-factor is
probably required to induce misfolding into aggregates with
seeding properties (Meyer-Luehmann et al. 2006). Interesting-
ly, EMVs carry proteins involved in the generation of amyloid-
β (Sharples et al. 2008). APP is cleaved by the sequential action
of two secretases (β -and γ-secretase, which release amyloid-β
from APP). β-Secretase cleavage produces the APP C-terminal
fragment (CTF-β), which can be further processed by γ-
secretase (presenilin complex) to APP CTF-γ and amyloid-β
peptide. EMV preparations contain full-length APP and CTFs
(Sharples et al. 2008). The implications of these findings on
APP processing are not clear and whether APP or APP CTF
cleavage occurs within the exosome/microvesicle membrane is
unknown. A small portion of about 1 %–2 % of total extracel-
lular amyloid-β peptide in the medium of the neuronal cell line
N2a has been found to be attached to the surface of exosomes
(Rajendran et al. 2006). The exosomal surface could serve as a
seed to induce a conformational shift, thereby triggering
amyloid-β aggregation. In addition, exosomes could carry
amyloid-β peptides to other neurons. However, the impact on
oligomerization and interneuronal spreading of amyloid-β pa-
thology clearly needs further investigation.

Superoxide dismutase 1

In amyotrophic lateral sclerosis (ALS), aggregates of misfolded
superoxide dismutase 1 (SOD1) propagate in a spatiotemporal

manner linking upper and lower motor neurons (Ravits and La
Spada 2009). SOD1 or TDP43 (TARDNA-binding protein 43)
inclusions are the two most common neuropathological hall-
marks of the disease (Lagier-Tourenne and Cleveland 2009).
The export of misfolded SOD1 and uptake into recipient cells
have been shown in vitro (Urushitani et al. 2008). Aggregation
of endogenous SOD1 can be induced in cell culture by the
exogenous addition of misfolded SOD1 seeds and this templat-
ing process continues even after removal of the seed from the
culture medium (Grad et al. 2011). Munch et al. (2011) have
subsequently been able to demonstrate the interneuronal trans-
fer of SOD1 between cultured cells and the induction of SOD1
assembly in target cells. Some evidence for the in vivo transfer
of SOD1 between astrocytes and motor neurons has been
provided by recent work of Haidet-Phillips et al. (2011). These
authors have isolated progenitor cells from ALS autopsy brains
and differentiated them into astrocytes. Co-culturing or the
addition of this astrocyte-derived medium induces toxicity in
exposed mouse motor neuron cultures; this can be alleviated
upon short interfering RNA (siRNA)-mediated SOD1 down-
regulation in the astrocytes. As has previously been shown in
stable motor-neuron-like cell lines expressing wild-type or
various SOD1 mutants, SOD1 is at least partially secreted
together with EMVs (Gomes et al. 2007). Similar to tau and
α-synuclein, experimental data on the toxicity, transfer effi-
ciency and seeding capacity of EMV versus membrane-free
SOD1 are lacking.

Cross-seeding

Cross-seeding between amyloid-β and α-synuclein, α-
synuclein and tau, or prion and amyloid-β has been reported
in vitro. Indeed, an overlap of disease pathology has often
been seen at the histopathological level, e.g. α-synuclein
aggregates in AD or tau in Lewy body dementia (LBD). In
addition, tau pathology has been genetically linked to PD and
LBD. Since both α-synuclein and tau have been detected in
EMVs (although definitive evidence that they are present in
the same vesicle is absent), these vesicles might represent the
site in which cross-seeding occurs.

Open questions

In vivo significance and regulation of EMV release

In vivo evidence is needed to answer the question of whether
EMVs do indeed confer toxicity and induce seeding in animal
models, as has been shown in SAA amyloidosis. The study of
the in vivo significance of EMV-mediated disease propagation
is hampered by the lack of specific agents to interfere with
EMV release or uptake; such agents would enable in vivo
studies on the spread of disease pathology. The cell biology of
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protein sorting and EMV release is still not resolved. An
interaction with the endosomal sorting complex required for
transport (ESCRT) machinery has been described for mono-
ubiquitinated transmembrane proteins; this machinery regu-
lates their sorting into ILVs. Ubiquitin-interacting motifs me-
diate the binding of ESCRT 0 to cargo destined for sorting into
MVBs. The bound cargo is sequentially transported to ESCRT
complexes I and II at the late endosomal membrane from
where invagination and fission into the endosomal lumen
occurs with the help of ESCRT-III (Henne et al. 2011). In
contrast, the intra-endosomal budding of other proteins, such
as the proteolipid protein PLP, occurs independently of the
ESCRT machinery and requires ceramide (Trajkovic et al.
2008). Cytosolic proteins can be sorted into exosomes by their
association with lipids and/or transmembrane proteins at the
MVE surface or plasmamembranemicrodomains destined for
outward budding. In light of the putative role of EMVs in the
pathogenesis of aggregopathies, interestingly, higher-order
oligomerization induced by antibody-mediated cross-linking
promotes the microvesicular release of various transmem-
brane proteins such as transferrin-receptor, MHC-I and
CD43 (Muntasell et al. 2007; Vidal et al. 1997). Furthermore,
the introduction of oligomerization domains to a membrane
localization sequence is sufficient to induce ESCRT-
independent exosomal release (Fang et al. 2007). The tetra-
spanin CD63 governs another sorting mechanism into MVEs,
a mechanism that is independent of ESCRTand ceramide (van
Niel et al. 2011). Strikingly, CD63-dependent sorting of
pigment-cell-specific integral membrane glycoprotein
(PMEL) targets the protein from the MVE (premelanosome)
membrane into ILVs. Here, PMEL is cleaved by two site-
specific proteases into the C-terminal fragment and the lumi-
nal domain (Kummer et al. 2009). Cleavage is followed by
polymerization into physiological PMEL amyloid fibrils with-
in the MVE/premelanosome. This process is reminiscent of
the proposed mechanism of intravesicular amyloid-formation.
The viral oncogene latent membrane protein LMP1 is another
protein that relies on CD63-dependent sorting into a subtype
of ILVs that are characterized by low cholesterol and are
exosomally secreted (Verweij et al. 2011).

Exosomes can either be secreted in a constitutive or
regulated process. An increase in intracellular calcium can
trigger MVE fusion and exosome release in various cell
types, including neurons, via a mechanism similar to that
described for secretory lysosomes (Faure et al. 2006; Savina
et al. 2003). The latter process requires synaptotagmin VII,
rab27, Munc13-4, AP3 and VAMP7 (Lakkaraju and
Rodriguez-Boulan 2008). However, whether these mole-
cules are also involved in MVE fusion and subsequent
exosome release is unclear. The secretion of exosomes
involves tethering, docking and fusion of the MVE at the
plasma membrane. Several regulatory factors of this ma-
chinery have been identified, including rab11, the rhoA

effector citron kinase, rab27 and rab35 (Loomis et al. 2006;
Savina et al. 2002; Ostrowski et al. 2010; Hsu et al. 2010).
Calcium enhances exosome release probably by stimulating
the fusion of MVEs with the plasma cell membrane in a V-
ATPase V0-subunit-dependent manner (Liegeois et al. 2006;
Marshansky and Futai 2008). Changes in intracellular ion
concentrations after the P2X7-receptor-induced activation of
the ATP-gated ion channel have been described to trigger the
release of exosomes in immune cells (Qu and Dubyak 2009).
Other stimulatory factors, such as DNA damage and (oxida-
tive) stress also promote exosome release, consistent with a
role for exosomes in the removal of toxic molecules from the
cell (Lespagnol et al. 2008).

Microparticles shed from the plasma membrane are depen-
dent on the calcium-induced reorganization of the cytoskele-
ton and membrane lipid asymmetry. The outer membrane
leaflet of microparticles is enriched in aminophospholipids
such as phoshatidylserine (PS) and phosphatidylethanolamine
(PE) and the asymmetric distribution of these lipids has been
proposed as a mechanism to trigger membrane bending be-
cause of their conical shape (Basse et al. 1993; Wehman et al.
2011). Lipid asymmetry is, among other factors, created by
the enzymatic activity of scramblase, which translocates and
enriches PS and PE from the inner to the outer membrane
leaflet (Contreras et al. 2010). This is illustrated by the defi-
ciency of procoagulatory platelet microvesiculation observed
in Scott’s syndrome in which the lipid asymmetry of the outer
plasma membrane is dysregulated and PE and PS are mainly
restricted to the inner leaflet of the bilayer (Lhermusier et al.
2011). Recently, the transmembrane flippase TAT-5 has been
shown, in Caenorhabditis elegans, selectively to enrich PE
within the inner leaflet without affecting PS asymmetry
(Wehman et al. 2011). A deficiency in TAT-5 results in PE
enrichment within the outer leaflet and vesicle shedding,
whereas TAT-1 mutations, which lead to the accumulation of
PS within the outer leaflet, have no impact on vesicle release.
In addition, Wehman et al. (2011) have identified rab11 and
the ESCRT complex as promoting microvesicle formation.
Whether the conical shape of PE mediates the outward bend-
ing or whether the relative decrease of PE at the inner leaflet
shifts the net charge in favour of the anionic PS, which could
enhance ESCRT binding followed by vesiculation of the
membrane, remains unclear (Wehman et al. 2011).

Microglial clearance and target cell selectivity

Exosomes can transport obsolete cellular content out of the
cell (Pan et al. 1985). This has led to the assumption that the
primary function of exosomesmight be the disposal of cellular
debris and toxic molecules as an alternative to lysosomal
processing in cells with low degradative capacity. In the lipid
storage disorder Niemann-Pick type C, exosomal release is
upregulated and contributes to shuttling excess cholesterol out
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of the cells (Strauss et al. 2010). Other examples include the
shedding of microvesicles to remove complement attack com-
plexes from opsonized cells (Pilzer et al. 2005). Cells can
handle protein aggregates by interaction with chaperones
and by degradation in the proteasome, lysosome or autopha-
gosome. Exosomal release of toxic or aggregated proteins
might serve as an alternative pathway for the cell to remove
unwanted content, followed by microglia clearance. For ex-
ample, microglia cells internalize oligodendrocytic EMVs by
macropinocytosis in vitro and in vivo and might thereby
establish a clearance mechanism (Fitzner et al. 2011; Zhuang
et al. 2011). Activated microglia reside next to amyloid pla-
ques and have been extensively discussed in the context of
plaque clearance (Jantzen et al. 2002). Microglia dysfunction
has been observed in neurodegenerative diseases and either a
deficiency of microglia/myeloid cell function and/or an over-
load of their endocytosis capacities might enable the intra-
neuronal uptake of EMV-packed aggregates, which finally
might result in the spreading of pathology. The ganciclovir-
induced ablation of microglia in an APP mouse model has
been shown by Grathwohl et al. (2009) to exert no effect on
amyloid plaque formation. The authors therefore speculate
that microglia might not have a prominent role in amyloid
plaque clearance. However, microglia ablation is induced only
after the onset of plaque formation. An effect of microglial
function on intercellular disease propagation could be studied
in seeding experiments in microglia ablated APP mice. It
would be interesting to examine whether microglia deficiency
can enhance seeding and interneuronal spreading after the
intracerebral injection of amyloid-laden brain extracts.

Of note, several tau or alpha-synuclein aggregopathies are
not restricted to the neuronal cell type but can start in the glial
cell lineage. An EMV-based transfer mechanism is a feasible
explanation of these findings. However, in vivo evidence for
oligodendroglial/neuronal EMV transfer is still lacking.

This leads to the so far unresolved question of target cell
recognition and uptake. Most experiments addressing the
transfer and uptake of exosomes into target cells rely on the
fluorescence labelling of EMVs prepared by ultracentrifuga-
tion in vitro. These exogenously added vesicles tend to form
aggregates that might be artificially taken up by phagocytosis
and obscure other mechanisms of uptake and interaction. The
study of EMV/target cell communication has further been
hampered by the fact that single exosomes are below the
resolution limit of approximately 200 nm of conventional
light microscopy. In a recent study, this obstacle has been
overcome in an elegant experiment in which the spontaneous
transfer of single exosomes has been monitored by a fluoro-
genic dequenching assay and has been shown to depend on
actin and V-ATPase (Montecalvo et al. 2011). Previous
experiments have identified a variety of mechanisms of
EMV/target cell interaction including endocytosis mediated
by ligand/adhesion molecule binding at the plasma membrane

of recipient cells, e.g. VLA-4, alphaM integrin, beta2 integrin
(Nolte-’t Hoen et al. 2009; Segura et al. 2005, 2007; Fig. 2).
EMVs can also be recognized by the phosphatidylserine cell
surface receptor Tim (T-cell immunoglobulin-containing and
mucin-domain containing molecule) family transmembrane
proteins. Tim1 and Tim4 have been shown to bind to phos-
phatidylserine present on the EMV surface (Miyanishi et al.
2007; Park et al. 2007). EMVs can be internalized by receptor-
mediated or bulk endocytosis, phagocytosis (upon binding of
exosomal galectin-5 to membrane galactosidase) and macro-
pinocytosis (Barres et al. 2010; Thery et al. 2002; Fitzner et al.
2011). Internalized EMVs have been detected in late endo-
somes of dendritic cells by immunocolocalization (Morelli et
al. 2004). In order to reach the cytosol intra-endosomal EMVs
need to fuse with the endosomal membrane. Alternatively,
EMVs might be degraded after maturation of the late endo-
some to lysosomes. A different scenario implies the re-release
of internalized EMVs after storage in MVEs or recycling
exosomes, a process that would allow the transcytosis of
EMVs and that might play a role in crossing the blood brain
or brain CSF barrier. Another mechanism for releasing MVE
content into the recipient cell is the fusion of MVE and the
target cell plasma membrane at the cell surface.

Fig. 2 Various modes of exosome entry and intracellular itinery.
Exosomes can be internalized by receptor-mediated endocytosis or
bulk endocytosis. Once inside the endosome, they can fuse with the
endosomal membrane to release their cargo into the cytosol. Alterna-
tively, after fusion of the endosome with the plasma membrane, inter-
nalized exosomes can be released into the extracellular space
(transcytosis pathway). Fusion of the endosome with lysosomes
leads to the degradation of internalized exosomes. An endocytosis-
indpendent pathway requires fusion of the exosome/plasma membrane
at the cell-surface, followed by release of the exosomal content into the
cytosol
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Clinical implications

Infectious prion diseases are characterized by inter-individual
disease transfer via the natural environment, whereas prionoid
transfer is characterized by intra-individual spreading (Aguzzi
and Rajendran 2009). For none of the above-mentioned aggre-
gopathies has an infectious transmission between animals or
humans been demonstrated. One exception, however, is SAA
amyloidosis among cheetahs, which secrete AA fibrils into
their faeces and for which an oral transmission has been
reported (Zhang et al. 2008). However, no epidemiological
or experimental data so far have suggested that aggregopathies
can be transferred from one individual to the other. Without
further experimental data, the clinical implications of these
findings are still uncertain but nevertheless evoke the question
as to whether AD pathology might be transmitted via blood
transfusion, organ transplants or surgical instruments (Walker
and Jucker 2011).

In light of the observed Lewy body pathology in trans-
planted fetal neurons in PD, stem-cell-based therapy strategies
need to be reconsidered. One possibility of escaping the
seeding of pathological aggregation in stem cell grafts would
be the use of genetically engineered cells that do not express
the aggregating protein.

In addition to their putative contribution to disease pathology,
EMVs could be employed as a biomarker or as a therapeutic tool
in degenerative diseases. Exosomal proteome ormicroRNAome
(miRNAome) profiling is a common approach in the develop-
ment of novel diagnostic or prognostic biomarkers, especially in
oncology (for reviews, see Mathivanan et al. 2010a, 2012). In a
similar fashion, CSF or blood exosomes could serve as a
diagnostic tool in aggregopathies, especially since several of
the aggregating proteins are associated with EMVs.

The potential of EMVs for the targeted delivery of thera-
peutic drugs is currently under investigation. This emerging
concept has been boosted by a recent publication on the tar-
geted exosomal delivery of siRNA-directed againstβ-secretase
in an Alzheimer mouse model (Alvarez-Erviti et al. 2011). One
major obstacle of miRNA, miRNA inhibitors or siRNA as a
therapeutic approach in various diseases is the challenge of
target tissue specificity. In the above-mentioned example of
AD, transfer of the therapeutic substance across the blood-brain
barrier has to be ensured. Both can be achieved by exploiting
exosomes as a transport vesicle, as they carry a neuron-specific
targeting signal (Alvarez-Erviti et al. 2011).
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