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Abstract
Non-predictive or inaccurate weather forecasting can severely impact the community of users such as farmers. Numerical

weather prediction models run in major weather forecasting centers with several supercomputers to solve simultaneous

complex nonlinear mathematical equations. Such models provide the medium-range weather forecasts, i.e., every 6 h up to

18 h with grid length of 10–20 km. However, farmers often depend on more detailed short-to medium-range forecasts with

higher-resolution regional forecasting models. Therefore, this research aims to address this by developing and evaluating a

lightweight and novel weather forecasting system, which consists of one or more local weather stations and state-of-the-art

machine learning techniques for weather forecasting using time-series data from these weather stations. To this end, the

system explores the state-of-the-art temporal convolutional network (TCN) and long short-term memory (LSTM) net-

works. Our experimental results show that the proposed model using TCN produces better forecasting compared to the

LSTM and other classic machine learning approaches. The proposed model can be used as an efficient localized weather

forecasting tool for the community of users, and it could be run on a stand-alone personal computer.

Keywords Localized weather forecasting � Time-series data analysis � Temporal convolution networks (TCN) �
Long short-term memory (LSTM) � Precision farming

1 Introduction

Non-predictive or inaccurate weather forecasting can

severely impact the community of users. For example,

farmers depend on the weather forecast so that various

farming activities can be undertaken such as ploughing,

cultivation, harvesting, and others. An inaccurate forecast

directly impacts the farmer’s ability to engage these

activities, influencing their capability of managing the

resources related to such operations (Ho et al. 2012). In

addition, there are significant risks to life and property loss

due to unexpected weather conditions all over the world

(Fente and Singh 2018). Furthermore, the regional weather

forecast may not be accurate based on the geographical

appearance of the location, such as but not limited to the

top of a mountain, land covered by several mountains, and

the slope of the land (Mass and Kuo 1998). Therefore,

accurate localized weather prediction system would be

valuable to the community of users, as global/regional

forecasting could be inaccurate for local use.

Weather forecasting is a complex process which has

three main stages, namely understanding the current

weather conditions, calculating how this change in the

future, and refine details by meteorological expertise (Met

Office 2019). Numerical weather prediction (NWP) focu-

ses on gathering current weather data and processing them

with computer models to predict the state of the atmo-

sphere based on a specific time frame and location (Lynch

2006; NCEI 2019). These NWP models run in major

weather forecasting centers with large grids of
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supercomputers specifically addressing global/regional

forecast (Met Office 2019).

There are several challenges in NWP models, such as

massive computational power required by these models,

limited model accuracy due to the chaotic nature of the

atmosphere, and reliability issues impacted by the time

difference between the current time and forecasting time.

In addition, the complexity of such models poses signifi-

cant difficulties in their implementation. (Baboo and

Shereef 2010; Hayati and Mohebi 2007; Powers et al.

2017).

There are freely available datasets, which can be utilized

with the NWP models, such as Global Forecast System

(GFS) data (Earth Science 2018). In particular, the GFS

0.25 degrees dataset, which is the freely available highest-

resolution data, is often used by atmospheric researchers

and forecasters. This dataset allows forecasting the weather

at a horizontal resolution about 27 km (Commerce 2015;

Noaa 2017). This implies that the NWP model can forecast

data resolution up to 27 km. The lesser-resolution predic-

tion data are calculated by the model based on results

obtained for the maximum resolution. As a consequence,

these models are viable for long-range forecast and not for

a selected fine-grained geographical location, such as a

farm, school, places of interest, and so on (Powers et al.

2017; Routray et al. 2016; Skamarock et al. 2008).

To reduce the computational power of NWP systems,

data-driven computer modeling systems can be utilized

(Hayati and Mohebi 2007). In particular, artificial neural

networks (ANN) have the capability of capturing nonlinear

or complex underlying characteristics of a physical process

with a high degree of accuracy (Fente and Singh 2018).

Recently, temporal convolutional neural network (TCN),

recurrent neural networks (RNN), and deep learning have

attracted considerable attention due to their superior per-

formance (Jozefowicz et al. 2015; Kim and Reiter 2017).

Weather information is captured by time-series data, and

thus, the machine learning regression modeling techniques

can be utilized to develop and evaluate artificial intelli-

gence (AI) models for accurate weather predictions (Choi

et al. 2011).

The aim of this research is to develop and evaluate a

lightweight and novel short-to medium-range weather

forecasting system for the community of users utilizing

modern AI technologies. The prediction is entirely based

on input local weather station data. Figure 1 depicts the

general overview of the research discussed in this article.

More specifically, the first part of this research focuses on

the evaluation of different machine learning approaches

and compares performances and then proposes a localized

weather forecasting model. While recurrent neural network

is designed for sequence data processing, understanding,

and prediction, it has an inherent issue of the vanishing

gradient problem and thus low efficiency. Even though the

long short-term memory (LSTM) can overcome this van-

ishing gradient problem, it can easily use up the memory

available. In this article, we propose to use the temporal

convolutional neural network (TCN) instead, which has not

been explored in the past for weather forecasting of as

many as 10 parameters on a local scale within hours. The

main idea of this proposed model is to produce a fine-

grained, location-specific, and accurate weather forecast

for the selected geographical location. In the second part,

we analyze and evaluate the proposed model for short-term

and long-term weather forecasting. The rest of this article

is organized as follows: Sect. 2 discusses the related work,

Sect. 3 discusses the research aim and objectives, and

Sect. 4 presents the basics of local weather stations; Sect. 5

discusses proposed machine learning approaches; Sects. 6

and 7 present the methodology and results, and finally,

Sect. 8 concludes the article.

2 Related work

Weather forecast using machine learning has made con-

siderable progress in the last two decades. A multi-layered

perception (MLP) neural network and Elman recurrent

neural network (ERNN) were introduced to model tem-

perature and wind speed forecasting in 2002 (Choi et al.

2011). After comparing MLP, ERNN, and radial basis

functions network (RBFN), the researcher concluded that

the ERNN could efficiently capture the dynamic behavior

of the weather parameters. In 2005, fuzzy neural network

(FNN) was proposed in (Li and Liu 2005) for forecasting of

temperature, dew point, wind speed, and visibility. This

method consists of a number of fuzzy rules, and their initial

weights were estimated with a deeper network for weather

prediction. Temperature forecasting with the last 10 years

historical data has been done in 2007 (Hayati and Mohebi

2007).

In 2008, a feature-based neural network model for

maximum temperature, minimum temperature, and relative

humidity forecasting was introduced (Mathur et al. 2008).

The author concluded that the neural network signal pro-

cessing approach for weather forecasting is capable of

yielding good results and can be considered as an alter-

native to traditional meteorological approaches. A back-

propagations neural network (BPN) methodology was

implemented in 2012 for temperature forecasting while

identifying the structural nonlinear relationship between

various input weather parameters. The regression tree

approach was utilized for wind speed prediction in 2015

(Troncoso et al. 2015). In this work, eight kinds of novel

regression tree structures have been used to predict the

short-term wind speed and compare the results with some
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other regression modeling outcome and observed compar-

atively accurate results.

In 2014, a hybrid model for temperature forecasting

using ensemble of neural network (ENN) was introduced in

Ahmadi et al. (2014), and the author suggested including

image data would improve the prediction results. The

LSTM deep learning approach was introduced to precipi-

tation forecasting in 2015 (Shi et al. 2015). The authors

formulated a precipitation prediction as a spatiotemporal

sequence forecasting problem and proposed a new exten-

sion of LSTM called convolutional LSTM. As a result, the

new model was able to predict the future rainfall intensity

in a local region over a relatively short period of time. In

the same year, a deep neural network with stacked

denoising auto-encoders was introduced to predict tem-

perature in the Nevada, USA (Hossain et al. 2015). The

results show that the new model has higher accuracy,

97.94%, of temperature prediction compared to that,

94.92%, traditional neural network. In 2016, research was

undertaken to analyze machine learning methods for radi-

ation forecasting (Voyant et al. 2017). The researcher

compared the different machine learning and AI approa-

ches to solar radiation prediction and came to the conclu-

sion that SVM, regression trees, and forests will produce

promising results. The deep learning approaches are not

considered within these experiments.

In 2018, temperature prediction models were investi-

gated by comparing different machine learning methods

such as linear regression, regression trees, and BPN

(Sharaff and Roy 2018). The results show that the BPN

with proper configuration produces a significantly better

prediction. In the same year, the local weather station data

were used for a very short-term (less than 60 min) forecast

for temperature and rain (Yonekura et al. 2018). Different

machine learning methods were utilized by the authors, and

different approaches for each parameter were proposed.

Subsequently, a neural network approach for the prediction

of the sea surface temperature and soil moisture was

introduced in Patil and Deo (2018) and Rodrı́guez-Fer-

nández et al. (2018). This was subsequently developed into

a deep learning neural network approach with LSTM layers

for weather forecasting (Fente and Singh 2018).

It is, therefore, clear that it will be vital and highly

beneficial if a complete weather forecasting model for a

community of users could be fully implemented. The

existing models are developed for regional parameter

forecasting except Yonekura et al. (2018). Although

Yonekura et al. (2018) introduces the deep learning method

with long short-term memory (LSTM) layers for localized

weather forecasting, it does not reflect why this technique

is recommended. Besides, this is not a complete forecasting

system as this model holds the ability to forecast temper-

ature and rain only.

The existing machine learning-based weather forecast-

ing models are only able to predict up to a maximum of

three weather parameters. Moreover, the weather fore-

casting is not a linear process as each weather parameter

could depend upon one or more other parameters (Elsner

and Tsonis 1992; Glahn and Lowry 1972; Taylor and

Buizza 2002). For instance, the temperature could be

depended on pressure, humidity, wind, dew point, etc. The

regional numerical weather prediction models, such as

Weather Research and Forecasting (WRF), use many input

weather parameters (NCAR/UCAR 2019). These interre-

lated parameters work together to produce an accurate

weather forecast. The existing machine learning weather

forecasting models have considered only one or up to four

parameters for the weather forecasting, mainly on regional

scale often over a long term of days.

In this article, we propose a novel weather forecasting

model using the modern TCN approach for the localized

weather prediction for the community of users with 10

weather parameters. This prediction can be used for

weather-related decision making for the community of

users. Moreover, we also provide flexibility to our model

Fig. 1 Overview of the research: developed local weather station,

which transfers time-series weather data to the server using a GSM

module. The server runs the proposed machine learning models

(MISO and MIMO), based on state-of-the-art deep learning. The

proposed models provide accurate and reliable fine-grained forecast-

ing to farmers
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that can be applied to predicting as many as 10 parameters

at local scale within hours.

3 Research aims and objectives

The aim of this research is to develop novel and location

specific weather forecasting model with 10 surface

parameters using a machine learning (ML) method, uti-

lizing local weather station data, while achieving the fol-

lowing objectives.

1. Build, calibrate, and place local weather stations and

logged weather data to the server.

2. Identify optimal configurations and controls to produce

accurate and localized weather forecasting for 1 h (i.e.,

short term) using deep learning with LSTM layers and

deep learning with TCN layers.

3. Compare performances of traditional ML (standard

regression and support vector regression) with cutting

edge deep learning techniques (LSTM and TCN) to

identify an efficient short-term localized weather

forecasting model with a minimum error.

4. Re-tune the optimal short-term model to use for

efficient long-term localized weather prediction and

evaluate it to determine up to what extent this can use

for long-term weather prediction (i.e., how many

hours).

We addressed the above objectives in detail in various

sections in this article. Objective 1, local weather stations,

is discussed in Sect. 4. Objective 2, identify optimal con-

figurations and control, is discussed in Sect. 5. Objective 3

and Objective 4, compare performances of different tech-

niques, are discussed in Sect. 6.

4 Local weather stations

Local weather stations are placed in farms to measure

actual weather parameters. These stand-alone systems

directly communicate with the server to send fine-grained

temporal resolution (e.g., every 15 min) of weather data.

There are key features of these weather stations such as full

computer-controlled kit, weather underground support, use

of standard grove connectors, a real-time clock, and fully

open source code, which can be edited according to the

purpose (SwitchDoc Labs 2016).

The main components of the local weather stations

include:

• Weatherboard to attach different weather sensors and

data logging to the Raspberry Pi device. The layout of

the weatherboard circuit is presented in Fig. 2.

• Raspberry Pi device for computation, data preparation,

and logging activities. Figure 3 shows that the Rasp-

berry Pi device is connected to the weatherboard.

• Different sensors, such as and not limited to wind vane,

anemometer, barometer, thermometer, photodetector,

lightning detector, hygrometer, pyranometer, and rain

gauge to measure environmental values. Figure 4

presents the basic components in a weather station.

• Solar panel to power up and operate the entire weather

station. Figure 5 shows how to connect the solar panel

to the weatherboard.

• Global System for Mobile (GSM) module to commu-

nicate with the server. The weatherboard comes with a

WI-FI module for wireless high-speed connection to the

Internet to send data to the server. The GSM module is

useful in locations where WI-FI signals are not

available.

Several weather sensors can be attached to the weath-

erboard to measure over 20 different environmental values

such as but not limited to wind speed, wind direction, rain,

outside temperature, outside humidity, lighting detection,

barometric pressure, atmospheric pressure, altitude, in-box

temperature, in-box humidity, wind gust, rain rate, soil

temperature, soil moisture, ultraviolet density, dust count,

and light color (sensing air pollution) (SwitchDoc Labs

2016). Figure 6 depicts the main components of a weather

station.

As depicted in Fig. 1, the captured time-series weather

parameters using different sensors are sent to the data

server using the GSM module which is attached to the

Raspberry Pi. The GSM module uses ordinary mobile

phone signals to transmit data. This process is continued at

every 15 min intervals to record different environmental

values within the data server. We use this data server to

access data and to develop and evaluate different weather

forecasting models. As a consequence, the most effective

and accurate model is selected as the proposed model.

There are six weather stations, which are used to collect

time-series weather data. Table 1 presents the actual lati-

tude and longitude of these weather stations (i.e., where

they are placed). The reason for using many weather sta-

tions is to train different models for different locations as

the forecasting can vary depending upon the geographical

appearance of the location/farm. Besides, these weather

stations are placed to cover various parts of the UK.

5 Sequence modeling and prediction

Before defining a network structure, we highlight the

modeling task involving time-series weather data sequence

x0; . . .; xT and wish to predict some corresponding outputs
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y0; . . .; yT at each time. The data at a given time t; xt ¼
p1; . . .; p10½ � consist of 10 different weather parameters,

which are presented in Table 2. The goal is to predict the

value yt at time t and is constrained to only previously

observed inputs: x0; . . .; xt. Thus, a sequence modeling

network is any function F : XTþ1 ! YTþ1 that produces

the mapping ŷ0; . . .; ŷT ¼ F x0; . . .; xTð Þ, if it satisfies the

causal constraints, i.e., yt only depends on x0; . . .; xt and not

on any future inputs xtþ1; . . .; xT . The focus of learning in

the sequence modeling is to find a network F that mini-

mizes the loss between the actual outputs and the predic-

tions, ‘ y0; . . .; yT ;F x0; . . .; xTð Þð Þ in which the sequences

and predictions are drawn according to some distribution.

A single weather station can produce a large amount of

sequential data. Therefore, an extremely expressive model

such as deep neural network (DNN) is more appropriate in

such a scenario and can learn highly complex vector-to-

vector mapping. The recurrent neural network (RNN) is a

DNN that is designed for sequence modeling (Elman 1990;

Graves 2012). As a result, RNN is also extremely expres-

sive. RNNs are made of high-dimensional hidden states H,

which are updated with nonlinear activation function F . At

a given time t, the hidden state Ht is updated by

Ht ¼ F Ht�1; xtð Þ. The structure of H works as the memory

of the network; the state of the hidden layer at a time is

conditioned on its previous state. RNNs are a structure

through time and maintains a vector of activations at each

timestep, which makes the RNN extremely deep. As a

result, their depth makes their training time-consuming due

to the exploding and the vanishing gradient problems

(Jozefowicz et al. 2015). This has been addressed by the

development of long short-term memory (LSTM) archi-

tecture (Hochreiter and Schmidhuber 1997), which is

resistant to the gradient vanishing problem. Therefore, we

use LSTM and temporal convolution network (TCN)

architecture to minimize the loss

‘ðy0; . . .; yT ;F x0; . . .; xTÞð Þ for effective modeling and

prediction of time-series weather data.

5.1 DNN with long short-term memory (LSTM)
layers

DNN with long short-term memory (LSTM) layers, a

specialized form of the RNN, allows stacked neural net-

works and includes several layers as part of overall com-

position known as nodes. These nodes use the combination

Fig. 2 Layout of a

weatherboard circuit [image

reference (SwitchDoc Labs

2016)]

Fig. 3 Raspberry Pi connected to the weatherboard
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of data and input through a set of coefficients allowing to

carry out computational tasks (Jozefowicz et al. 2015). The

proposed DNN with stacked LSTM layers is presented in

Fig. 7a. The number of layers and the number of memory

cells in each layer are decided experimentally for the best

performance. These models have the ability to long-term

dependencies by incorporating memory units. These

memory units allow the network to learn, forget previously

hidden states, and update hidden states (Behera et al.

2018). Figure 7b depicts the general arrangement of an

LSTM memory cell.

The LSTM memory architecture used in our experi-

ments is depicted in Fig. 7b. The proposed model has

inputs about weather parameters xt ¼ p1
t ; . . .; p

10
t

� �
at a

given time stamp t. In a given time t, the model updates the

memory cells for hidden states Ht�1, which consists of

short-term hidden states ht�1 and long-term hidden states

ct�1, recall from the previous time stamp t � 1ð Þ by

it ¼ tanh wxixt þ whiht�1 þ bið Þ
jt ¼ sigm wxjxt þ whiht�1 þ bj

� �

ft ¼ sigm wxf xt þ whf ht�1 þ bf
� �

ot ¼ tanh wxoxt þ whoht�1 þ boð Þ
ct ¼ ct�1 � ft þ it � jt

ht ¼ tanh ctð Þ � ot

ð1Þ

where wx; bx;�; it; jt; ft; ot are weight matrices, biases,

element-wise vector product, input gate contributing to

Fig. 4 Basic component of a

local weather station [image

reference (SwitchDoc Labs

2016)]

Fig. 5 Connection solar panels

to the weatherboard
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memory, input moderation gate contributing to memory,

forget gate, and output gate as a multiplier between

memory gates, respectively. The ct and ht are the two types

of hidden layers to allow the LSTM to make complex

decisions over a short period of time (Behera et al. 2018;

Jozefowicz et al. 2015). The it and ft gates are switching

each other to selectively consider the current inputs or

forget its previous memory. Similarly, the output gate ot
learns how much memory cell ct needs to be transferred to

the hidden state ht. These additional memory cells allow

the LSTM to learn complex and long-term temporal

dynamics compared to RNNs.

A typical criticism of the LSTM architecture is that it

has a large number of components whose purpose is not

immediately apparent (Jozefowicz et al. 2015). Moreover,

LSTMs can easily use up a lot of memory in storing partial

results for their multiple cell gates in the case of the long

input sequence. This is the case for our time-series weather

data. Therefore, we explore the state-of-the-art TCN

architecture for modeling and predicting fine-grained

weather data.

Fig. 6 Main components of a local weather station. The solar panel

charges the internal battery. This battery power uses the Raspberry Pi

to control all the components of the weather station. The purple color

internal sensors are applied to measure in-box parameters such as in-

box temperature and in-box humidity. The green color sensors

attached externally to the box to measure outside box environmental

values

Table 1 Locations of the local weather stations

Location Latitude Longitude

Yorkshire 54.0206851 – 1.1737687

Newcastle 55.184111 – 1.713925

Wigan 53.5278670 – 2.6453164

Liverpool 53.4636974 – 2.9714652

Coventry 52.4517583 – 1.5154738

Sutton 51.370779 – 0.204570

Table 2 Common surface

weather parameters from 20

environmental values captured

by local weather stations

Parameter Description Units

BM Barometer Hectopascals

Pres Air pressure Hectopascals

Temp Temperature Celsius

Humid Percent relative humidity Percentage

WS Wind speed Meters/s

WD Wind direction Degrees (0–360)

RR Rain rate—intensity of rainfall Millimeters/h

Rain Rain Millimeter

DP Dew point Fahrenheit

HI Heat index—the temperature feels like Celsius
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5.2 DNN with temporal convolutional neural
(TCN) layers

The TCN approach was initially developed to examine

long-range patterns using a hierarchy of temporal convo-

lutional filters (Lea et al. 2017). The key characteristics of

TCNs are: (1) it involves convolutions, which are causal

and (2) like in RNN, the network can take a sequence of

any length and map it to an output sequence of the same

length. The proposed architecture is informed by recent

generic convolutional architectures for sequential data (Bai

et al. 2018; Lea et al. 2017). The architecture is simple

(e.g., no skip connections across layers, conditioning,

context stacking, or gated activations), uses autoregressive

prediction and a very long memory. Moreover, it allows for

both very deep networks and very long effective history

and is achieved through dilated convolutions that enable an

exponentially large receptive field (Yu and Koltun 2015).

For example, for a 1-D sequence of a given weather

parameter p1, i.e., p ¼ p1
0; . . .; p

1
t

� �
and a filter

f : 0; . . .; k � 1f g, the dilation convolution operation F on

element s ¼ p1
t̂

(where t̂ ¼ 0; . . .; t) of the sequence is

defined as:

F sð Þ ¼ p �d fð Þ sð Þ ¼
Xk�1

i¼0

f ið Þ:ps�d:i ð2Þ

where d is the dilation factor, k refers to the filter size, and

s� d:i accounts for the direction of the past. Stacked units

of one-dimensional convolution with activation functions

are used to build the TCN (Kim and Reiter 2017). Figure 8

depicts the architectural elements in a TCN with configu-

rations dilation factors d ¼ 1; 2; and 4: The dilation

introduces a fixed step between every adjacent filter taps.

Larger dilations and larger filter sizes k enable effectively

expanding the receptive filed (Bai et al. 2018; Lea et al.

2017). In these convolutions, the increment of d expo-

nentially commonly increases the depth of the network.

This guarantees that there is some filter that hits each input

within the effective history (Bai et al. 2018).

We use Keras as a tool to implement both deep learning

LSTM and TCN (Gulli and Pal 2017; Keras 2019a; Kriz-

hevsky et al. 2012).

6 Methodology

This study is based on an experimental approach and is

focused on the analysis of quantitative temporal data.

There are 10 weather parameters utilized within this

research.

6.1 Weather parameters

Meteorological data can be classified into two main types,

namely surface weather data and the upper air data. The

surface weather data contain physical parameters that are

measured directly by instrumentation at the earth’s surface

(i.e., somewhere between ground level and 10 meters) (US

EPA 2016). Therefore, the surface weather data can be

considered tangible data and include air pressure, wind

speed, wind direction, rain, rain rate, soil moisture, soil

temperature, dew point, snow, heat index, temperature, etc.

(Faroux et al. 2007; Thornton et al. 2014; US EPA 2016).

In contrast, upper air data contain physical parameters that

are measured in different vertical layers of the atmosphere

(US EPA 2016). For example, GFS data considered 36

different pressure layers when collecting upper air data

(Hamill et al. 2011; NCAR/UCAR 2019).

Fig. 7 Proposed layered LSTM

model and LSTM memory cell

used for this research
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Surface weather data can be observed simply using local

weather stations. These are the fundamental data used for

weather forecasting and issue relevant warning messages

(Gounaris et al. 2010; Mittal et al. 2015). The upper air

data can be measured using radars and satellites (Haim-

berger et al. 2008). Lahoz et al. (2010) argued that low-

resolution weather prediction could be made using only

surface weather parameters. Klein and Glahn (1974) and

Gneiting and Raftery (2005) developed a successful local

weather prediction model using surface weather data.

Therefore, the surface weather parameters can be used for

local weather forecasting.

As described in Sect. 4, the local weather station data

are collected for various surface weather parameters.

Table 2 shows the weather parameters which are utilized

within the research. In Table 2, some weather parameters

are ignored among the approximately 20 weather station

data parameters in the surface weather parameters. The

reason is that the preliminary experiments show that they

have minimal impact on the weather forecasting results.

These include in-box temperature, in-box humidity, wind

gust, and altimeter. Moreover, the underground weather is

not measured in these experiments.

6.2 Data collection and preparing

The weather data are collected for every 15-minute interval

for the period of 20/01/2018 to 22/08/2018 to train the

proposed model. Similarly, data have been collected for the

period of 23/08/2018 to 11/09/2018 to test, and data from

12/09/2018 to 30/09/2018 to validate the proposed model.

The test dataset is used to test different models with dif-

ferent configurations and controls to identify the optimal

model for the localized weather prediction. This optimal

model is used with the evaluation dataset to get the weather

prediction and analyze the results. Each dataset has been

linearly interpolated to include missing values, and each

weather parameter is normalized using min and max

operation to keep the value in between - 1 and 1, i.e.,

p̂i ¼ 2fðpi � minðpiÞÞ=ðmaxðpiÞ � minðpiÞÞg � 1, where

i ¼ 1; . . .; 10 (weather parameters in Table 2).

A temporal sliding window is used to prepare the data.

Seven days sequential data are used as a sample input and

next 2 h data as a label (i.e., model output or prediction).

The gap between two consecutive sliding windows is an

hour. The final training dataset consists of 5726 samples,

and each sample consists of 6800 columns of data (680

timesteps with a dimension of 10 at each timestep).

6.3 Neural network-based proposed forecasting
models

In this section, we analyze the performance of the proposed

short-term forecasting model and fine-tune this model for

long-term forecasting for weather station data. In our study,

short-term refers to 1 h and long-term refers to 2, 3, 6, 9,

12, 18, and 24 h. Two deep models are proposed to solve

the regression problem involving weather forecasting,

namely multi-input multi-output (MIMO) and multi-input

single-output (MISO). As LSTM and TCN deep neural

approaches are proposed for the weather forecasting

models, the proposed models are MIMO-LSTM, MISO-

LSTM, MIMO-TCN, and MISO-TCN.

Figure 9 depicts the main difference between the MIMO

and MISO. In MIMO, all 10 variables are fed to the net-

work, and the network provides the same number of out-

puts as the weather prediction. In contrast, in the MISO, all

10 variables are fed to the network, and the network pro-

vides single parameter output as the prediction. With

respect to Figs. 3 and 4, the MIMO is used with 10 inputs

(a) Proposed DNN with stacked TCN 
layers

(b)  A typical TCN layer

Input

Hidden 

Hidden

Output

d=1

d=2

d=4

X1 X2 X3 . . .                                             Xt

Y1 Y2 Y3 . . .                                             Yt
Fig. 8 Architectural elements in

a TCN with causal convolution

and different dilation factors.

The input to the TCN is xt and

output yt. The xt contains

10-dimensional weather

parameter
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to produce 10 output parameters, and the MISO uses 10

input parameters to produce one output parameter.

6.3.1 Proposed short-term forecasting model

For the LSTM approach, we use different configurations

and controls. As Fig. 7a depicts, each layer consists of a

number of nodes, and we experiment with a different

number of layers with a different number of nodes for each

layer. We also experiment with different optimizers to

minimize the cost function. Subsequently, we use both

fixed learning rate and adaptive learning rate methods to

train the LSTM models. Similarly, we use different con-

figurations and controls with the TCN approach, such as a

different number of TCN layers with different filter sizes,

different dilation factors, and different optimizers.

Each approach is an experiment with both MIMO and

MISO. The results are subsequently evaluated to determine

the short-term forecasting model.

6.3.2 Proposed long-term forecasting model

The short-term optimal model is fine-tuned for long-term

weather forecasts, such as 2, 3, 6, 9, 12, 18, and 24 h. This

is two different ways to determine the optimal performance

model. Firstly, the optimal model which is found in the

short-term forecasting is re-tuned for the data in 2, 3, 6, 9,

12, 18, and 24 timeslots. This is taken as the TCN-WL (i.e.,

TCN model without loading the optimal model weight).

These models are evaluated using the weather station

testing dataset. Moreover, the optimal model is investi-

gated with loading optimal weights in addition to the

optimal configurations and controls. This is taken as the

TCN-LW (i.e., TCN model with loaded optimal weights).

These TCN-LW models are also evaluated using the

weather station testing dataset. Finally, a comparison is

made between TCN-WL and TCN-LW to identify an

optimal model for long-term forecasting.

Based on the performance, the optimal model is selected

as the proposed model for long-term forecasting. Subse-

quently, the selected optimal model is used for weather

prediction for the weather station validation dataset for

each timeslot and results are compared with the ground

truth.

6.4 Evaluation metric

There are several evaluation metrics which can be used to

calculate the loss in a neural network such as but not

limited to mean squared error (MSE), mean absolute error

(MAE), root mean squared error (RMSE), quadratic cost,

cross-entry cost, exponential cost, Hellinger distance, and

Kullback–Leibler divergence (Joho et al. 2001; Jozefowicz

et al. 2015; Mandic and Chambers 2000). Most of these

evaluation metrics are suited for classification machine

learning algorithms (i.e., predicting a label or a discrete

output variable). The common metrics for regression

machine learning algorithm (i.e., predicting a quantity or a

continuous output variable) are MSE, MAE, and RMSE

(Duan et al. 2016; Zhao et al. 2017).

The mean squared error (MSE) metric is used in this

work as the evaluation metric, which is calculated as

(Jozefowicz et al. 2015; Keras 2019b):

MSE ¼ 1

N

XN

i¼1

ðyi � ŷiÞ2 ð3Þ

where N is the number of samples, yi is the actual expected

output, and ŷi is the model’s prediction.

6.5 Baseline approaches

We also compare the performance of the proposed LSTM

and TCN architecture with the classical machine learning

approaches such as standard linear regression (Bishop

2006) and support vector regression (SVR) (Chang and Lin

2011). Such approaches do not consider the temporal

information which is only considered as another dimension

in multivariate weather data. For SVR, we use both linear

and RBF (radial basis function) kernels in our experiments.

The parameter C in the linear kernel is selected among the

range [0.01–10,000] with multiples of 10. The parameter C

in RBF is selected as above, but c is selected among the

range [0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 0.6, 0.9]. We use

the grid search algorithm technique to optimize both C and

c parameters. The best baseline performance is compared

with the proposed LSTM and TCN networks.

Fig. 9 The proposed multi-input multi-output (MIMO) and multi-input single-output (MISO) architectures for weather forecasting
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7 Results and discussion

As described in Sect. 6.3, there are two main sections of

this research, namely identifying optimal configurations of

proposed model for both short-term and long-term

forecasting.

7.1 Proposed model for short-term forecasting

As described in Sect. 6.3, all the machine learning models

are evaluated in two different methods, namely MIMO and

MISO. Each machine learning model is trained with dif-

ferent configurations and controls. Figure 10 shows the

comparison of each model in MIMO. The SVR approach is

not supported for MIMO (Bhattacharyya 2018; Kavitha

et al. 2016). Therefore, we only compare here standard

regression, deep learning with LSTM layers, and deep

learning with TCN.

In MIMO, the optimal model with LSTM has three

layers, and each layer consists of 128, 512, and 256 nodes.

The ‘Adam’ optimizer is utilized within this model with a

fixed learning rate of 0.01 and batch size of 128. The

MIMO-TCN model is configured with one TCN layer, 256

filters, kernel size of 2, learning rate of 0.02, dilations of

32, and ‘tanh’ activation. Similarly, we use different con-

figurations and controls for MIMO. In MISO-LSTM, the

optimal configuration is found with four LSTM layers, and

each layer consists of 128, 512, 512, and 256 nodes. The

‘Adam’ is the mostly used optimizer (Brownlee 2017) to

optimize MSE (Eq. 3) with a fixed learning rate of 0.01 and

batch size of 128. In MISO-TCN, the optimal configuration

is found with one TCN layer, 256 filters, kernel size of 2,

learning rate of 0.02, dilations of 32, and ‘tanh’ activation.

Figure 10 bar charts illustrate that the TCN provides

better results in six parameters out of 10. Therefore, TCN

model has been selected as the proposed model in MIMO.

Similarly, we evaluate Fig. 11 the MISO to determine the

best option with the least mean squared error for each

parameter. Figure 11 shows the comparison of each MISO

model. As Fig. 11 bar charts indicate, the TCN provides

better prediction results for the MISO compared to other

models. The deep learning model with LSTM layers also

provides significant prediction results, but out of 10 six

parameters provides better results in TCN. Thus, the TCN

combined model with 10 parameters has been selected as

the MISO proposed model. All these 10 models have 10

different TCN configurations with a different number of

TCN layers, activation function, and a number of filters.

In Figs. 10 and 11, both LSTM and TCN deep learning

models produce comparatively smaller errors compared to

the standard regression and SVR. This implies that there is

a nonlinear interrelationship among parameters (Graves

2012; Jozefowicz et al. 2015; Kavitha et al. 2016) and the

selected parameter does not follow a linear path within

selected sequential timeslots (Bishop 2006; McCREA et al.

2005). Moreover, the standard regression and the SVR do

not encode sequential information, while LSTM and TCN

encode both multivariate and sequential information by

taking them into another dimension in the input data (Bai

et al. 2018; Basak et al. 2007; Jozefowicz et al. 2015).

As seen in Figs. 10 and 11, there are some parameters

that have quite larger errors. For instance, the humidity

error is higher compared to seven other parameters. The

reason is that the actual humidity figures are within a

higher range of 70–100. According to Eq. 3, part of the

MSE calculation is the square value of the difference

Fig. 10 MIMO analysis of different techniques in predicting different weather parameters: SR standard regression, LSTM long short-term

memory, TCN temporal convolutional network
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between actual and predicted ones. The predicted values

should be a higher range figure. Therefore, the MSE can

get higher values if the actual figures are higher and pre-

dicted values not much closer to the actual. The similar

condition is applied to the wind direction, dew point, and

heat index parameters. Especially in wind direction, the

variance is quite high and this could lead to a higher error

rate. For instance, the wind direction is measured in

degrees (0�–360�) and assume the actual value is 3� and

predicted value is 359�. The prediction is much more

accurate (i.e., both values represent wind direction to

north), but the error value is quite high.

According to Figs. 10 and 11, the LSTM provides better

or much similar results compared to the TCN for the

parameters wind speed, wind direction, rain rate, and dew

point. This could be a higher variance of actual data in

these parameters (Schmidhuber 2015). These data items

enormously diverted from mean compared to the other

variables such as pressure, temperature, barometer, rain,

and heat index. In addition, there is a difference between

error values in rain and rain rate in Figs. 10 and 11. The

rain rate is classified according to the rate of precipitation

per hour (Sachidananda and Zrnić 1987). Therefore, the

rain rate value is calculated for the last hour and rain is

measured based on frequency of data logged to manually

calculate the cumulative rain. This indicates that there

could be a substantial difference between rain and rain rate

values endorsing different error values.

Table 3 and Fig. 12 show a comparison between MIMO

and MISO error values. According to Table 3 and Fig. 12,

the MISO model has lesser error values compared to

MIMO except for the parameter rain. This is probably

because it took into account the interactions and correla-

tions between different weather parameters. Therefore, the

MISO model has been selected as the tool to forecast the

weather for a selected geographical area using local

weather station parameters.

The proposed MISO model is used to predict data using

the evaluation dataset. The predicted parameter values are

compared with the actual ones. Figure 13 compares a

random 100 samples of predicted data and the ground truth

from the evaluation dataset. For each graph in Fig. 13, the

predicted values are represented with red color, and actual

values are represented in blue color. This figure demon-

strates that the red color line chart (predicted values) clo-

sely follows the blue line chart (ground truth) in many

parameters. The predicted values are diverted exceedingly

Fig. 11 MISO analysis of different techniques in predicting different weather parameters (SR standard regression, SVR support vector regression,

LSTM long short-term memory, TCN temporal convolutional network)

Table 3 Comparison of MIMO and MISO (lower MSE is better and

shown in bold)

Parameter MIMO MISO

Barometer 0.0033058026 0.00042381656

Pressure 0.0036017986 0.0005586127

Temperature 2.8303354 2.048237

Humidity 24.027027 19.33102

Wind speed 1.9519161 1.8668145

Wind direction 4106.5347 3732.787

Rain rate 0.0014567052 0.0011630587

Rain 0.000016702874 0.00010790071

Dew point 24.394356 18.028023

Heat index 9.148514 6.774312
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in rain rate and rain parameters. According to Fig. 13g, h,

the highest figures for rain and rain rates are 0.24 mm and

0.25 mm/h, respectively. These values are relatively quite

small and can be negligible. Overall, the proposed TCN

model is producing effective results which can be utilized

to the short-term weather forecasting for a selected geo-

graphical area.

7.2 Proposed model for long-term forecasting

As described in Sect. 6.3.2, the MISO-TCN generated

higher accuracy short-term (1 h) prediction for local

weather station data. This section aims to fine-tune the

proposed MISO-TCN model for longer periods of 2, 3, 6, 9,

12, 18, and 24 h. As described in Sect. 6.3.2, the perfor-

mance of long-term models of TCN-WL (without loading

short-term optimal model weights) and TCN-LW (loaded

with short-term optimal model weights) is compared. The

weather station training dataset is used to train/fine-tune

these models, and the weather station testing dataset is used

to evaluate those models. The optimal model is chosen

based on the performance for each timeslot. Comparison of

overall MSE for TCN-WL and TCN-LW for each timeslot

is shown in Table 4 and Fig. 14.

Fig. 12 Evaluation of MIMO-TCN and MISO-TCN models. The lower MSE is the best
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Fig. 13 Comparison of actual and predicted values using TCN
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As per information from Fig. 14 and Table 4, the TCN-

LW yields better performance with minimum MSE for

each timeslot compared to the TCN-WL. The reason is that

the TCN-LW has used an already trained model for a

specific domain issue (i.e., weather forecasting), and then

re-tunes the model weights match to the new dataset. This

process is highly efficient and directed to an accurate result

(Hochreiter and Schmidhuber 1997). Therefore, TCN-LW

models are selected as the long-term weather forecasting

models for the weather station data. Table 5 and Fig. 15

present the summary of evaluation results for the optimal

models for each parameter at each timeslot. These are

calculated on the data in the normalized form.

As shown in Fig. 15, the MSE values are increasing

(i.e., accuracy of the model decreasing) when the predic-

tion time increases. Similar to the short-term forecasting,

the wind direction parameter shows higher error values

compared to all the other parameters. The reason for this is

that the variance of the wind direction data is quite high

(Schmidhuber 2015). The barometer and pressure predic-

tions provide minor error values until 9–12 h and then

increase rapidly. This is because of the areas of high

atmospheric pressure moving to the low-pressure areas and

vice versa. Usually, these areas refer to many hundreds of

miles (Anderberg 2015). Therefore, it is quite hard to

predict these parameters for quite a long time as the data

Table 4 Comparison of TCN-WL and TCN-LW

Time Overall MSE

TCN-WL TCN-LW

2 570.4730225 563.0042725

3 720.9248047 670.3707886

6 930.9603271 929.4086914

9 999.4702148 945.2125854

12 1052.606689 1052.396973

18 1510.699463 1049.252563

24 1299.575684 1211.212646

Fig. 14 Comparison of TCN-WL and TCN-WL
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are taken from a single location (i.e., location of the local

weather station). Moreover, the temperature, humidity,

dew point, and heat index parameters often change, while

the atmospheric pressure is changing (Anderberg 2015; Ji

et al. 2018; National Geographic Society 2011).

Figure 16 shows how these MSE values change with the

time for each parameter. As per Fig. 16g, h, the rain and

rain rate MSE values are changed marginally throughout

each timeslot, and these are quite small values. This means

the prediction accuracy is quite high for these parameters.

This also proved that the prediction results for the rain are

quite accurate for the deep neural networks (Yonekura

et al. 2018).

As indicated in Fig. 15, the proposed deep learning

MISO-TCN model can be used for weather forecasting.

There are some parameters able to produce slightly

improved accuracy of forecasting results up to 24 h (i.e.,

Rain and Rainnc), while others can produce slightly

accurate forecasting up to 9–12 h.

The MISO-TCN optimal model is used with the weather

station validation dataset to get a prediction and compared

with the ground truth and results shown in Fig. 17. The

predicted result is de-normalized and compared with the

real ground truth. A random 50 data samples are selected to

present as it is not practical to present the whole dataset.

For each graph, the ground truth and the proposed MISO-

TCN deep model’s predictions are represented by each line

with blue and red colors, respectively.

Figure 17i, ii shows that the predicted results of the

barometer and pressure values change rapidly after 9–12 h.

But, the proposed MISO-TCN model can produce a more

accurate prediction for these two parameters for up to 12 h.

Even though the parameters rain and rain rates look

diverted exceedingly in Fig. 17vii, viii, the actual fig-

ures are quite small and can be considered negligible (i.e.,

highest rain—0.25 mm and highest rain rate—0.024 mm/

h). For all other parameters, the predicted values closely

follow the ground truth up to 9–12 h and then divert from

the actual. Overall, the proposed MISO-TCN can be used

for weather forecasting, and it has the ability to produce

some accurate results up to 9–12 h.

Table 5 MSE for optimal models for each parameter: TCN-MISO long-term forecasting

Parameter 1 2 3 6 9 12 18 24

Barometer 0.002076916 0.015901655 0.024086033 0.053096528 0.073861631 0.124978887 0.192134968 0.298616451

Pressure 0.001945692 0.011051216 0.013019966 0.047201681 0.099501107 0.120865501 0.212799633 0.269017231

Temperature 0.01216418 0.024454928 0.04524594 0.088169437 0.099630563 0.10016648 0.108323128 0.109965725

Humidity 0.010701872 0.027061418 0.04177346 0.078032536 0.103088642 0.118589158 0.120291006 0.12806465

Wind speed 0.044435158 0.075127839 0.092829066 0.120608897 0.125807085 0.139735703 0.140008575 0.149006794

Wind direction 0.12296849 0.173362198 0.218211832 0.279203681 0.298094872 0.313163059 0.376084732 0.389930909

Rain rate 0.005708397 0.004038433 0.005178649 0.004847353 0.004399635 0.004283268 0.004718017 0.00419405

Rain 0.005812216 0.004707018 0.004419363 0.00735798 0.004468292 0.004719651 0.004471535 0.004368936

Dew point 0.011651516 0.007356989 0.009622774 0.022991496 0.028536608 0.034159852 0.040293042 0.043526875

Heat index 0.011076465 0.023467487 0.044937868 0.07848461 0.099149089 0.103952541 0.109156926 0.118862578

Fig. 15 MSE for optimal

models for each parameter:

TCN-MISO long-term

forecasting
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8 Conclusion and future work

In this paper, we have introduced a novel lightweight

weather model which can be utilized to weather forecasting

for up to 9 h for a selected fine-grained geographical

location. The existing weather forecasting models that are

limited to regional forecasting, limited to a maximum of

two weather parameters. Our new model can, however,

predict as many as 10 parameters, easily be deployed and

be run on a stand-alone computer. Consequently, this new

model could make a huge impact on a community of users

who rely on the weather for their day-to-day activities. For

example, the weather condition can be predicted and

monitored within a few hours’ time interval, by running the

TCN code, without relying on the regional weather fore-

casting. The only requirement is to access the local weather

Fig. 16 MSE change with the time in hours: TCN-MISO long-term forecasting
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(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

i) Barometer            

Fig. 17 Comparison of proposed TCN-MISO prediction with the ground truth for each timeslot for random 50 datasets
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(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

ii) Pressure 

Fig. 17 continued
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(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

iii) Temperature 

Fig. 17 continued
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(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

iv) Humidity 

Fig. 17 continued
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station data, which could be achieved by setting up an

economical weather station in specific locations or farms.

Furthermore, a wider set of users who rely on favorable

weather conditions could get the advantage of the model,

such as places of interest, schools, outdoor sports centers,

and construction sites.

(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

v) Wind speed 

Fig. 17 continued
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The proposed model is able to overcome challenges with

the regional and global forecasting models including lesser

computational power consumption, easy to understand and

install, and portability. While the NWP models are viable

for long-range forecast and not for a fine-grained geo-

graphical area, we could make a reliable and accurate

(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

vi) Wind direction 

Fig. 17 continued
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prediction using the proposed model as this uses the data

related to that specific location.

In this research, we use only 93 days of data to train the

proposed model. Increasing the size of the training data

sample could result in better prediction in ANN

(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

vii) Rain rate 

Fig. 17 continued
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(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

viii) Rain 

Fig. 17 continued
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(Jozefowicz et al. 2015). The created model can be fine-

tuned with more data to get better performance. Further-

more, we use a Raspberry Pi weather station within this

research which is able to attach many sensors to measure

the atmosphere. There could be a possibility to improve the

prediction if we introduce some more weather parameters

(a) 1 Hour (b) 2 Hour

(c) 3 Hour (d) 6 Hour

(e) 9 Hour (f) 12  Hour

(g) 18 Hour (h) 24 Hour

ix) Dew point 

Fig. 17 continued
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which support the Raspberry Pi weatherboard such as soil

temperature, soil moisture, snow, solar radiation balance,

and pressure at different levels.
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