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Abstract
The brain’s functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can provide 
quick and useful information towards understanding cognition and brain disorders. Volume conduction (VC) is a fundamental 
issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the imaginary part of the coherence 
(iCOH) of any two signals are readily robust to VC effects, but neglecting the real part of the coherence leads to negligible 
FC when the processes are truly connected but with zero or π-phase (modulus 2π) interaction. We ameliorate this issue by 
proposing a novel method that implements an envelope of the imaginary coherence (EIC) to approximate the coherence 
estimate of supposedly active underlying sources. We compare EIC with state-of-the-art FC measures that included lagged 
coherence, iCOH, phase lag index (PLI) and weighted PLI (wPLI), using bivariate autoregressive and stochastic neural 
mass models. Additionally, we create realistic simulations where three and five regions were mapped on a template cortical 
surface and synthetic MEG signals were obtained after computing the electromagnetic leadfield. With this simulation and 
comparison study, we also demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst 
varying the signal’s noise level. However, these results should be interpreted with caution given the known limitations of the 
sensor-based FC approach. Overall, we found that EIC and iCOH demonstrate superior results with most accurate FC maps. 
As they complement each other in different scenarios, that will be important to study normal and diseased brain activity.

Keywords  Imaginary coherence · Functional and effective connectivity · Electroencephalography and 
magnetoencephalography · Volume conduction · Semi-realistic simulations · Hilbert transform

Introduction

Communication of information across the cortex, vital for 
cognitive function, has been suggested to involve neural 
dynamic oscillations and related (de)synchronization activ-
ity (Buzsáki and Draguhn 2004; Makeig et al. 2004; Singer 
1999; Tallon-Baudry and Bertrand 1999). The basis of con-
tinuously changing oscillatory behavior can be found in the 
complex nonlinear and unpredictable interactions among 
neural populations, whose patterns are still unable to be 
completely disclosed with modern neuroimaging techniques. 
A successful statistical approach should be simple and effi-
cient to deal with massive data analysis and for allowing 
clear interpretation of the results. Functional connectivity 
(FC) analysis in the frequency domain, based on coherence 
methods, has been proposed to efficiently elucidate such 
networks of information transfer (Fries 2005; Jensen et al. 
2007; Nunez et al. 1997; Rodriguez et al. 1999; Schnitzler 
and Gross 2005; Shaw 1984; Simoes et al. 2003; Stam and 

Handling Editor: Fabrice Wendling.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1054​8-018-0640-0) contains 
supplementary material, which is available to authorized users.

 *	 Jose M. Sanchez Bornot 
	 bornot@gmail.com

 *	 KongFatt Wong‑Lin 
	 k.wong‑lin@ulster.ac.uk

 *	 Girijesh Prasad 
	 g.prasad@ulster.ac.uk

1	 Northern Ireland Functional Brain Mapping Facility, 
Intelligent Systems Research Centre, School of Computing 
and Intelligent Systems, Ulster University, Magee Campus, 
Derry~Londonderry, UK

2	 Department of Neurosciences, School of Medical 
Sciences/Hospital Universiti Sains Malaysia, Universiti Sains 
Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, 
Malaysia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-018-0640-0&domain=pdf
https://doi.org/10.1007/s10548-018-0640-0


896	 Brain Topography (2018) 31:895–916

1 3

van Straaten 2012; Wheaton et al. 2005). The implicit use 
of frequency based analytical tools such as wavelets and 
Fourier transform (FT) has an important advantage of cir-
cumventing issues that arise from the nonlinearity and non-
stationarity of the underlying neural dynamics (Bendat and 
Piersol 2011; Grandchamp and Delorme 2011). Particularly, 
the computational efficiency of these techniques and their 
simplicity, allows the analysis of a large number of regions 
of interest (ROIs) and clear-cut interpretation.

Due to superior time resolution, magnetoencephalography/
electroencephalography (M/EEG) is often used to study brain 
dynamics (Lopes da Silva 2013; Palva and Palva 2012). How-
ever, the mixing and field spreading of the local field poten-
tials, eventually reflected at the sensor level, pose a serious 
challenge for the connectivity analysis. One possible solution 
is to first solve the inverse problem with one of the well-estab-
lished methods (Friston et al. 2008; Grave de Peralta; Menen-
dez et al. 2001; Gross et al. 2001; Hämäläinen and Ilmoniemi 
1994; Huang et al. 2014; Pascual-Marqui 2007; Van Veen 
et al. 1997) and then assess FC from the estimated source 
activities. Although Schoffelen and Gross (2009) suggested 
that FC must be analyzed at source instead of sensor space, 
their work also warned against excessive optimism mainly due 
to volume conduction (VC) effects that are still present in the 
estimated source activities. Another important limitation of 
the latter approach is the lack of realism of currently popu-
larly used forward models which could be addressed by using 
more realistic but complex and time consuming finite ele-
ment methods (Cho et al. 2015; Dannhauer et al. 2011; Lanfer 
et al. 2012a, b; Vorwerk et al. 2012, 2014). Other important 
cause of bias is the presence of deep sources that are not well 
estimated, and particularly may lead to the estimation of a 
nearby related superficial source or even two or more super-
ficial sources with mixed estimated dynamics that deceitfully 
provide a better fit of the observed M/EEG signals. Obviously, 
the spread of estimated source fields, biased estimation of the 
number of sources, localization errors and poor separation of 
mixed signals will lead to false connectivity inferences.

FC analyses in sensor space are important for quick 
analysis of brain functions, i.e. without resorting to more 
complex source based analyses. They have been robustly 
addressed by Nolte et al. (2004) who proposed the imagi-
nary part of the coherence (iCOH) method as an essential 
technique to circumvent the VC effects for FC estimation. 
They demonstrated an improved FC estimation using iCOH 
measure in comparison to coherence analysis, and showed 
transient interactions between left–right motor cortical sig-
nals as a function of time and frequency in a real dataset. 
However, due to its exclusive dependency on the iCOH, FC 
estimate based on iCOH becomes negligible in some situ-
ations even in the presence of a significant true interaction, 
e.g. the phase difference between two signals is near zero 
or π (modulus 2π). Later improvements on this limitation 

were achieved by proposing the phase lag index (PLI) (Stam 
et al. 2007) and the weighted PLI (wPLI) (Vinck et al. 2011), 
demonstrated by simulations based on the Kuramoto-model 
as well as with real data.

As further evidence of iCOH based techniques’ effective-
ness, Haufe et al. (2013) explored iCOH and phase slope 
index (PSI) (Nolte et al. 2008), together with multivariate 
Granger causality (Granger-MVAR) (Granger 1969) and 
partial directed coherence (PDC) approaches (Baccalá and 
Sameshima 2001) in sensor and source spaces using semi-
realistic brain simulated data based on only two interacting 
sources (acting as ground truth). They found that Granger-
MVAR and PDC have serious problems with VC in sensor 
and source spaces. Additionally, they showed that methods 
based on the imaginary part of the cross-spectral or com-
plex coherence were able to better identify the true interac-
tions. In a more recent simulation study, Haufe and Ewald 
(2016) proposed a threefold procedure to study FC, which 
consisted of: (1) estimating source activity with a reliable 
M/EEG inverse solver when signal-to-noise (SNR) ratio is 
sufficiently high for the activity of interest; (2) testing for sig-
nificant interactions using iCOH while comparing against a 
baseline estimate; and (3) assessing the connectivity direction 
using PSI. They were able to show that their approach can 
partially recover active regions, identify a possible interaction 
and determine the lagging region. However, their simulations 
used only two linearly interacting regions and it is unclear 
whether the same procedure can be successfully applied to 
more realistic nonlinear neural models, and/or with the use 
of a higher number of ROIs and their interactions.

From the above, it is clear that iCOH-derived techniques 
are useful for FC analysis using simulated, real and clinical 
datasets (see also Ewald et al. 2012; Guggisberg et al. 2008; 
Hardmeier et al. 2014; Olde Dubbelink et al. 2014; Polanía 
et al. 2012; Stam et al. 2006, 2007, 2008; Vinck et al. 2011). 
But despite current advances, these methods are still very 
dependent on the imaginary part of coherence (or cross-
spectral), hence limiting their potential in FC analysis.

In this work, we address the “imaginary-part” limitation 
by proposing a new iCOH-derived measure: the envelope of 
the imaginary coherence (EIC) operator, defined here as the 
absolute value of the analytical signal estimated from the 
iCOH measure when the latter is regarded as a function in the 
frequency domain. We will empirically demonstrate that this 
operator is able to compensate for the missing real part and 
can readily approximate the coherence value between possibly 
interacting underlying sources. We will also provide arguments 
against using a conventional normalization procedure for the 
original estimation of the iCOH method while proposing a dif-
ferent normalization approach. In a simulation study consid-
ering two possibly interacting sources, we will compare our 
proposed EIC method with state-of-the-art coherence based 
approaches: classical coherence (COH), phase lock value (PLV) 
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(Lachaux et al. 1999), iCOH (Nolte et al. 2004), PLI (Stam 
et al. 2007) and wPLI (Vinck et al. 2011). A surrogate-based 
statistical procedure proposed by Lachaux et al. (1999) will be 
used to assess significant FC between two sensors which are 
assumed to be located nearby the underlying active sources.

Furthermore, based on synthetically generated M/EEG 
signals which are more realistic and complex than in previ-
ous simulation studies, we compare EIC against other iCOH-
derived techniques using receiver operating curves (ROC) 
analysis, where the latter was based on ROIs defined over the 
sensor space. This is done to avoid the selection of potential 
biased thresholds for each FC measure, separately, and to intro-
duce a novel procedure to evaluate the feasibility of sensor-
based FC analysis. Specifically, we will present simulations of 
3 and 5 interacting ROIs with neural dynamics described by 
multivariate autoregressive (MVAR) model and a system of 
stochastic delay differential equations (SDDEs), projected onto 
102 MEG channels to compute sensor-based FC measures. 
Throughout, we show that EIC is more robust than other meth-
ods in terms of found true FC and reduced spurious results, 
i.e. EIC is robust to VC as other iCOH based measures but 
distinctly allows to infer significant FC even in the presence 
of zero or �-phase interactions. We also showed that the clas-
sical iCOH method (Nolte et al. 2004) can accurately detect 
complex FC interactions despite its limitations, thus we rec-
ommend to use EIC as a complement to iCOH in practical 
analysis. Overall, our work has shed light on the usefulness 
and limitations of iCOH-derived techniques for analysis of M/
EEG data and the feasibility of analysis of FC in sensor space.

Materials and Methods

In this study, we limit ourselves to the study of brain regional 
interactions as reflected at sensor space; the estimation of these 
interactions in source space with iCOH methods will be dis-
cussed in future work, though interested readers can consult 
the vast existing literature (e.g. Brookes et al. 2014; Colclough 
et al. 2015; Haufe et al. 2013; Haufe and Ewald 2016; O’Neill 
et al. 2015; Schoffelen and Gross 2009; Siems et al. 2016; Van 
de Steen et al. 2016). In Fig. 1 we illustrate an example of the 
generation of M/EEG signals from active brain sources, which 
is used to introduce the FC estimation in sensor space with 
iCOH-derived techniques, and illustrates how the VC effects 
in sensor space are directly related to the field spread of local 
active underlying sources. Specifically, two interacting sources 
are simulated in a sagittal view of the brain together with two 
nearby sensors located over the scalp in the same projection 
plane. The interactions between the sources as well as local 
leadfield effect over the sensors are indicated with continuous 
and dashed arrows, respectively. Given the sensor signals, the 
complete challenge is to make inferences about active source 
locations, their temporal signatures and identifying possible 

interactions among the sources. However, in this work, we 
shall focus only on the latter problem.

In this example, the source dynamics ( x and y ) can be rep-
resented using bivariate autoregressive model or neural mass 
model (NMM) dynamics, while their influences on the sensor 
measurements ( u and v ) are represented as,

which correspond to a local leadfield model, where 
a1, b1, a2, b2 represent the mixing coefficients, and �u and �v 
are white Gaussian noise terms. The expected cross-covariance 
and cross-spectral estimate of the sensor signals are,

By using the notation Sxy(f ) = ℜ
{
Sxy(f )

}
+ jℑ

{
Sxy(f )

}
, 

we obtain (Bendat and Piersol 2011):

As can be observed in this last derivation, the main VC 
effect is the contamination of the real-part ( ℜ ) of Suv(f ) 

(1)u = a1x + b1y + �u; �u ∼ N(0, �2

u
),

(2)v = a2x + b2y + �v; �v ∼ N
(
0, �2

v

)
,

(3)

Ruv(�) = E[u(t)v(t + �)]

= a1a2Rxx(�) + a1b2Rxy(�) + a2b1Ryx(�) + b1b2Ryy(�)

(4)

Suv(f ) = a1a2Sxx(f ) + a1b2Sxy(f ) + a2b1S
∗
xy
(f ) + b1b2Syy(f )

(5)

Suv(f ) = a
1
a
2
Sxx(f ) + b

1
b
2
Syy(f ) +

(
a
1
b
2
+ a

2
b
1

)
ℜ
{
Sxy(f )

}

+ j
(
a
1
b
2
− a

2
b
1

)
ℑ
{
Sxy(f )

}
.

Fig. 1   Schematic to demonstrate the M/EEG signal generation using 
a forward problem restricted to two possibly interacting sources 
(dipoles) and a pair of nearby sensors. Signals x(t) and y(t) represent 
source activity, whereas u(t) and v(t) represent sensor recordings. 
Continuous and dashed arrows represent interaction from source 
y to x and influence of source dipoles over sensor recorded activity, 
respectively
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with auto-spectral terms, whereas the imaginary-part ( ℑ ) of 
Suv(f ) (the last term on the right-hand side of the equation) is 
exactly a scaled version of the imaginary-part of Sxy(f ) . That 
means that we can recover very well the imaginary part of 
unknown interacting processes if we are able to obtain meas-
urements from nearby sensors. Otherwise, the real part is a 
combination of terms which include the real-part of interact-
ing underlying sources ℜ{Sxy(f )} but this term cannot be eas-
ily extracted. The imaginary-part of Suv(f ) hardly goes to zero 
for all frequencies, unless ℑ{Sxy(f )} = 0 for all frequency 
values, or the determinant of the local leadfield coefficients 
( a1b2 − a2b1 ) is zero, both of which are rare in practice; 
although the former can be the case for oscillatory signals 
with very narrow bandwidth. Thus, the imaginary-part as 
measured from the harmonic analysis of the interaction of 
the sensor dynamics, can be used to obtain a measure that 
captures well the interactions of underlying sources, a fact 
that has been exploited by methods such as iCOH, PLI and 
wPLI (Nolte et al. 2004; Stam et al. 2007; Vinck et al. 2011).

More generally, the sample estimate of the cross-spectral 
measure obtained from signals un(t) and vn(t) , collected 
across epochs n = 1,… ,N , is

where Un(f ) and Vn(f ) are the corresponding FT of signals 
un(t) and vn(t) for each epoch. From here, the complex-coher-
ence is computed as,

which allows to obtain the coherence estimator ||Cuv(f )
|| . In 

the above example, with the interactions depicted in Fig. 1 
and in Eqs. (1) and (2), Eq. (7) becomes

whereby using the FT ( ⟶ ) representations for xn(t) and 
yn(t),

we obtain the individual expressions for the auto-spectral 
and cross-spectral terms:

(6)Suv =
1

N

N∑

n=1

Un(f )V
∗
n
(f )

(7)Cuv(f ) =
Suv(f )√

Suu(f )Svv(f )
= ℜ

�
Cuv(f )

�
+ jℑ{Cuv(f )},

(8)

Cuv(f ) =
a
1
a
2
Sxx(f ) + b

1
b
2
Syy(f ) +

�
a
1
b
2
+ a

2
b
1

�
ℜ
�
Sxy(f )

�

√
Suu(f )Svv(f )

+ j

�
a
1
b
2
− a

2
b
1

�
ℑ
�
Sxy(f )

�

√
Suu(f )Svv(f )

,

(9)xn(t)


⟶Xn(f ) = Rne
j�n , yn(t)


⟶ Yn(f ) = rne

j�n ,

(10)

Sxx(f ) =
1

N

∑

n

R2

n
, Syy(f ) =

1

N

∑

n

r2
n
, Sxy(f ) =

1

N

∑

n

Rnrne
j(�n−�n),

One important observation from these derivations is 
that the denominator used for computing the complex 
coherence value, i.e. 

√
Suu(f )Svv(f ) , is contaminated by a 

weighted average of the cosine of the phase differences of 
interacting processes across trials, and thus the denomina-
tor magnitude fluctuates with dependence of the particular 
value of the phase difference. If we estimate the iCOH 
measure directly as the imaginary part of the complex 
coherence as originally stated (Nolte et al. 2004), then 
iCOH will lose its direct relationship to the corresponding 
imaginary-part of possibly interacting underlying sources 
and can potentially become less stable. Therefore, it may be 
preferable to obtain iCOH directly from the cross-spectra 
as E[ℑ{U(f )V∗(f )}] (without normalization) or using a dif-
ferent normalization factor. Notice that a normalization is 
recommended in order to make fair comparisons across 
frequencies or among groups/conditions and to guarantee 
that values are in a controlled range, i.e. [−1, 1] or [0, 1] . 
Therefore, we introduce a more convenient normalization 
for iCOH in “Coherence and Imaginary Coherence Based 
Measures” section, which is used in the derivation of the 
new proposed method.

In the discussion so far, we have not mentioned a criti-
cal problem that is still present and is usually ignored in the 
literature; namely, the rejection of the real-part in current 
state-of-the-art iCOH-derived techniques causing the loss of 
information that is important for producing better FC maps. 
A direct consequence of this omission is that these measures 
show negligible values when truly connected processes have 
a zero or �-phase interaction. As a main objective in our work, 
we propose here a new method derived from the imaginary 
part that allows us to approximate and consider the missing 
real-part of the coherence, and therefore is sensitive to these 
interactions whilst being robust to VC.

Coherence and Imaginary Coherence Based 
Measures

The iCOH measure can be obtained directly either from 
the imaginary part of the complex coherence [Eq. (13)] or 
using a more appropriate normalization term as shown below 
[Eq. (14)]:

(11)

Suu(f ) =
a2
1

N

∑

n

R2

n
+

b2
1

N

∑

n

r2
n
+

2a1b1

N

∑

n

Rnrn cos
(
�n − �n

)
+ �̂2

u
,

(12)

Svv(f ) =
a2
2

N

∑

n

R2

n
+

b2
2

N

∑

n

r2
n
+

2a2b2

N

∑

n

Rnrncos
(
�n − �n

)
+ �̂2

v
.

(13)iCOH1(f ) = ℑ{Cuv(f )},

(14)iCOH2 = E
[
ℑ{U(f )V∗(f )}

]
∕E

[
|(ℑ{U(f )V∗(f )})|

]
.
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The modified iCOH version introduced in Eq. (14) is nor-
malized conveniently using a denominator estimated by using 
the Hilbert’s transform (HT). Here, the function (⋅) produces 
the analytical signal from the cross-spectral imaginary values, 
while the expected value of its magnitude is taken to produce 
a robust normalization factor. Notice that the HT of a cosine 
produces a sine and vice versa. Thus, our aim with this opera-
tion is to (approximately) recover the missing real-part content 
of possible underlying interacting sources when only the non-
contaminated imaginary-part is used for the reasons discussed 
above. The theoretical proof on the effectiveness of this opera-
tion to recover the ignored real-part information is beyond the 
scope of this paper. However, we will empirically show in the 
next section the feasibility of this approach.

Within the variety of coherence measures, another useful 
technique that is commonly used in the literature is the PLV 
(Lachaux et al. 1999):

which assumes that the signal amplitude and phase are sta-
tistically independent and uses only the phase content for 
estimating a possible interaction. We have used this measure 
in our comparison study to show that it is similarly affected 
by VC as the coherence estimator. The set of state-of-the-
art coherence based FC methods considered in this study is 
completed with the use of the PLI (Stam et al. 2007), wPLI 
(Vinck et al. 2011), and lagged coherence (lCOH) (Pascual-
Marqui et al. 2011):

The PLI is obtained from the expected value of the sig-
num of the imaginary part, E

[
sgn

(
ℑ
{
Un(f )V

∗
n
(f )

})]
 , being 

equivalent to ±E
[
sgn (Phase{X(f )} − Phase{Y(f )})

]
 , with a 

sign indeterminacy (for the example illustrated in Fig. 1, this 
indeterminacy refers to the sign of a1b2 − a2b1 ). Otherwise, 
wPLI is its weighted version in order to achieve more stabil-
ity. Finally, we have included the lCOH for completeness in 
our study given its close similarity to iCOH measure, but 
also to explore the effect of using a different normalization 
that can either improve the sensitivity to detect FC or dete-
riorate performance in different VC or noise level scenarios.

(15)PLV(f ) =
|||E
[
ej(Phase{U(f )}−Phase{V(f )})

]|||,

(16)PLI(f ) =
|||E
[
sgn (Phase{U(f )} − Phase{V(f )})

]|||,

(17)wPLI(f ) =
|||E
[
ℑ{U(f )V∗(f )}

]|||/E
[
|ℑ{U(f )V∗(f )}|

]
,

(18)lCOH(f ) = ℑ
{
Cuv(f )

}2
/

(
1 −ℜ

{
Cuv(f )

}2
)
.

Envelope of the Imaginary Coherence (EIC) Operator

In order to obtain our proposed EIC operator, we compute 
the envelope of the iCOH function, z(f ) , as the amplitude 
of the analytical signal h(f ) = z(f ) + jz(f ) , where z(f ) is 
obtained by using the HT function (Zygmund 2002):

The HT is appropriate for constructing the envelope of 
narrow band signals in time domain. Wavelets analysis has 
been used in more general cases but both techniques have 
been used after a band-pass filtering to extract the oscillatory 
components within the frequency of interest in the signal. 
These techniques are applied indistinctively in signal pro-
cessing and particularly for time–frequency decomposition 
analysis and there is no evidence to state the superiority 
of one approach over the other (Grandchamp and Delorme 
2011). Our focus here is to recover the local envelope of 
the signal represented by the iCOH measure (in frequency 
domain), in an attempt to partially recover and incorporate 
the information contained in its accompanying real part, as 
we demonstrate next.

Figure 2 illustrates the EIC idea with a simple example. 
Suppose a 40 Hz sinusoidal function is weighted by a Gauss-
ian belt (envelope curve) with mean of 0.5 s and standard 
deviation of 0.02 s (Fig. 2a). The envelope curve can be 
recovered exactly if the HT is used in the time domain to 
estimate the analytical signal (Fig. 2b). But instead, we may 
proceed to analyze the signal in the frequency domain using 
the FT and compute the envelope of the imaginary (EI) part 
as the absolute value of the analytical signal obtained by 
applying HT only to the imaginary part of the FT coeffi-
cients (see Fig. 2c). As shown in Fig. 2d, the EI curve quite 
closely resembles the magnitude spectral density (MSD) of 
the original signal even when the EI curve is computed using 
only the imaginary-part, which shows evidence of the prac-
ticability of using HT for recovering information that is lost 
when the real part is ignored like in the example (Fig. 2c). 
The case concerned in our study is similar to this simple 
example in relation to the imaginary-part of the coherence 
or cross-spectra. Following a similar reasoning, we heuristi-
cally support our case that EIC can recover missing informa-
tion and thus provide more valuable content in comparison 
to other related iCOH-derived techniques.

In this example, the EI curve shows heavier tails com-
pared to the MSD due to some border effects in the estima-
tion of the analytical signal, but the important point is that 
the peak of both functions occurs nearby the same point. In 
the Supplementary Material, further evidences are provided 
to show the robustness of the EIC operator (Figs. S1 and S2). 

(19)z(f ) = −
1

�
lim
�→0

+∞

∫
�

z(f + �) − z(f − �)

�
d�
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In particular, in Fig. S2, using the same signal as in Fig. 2, 
we demonstrate that if this type of envelope is computed 
only from the real part (blue curve in Fig. 2c), then the result 
is similar and we are again able to readily recover the miss-
ing information. Therefore, with respect to any frequency of 
interest, we can be confident that EIC can recover informa-
tion about the FC strength that is lost when the real part is 
ignored, while being relatively robust with respect to the 
varying local phase and the waxing-waning behavior of the 
imaginary-part in the frequency domain.

We now introduce two versions of the EIC operator cor-
responding to each of the discussed versions of iCOH. The 
first definition ( EIC1 ) derives directly from the application of 
HT on the imaginary part of the complex coherence Cuv(f ) 
which was defined in Eq. (13). This version can present some 
undesired behaviour as a result of the instability induced by 
the normalization term in the complex coherence estimation 
as discussed above. The second, and our preferred, definition 
( EIC2 ), is derived in a similar way but from the new normal-
ized version of the iCOH measure (see Eq. (14) above). The 
motivation is to compensate for the missing real-part when the 
imaginary-part is used exclusively. Based on these, two ver-
sions of EIC, EIC1(f ) and EIC2(f ) , are formulated as follows:

(20)EIC1(f ) =
|||

(
ℑ
{
Cuv(f )

})|||,

Simulation of Source Activity with Autoregressive 
and Neural Mass Models

To compare the performance of the coherence based meas-
ures, we prepared two types of simulations, one consisting 
of simple (linear) autoregressive model and the other based 
on more realistic nonlinear neural mass models (NMM) 
(Jansen and Rit 1995). These models simulate the interaction 
of activities among sources (e.g. x(t) and y(t) represented 
in Fig. 1), acting as ground truth, while their activities are 
only observed indirectly (e.g. u(t) and v(t) representing either 
EEG or MEG sensor recordings in Fig. 1). The values for 
the mixing coefficients are a1 = 0.75 , b1 = 0.5 , a2 = 0.5 and 
b2 = 0.75 [see Eqs. (1) and (2)]. Dynamics are generated by 
considering two different cases: (1) dependency given by 
influence from, say process y(t) onto x(t) in Fig. 1, mediated 
by a connectivity strength ( Cy→x ≠ 0 ) and information trans-
mission delay, that can both be varied; and (2) independence 
of the processes, i.e. obtained by setting Cy→x = 0 . To pro-
duce stable FC measurements, we simulate 1 s long epochs 
and 100 trials with same parameter values for each model, 
but using different noise replications. Although we present 
in this section a simulation framework for two regions, this 

(21)
EIC2(f ) =

|||
(
E
[
ℑ{U(f )V∗(f )}

]
∕E

[
|(ℑ{U(f )V∗(f )})|

])|||

Fig. 2   a One second segment of a time-limited signal x(t) which is 
obtained from an original 40  Hz sinusoidal by weighting with a 
Gaussian distribution function with mean of 0.5 s and standard devia-
tion of 0.02  s. The Gaussian curve can be regarded as the envelope 
of the time-limited curve. b The envelope can be recovered from the 
time-limited signal by computing the absolute value of the analytical 

signal of x(t). c In the frequency domain, the FT of the signal, x(f), is 
represented by its real and imaginary parts, together with an EI part, 
which is obtained from the absolute value of the analytical signal of 
the imaginary part. d The MSD of x(f) is represented together with 
the positive part of the EI curve. Notice that both have similar charac-
teristics and present a peak about 40 Hz
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can be straightforwardly extended to simulate any number 
of ROIs.

For the dependency case, the generative process for the 
autoregressive model with two sources is described by:

where � represents the transmission delay for y → x and 
n = 1,… ,N  indicates the epoch index. In the simula-
tions, the sampling frequency is FS = 250 Hz such that 
time step is 4 ms, and the range of communication delay 
is � ∈ {1,… , 12} such that the fastest transmission delay is 
4 ms and the slowest is 48 ms, which is within reasonable 
physiological range (Ringo et al. 1994; Izhikevich and Edel-
man 2008). The connectivity strength is set as Cy→x = 0.5 , 
and �x = �y = 1 for each simulation. The coefficient values 
were chosen to produce 20 Hz oscillations.

The generative process for the NMM is based on the clas-
sic Jansen and Rit (1995) model, but modified with explicit 
transmission delay for communication between ROIs and a 
stochastic term. The generating SDDEs system is described 
by:

where S{�} = 2e0∕(1 + e−�(�−�0)) is the input–output sigmoid 
function. We used the same values for neural mass param-
eters ( A, a,B, b, e0, �0,C1,C2,C3,C4 ) as in Jansen and Rit 
(1995), but in our case we added Wiener processes Wx(t) 
and Wy(t) to the equations to induce stochastic behaviour. 
We tuned the variances of Wx(t) and Wy(t) and set the aver-
age population transmembrane current Ix = Iy = 220 for pro-
ducing alpha rhythm activity ( ∼ 10.87 Hz ) (see additional 
details in Supplementary Material). For a set of simulations 
used later in the “Results” section, the connectivity strength 
Cy→x was taken in the range {50, 100, 150, 200, 250, 500} 
for a transfer delay of � = 20 ms, in order to compare the FC 
measures for the different values. We have also tested other 
values of the transfer delay parameter for consistency and 

(22)
xn(t) = 1.5xn(t − 1) − 0.75xn(t − 2) + Cy→xyn(t − �) + �x(t); �x ∼ N(0, �2

x
),

yn(t) = 1.5yn(t − 1) − 0.75yn(t − 2) + �y(t); �y ∼ N(0, �2

y
),

(23)

dx1(t) = x4(t) dt

dx2(t) = x5(t) dt

dx3(t) = x6(t) dt

dx4(t) =
[
Aa S

{
x2(t) − x3(t)

}
− 2ax4(t) − a2x1(t)

]
dt

dx5(t) =
[
Aa

(
Ix + Cy→xy1(t − �) + C2 S

{
C1x1(t)

})
− 2ax5(t) − a2x2(t)

]
dt + Aa dWx(t)

dx6(t) =
[
Bb

(
C4 S

{
C3x1(t)

})
− 2bx6(t) − a2x3(t)

]
dt

dy1(t) = y4(t) dt

dy2(t) = y5(t) dt

dy3(t) = y6(t) dt

dy4(t) =
[
Aa S

{
y2(t) − y3(t)

}
− 2ay4(t) − a2y1(t)

]
dt

dy5(t) =
[
Aa

(
Iy + C2 S

{
C1y1(t)

})
− 2ay5(t) − a2y2(t)

]
dt + Aa dWy(t)

dy6(t) =
[
Bb

(
C4 S

{
C3y1(t)

})
− 2by6(t) − a2y3(t)

]
dt

similar results were obtained (see Fig. S9 in Supplementary 
Material).

This system of SDDEs was numerically simulated using 
the Euler–Maruyama algorithm, which is appropriate for 

generating stochastic dynamics with Wiener processes 
(Higham 2001; Mao 2007; Touboul et al. 2012). Further-
more, this SDDEs system was also tested for analysis of 
stability and convergence as shown in Supplementary Mate-
rial, Sect. 2. The stochastic integration was done with high 
time resolution (100 kHz or Δt = 0.01 ms) and later down-
sampled to 250 Hz using MATLAB custom code which is 
also provided in the Supplementary Material. Finally, the 
signals x(t) and y(t) are generated as the local potentials, 
x(t) = x2(t) − x3(t) and y(t) = y2(t) − y3(t) , according to the 
Jansen and Rit (1995) model.

Additionally, we also used a model-free simulation; par-
ticularly to test the robustness of EIC and iCOH measures 
for interacting signals with varying bandwidth ( � ), trans-
mission delay ( � ) and noise level. Following Gross et al. 

(2001), x(t) is simulated as a filtered white Gaussian noise 
at a frequency of interest (e.g. � = 15.625 or 1000/64 Hz) 
which was obtained using a narrow-band pass filter to extract 
out the frequency components of � ±�∕2 Hz, while y(t) 
is directly derived as its delayed version ( y(t) = x(t − �) ). 
These signals were mixed to produce signals u(t) and v(t) 
using the coefficients a1, b1, a2, b2 as discussed above for the 
bivariate autoregressive and NMM. We created 100 trials of 
1 s length ( FS = 250 Hz, one time step is 4 ms) and collected 
time-series u(t) and v(t) in matrices of 2 × 250 dimensions 
( YS�2×250 ). White Gaussian noise ( U ∈ 2×250 ) was added 
to render the measurements:
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where we have used the Frobenious norm ‖⋅‖ and 0 ≤ � ≤ 1 
to effectively control the SNR ratio. The parameter � was 
selected in the range {0.9, 0.5, 0.1} to approximately gener-
ate recordings with 20, 0 and − 20 decibels. In our simula-
tion study, considering that � = 15.625 Hz is the central 
frequency (one cycle per 64 milliseconds), we selected � in 
the range {0, 2, 4, 8, 16, 32}, correspondingly to time delays 
of 0, 8, 16, 32, 64 and 128 ms, respectively, or to interactions 
of 0, �∕4 , �∕2 , � , 2� and 4�-phase differences. Lastly, � 
was selected in the range {0.5, 1.0, 2.0, 5.0} Hz to create 
different scenarios where signals varied from narrow-band 
to broad-band.

Realization of M/EEG Signals from Realistic Head/
Source Model

We introduce in this section more complex and realistic 
brain simulations for generating synthetic M/EEG signals. 
First, we use the SPM anatomical template with pre-com-
puted meshes for internal/external skull, skin and cortical 
surfaces. The cortical surface consists of 20,484 vertices 
and 40,960 triangles that provided a detailed representation 
of subject’s gyri and sulci formation as an excellent space 
for modelling activity and connectivity patterns in the brain. 
This choice is done for simplicity but it is also supported by 
the well known fact that pyramidal cells are the main con-
tributors of M/EEG signals given their convenient pallisade 
structure and orientation within the cortical surface (Nunez 
and Srinivasan 2006). We also took the particular coordi-
nates for an Elekta-Neuromag 102 magnetometers positions 
after corregistering appropriately with the anatomical image 
of a test subject, and computed a boundary element method 
leadfield using the Fieldtrip toolbox (Oostenveld et al. 2011). 
Although the realistic simulation study is limited to the 
MEG case, our conclusions can be extended to analogous 
EEG analysis given their similarities.

We shall consider several cases in this part of our 
simulation study with signals generated using the MVAR 
and stochastic NMM. In particular, we simulate 3 and 
5 dipoles or ROIs with their interactions as shown in 
Fig. 3. Dynamics were generated by extending the set 
of equations that were introduced above for bivariate 
models. In the MVAR case, for 5 ROIs, five equations 
were used by directly extending from Eq. (22) using the 
same autoregressive coefficients, while the connectiv-
ity ( C ) and transfer delay ( � ) values were selected as 
C1→2 = C1→3 = C1→4 = C4→5 = 0.1 , C5→4 = −0.1 , �1→2 = 1 , 
�1→3 = 2 , �1→4 = 3 , �4→5 = 5 , �5→4 = 5 . For 3 ROIs, 
C1→2 = C2→3 = 0.1 ,  C3→2 = −0.1 ,  �1→2 = 2 ,  �2→3 = 3 , 

(24)YM = �
YS

��YS
��
+ (1 − �)

U

‖U‖

�3→2 = 3 . These values were selected to satisfy the stabil-
ity condition (Lütkepohl 2005) while setting a sufficiently 
high value for the connectivity parameter.

For simulation using the SDDEs system, 30 and 18 
equations are needed for the 5 and 3 ROIs, respectively 
(six equations per ROI). The NMM parameters are the 
same as in the bivariate simulation except for the con-
nectivity strength ( C ) and transfer delay ( � ) values: 
C1→2 = C1→3 = C1→4 = C4→5 = C5→4 = 200 , �1→2 = 1 ms, 
�1→3 = 5 ms , �1→4 = 10 ms , �4→5 = 20 ms , �5→4 = 20 ms 
for 5 ROIs; and C1→2 = C2→3 = C3→2 = 200 , �1→2 = 1 ms , 
�2→3 = 10 ms , �3→2 = 10 ms for 3 ROIs.

Each ROI is represented as a single vertex in the cor-
tical surface and its location is indicated by the red point 
overlaid on the cortical surface (see Fig. 3a, b). Most of 
the ROIs are located on the left hemisphere (left side of 
figure) and only ROI #5 in the first scenario is located in 
the right hemisphere. All interactions are unidirectional 
and feedforward except interactions between ROI #4 with 
ROI #5, and ROI #2 with ROI #3 in the first and second 
scenarios, respectively, reflecting recurrent or feedback con-
nectivity. The latter was enforced to be more realistic with 
respect to true neuronal interactions despite the fact that it 
might have a negative impact on the FC estimation. In gen-
eral, we generated 1 s long epoch simulation and repeated 
this 100 times (corresponding to 100 trials) to obtain con-
sistent FC estimators. The simulated signals were centred 
per epoch and were used as the dynamics for the selected 
ROIs, accordingly, for the 5 and 3 ROIs which were shown 
in Fig. 3a, b, respectively. We also simulated background 
activity as white Gaussian noise at each of the remaining 
points in the cortical surface, separately for each point, and 
subsequently combined by controlling the ratio of the signal-
to-background-noise activity:

where YB , YROIs and YBG are Ns × Nt matrices ( Ns = 102 
sensors and Nt = 250 samples corresponding to 1  s at 
Fs = 250 Hz ) containing the time-series for the mixed sig-
nals, the signals directly originated from simulated neural 
activity at the 5 or 3 ROIs, and the background activity, 
respectively, generated using the magnetic leadfield. The 
parameter � allows to effectively control the signal-to-back-
ground activity ratio and was selected in the range {0.1, 0.5, 
0.9} to simulate different noise levels resembling − 20, 0 and 
20 decibels (dB), respectively.

Finally, we also have added measurement iid Gaussian 
white noise U , separately for each sensor, to produce more 
realistic synthetic MEG measurements by using the same strat-
egy as above. That is,

(25)YB = �
YROIs

‖‖YROIs
‖‖
+ (1 − �)

YBG

‖‖YBG
‖‖
,
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where the SNR parameter was settled as � = 0.9 to represent 
a realistic situation, in which the sensors are well calibrated 
though measurement error is still present. Thus we were able 
to produce synthetic MEG signals, YMEG , which in turn were 
used in order to estimate the FC maps in the sensor space.

(26)YMEG = �
YB

��YB
��
+ (1 − �)

U

‖U‖
,

In parallel, as the data will be observed only in sensor 
space, we have defined ROIs in this space corresponding to 
the actual source ROIs in the 5 and 3 ROIs scenarios. For 
example, Fig. 4 shows for the case when the 6 nearest sen-
sors (KNS = 6) to each underlying source are considered. 
Later, in a ROC analysis we will consider this number as 
a free parameter to avoid bias. Although the influences are 
mostly unidirectional as in Fig. 3, the represented bidirec-
tional arrows in Fig. 4 show that in the sensor space the 

Fig. 3   Location of sources used 
for 5 ROIs (a) and 3 ROIs (b) 
based simulations. Insets: con-
nectivity graph for each case

Fig. 4   Nearest 6 sensors corre-
sponding to underlying sources 
for the 5 ROIs (left) and 3 ROIs 
(right) based simulations. The 
encircled sensors are the nearest 
sensors to each of the underly-
ing sources while the polygonal 
shapes enclose each ROI
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association between two regions, as commonly reflected by 
FC methods, lack directionality. More generally, transitivity 
rule applies to FC measures as discussed here, e.g. x → y 
and y → z interactions might also lead to x → z estimation, 
which is not shown in the expected interactions in Fig. 4 for 
clarity reasons.

ROC Analysis of Recovered FC Networks

For each particular FC measure, we defined the full FC 
map as the graph with nodes corresponding to the MEG 
sensors and edge weights corresponding to the magnitude 
of estimated FC values. This is a dense graph containing 
all the possible paired connections as all the weights have 
positive values. Using the full FC map as reference, a col-
lection of sparse FC graphs m = 0, 1,… ,M can be obtained 
using the (100m/M)th percentile to extract out those con-
nections corresponding to higher weights, e.g. 0th , 50th and 
100th percentiles denote the sparse FC maps correspond-
ing to all, the 50% more relevant and none of the connec-
tions, respectively, as identified in the full FC map. Based 
on the simulated ground truth and selected K nearest sen-
sors (KNS) ROIs, we can classify the sparse graph connec-
tions as true positive (TP) or false positive (FP), according 
to whether the identified connections connect two differ-
ent predefined ROIs or not, for some given neighborhood 
size (e.g. ROIs as represented in Fig. 4 for KNS = 6). Con-
sequently, we can obtain TP(m) and FP(m) measurements 

from each full FC map (see Figs. S12, S13 in Supplementary 
Material for an example of classification of full FC graph 
connections as TP/FP for increasing threshold values). To 
evaluate the performance of each estimated FC measure, we 
compute the classical receiver operator curve (ROC) and 
its area under the curve ( 0 ≤ AUC ≤ 1 ) statistics. The ROC 
is a non-decreasing graphical plot of the true positive rate 
(TPR) as a function of the false positive rate (FPR), where 
these quantities can be directly obtained from our analysis 
as TPR(m) = TP(m)∕TP(0) and FPR(m) = FP(m)∕FP(0).

Results

Proposed Normalization Procedure Improves iCOH 
Measure

Figure  5a, b show the iCOH and the EIC envelope 
obtained directly from the complex-coherence ( iCOH1 
and EIC1 ) and using the new normalization procedure 
introduced here ( iCOH2 and EIC2 ), respectively [see 
Eqs. (13), (14), (20) and (21)]. These measures were com-
pared using time-series for two interacting sources that 
were generated using the bivariate autoregressive model 
in “Simulation of Source Activity with Autoregressive 
and Neural Mass Models” section. We considered time 
delays from 4 to 48 ms ( ��{1,… , 12} , time step is 4 ms) 

Fig. 5   Imaginary coherence 
(blue) and its envelope (red) as 
represented by two versions of 
iCOH and EIC. The classical 
complex coherence normaliza-
tion step (a), and proposed 
HT-derived normalization 
procedure (b) are used. As a 
result, curve values appear 
normalized (magnitude values 
are equal or less than 1) for all 
frequency values (0–125 Hz). 
Upper and lower branches of 
the envelope are EIC curve 
and its horizontal mirror image 
(negative part), respectively. 
Measures were computed from 
model simulations with dif-
ferent communication delays 
��{1,… , 12} for the processes 
u(t) and v(t) as represented in 
Fig. 1. Each delay time step 
constitutes 4 ms. Vertical black 
dashed line denotes 20 Hz, the 
dominant component of the 
simulated processes
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to induce changes in the phase difference between the 
interacting processes.

It is evident that the classic coherence normalization 
produces excessive ripples in the imaginary coherence 
derived EIC function (lags from 9 to 12 in second row). 
Additionally, the unique peak that should be obtained for 
the main component of 20 Hz is not stable for all the con-
sidered lags in Fig. 5a. The EIC1 peak appears at the right 
side of the 20 Hz line for lags from 1 to 3 and left side for 
subplots corresponding to lags from 6 to 8, and in lags 
from 9 to 12 we can observe up to two peaks. However, 
when we apply the HT-derived normalization, as for the 
EIC2 measure, the peak and curves become stable and 
unimodal. Importantly, as shown in Fig. 5b, the EIC2 peak 
is now rightly centered at the 20 Hz (black dashed) line. 
Due to the superior results, from now onwards we will 
refer implicitly to the EIC2 version wherever we discuss 
EIC results. Since iCOH with the new normalization also 
produced negligible FC for zero and �-phase interactions, 
as the original iCOH and similar waxing-waning irregular 
behaviour, we will henceforth only use the original for-
mulation (Nolte et al. 2004).

EIC Is Most Robust Among iCOH Indices for Bivariate 
FC Analysis

The previous simulation based on a bivariate autoregres-
sive model is also a fine example to show the robustness of 
EIC when compared to other iCOH related FC estimators. 
Similar to Fig. 5 example, Fig. 6 shows the iCOH and EIC 
curve but in separated rows, together with the ground truth, 
lCOH, PLI and wPLI estimators for the same simulated data. 
In the first row of Fig. 6, we show the golden true estima-
tor (i.e. source-based coherence measure); whereas lCOH, 
iCOH, PLI, wPLI and EIC were estimated from the sig-
nals collected at the sensors (e.g. u(t) and v(t) represented in 
Fig. 1), the golden true estimator is the coherence measure 
that is obtained directly from the source signals (e.g. x(t) 
and y(t) in Fig. 1), which are unknown in a real scenario. 
The significance of FC values are determined by a threshold 
curve which was computed using the maximum (minimum) 
value statistics of FC values obtained from surrogate data 
(Lachaux et al. 1999). We used 1000 randomized samples 
in our simulation and computed this statistics for each fre-
quency, separately.

Notice that at the communication delays � = 5 and � = 11 , 
(i.e. almost 25 and 50 ms delays, respectively, and conse-
quently with signals’ phase difference near zero or � , modu-
lus 2� ), lCOH, iCOH, PLI and wPLI produced negligible 

Fig. 6   Different FC methods including the ground truth FC estima-
tor for two interacting sources in a bivariate autoregressive model 
with varying communication delay and constant connectivity strength 
Cy→x = 0.5 [see Eq. (22)]. FC measures (blue curves) appear normal-

ized according to their formulae so that the magnitude is ≤ 1 for all 
frequency values (0–60 Hz). A threshold curve and main frequency 
component are denoted with a red and vertical black dashed line in 
the subplots
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FC whereas EIC correctly reflected the true FC value. Also, 
except EIC the other FC methods exhibited a defective FC 
curve due to other negligible values that appeared, appar-
ently, as a result of the interaction between ongoing and 
incoming oscillations. The most outstanding result shown 
is that EIC is the FC estimator that most closely resembled 
the golden true value as a consequence of the use of the HT 
operator to partially recover the ignored real part.

On the other hand, for data generated from two inter-
acting sources with the SDDEs system introduced above 
[see Eq. (23)], we tested different transfer delays and con-
nectivity values to study the relationship between these 
parameters over the FC estimation. Figure 7a shows that 
for iCOH related indices (i.e. lCOH, iCOH, PLI, wPLI and 
EIC), the estimated FC strength at 10.87 Hz increased pro-
portionally for higher values of the connectivity parameter 
and reached the maximum value for Cy→x = 500 . At the 
same time, their FC estimates were non-significant for the 
lower values, Cy→x = 50 and Cy→x = 100 , according to the 
surrogate-based statistics (Lachaux et al. 1999). This is con-
sistent with the golden true estimated curve (shown at the 
first row) which also gradually increased with higher values 
of the connectivity parameter being significant for values 
Cy→x ≥ 50 . Moreover, COH and PLV showed higher values 
around 10.87 Hz independently of the simulated connectiv-
ity strength, which is related to VC as further supported 
in the next example. In general, it can be noticed that EIC 
seems to be the smoothest across frequencies and the most 
stable estimator compared to the other methods, and was 
remarkably sharper for the estimation of the FC strength at 
the dominant frequency (i.e. 10.87 Hz); though the other 
FC indices also showed good results for this type of simula-
tion. In the Supplementary Material, we showed the effect 
of varying the delay on the phase difference for a fixed con-
nectivity strength, Cy→x = 200 , which also demonstrated the 
superior performance of EIC (see Fig. S9).

Interestingly, EIC seems to be affected by the surro-
gate-based statistics which overestimated the threshold at 
10.87 Hz. The latter might be due to the failure to exactly 
recover the missing real part using the HT operator, par-
ticularly for estimating the normalization term. However, it 
may also arise as an effect of a highly stable synchronization 
which is characterized by an almost constant phase differ-
ence (Lachaux et al. 1999). The latter seems to be the more 
plausible explanation given that this situation did not appear 
for the EIC threshold curve shown in Fig. 6, and consider-
ing that the bivariate autoregressive model produces broad-
band signals whereas the SDDE’s signals have narrow-band 
characteristics. For PLI and wPLI, this statistics also showed 
relative higher values whereas it showed smaller values for 
lCOH, which did not affect the results.

Next, we consider the specific case when there is no inter-
action by setting Cy→x = 0 in the simulation. In Fig. 7b it is 

clear that COH and PLV measures are prone to find spurious 
connections due to VC—as there should be none or very few 
points of the connectivity curve over the estimated cutoff. 
Otherwise, the iCOH related indices correctly measured the 
non-interaction. We shall henceforth narrow our study focus-
ing mainly on iCOH indices based FC measures using more 
realistic simulated data.

Finally, we explored the performance of iCOH and EIC 
measures only, using signals that were obtained as nar-
row-band filtered Gaussian white noise. As presented in 
“Simulation of Source Activity with Autoregressive and 
Neural Mass Models” section, we simulated the interaction 
between two processes for different values of the communi-
cation delay, filter bandwidth, and SNR to create different 
situations. Figure 8 showed that iCOH and EIC effectively 
ignored instantaneous interactions (1st column, lag = 0) for 
the different SNR and signal bandwidth values. At the fre-
quency of interest (15.625 Hz), iCOH showed the higher 
values for lag = 2 (2nd column, π/4. phase difference) and 
lag = 4 (3rd column, �∕2 phase difference). For lags = 8, 16, 
32 (corresponding to � , 2� and 4�-phase interactions) and 
higher bandwidth values ( � = 2.0, 5.0 Hz ), iCOH showed 
negligible values as expected with a clear full oscillation 
about 15.625 Hz for �-phase difference; interestingly EIC 
showed a very clear peak at 15.625 Hz at these values. The 
only cases where EIC failed to find any interaction are in 
very noisy scenarios (SNR = − 20 dB) and if the signal band-
width is too small ( � = 0.5, 1.0 Hz in the simulations). In 
this analysis, we used only iCOH as representation of the 
other iCOH indices because they similarly failed for zero 
or �-phase interactions as evidenced earlier in Fig. 6. As 
a complement, we showed in the Supplementary Material 
(Fig. S10) the significance of the above results using the 
surrogate-based statistics. In the latter case, we used the 
same settings but simulating 100 and 1000 trials.

EIC and iCOH Are the Most Accurate in Sensor Space

Now, we demonstrate the methodology introduced here 
by using a synthetic MEG data generated with a large-
scale model simulation as presented in “Realization of 
M/EEG Signals from Realistic Head/Source Model” sec-
tion. In summary, we simulated MEG data for 100 trials 
using different MVAR’s or SDDEs’ generated signals as 
the dynamics for the selected 3 and 5 ROIs, as well as 
different realizations of Gaussian noise separately gener-
ated for each of the remaining cortical vertices and sen-
sors, for modelling background activity and measurement 
noise. Specifically, the data for the ROIs, background and 
measurement noise signals, were added using Eqs. (25) 
and (26), to produce the MEG data that was used for the 
estimation of the FC methods under study. Additionally, 
we produced 100 Monte Carlo realizations of this process 
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in order to compute the same amount of ROC curves and 
AUC statistics in the subsequent performance analysis of 
the FC measures. When creating the 100 Monte Carlo real-
izations, we kept the same SDDEs’ data that was generated 
for all the trials to reduce computational cost, whereas 
the MVAR’s simulated data as well as background and 

measurement signals were independently generated for 
each realization.

In the following analysis, we have varied the connectiv-
ity threshold in the min–max range to produce ROC curves 
(not shown) as discussed in “ROC Analysis of Recovered 
FC Networks” section, and allowed sensor ROIs size to vary 

Fig. 7   a Different FC methods for two interacting sources in a 
SDDEs based neural mass model with signal transmission delay 
� = 20 ms [Eq.  (22)] for different values of connectivity strength. 
Measures appear normalized according to their formulae for each 

case so that the magnitude is ≤ 1 for all frequency values (0–25 Hz). 
Blue curve: FC function; red curve: surrogate based statistics; black 
dashed line: 10.87 Hz. b Similarly but when signals are uncoupled
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in the range KNS = 1–10 (only shown for the range from 
KNS = 6 to 10). Figure 9 shows boxplots graphs summariz-
ing the outcome of the AUC values for the 100 realizations 
to compare among the FC methods for analyses correspond-
ing to 3 and 5 ROIs, using signals generated with VAR and 

SDDEs models, and different SNR levels corresponding to 
− 20, 0 and 20 dB. In general, the results for KNS = 1, 2 
are poor for all FC methods due to a higher variance and 
lower mean AUC (not shown), possibly as a consequence 
of a weak correspondence of the interaction among sources 

Fig. 8   FC measures (iCOH—blue curve, EIC—red curve) between 
two processes simulated from a filtered white Gaussian noise sig-
nal, and its delayed version, for a particular frequency of interest 
(15.625  Hz, vertical dashed black line) and a particular bandwidth. 
The results correspond to three different SNR levels: a 20, b 0 and 

c − 20 dB. Columns: subplots arranged according to simulated vary-
ing transfer delays from lag = 0–32 time instants. Rows: subplots 
arranged according to the simulated signals’ bandwidths from 0.5 to 
5.0 Hz
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nearest sensors and the estimated predominant connections. 
However, for KNS = 6 onwards the results are stable with 
non-significant differences among higher KNS values. Per 
row, the panels’ boxplots use the same y-axis scale so it 
can be possible to make some visual comparisons between 
the AUC values obtained for MVAR and SDDEs models; 
though it is also possible to visually find some differences 
among the outcome for the different SNR values, and also 

between 3 and 5 ROIs. This graphical outcome is better 
understood with the results shown in Tables 1, 2, 3 and 4 as 
discussed below.

We conclude our simulation study with a detailed statis-
tical analysis of the differences among the simulated sce-
narios. Recall that in this part we are using five different 
FC measures (iCOH indices), three SNR levels (− 20, 0, 
20 dB), two signals generation models (VAR and SDDEs), 

Fig. 9   Boxplots of AUC values for 100 realizations using five dif-
ferent FC measures, two signal generation models, two ground truth 
scenarios and three SNR levels. The panels are arranged in two col-
umns corresponding to signals generated using VAR and SDDE mod-
els (left and right columns). Across rows, the panels show the results 
when signals were generated using 3 or 5 ROIs, using different noise 
levels, i.e. rows 3A, 3B and 3C show the outcome for 3 ROIs using 
SNR = − 20  dB, SNR = 0  dB and SNR = 20  dB, respectively, and 

similarly for 5A, 5B and 5C. Per panel, the boxplots are grouped in 
five columns which corresponds to different sizes of the sensor neigh-
bourhood (KNS = 6–10 for columns arranged from left to right) used 
to classify the connections in TP and FP, and thus compute the ROC 
and AUC values. Each of panels’ columns contain five subplots cor-
responding to the different FC measures, lCOH, iCOH, PLI, wPLI 
and EIC, arranged in this order from left to right and highlighted with 
different colours
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and two ground truth scenarios (3 and 5 ROIs). However, 
with respect to the outcome shown in Fig. 9, for each sepa-
rated MC realization we are averaging the AUC values cor-
responding to KNS = 6–10 for all the possible simulated 
scenarios. For clarity, the analysis has been carried out as 
follows:

1.	 Separately, for each combination of FC measure, signal 
generation model and ground truth scenario, compare 
AUC values for − 20 dB ( � = 0.1 ) versus 0 dB ( � = 0.5 ) 
versus 20 dB ( � = 0.9).

2.	 Separately, for each combination of FC measure, ground 
truth scenario and SNR level, compare AUC values for 
MVAR’s versus SDDEs’ FC outcome.

3.	 Separately, for each combination of FC measure, signal 
generation model and SNR level, compare AUC values 
for 3 versus 5 ROIs’ outcome.

4.	 Separately, for each combination of signal generation 
model, ground truth scenario and SNR level, compare 
AUC values for paired FC measures, i.e. lCOH versus 
iCOH versus PLI versus wPLI versus EIC.

The statistics used for tests 1–3 was the ranksum test 
which implements the two-sided Mann–Whitney U test (null 
hypotheses: equal medians) because the data used for com-
puting each population samples differed between them. For 
test 4, we used the two-sided signed rank test (null hypoth-
eses: median of paired samples differences is zero) because 
in this case the AUC samples were produced by applying 
different FC methods but each pair of matched samples was 
estimated from the same simulated data.

For test #1, as evidenced in Fig. 9 and Table 1, AUC val-
ues were significantly higher when SNR = 0 dB for MVAR 
model for all iCOH indices, whereas for SDDEs model the 
best noise level was SNR = − 20 dB for most cases. Notice 
that SDDEs’ generated signals have much narrower band 
compared to MVAR’s, which then causes the FC estimates 
in this frequency band to be more tolerant to lower SNR. 
The outcome of Table 2 for test #2 (first half) is somewhat 
complementary to the above results since for the lowest SNR 
level (− 20 dB) the highest AUC values were obtained when 
using SDDEs compared to MVAR model. For SNR = 0 or 
20 dB, highest significant AUC values were achieved for 
MVAR when 5 ROIs were simulated in most cases, whereas 
for 3 ROIs and SNR = 20 dB, again the best results were 
achieved for SDDEs model. Interestingly, test #3 outcome 
for 3 versus 5 ROIs comparison (Table 2, second half) 
showed that highest significant AUC values were obtained 
when 3 ROIs were simulated for SNR = − 20 or 0 dB, which 
can be interpreted as an increased difficulty for recovering 
underlying FC networks when more ROIs/interactions are 
involved.

Table 1   Summary of non-parametric test #1, showing the SNR 
level(s) used in the simulations for which each FC measure (shown 
per row) produced higher significant AUC values for all possible 
combinations of ground truth scenarios and signal generation models 
(the latter two are interleaved across columns)

If all the paired tests among the SNR levels are significant (using 
Bonferroni’s correction, N = 60 pairwise comparisons), the shown 
value indicates the best SNR level (i.e. corresponding to higher sig-
nificant AUC values); otherwise, the value indicate the “better” SNR 
levels (i.e. with higher AUC values but the comparison between them 
was non-significant) (e.g. for 3 ROIs, iCOH and SDDE combination, 
the simulation of SNR = − 20 dB, or correspondingly using parameter 
� = 0.1 , produced higher significant AUC values; with similar combi-
nation but for EIC, we found the higher AUC values for SNR = − 20 
or 0 dB with non-significant differences between them)

− 20 dB ( � = 0.1 ) versus 0 dB ( � = 0.5 ) versus 20 dB ( � = 0.9)

3 ROIs 5 ROIs

VAR (dB) SDDE (dB) VAR (dB) SDDE (dB)

lCOH 0 − 20, 0 0 − 20
iCOH 0 − 20 0 − 20
PLI 0 − 20, 0 0 − 20
wPLI 0 − 20 0 − 20
EIC 0 − 20, 0 0 − 20

Table 2   Summary of non-parametric tests #2 (first half of the table) and #3 (second half)

Following the logic presented in Table 1, the value indicated in each cell corresponds to the population with higher median of AUC values for 
each analysis if the test is significant (Bonferroni’s correction, N = 30 paired comparisons for both tests #2 and #3). Otherwise, the value indi-
cates that the comparison between the two options was non-significant (NS)

Test #2: VAR’s versus SDDE’s signal generation models Test #3: 3 versus 5 ROIs

− 20 dB 0 dB 20 dB − 20 dB 0 dB 20 dB

3 ROIs 5 ROIs 3 ROIs 5 ROIs 3 ROIs 5 ROIs VAR SDDE VAR SDDE VAR SDDE

lCOH SDDE SDDE SDDE VAR SDDE VAR 3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs NS
iCOH SDDE SDDE VAR VAR SDDE NS 3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs 5 ROIs
PLI SDDE SDDE NS VAR SDDE VAR 3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs 3 ROIs
wPLI SDDE SDDE NS VAR SDDE VAR 3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs 5 ROIs
EIC SDDE SDDE VAR VAR NS VAR 3 ROIs 3 ROIs 3 ROIs 3 ROIs 5 ROIs NS
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The comparison among the iCOH indices is conducted 
in test #4. We first do an overall summary of each pair-
wise comparison of two iCOH indices using an anal-
ogy with a sport competition where the FC method that 
produced highest AUC values is declared the winner of 
each comparison if the test is significant or both com-
pared methods “draw” if it is non-significant. Then we 
can summarize across all 12 combinations (games) (i.e. 
12 = 3 SNR levels × 2 generation models × 2 ground truth 
scenarios) where we have compared each pair. Table 3 
shows these results including scores for the “competition” 
using two different scoring systems. We can observe that 
the two clear “winners” in this analysis are iCOH and 
EIC, which stand over the other FC measures. Moreover, 
Table 4 allows us to study in more detail the above result. 
In summary, we can observe that iCOH produced the best 
results for highest SNR (20 dB) whereas EIC was notice-
ably better for moderate SNR (0 dB). For the lowest SNR 
(− 20 dB), several methods but mainly iCOH and EIC 
produced better results.

Discussion

In this study, we have proposed a new technique (EIC) 
to circumvent the heavy reliance of imaginary coher-
ence based FC methods (lCOH, iCOH, PLI, wPLI) on the 
imaginary part of the cross-spectral or complex coher-
ence. EIC was stated as the absolute value of the analyti-
cal signal that was estimated from the iCOH function in 
the frequency domain, which approximately rendered an 
iCOH envelope. As a result, EIC inherited the resilience 
against VC effects. We used a simplified representation of 
the EEG/MEG forward problem [Fig. 1, and Eqs. (1) and 
(2)], to demonstrate that the idea of using the imaginary 
part was rightly justified given that only the imaginary 
part of the cross-spectrum of two sensor signals is directly 
related with the imaginary part of the cross-spectrum of 
two possible interacting underlying sources as shown in 
Eq. (5). The real part is contaminated due to VC and, thus, 
it is usually ignored by techniques such as lCOH, iCOH, 

Table 3   Score Win-W, Loss-L, Draw-D (W–L–D) results are shown 
for the pairwise comparisons among FC methods, together with the 
total accumulated W–L–D and points for the classical significance 

level α = 0.05 (first half) and Bonferroni’s multiple comparison cor-
rection (second half)

Two different point accumulation systems are considered: (1) W adds 3 points and D adds 1 point like in the European football (e.g. Champions 
League (CL) competition), and (2) W adds 1 point and D adds 0.5 point like in a chess tournament

α = 0.05 Bonferroni correction (N = 120 pairs)

lCOH iCOH PLI wPLI EIC lCOH iCOH PLI wPLI EIC

lCOH X 9–3–0 2–8–2 4–7–1 7–3–2 X 9–3–0 2–7–3 3–6–3 6–3–3
iCOH X X 2–9–1 3–8–1 4–6–2 X X 2–8–2 3–8–1 3–6–3
PLI X X X 6–2–4 11–1–0 X X X 4–2–6 10–1–1
wPLI X X X X 10–1–1 X X X X 8–1–3
EIC X X X X X X X X X X
Total 21–22–5 32–12–4 7–34–7 14–27–7 32–11–5 19–20–9 31–11–6 7–29–12 11–24–13 27–11–10
CL 68 100 28 49 101 66 99 33 46 91
Chess 23.5 34.0 10.5 17.5 34.5 23.5 34.0 13.0 17.5 32.0

Table 4   Overall comparison 
among the FC methods: one 
versus all like in Athletics

Bonferroni correction is used to control for multiple comparison (120 pairs). The best measure among 
iCOH indices is shown for each particular case for combination of three SNR levels, two ground truth sce-
narios, and two signal generation models. When there is not a clear winner (the best method is not signifi-
cantly superior to its closest rivals), the group of tie-winners is shown

VAR’s MEG generated signals SDDE’s MEG generated signals

3 ROIs 5 ROIs 3 ROIs 5 ROIs

SNR = − 20 dB ( � = 0.1) lCOH, iCOH, 
wPLI, EIC

iCOH iCOH, wPLI, EIC iCOH, EIC

SNR = 0 dB ( � = 0.5) EIC EIC EIC iCOH
SNR = 20 dB ( � = 0.9) iCOH iCOH iCOH iCOH
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PLI and wPLI, even though it contains important informa-
tion. One immediate negative effect is that these measures 
show negligible connectivity when the phase difference of 
interacting processes is near zero or �-phase (modulus 2� ) 
(Stam et al. 2007; Vinck et al. 2011; O’Neill et al. 2017).

Although the EIC method is estimated only from the 
imaginary term, we demonstrated that it is able to partially 
recover information from the real part (see Figs. 5, 6, 8). 
The main reason is that the EIC is based on the HT, which 
applied on the imaginary-part, is able to roughly produce its 
counterpart. Particularly, we showed with a simple exam-
ple that the EIC curve can recover very well the magnitude 
spectrum that is, obviously, estimated using both the real 
and imaginary parts (Fig. 2). In practice, we have shown 
the superior performance of EIC versus other iCOH related 
indices using synthetic signals generated by bivariate autore-
gressive and SDDEs based NMM [see Eqs. (22) and (23)]. 
We extended these simulations and comparison framework 
for the study of more realistic simulations that produced 
synthetic MEG signals based on 3 and 5 simulated ROIs 
(Fig. 3), which in turn were used to evaluate the feasibility 
of FC analysis in sensor space using these techniques and a 
novel sensor-nearest ROIs based ROC analysis.

EIC Versus Other iCOH Related Indices

The main advantage of imaginary coherence indices (lCOH, 
iCOH, PLI, wPLI, EIC) is their robust performance in VC 
situations, though the usual iCOH measure proposed in the 
literature may be negatively affected by an unstable normali-
zation as discussed in this work (“Proposed Normalization 
Procedure Improves iCOH Measure” section). That can also 
be claimed as a drawback for lCOH method (Pascual-Marqui 
et al. 2011), which uses the real part of the coherence in the 
denominator (normalization term) and thus its scale could 
be affected as result of VC and noise. PLI and wPLI did not 
suffer the same problem due to their exclusive dependency 
on the phase difference part and proper normalizations.

On the other hand, the basic limitation of these meas-
ures is that they heavily rely on the imaginary part while 
directly ignoring any useful information that might be con-
tained in the real part. As we demonstrated with simulations, 
the above methods effectively avoid spurious FC due to VC 
effects in the absence of true connectivity (Fig. 7b); however 
they also fail to capture true connectivity when that hap-
pen with zero or �-phase interactions (Figs. 6, 8). With the 
introduction of EIC we solved the latter problem to some 
extent; particularly we demonstrated with the simulation and 
results shown in Fig. 8 that EIC can capture true interactions 
despite of zero or �-phase interactions if the signals band-
width is broad enough, while being robust to VC effects. 
With EIC method, we also highlighted the fact that lCOH, 
iCOH, PLI and wPLI are point-wise estimators given that 

their computations are made independently from single fre-
quency entries. As can be seen in harmonic analysis of M/
EEG signals, amplitude and phase tend to vary smoothly 
across frequency, thus taking into account such smoothness 
is essential to produce more robust estimators that can be 
more consistent, e.g. in noisy scenarios. From this perspec-
tive, EIC is potentially a more robust measure which exploits 
better the content of the imaginary part by implicitly using 
the HT [see Eq. (19)].

The impact of time-delay and the connectivity strength 
parameter on the coupling of two oscillators has been well 
studied in the literature (Dhamala et al. 2004; Gollo et al. 
2014; Strogatz 2000). Here we studied both parameters 
using bivariate autoregressive and SDDEs based NMM and 
found that only the information transfer delay has a visible 
impact in the phase difference of interacting oscillators. 
The main effect of the connectivity strength is that at least 
a minimum value is required to guarantee synchronization 
of the ongoing activity as shown in Fig. 7a. However, the 
problem of negligible connectivity found by iCOH indices 
may appear in more complex scenarios and not only caused 
by time delay, which could hinder interpretation (see Fig. 6 
and discussion therein). Our newly proposed EIC method 
was almost non-affected by a varying transfer delay as a con-
sequence of exploiting the smooth variability across the fre-
quency domain. Consequently, EIC showed more resilience 
than other iCOH-derived methods, which may translate into 
improved FC estimation for real M/EEG data analysis. We 
presented here the EIC measure based on the HT, but any 
operator that could produce a robust envelope can do a simi-
lar work. The HT is attractive because of its mathematical 
properties and it is particularly useful for computing the 
envelope of band-limited oscillators. Our objective was to 
“recover” the real part of underlying interacting processes’ 
signal complex coherence when we can rely only in a good 
estimation of its imaginary part. Assuming that the real-part 
could be approximately recovered by using and integrating 
the content of the imaginary part, the HT can produce the 
desired effect.

In other context, it has always been questionable to use 
linear estimators to study inherently nonlinear systems such 
as brain dynamics. In this sense coherence based measures 
enjoy a nice duality: on the one hand they are formulated 
directly using linear transforms; but on the other, they are 
also directly represented in the form of harmonics which are 
ideal for studying stationary signals regardless of their linear 
or nonlinear origins. Even in more complex nonlinear/non-
stationary systems analyses, these techniques could find use-
ful applications given their flexibility and properties based 
on established mathematical theory (Bendat and Piersol 
2011; Oppenheim et al. 1983). We have tested the robust-
ness of coherence based FC measures using autoregressive 
(linear) and neural mass (nonlinear) models. In the more 
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complex scenario of nonlinear dynamics, we tested bivari-
ate as well as interactions among 3 and 5 ROIs in realistic 
brain simulations. In general, iCOH indices showed robust-
ness in nonlinear situations and, particularly, our proposed 
EIC method showed stable, accurate and superior results 
for most cases.

FC Sensor Based Approach Validation 
with Large‑Scale Synthetic Data

With a large-scale simulation that produced synthetic MEG 
data, a comparative framework among iCOH indices was 
presented to extend our study to a more complex and realis-
tic scenario. We used MVAR and SDDEs based simulations 
to evaluate the performance of all these measures and, par-
ticularly, the validity of the FC approach in the sensor space. 
In general, we were able to show with different configu-
rations based on signals generated using two ground truth 
scenarios (3 and 5 ROIs), two signals generation models 
(MVAR and SDDEs), and three SNR levels (− 20, 0 and 
20 dB), together with a novel sensor-nearest ROIs based 
ROC analysis (“ROC Analysis of Recovered FC Networks” 
section), that the FC estimation in sensor space could pro-
vide a good approximation for the map of true connections, 
particularly with the use of iCOH and EIC techniques (see 
Fig. 9 and discussion therein).

As an important conclusion, we found that the original 
iCOH technique (Nolte et al. 2004) was one of the best meth-
ods of our FC analysis. This is surprising if we realize that 
PLI and wPLI are built on top of iCOH, and consequently we 
may expect superior results for PLI and wPLI. Specifically, 
iCOH is derived plainly from theoretical arguments whereas 
PLI and wPLI add extra information that empirically should 
improve their estimators, but these latter transformations 
seem to cause loss of valuable information as shown by our 
simulation results. In our study, lCOH was the method with 
the 3rd highest performance though “lagging significantly” 
behind of iCOH and EIC according to the results shown 
in Tables 3 and 4. Unlike PLI and wPLI, lCOH is strictly 
derived from theoretical arguments (Pascual-Marqui et al. 
2011) without extra transformations. Otherwise, EIC also 
adds extra information to the iCOH content like PLI and 
wPLI, but in contrast it seems that the EIC use of HT can 
indeed improve the iCOH estimator, especially under condi-
tions such as broad band signals with moderate noise level. 
Interestingly, our study shows that the presence of noise can 
“obscure the visibility” of more distant sensors [with lower 
scale factor; see Eq. (5)]. Hence, some moderate level of 
noise is necessary to render good results, whereas too much 
noise will mask the signal. This is the case for the results 
shown with the MVAR model where we obtained the best 

results for SNR = 0 dB but also for SDDE case which was 
more robust to noise than MVAR (Fig. 9; Tables 1, 2, 3, 4).

An essential step in our study was the use of a heuris-
tic approach based on the ROIs created from sensors in 
the nearest neighborhood of simulated sources. An impor-
tant justification for the latter is that the separation of a 
local dipolar source from nearby sensors has a worst nega-
tive impact than its particular dipole orientation (Hillebrand 
and Barnes 2002). Therefore, we assumed that the closest 
sensors signals contain a good representation of the under-
lying cortical neural dynamics. The use of this heuristic 
allowed us to develop a novel sensor-nearest ROIs based 
ROC analysis to evaluate the performance of FC methods 
under study. As demonstrated using this approach, the EIC 
method could be particularly useful to estimate true interac-
tions among large areas, e.g. brain lobes, but it can also be 
important to detect short-range connectivity as well.

Furthermore, as evidenced by the significantly high 
ROC’s area under the curve values (Fig. 9), and the con-
nectivity distribution of thresholded FC maps that were 
used for computing the ROC statistics (e.g. see Figs. S12, 
S13 in Supplementary Material), we believe that the esti-
mation of sensor-based FC can help to disclose the map of 
brain region interactions (see also Ewald et al. 2012; Hard-
meier et al. 2014; Nolte et al. 2004; Stam et al. 2007; Vinck 
et al. 2011). However, in our simulation study, we noted 
that recurrent connections, e.g. between ROIs 4 and 5 in 
the simulation with 5 ROIs, were most difficult to estimate. 
That may be due to the simulated counter-phase interac-
tions, which can also negatively combine with the dipoles 
orientation, possibly causing a biased projection in sensor 
space that was worsened by the interaction of simultaneous 
active (anti-phase) dipoles. The latter observation is rooted 
on the fact that similar recurrent interactions, e.g. between 
ROIs 2 and 3 in the simulation with 3 ROIs, was much better 
estimated. This problem may be worsened in practice when 
using standard iCOH indices as they cannot capture well 
zero or �-phase (modulus 2� ) interactions as a consequence 
of simply relying on the imaginary part. As discussed here, 
in this situation the EIC method should produce more accu-
rate FC maps according to our simulation analysis using 
narrow-band and broad-band interacting signals (see Fig. 8 
and discussion therein). In general, we observed that iCOH 
and EIC can capture well the FC as reflected in sensor space; 
however we have to be cautious with the presence of false 
connections, which has a dramatic negative effect due to the 
lack of knowledge about the delimitation and extension of 
unknown interacting areas.
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Limitation of Sensor‑Based FC Approach and Future 
Work

According to our results with simulated data, the sensor-
based FC approach using iCOH indices has the potential to 
uncover medium and short-range connectivity; though the 
complex dynamics of the brain (e.g. nonlinear interactions 
among regions in deep/superficial and more/less central 
areas) are actually oversimplified in the connectivity maps 
observed at the sensor level, which obviously hinder the 
application of any technique. However, if we have a priori 
information of active brain regions, and if there is a clear and 
non-overlapped localization for these ROIs, then FC analysis 
based on imaginary coherence methods, particularly iCOH 
and EIC, can provide useful information about the interact-
ing neural population as shown here.

An important alternative to sensor-based FC analysis is 
to estimate the source activity and its FC which will eventu-
ally allow us to combine information from different imaging 
modalities, including EEG and MEG’s magnetometers and 
planar gradiometers, as well as fMRI and other data. For 
the case of M/EEG data as discussed in this work, several 
issues still must be overcome to make critical progress in 
source-based FC analysis, i.e. control of signal leakage, sig-
nal mixing and other VC effects. Nevertheless, the general-
ity of our proposed methodology and its robustness to VC, 
would facilitate its application to source-based FC analysis, 
which will be important to study normal and diseased brain 
activity.
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