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Abstract CO2 remains the greenhouse gas that contrib-
utes most to anthropogenic global warming, and the
evaluation of its emissions is of major interest to both
research and regulatory purposes. Emission inventories
generally provide quite reliable estimates of CO2 emis-
sions. However, because of intrinsic uncertainties asso-
ciated with these estimates, it is of great importance to
validate emission inventories against independent esti-
mates. This paper describes an integrated approach
combining aircraft measurements and a puff dispersion
modelling framework by considering a CO2 industrial
point source, located in Biganos, France. CO2 density
measurements were obtained by applying the mass bal-
ance method, while CO2 emission estimates were de-
rived by implementing the CALMET/CALPUFF model
chain. For the latter, three meteorological initializations
were used: (i) WRF-modelled outputs initialized by
ECMWF reanalyses; (ii) WRF-modelled outputs initial-
ized by CFSR reanalyses and (iii) local in situ

observations. Governmental inventorial data were used
as reference for all applications. The strengths and
weaknesses of the different approaches and how they
affect emission estimation uncertainty were investigat-
ed. The mass balance based on aircraft measurements
was quite succesful in capturing the point source emis-
sion strength (at worst with a 16% bias), while the
accuracy of the dispersion modelling, markedly when
using ECMWF initialization through the WRF model,
was only slightly lower (estimation with an 18% bias).
The analysis will help in highlighting some methodo-
logical best practices that can be used as guidelines for
future experiments.
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Introduction

Carbon dioxide (CO2) is the primary greenhouse gas
(GHG) emitted through human activities (National
Research Council 2010). CO2 is naturally present in
the atmosphere as part of the Earth’s carbon cycle.
Human activities have altered the carbon cycle both by
adding more CO2 to the atmosphere and by influencing
the ability of natural sinks, such as forests, to remove
CO2 from the atmosphere. While CO2 emissions come
from a variety of natural sources, human-related emis-
sions are responsible for the increase that has occurred
in the atmosphere since the industrial revolution. The
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main human activity that emits CO2 is the combustion
of fossil fuels (coal, natural gas and oil) for energy and
transportation, although certain industrial processes and
land use changes also emit CO2 (Metz et al. 2007).

Accurate, consistent and internationally comparable
data on GHG emissions are essential for the internation-
al community to take the most appropriate actions to
mitigate climate change, and ultimately to comply with
international regulations (United Nations 1998, 2006;
De Boer 2008). Communicating relevant information
on the most effective actions to reduce emissions and
adapt to the adverse effects of climate change also
contributes towards global sustainable development.
The European regulation (European Parliament and
European Council 2013) implements the obligation to
compile yearly inventories of GHG emissions at nation-
al scale. Emission inventories typically rely on a large
number of emitting categories, on databases mapping
various source types (e.g. mobile vs. stationary sources,
point, line and area sources), on emission factors esti-
mating emission rates associated to each category and
on proxies suitably performing emission spatial and
temporal disaggregation (IPCC guidelines for national
greenhouse gases inventories, 1996, 2006 and following
corrigenda1). Uncertanties associated with each step in
compiling emission inventories typically sum up,
though it is complicated to estimate the total effect due
to the difficulty in ascertaining the uncertainty at each
step and how uncertainties interact with each other
(Winiwarter and Muik 2010). Moreover, uncertainties
may change over the years with the improvement of
emission-producing activities and source characteriza-
tion (Jonas et al. 2014; Lesiv et al. 2014), and their
knowledge therefore becomes important for
policymakers and for planning emission reduction strat-
egies in view of the next objectives (Jonas et al. 2014).
The capability of validating inventories against indepen-
dent estimates is thus of great importance, as well as the
development of reproducible validation methodologies
that are applicable worldwide including in emerging
economies.

Puff dispersion models have been widely used by the
scientific community to assess pollutant dispersion and
deposition, reaching a robust state of the art. Indeed,
puff models have been chosen by US EPA for simulat-
ing atmospheric dispersion (EPA 2005). Puff models

treat pollutant emissions according to a Lagrangian ap-
proach as a series of puffs, i.e. discrete packets of
pollutant material (Scire et al. 2000b) that are influenced
by advection and aging. During dispersion, puff size and
concentration change following atmospheric turbulence,
while pollutant concentration variation within puffs is
treated through a Gaussian approach. These models
have been used to simulate dispersion of a wide variety
of pollutants from particulate matter (Barna and Gimson
2002; Villasenor et al. 2003; Leone et al. 2016; Holnicki
et al. 2016), to gaseous pollutants such as sulfur dioxide
(Elbir 2003; Abdul-Wahab et al. 2011; Holnicki et al.
2016; Calastrini et al. 2008), other organic oxides
(Holnicki et al. 2016; Calastrini et al. 2008), volatile
organic compounds (Holnicki et al. 2016) and even
odour intensity (Vieira de Melo et al. 2012).

In order to be properly applied, puff models need the
external provision of full and time-varying fields of both
meteorological and micrometeorological variables over
the whole domain. This level of information is usually
provided by the MM5 model (Dudhia 1993), and re-
cently by the Weather Research Forecast (WRF) model
(Skamarock et al. 2008), which have become the dom-
inant non-hydrostatic models with hundreds of academ-
ic as well as commercial users around the world. WRF,
in particular, allows for the dynamical spatial and tem-
poral downscaling of reanalysis products (Soares et al.
2012), therefore improving the performance of, for ex-
ample, Lagrangian models (Bowman et al. 2013). Res-
olution of WRF outputs may be further improved by
using the CALMET diagnostic meteorological post-
processor (Scire et al. 2000a), in order to better resolve
terrain topography and land use (Hernández et al. 2014).
Despite the potential improvement in spatial resolution
and trajectory simulation, there are still biases in com-
puted trajectories due to non-perfect matching between
meteorological transport fields and real meteorological
situations (type I error), as well as due to their limited
spatio-temporal resolution (type II errors) (Bowman
et al. 2013). In this regard, Gioli et al. (2014b) per-
formed a detailed comparison of the WRF/CALMET
modelling chain against aircraft measurements, finding
that model performance varied depending on season,
land use and orography, with overall agreements rang-
ing between 2% (inland, hilly areas) and 31% (coastal
areas).

Besides dispersion models, emissions may be studied
through a mass balance approach: this relies on contem-
porary measurements of concentrations (or densities)

1 IPCC Guidelines are available at http://www.ipcc-nggip.iges.or.
jp/public/2006gl/index.html.
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and atmospheric transport (i.e. wind speed and direc-
tion) in order to estimate the strength of the emitting
source. The approach was initially applied to measure
ammonia fluxes from small plots (Denmead et al. 1977;
Wilson et al. 1982; Wilson et al. 1983), and has since
been applied to different sources, also using small air-
craft. The airborne approach to source emission estima-
tion was first described in a paper by Brooks, Crawford
and Oechel (Brooks et al. 1997), where a small aircraft
(a Rutan Long-EZ) was flown downwind of the
Prudhoe Bay oil companies in the constant flux layer
(10 m above ground level). With an experimental air-
craft equipped with a fast turbulence probe and CO2

sensors, Brooks et al. (1997) estimated an emission from
the Prudhoe Bay complex four to six times higher than
that reported on the basis of fuel consumption data (Jaffe
et al. 1995). The potential of such a measurement plat-
form was therefore embraced, and the technique has
been applied to gaseous emissions stemming from dif-
ferent sources like urban (Brioude et al. 2011; Gioli et al.
2014a; O’Shea et al. 2014; Cambaliza et al. 2014),
industrial (Toscano et al. 2011) and rural (Alfieri et al.
2010).

The aim of this research is to develop a framework to
estimate a source emission strength through two differ-
ent approaches: (i) the mass balance method and (ii) a
state-of-the-art puff dispersion model chain.

For approach (i), aircraft measurements of air trans-
port and CO2 densities close to a large industrial point
source were used. Being a tracer gas with no significant
photochemical sink, CO2 is an ideal compound for
atmospheric mass balance experiments since it can be
sampled downwind of the source with no significant
alterations in its abundance.

For approach (ii), a modelling framework was imple-
mented integrating the Weather Research Forecast
(WRF-ARW) model and CALMET meteorological
models, as well as the CALPUFF Lagrangian puff dis-
persion model. The WRF mesoscale model was run
based on two different forcings, provided by the
ECMWF (European Centre forMedium-RangeWeather
Forecasting) ERA-Interim (Dee et al. 2011) reanalysis
data and the NCEP-CFSR (National Centers for Envi-
ronmental Prediction - Climate Forecast SystemReanal-
ysis) (Saha et al. 2010). Furthermore, the CALMET
diagnostic model was run using in situ meteorological
data measured locally by the aircraft. Summarizing, the
CALMET/CALPUFF models were run according to
three different meteorological combinations.

Overall, this work investigated which type of atmo-
spheric measurements combined with models are need-
ed to estimate an unknown emission strength, assessing
if simple sensors and platforms could be deployed: low-
cost unmanned aerial vehicles (UAV) could, for exam-
ple, be used to sample pollutant concentrations down-
wind without the need for concurrent measurement of
the transport field. The latter would in fact be integrated
by the modelling chain through large-scale meteorolog-
ical forcings.

Materials and methods

Airborne measurements

Airborne sampling was conducted using a Sky Arrow
650, a small environmental research aircraft with a
mounted Mobile Flux Platform (MFP) instrumental ar-
ray. This incorporates a best available turbulence probe
(BAT) (Crawford and Dobosy 1992) and an infrared gas
analyzer (Li-7500, LiCor, Nebraska, USA) for molar
densities of CO2 and H2O. The BAT probe measures
the air velocity with respect to the aircraft by means of a
nine-hole hemispheric pressure head. A GPS unit
coupled with accelerometers allows both high and low
frequencies of the 6-degree-of-freedom (DoF) aircraft
motion to be covered, and therefore to recover the actual
wind components from the measure of air velocity by
subtraction. Data were collected and processed at 50-Hz
frequency, while for this study they were filtered to 1 Hz
by block-averaging. The aircraft platform (alongwith all
its payload) is extensively described in Gioli et al.
(2006) while Vellinga et al. (2013) details the principles
of the MFP operation and the in-flight probe calibration
procedure.

Flights were performed on the 28th of May 2005
close to the small town of Biganos in southern France,
downwind of the plants of the Smurfit Kappa industrial
group (Fig. 1). Seven transects were flown downwind of
the source in order to intercept the plume coming from
the industrial point source. Only the straight and central
sections of the flight were selected for analysis, exclud-
ing all the turns at the end of each transect.

The seven transects cover five height levels at which
the plume is sampled: lower levels have a higher num-
ber of data in order to better resolve the emissions
(Fig. 2). The average heights above ground level
(a.g.l.) of the various levels are 101 m (T1 + T2),
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208 m (T3 + T4), 334 m (T5), 485 m (T6), and 394 m
(T7). All data from an altitude above the average altitude
of the highest transect (T6), since it did not intercept the
plume, were selected to compute CO2 background
density.

Point source details

The Smurfit-Kappa industrial complex comes under
both the 2003/87/CE European Directive governing
emission trading (and therefore CO2 emissions control)
and the 166/2006 European regulation pertaining to the
creation of a European pollutant release and transfer
registry: CO2 emissions data are therefore available
online (on the website of the French registry for the
emissions of pollutants2). A total CO2 emission amount
(from both biomass and non-biomass origins) of
973,000 t per year,corresponding to 30.8 kg s−1, was
extracted for the year 2005.

Aircraft mass balance

The CO2 mass balance was computed on an ideal-
ized surface S corresponding to the aircraft track,
and extending vertically from the ground to the
highest flight transect (Fig. 3). 3D position data
were therefore converted into a 2D cartesian grid
aligned with the aircraft track by means of a rota-
tion matrix. The rotated wind speed (in m s−1) and
CO2 density (in mmol m−3) were linearly interpo-
lated on a regular grid of 10 m on the S surface,
utilizing a scattered interpolant. The horizontal di-
mension ranged from 0 to 5000 m, the vertical one
from 0 to 500 m, generating a grid of 51 × 501
points, with a total area of 2555.1 km2. The gridded
interpolation output is represented in Fig. 3b.

The CO2 background was removed by converting
molar densities to mixing ratios, subtracting the average
value from the background data (Fig. 3a), and
converting back to molar densities. The mass balance
was then computed as the integral of the product of wind
speed and CO2 density, obtaining a flux (in
mmol m−2 s−1) across the surface S:

Fig. 1 Overview of the study area. The industrial plant complex is
highlighted in orange and stack position indicated by a placemark.
Flight tracks, running on 28th of May 2005, are also shown: red

tracks denote the flights selected for the analysis, while yellow
(turning) tracks were excluded

2 Smurfit Kappa iREP data available at http://www.irep.ecologie.gouv.
f r / IREP/ index.php?adr=ht tp : / /www.i rep.ecologie .gouv.
fr/IREP/resultEtab.php?nomEtablissement=smurfit%20kappa
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Fig. 2 Flight vertical profile: different colours identify flight subsections pertaining to different transects. The highest transect (T6, black
dots) was used to compute CO2 background density

6.6 6.605 6.61 6.615 6.62 6.625 6.63 6.635
UTM Coordinate (m) 105

300

400

500

600

C
O

2 (
p

p
m

)

(a)

T1 T2 T3 T4 T5 T6 T7

0 556 1111 1667 2222 2778 3333 3889 4444 5000
0

500

E
le

v.
 (

m
)

0

2

4

C
O

2
 (

m
m

ol
 m

-3
)

0 556 1111 1667 2222 2778 3333 3889 4444 5000
Horizontal Distance (m)

0

500

E
le

v.
 (

m
)

(c)

2

4

6

U
 (

m
 s

-1
)

(b)

Fig. 3 CO2 flux across the ideal surface S. Figure 3a (topmost
panel) shows the aircraft concentrations over the various transects,
Fig. 3b (middle panel) shows the interpolation of the aircraft data
to the regular grid (after background removal and conversion to

density), and Fig. 3c shows the perpendicular wind speed (U) over
the interpolated domain. In b and c, Elev. indicates the vertical
distance (elevation) on the interpolation grid
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FCO2 ¼ ∬
MAX

0 CO2½ � � U⊥ð ÞdxdzFCO2

¼ ∬
MAX

0 CO2½ � � U⊥ð Þdxdz ð1Þ

where x and z represent the two dimensions of the
cartesian grid aligned to S, U⊥ is the magnitude of the
rotated wind speed perpendicular to S (in m s−1), [CO2]
is the CO2 molar density (in mmol m−3), and FCO2 is the
CO2 flux across S. Given the removal of background
CO2 and integration across the surface (i.e. MAX, the
25,551 points of the grid), FCO2 represents the amount
of mass advected through S (i.e. the mass balance of the
idealized surface).

Sensitivity analysis

The sensitivity of the mass balance estimate was tested
with respect to the uncertainty in wind speed, CO2

density and interpolation methods following Cambaliza
et al. (2014). Uncertainty in calculating wind speed and
CO2 density was assessed by binning block-averaged
wind data into 10-m altitude windows (corresponding to
the interpolator altitudinal resolution) and estimating the
95% confidence intervals. These uncertanties were then
propagated to the final emission estimate through the
mass balance calculations (Eq. 1). Uncertainty in the
interpolation methods was assessed by running the
scattered interpolant according to three configurations
following different interpolation algorithms: linear, nat-
ural and nearest neighbour. Since the aircraft transects
did not cover all the area from the surface up to the
maximum flight altitude, the impact of the not measured
area was analyzed by extrapolation: wind data were

extrapolated via a log-linear regression that took into
account the PBL atmospheric stability, while empirical
extrapolated profiles were used for CO2 data. Since no
ground measurements were available, CO2 was
extraploated to ground level using ordinary kriging via
the Saga GIS software (Conrad et al. 2015). For this
procedure, the kriging grid was set to exactly match the
interpolation grid, and the kriging algorithm was set to
check the 20 nearest points within a 200-grid unit range
around the data points (omni-directional search around
the interpolation grid). A third-degree polynomial mod-
el was then fitted to the variogram to obtain the final
extrapolated data on the regular grid.

WRF/CALMET setup and forcing

In this study, WRF-ARW (version 3.5.1) was config-
ured with four nested grids (Fig. 4). The outermost
domain (D1) covered most of Western and Central
Europe to provide the boundary conditions for the in-
termediate domains, D2 and D3. The D1 domain had a
staggered grid size of 82 × 52 with a horizontal resolu-
tion of 27 km. Nested domains were two-way coupled,
with a 1:3 grid ratio, so that the intermediate domains,
D2 and D3, had horizontal resolutions of 9 and 3 km,
respectively. The innermost domain, D4, encompassed
the whole territory of Biganos and had 82 × 52 grid
points with a horizontal resolution of 1 km. Thirty-five
sigma levels were used from the ground to the top (=
50 hPa), with the first 10 layers concentrated in the
lower atmosphere. The domains’ information is summa-
rized in Table 1.

Fig. 4 Four nested domains used
in WRF model application:
horizontal resolution from
outermost (d01) to innermost
(d04) domains are 27, 9, 3 and
1 km (1:3 nesting ratio applied)
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Two differentWRF simulations were performed over
a 2-day period on the four nested domains. Initial and
boundary conditions for the first simulation were pro-
vided every 6 h (at 0000, 0600, 1200 and 1800 UTC) by
the ERA-Interim reanalysis data, while for the second
simulation they were provided by the NCEP-CFSR
data. The ERA-Interim reanalysis uses the T255 spectral
method and the N128 reduced Gaussian grid (for a final
resolution of around 0.7° at the equator), while the
CFSR reanalysis has a spatial resolution of 0.5° for
pressure-level variables and 0.3° for the surface variable
(T382), and a subset from both is incorporated into the
WRF-ARW pre-processor (WPS). The model was run
with a 24-h spin-up time and with the parametrizations
summarized in Table 2 following Mohan and Bhati
(2011) and Santos-Alamillos et al. (2013).

The WRF model was coupled with CALMET (Scire
et al. 2000a), version 6.5, to provide a wind field de-
tailed estimation close to the paper factory in Biganos.
CALMET uses terrain-following vertical coordinates
that were set to 15 levels, spanning from 0 to 2000 m
a.g.l. The D4 wind fields from the WRF prognostic
model with 1-km resolution were incorporated every
hour by CALMET as the initial guess wind field. The
latter was then adjusted for kinematic effects of terrain,
slope flows and terrain blocking effects using fine-scale
terrain and land use data. Terrain data were retrieved
from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) global digital eleva-
tion model (with an accuracy between 10 and 25 m3),
while land use data were extracted from the most recent
CORINE Land Cover database with a resolution of
100 m (Büttner and Kosztra 2007). In order to resolve
the complex terrain structure, CALMETwas configured
with a high-resolution domain, which was set up with
255 × 225 grid points and a 200-m grid spacing along x
and y directions.

As well as being initialized by WRF-modelled out-

puts, CALMET was also run with locally collected
surface and profile observations. Surface observations
were derived as a combination of measurements from
Merignac Airport meteorological terminal aviation rou-
tine (METAR) reports (cloud cover and ceiling height),
and from the LeBray eddy-covariance tower (all other
variables); profile observations were directly derived
from the aircraft flights. The latter model run combina-
tion was performed in order to assess whether the inter-
polation of 3D data coming from a coarse meteorolog-
ical forcing could outperform (or not) the use of in situ,
though localized, profile information. Summarizing,
CALMET (and thus CALPUFF, see later) was run
according to three meteorological initializations: (i)
ECMWF, i.e. using WRF outputs initialized by
ECMWF; (ii) CFSR, using WRF outputs initialized by
CFSR, and (iii) IN SITU, using locally observed
information.

Particle transport and diffusion

Both 2D and 3D meteorological fields calculated by
CALMET were used as input to the CALPUFF non-
steady-state Lagrangian Gaussian puff model.
CALPUFF is capable of simulating the effects of time-
and space-varying meteorological conditions on pollut-
ant transport, transformation and removal (Scire et al.
2000b). The model can accommodate arbitrarily vary-
ing emissions from point, line, area and volume sources.
It is intended for use on scales from tens of meters to

Table 2 WRF-ARW parameterizations; letters indicate the appro-
priate literature for the given scheme

Physics module Chosen scheme

Microphysics Morrison double-moment schemea

Longwave radiation RRTM schemeb

Shortwave radiation RRTMG schemec

Surface layer Revised MM5d

Land surface Noah land surface model

Planetary boundary layer Yonsei University schemee

aMorrison et al. 2009
bMlawer et al. 1997
c Iacono et al. 2008
d Jiménez et al. 2012
eHong et al. 2006

3 ASTER GDEM is a product of NASA and METI (https://doi.
org/10.5067/ASTER/ASTGTM.002).

Table 1 Details of WRF-ARW domains applied to Biganos

Domain Nx (cells) Ny (cells) Δx =Δy (km)

D1 82 52 27

D2 82 52 9

D3 82 52 3

D4 82 52 1
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hundreds of kilometers away from a source. CALPUFF
contains algorithms for near-source effects such as
building downwash, transitional plume rise, partial
plume penetration and subgrid-scale terrain interactions,
as well as longer-range effects such as pollutant removal
(wet scavenging or dry deposition), chemical transfor-
mation, vertical wind shear and overwater transport
(Scire et al. 2000b). For the purpose of this study, three
CALPUFF runs were perfomed on the same spatial and
temporal domains as CALMET, i.e. ECMWF, CFSR
and IN-SITU. A single emitter was located at the
Biganos tall stack (660,639.5–4,943,911 UTM zone
30 N) and set to an arbitrary continuous CO2 emission
at unit strength (i.e. 1 kg s−1). The stack characteristics
were defined according to chimney no. 9 from the
official document regarding the industrial plant4 closer
to the aircraft measurement data: the stack had a height
of 100 m, diameter of 3.5 m and a fume exit velocity
(normalized to a 400 K temperature) of 7 m s−1. Con-
tinuous constant emission was deemed acceptable given
that pulp and paper production are continuous-flow
industrial processes run constantly.5 The model was set
up in order to output densities (in mg m−3) at 234 fixed
point receptors. The receptors were chosen in a manner
to match an equivalent number of points along the
aircraft tracks, allowing for a direct comparison between
estimated outputs and measured data. An additional set
of 702 receptors was added in the same latitudinal and
longitudinal positions as the previous 234, at heights
between 10 and 70 m, in order to explore the area
beneath the flight tracks.

Emission strength estimation

The ratio between the integral concentration along the
aircraft points and the receptors was used to derive the
multiplier needed to make simulations and measure-
ments match (following Eq. 2). Given that the source
strength was set at 1 kg s−1, this multiplier also repre-
sents the exact emission strength that the model would
need to match the aircraft data.

η ¼ ∫
i¼N

i¼1

Ai

Mi
ð2Þ

where η represents the emission strength needed for the
model (M) to match the aircraft data (A). The integral is
performed along the various N receptors (indicated by
the i subscript).

Results and discussion

Dispersion modelling

The point source emission rates provided by the inven-
tory and estimated by the mass balance method are
summarized in Table 3, along with those calculated by
applying the dispersion model chain according to the
three run combinations detailed in the BMaterials and
methods^ section. Estimated average wind speed values
are also reported (Fig. 5).

Figure 6 reports the CO2 density (after multiplication
by the η coefficient; see Eq. 2 and Fig. 6a), wind
direction (Fig. 6b) and speed (Fig. 6c) calculated at the
234 receptor points. In particular, Fig. 6a shows that
receptors 7 to 134 (the area enclosed by the dotted grey
lines in the figure, corresponding to layers 3 and 6 of the
CALMET model and T1 to T4 of aircraft tracks) give
the greatest contribution to the integral of the CO2

concentration (ranging from 71.8 to 79.6% between
the various model initializations). This outcome is con-
sistent with Fig. 3a, showing that transects T1 to T4
intercept most of the CO2 concentration. The dispersion
model chain therefore appeared quite capable of captur-
ing the plume’s vertical structure. Conversely, a discrep-
ancy in the plume’s horizontal structure vs. aircraft data
may be observed, as evident from the differences in
wind and flight direction (the former are clearly
highlighted in Fig. 6b).

Focussing on Table 3, emission strength values for
ECMWF, CFSR and IN-SITU runs were obtained as
unique solution of Eq. 2 after implementing an iterative
process involving application of the three corresponding
CALMET/CALPUFF model combinations. Consistent-
ly with the achieved results, higher wind speeds across
the simulation domain correspond to lower overall con-
centrations requiring a higher multiplier to match air-
craft concentrations (Eq. 2). This is corroborated by
considering the whole modelled domain (column 7)
rather than the few points matching aircraft and
modelled data (column 6). Actually, dispersion model-
ling results were quite sensitive to changes in wind
speed: all whole-grid averages are within 1.2 m s−1 of

4 Smurfit-Kappa installation documentation is available at
http://documents.installationsclassees.developpement-durable.gouv.
fr/commun/B/6/6cfce038afd44d2a9d95ce2840685c86.pdf.
5 Information about the industrial process is available at http://www.
smurfitkappa.com/vHome/fr/CelluloseduPin/Pages/Presentation.aspx.
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one another, but these differences result in estimated
source strengths differing by more than 10 kg s−1 (con-
sidering ECMWF and CFSR runs). Even in the case of a
data-based initialization (i.e. run IN-SITU), the small dis-
crepancy introduced by the spatialization (a 1.2% differ-
ence in the receptor-derived wind speed average) was
enough to make the estimated source strength change by
3.1 kg s−1 (considering the extrapolated mass balance

which also takes into account the below-aircraft domain).
In any case, the use of measured data (run IN-SITU)
provides estimates that are closer to the measurements in
terms of plume shape: the horizontal discrepancy seen in
Fig. 6a is far less prevalent in the IN-SITU run than in
ECMWF and CFSR, which is in good agreement with
Fig. 6b. The latter shows wind direction patterns across
the 234 receptors for all model combinations,with IN-

Table 3 Point source emission strength estimation based on inventorial datum, mass balance and WRF/CALMET/CALPUFF modelling
chain

Run name Data source Method/models Estimated emission strength Estimated average wind speed
(m s−1)

Value
(kg s−1)

Difference vs. inventory
(%)

At receptor
points

Over the whole
grid

Inventory – 30.8 0 N/A N/A

AIRCRAFT Aircraft obs. Mass balance 27.4–36.2 − 11.6/+ 16 5.6 ± 1. N/A

Aircraft obs. (Extrapolated) mass balance 38.3 + 21.7 5.6 ± 1. N/A

ECMWF ECMWF
reanalyses

WRF/CALMET/CALPUFF 36.8 + 17.5 3.7 ± 0.2 3.04 ± 0.6

CFSR CFSR reanalyses WRF/CALMET/CALPUFF 48.5 + 44.6 4.7 ± 0.6 4.21 ± 0.7

IN-SITU Aircraft obs. CALMET/CALPUFF 41.4 + 29.4 5.7 ± 0.6 3.8 ± 0.7
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SITU being the run with the smallest RMSE (17.4° vs.
26.1° for CFSR and 40.5° for ECMWF).

Considering all CALMET/CALPUFF model runs,
ECMWF proved to be best at reproducing the inventorial
datum (17.6% overestimation). Remarkably, this disper-
sion run using only modelled data as meteorological
initialization performed better than the one (IN-SITU)
using aircraft meteorological observations (29.4% overes-
timation). Clearly, the differences found in the dispersion
model performances should be ascribed to differences
resulting from the meteorological section of the model
chain. Not only do the achieved outcomes therefore high-
light the importance of relying on reliable in situ meteo-
rological observations, but also that using different mete-
orological forcings may lead to substantial differences.

Angevine et al. (2014) did an analogous investigation
by initializing the FLEXPART Lagrangian dispersion par-
ticle model (Brioude et al. 2013) with different WRF-
ARW configurations, including two forcings (Global
Forecast System and ERA Interim). Among the various
thorough comparisons, they investigated the differences
between modelled CO tracer dispersal and measured CO
from aircraft flights. One of their conclusions was that for

single-mesoscale Lagrangian simulations, the uncertainty
for passive tracers ranged between 20% (in favorable
situations) and 60% (in unfavorable situations): these
results are quite comparable with the uncertainty we ob-
served with our CALPUFF simulations, as the percentage
differences between inventorial data and the various
methods ranged between − 11.6 and 48.6% (Table 3).
Bowman et al. (2013) made suggestions that could poten-
tially reduce these transport field-related uncertainties, and
two that are particularly relevant are (i) improving the
output of the global circulation models that are used as
input for mesoscale meteorological modelling (such as
increasing the temporal frequency of outputs, inserting
information about subgrid-scale processes) and (ii) intro-
ducing some modifications to the mesoscale transport
field that are finally used as input to a dispersion model
(again increasing the temporal frequency of outputs and
time average winds between output intervals to improve
accuracy of trajectories). Besides considering the uncer-
tainties within the models themselves, attention must be
paid when comparing numerical models with aircraft-
measured variables. Models based on Reynolds-
averaged Navier–Stokes (RANS) equations, in fact,

Fig. 6 Comparison betweenmodel outputs and aircraft data on the 234 receptors for CO2 densities after optimization (a, top), wind direction
(WDir, b, middle) and wind speed (U, c, bottom)
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provide results representative of space and time averages
of physical variables. The effective space and time reso-
lution of WRF and CALPUFF depends on the computa-
tional domain grid spacing, implicitly assuming an aver-
aging time window large enough to sample the whole
boundary layer turbulence spectrum. Instead, airborne
measurements represent short temporal scales, and are
individually affected by instantaneous turbulent eddies,
especially in neutral to convective conditions: at an aver-
age ground speed of 40 m s−1 and a 50-Hz frequency, the
aircraft is in fact able to measure at a 0.8-m resolution,
meaning that it can sample small and transient turbulent
eddies, which are Binvisible^ to the models. We should
therefore expect observations to include short-wavelength
fluctuations and possibly transient structures that cannot
be reproduced by any numerical model simulation. To
overcome this issue, multiple aircraft passes were made at
each altitude and averaged to reduce the influence of high-
frequency turbulent fluctuations.

Mass balance

The flight transects at various altitudes clearly revealed
the CO2 plume generated by the industrial stack (Fig.
3a). CO2 concentrations reached the highest values at
the T3 transect, followed by the lower transects (T1 and
T2). The highest transect T6, since it did not intercept
the plume at all, was chosen as the base for calculating
the background value. The horizontal spread of the
measured plume along the flight tracks, at a distance
of 1000 m downwind of the stack, was 840 m (with the
highest peaks in the central part of the plume), while
outside the plume the CO2 concentrations were basically
constant throughout with background values equal to
those measured at the highest elevation in T6 (Fig. 3a).

Gridded values of CO2 fluxes and wind speed on the
S plane are shown in Fig. 3b, c. The wind component
perpendicular to S did not reveal a relevant vertical
variation (Fig. 3c), with a mean of 5.0 ± 0.1 m s−1. Such
a significant wind speed magnitude across the compu-
tational domain was of paramount importance: as noted

in the pioneering studies of Denmead et al. (1998) up to
the more recent experiments of Gioli et al. (2014a), too
weak winds may adversely affect the mass balance
computation due to a decrease in stationarity.

The computed mass balance resulted in a predicted
source strength of 31.8 kg s−1 (a summary of
computations is given in Table 4).

The difference between estimated emission strength
and overall inventorial yearly amount was equal to
1.0 kg s−1, equivalent to 3.2%.

The overall mass balance uncertainty results from a
combination of uncertainty in wind speed and CO2

density measurements. The 95% confidence limit of
altitude-binned wind speed was ≈ 0.3 m s−1, which,
added to the instrumental uncertainty of the BAT probe
(which was estimated by Garman (2009) to be around
0.4 m s−1), resulted in a total uncertainty of 0.7 m s−1.
The propagation of wind speed uncertainty produced a
percentage variation of the emission rate of ± 12.1%.
Both the uncertainty in wind speed and its propagation
to emission rates were comparable with Cambaliza et al.
(2014). Given the effect that wind speed has on the mass
balance and that the measurement uncertainty was close
to the instrumental one, the great importance of correctly
calibrating the flux platform before each flight is clear.
Mean uncertainty in CO2 density was ≈ 0.03 mmol m−3,
and the corresponing percentage change in the emission
estimate after error propagation was 0.1%. The com-
bined uncertainty is reported in absolute terms in Ta-
ble 3, where the net effect of the two methods used for
the interpolation is also reported.

The effect of data extrapolation from the minimum
flight altitude down to the ground (Fig. 5a–c) shows that
a significant part of the plume could have been omitted
from direct measurements (Fig. 5b, c), taking into ac-
count that the extra density evaluated by the ordinary
kriging procedure would increase the mass balance up to
38.3 kg s−1 (an 18.5% difference from what was found
with simple linear interpolation).

When measuring large area emissions with a mass
balance method, determination of the bounding volume

Table 4 Mass balance results and emission strength estimate. The
effective area indicates the total surface areawhere cells were filled

by the interpolation procedure (in certain areas, for example below
the aircraft minimum altitude, no data were present)

Effective
area (km2)

Average CO2 flux
(mmol m−2 s−1)

Raw emission
strength (kg s−1)

Wind speed
uncertainty (%)

CO2 density
uncertainty (%)

Interpolation
uncertainty (%)

Sensitivity-bounded
emission strength (kg s−1)

1926.4 0.37 31.8 12.1 0.10 1.6 27.5–36.2
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(and, therefore, PBL height) becomes a critical factor,
also driving the mass budget uncertainties (Alfieri et al.
2010; Gioli et al. 2014a). However, the good correspon-
dence of the mass balance calculations with the inven-
torial data (and the disappearance of significant concen-
tration peaks at the highest flight transects) showed that
the Biganos plant offered a simple enough situation,
where the distinction between the source’s plume and
background levels required no assumptions about PBL
structure and source variability. The Biganos sampling
approach is corroborated byDenmead (2008) who states
that for sources of limited upwind size, a downwind
sampling can suffice, provided that the emission is
sampled along its vertical extent and that background
concentrations are either known or measurable. In fact,
mass balance methods tend to perform better when there
is a certain difference between source and background
(Denmead 2008; Loh et al. 2009) and in the case of
Biganos there is a 30% difference between the measured
plume peak (493.5 ppm) and background value
(368.8 ppm), which is well above the suggested 1%
difference for line-averaged gas measurements (Loh
et al. 2009). Mass balance methods should, in fact, rely
on spatialized measurements (such as line measure-
ments) since they are insensitive to lateral displacement
(Flesch et al. 2004) and maximize useable wind direc-
tions (Loh et al. 2009): the multi-transect aircraft sam-
pling that has been used in the present work agrees well
with all the aforementioned necessities.

Conclusions

In this work, two methods were used to estimate the
emission strength of an industrial point source of CO2

emissions, which is located in Biganos, France: (i) the
mass balance method, based on aircraft observed data,
and (ii) a dispersion modelling framework, integrating
the CALMET diagnostic meteorological model and
CALPUFF puff dispersion model. In particular, the
CALMET/CALPUFF model chain was run according
to three meteorological initializations: (i) WRF-
modelled outputs initialized by ECMWF reanalyses;
(ii) WRF-modelled outputs initialized by CFSR
reanalyses and (iii) local in situ observations. Govern-
ment inventorial data were used as reference for all
applications. The two approaches compared resulted in
both advantages and weaknesses, which make an inte-
grated framework particularly interesting.

The mass balance approach is capable of capturing the
point source emission strength provided that measure-
ments are made based on stationary conditions, above a
minimum wind speed, and that the meteorological vari-
ability and PBL height can be correctly sampled. Indeed,
the mass balance reproduces a snapshot of the actual
emission scenario: while this allows a constant emission
rate such as the one from a continuously emitting pro-
duction plant to be estimated, it only gives instantaneous
and precisely located information on the emission source.
It must be borne in mind that aircraft measurements are
expensive, subject to favourable weather conditions and
strictly localized in time and space.

Conversely, all the above limitations are generally
overcome by a dispersion model, which is capable of
reproducing not only the change in the emission rate over
time, but also the 3D time-dependent plume structure and
its final fate in the atmosphere. A winning strategy was
the use of meteorological reanalyses in place of locally
observed data: in particular, the ECMWF meteorological
forcing which passed through theWRFmesoscale model
returned an emission strength estimation only slightly
higher than the one achieved applying the mass balance
to airborne measurements. The clear added value of the
modelling approach is its capability of estimating the
source emission rate whenever and wherever, not just
over that time frame and that geographical location as
observed by the aircraft. Furthermore, if properly set up
and initialized, a similar modelling approach might be
more useful to researchers and regulatory planners than
the emission inventories themselves, as it provides an
overall emission assessment that, unlike the latter, can
take into due account any dynamically varying operative
source conditions.

However, the dispersion modelling approach proved
to be highly sensitive to the meteorological data source
used as initialization, which strongly affected the
modelled plume shape and trajectory. Particular care
should be taken when defining model setup and forcing,
initial and boundary conditions and point source char-
acteristics. In any case, the importance of estimating
uncertainties and errors in the meteorological inputs
should be stressed. Strategies for applying a dispersion
model to the situation described in this paper would
therefore include a comparison of modelled meteoro-
logical fields with observations or usage of ensemble
simulations.

Both the mass balance and dispersion modelling
framework deployed in the current work were applied
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on CO2, an inert gas. It is therefore important to empha-
size that both methodological approaches might easily
be extended to other inert compounds typically emitted
by a point source, i.e. SO2, CO, primary PM10, heavy
metals, etc. This gives new insights into the validation of
currently developed emission inventories, not only in
assessing their emission rates, but also in reliably repro-
ducing their variation over time (e.g. by hour in the day,
day of the week, month of the year): the latter is a typical
drawback of most national emission inventories, basi-
cally designed to provide overall yearly amounts rather
than 1-h varying estimates.

In the future, especially with the very fast develop-
ment of small airborne platforms such as UAVs, the
downwind measurement would become even simpler
and cheaper if a good source emission strength estima-
tion could be achieved. This application thus would
become an interesting tool for inventory validation for
both regulatory and third-party actors. While the main
focus of this paper was on the estimation of point source
CO2 emissions, recent advances in miniaturized sensors
will make small UAVs capable of measuring not only air
turbulence (Martin et al. 2014; Wildmann et al. 2014),
but also concentrations of gas compounds other than
CO2 (Refaat et al. 2013; Illingworth et al. 2014).
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