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Abstract

In this paper we analyze the effects of using nonlinear least squares for parameter
identification of symbolic regression models and integrate it as local search mecha-
nism in tree-based genetic programming. We employ the Levenberg—Marquardt
algorithm for parameter optimization and calculate gradients via automatic differ-
entiation. We provide examples where the parameter identification succeeds and
fails and highlight its computational overhead. Using an extensive suite of symbolic
regression benchmark problems we demonstrate the increased performance when
incorporating nonlinear least squares within genetic programming. Our results are
compared with recently published results obtained by several genetic programming
variants and state of the art machine learning algorithms. Genetic programming
with nonlinear least squares performs among the best on the defined benchmark
suite and the local search can be easily integrated in different genetic programming
algorithms as long as only differentiable functions are used within the models.
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1 Introduction

Symbolic regression is the task of finding a mathematical model that best explains
the relationship between one or more independent variables and one dependent
variable. The ability to simultaneously search the space of possible model struc-
tures and their parameters (in terms of appropriate numerical coefficients) makes
genetic programming (GP) [21, 34] a popular approach for symbolic regression.

However, as a biologically-inspired approach guided by fitness-based selec-
tion, the GP search process for symbolic regression is characterized by a loose
coupling between fitness, expressed as an error measure with respect to the target
variable, and variation operators | subordinate search heuristics in solution space
that generate new models in each generation.

Consequently, it is difficult to foresee the effects on model output when varia-
tion operators perform changes on the model structure, often leading to situations
where promising model structures are ignored by the algorithm due to low fitness
caused by ill-fitting parameters [44]. In some cases, this can lead to necessary
building blocks becoming extinct in the population before they are combined in a
solution and thus recognized by the algorithm.

Generally speaking, achieving high-quality solutions in GP-based symbolic
regression requires solving three interrelated subtasks:

1. Selection of the appropriate subset of variables (feature selection)
2. Discovery of the best suited model structure containing these variables
3. Determination of optimal parameter values of the model

Each of these subtasks depends on the results of the previous subtask to gener-
ate optimal solutions, therefore improvements of one task can lead to improve-
ments to the whole algorithm. Although these three subtasks have to be solved
in any case, most algorithms create solutions without explicitly addressing the
necessary steps.

Symbolic regression problems can be solved by tree-based GP that evolves
individuals which capture all characteristics of a solution such as the appropriate
subset of variables, model structure, and parameters. Individuals are in general
manipulated as a whole (by crossover and/or mutation), which results in difficul-
ties for generating good solutions. The reason is that such evolutionary variations
partially change the model structure and occurring variables which necessitates a
re-fitting of all parameters of the model.

In this context, hybridization with local search methods improves algorithm
effectiveness by shifting the burden of finding appropriate numerical coefficients
to subordinate algorithms or heuristics that become part of the evolutionary pro-
cess at the same level with crossover and mutation operators. This division of
tasks is particularly appropriate since genetic programming is already well suited
for variable selection [6, 41].

Memetic algorithms combine such refinement methods with global optimiza-
tion methods, often population-based, evolutionary algorithms [7]. In its initial
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definition, a memetic algorithm [30] is a genetic algorithm [11] hybridized with
hill climbing, but hybridization generally works with many other algorithms:

e Metaheuristics such as genetic algorithms [13], differential evolution [52], evolu-
tion strategies [2, 49], or simulated annealing [40].
Machine learning algorithms such as linear regression [14, 25, 35]
Numerical optimization algorithms such as multipoint approximation [43] or
gradient descent [5, 42, 50, 51].

In this contribution we study the hybridization of tree-based GP with nonlinear
least squares optimization of numeric parameters and discuss aspects ranging from
implementation to runtime performance and solution quality. Our methodology for
parameter identification in symbolic regression combines linear scaling, automatic
differentiation and gradient-based optimization through the Levenberg—Marquardt
(LM) algorithm. A novel contribution is the comparison of results produced by our
proposed approach to results of a number of similar approaches that integrate local
search mechanisms as well and other non-evolutionary regression techniques as
reported in [33].

1.1 Numerical parameters in symbolic regression

When performing symbolic regression, numerical parameters are of prime impor-
tance. Numerical parameters, also referred to as constants, form together with vari-
ables the terminal set 7. Every new leaf node in a symbolic expression tree is ini-
tialized with elements from the terminal set .7. Internal nodes are initialized with
elements from the function set .%. Together, the two sets define the primitive set &2
used by the GP system to generate new symbolic expressions.

Constants in .7 can be either explicitly stated (as predefined and immuta-
ble numerical constants), or they can be defined as ephemeral random constants
(ERC) [21]. In the first case, the terminal set may contain different numerical values
alongside variables, such as 7= {X, 1.0,2.0, z } containing the variable X and three
predefined numerical constants. Consequently, random uniform initialization would
result in a 75% probability for a constant to be selected during tree creation when a
leaf node is initialized. This disparate ratio between constants and variables could be
altered by introducing a selection bias for terminal symbols.

In the second case, the special symbol Z is added to the terminal set and every
time the ERC symbol Z is selected during tree creation a new constant value is
sampled from a predefined distribution. ERCs provide greater flexibility as it is pos-
sible to create a greater variety of real-valued constants, compared to including con-
stants directly in the terminal set. Whether immutable or ephemeral constants are
more suitable largely depends on the problem at hand and both approaches might
even be combined.

The numerical constants potentially reachable through the variation of solu-
tions depend solely on the initial constant values during tree creation. To allow new
constants to be discovered, GP literature recommends adding special manipulation
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operators to the algorithm that alter the numerical constants of a solution, for exam-
ple as described in Schoenauer et al. [38], where a random Gaussian variable is
added to the constant, which is inspired by mutation in evolution strategies [39].
A similar technique by Gaussian mutation is detailed in Ryan and Keijzer [37].
Another possibility inspired by simulated annealing [18] is to replace all numeric
constants with new values, sampled from a uniform distribution and adapted by a
temperature factor [10]. Another alternative for adapting numerical values in sym-
bolic regression is the inclusion of local search in GP.

1.2 Literature review

Local search aims to find a local optimum starting from a single solution. The best
solution among a neighboring set of solutions is selected by applying a local move
and through iterative application of such moves a local optimum is reached. Local
search algorithms are often employed as subordinate heuristics for solution refine-
ment within a higher-level metaheuristic framework. In the context of symbolic
regression, local search refers to a further improvement of existing solutions towards
a local optimum.

Overall, the hybridization of GP with local search methods represents a good fit.
The inherent disadvantage of local search methods of converging toward the next
attracting local optimum (depending on initial starting conditions) is reduced by GP,
because it is likely that multiple, differently parameterized instances of the same
model structure are present in the population, thus providing different starting con-
ditions for the local search.

Another helpful technique to escape such local optima is to keep random muta-
tion enabled, although its role and significance are reduced as the identification of
appropriate numerical parameters is often performed by local search methods. As a
result mutation is mostly responsible for introducing variations during the search for
symbolic regression solutions.

Krawiec [22] integrates a hill-climbing algorithm into GP for symbolic classifica-
tion and applies it to the best solution in each generation. The author reports a statis-
tically significant improvement over standard GP in terms of classification accuracy.
This result shows that even a small amount of local optimization can provide sub-
stantial benefits.

Topchy and Punch [42] use gradient-descent for parameter adaptation in GP for
symbolic regression. They perform 100 gradient-descent iterations for each indi-
vidual and show that this successfully prevents the loss of good structures by com-
paring the results with and without gradient-descent. Furthermore, they show that a
bias towards model structures that are more readily adaptable is introduced and that
their approach outperforms standard GP.

Wang et al. [48] apply a set of representation-specific local search operators
to decision trees, for GP-based classification. The algorithm called Memetic GP
(MGP) achieves better training quality but is more prone to overfitting due to the
high intensity local search.
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Lane et al. [26] use a different approach where they change the functions of inter-
nal tree nodes until fitness is improved. They test different strategies, according to
several tree parsimony measures, when to apply this form of tuning and to which
internal nodes. They report significant improvements in test quality over standard
GP. These results are verified by Azad and Ryan [3] when integrating the tuning of
internal tree nodes in GP.

Z-Flores et al. [50] use an alternative parameterization of GP trees, where
a weight coefficient is assigned to each function node. They employ gradient
descent [8] and test different strategies for the integration in GP. They find that best
results are obtained when local search is applied to all individuals and that optimiz-
ing only a subset of the best individuals also represents a viable strategy. The same
approach of adding and tuning weight coefficients of internal nodes is also evaluated
in GP for binary classification [51], where the classification accuracy improved on
all tested problems.

Juarez et al. [15] test the benefits of integrating local search in GP and neat-GP.
While the performance in terms of quality does not increase significantly, they
were able to produce consistently smaller and easier to interpret solutions. Trujillo
et al. [44] also use gradient descent to optimize a percentage of individuals in each
generation. They apply local search stochastically based on a probability given by
tree size. They report substantial improvements in terms of solution quality, conver-
gence speed and program size.

La Cava et al. [24] add an “epigenetic layer” as a mechanism for local search
and test its effectiveness in solving symbolic regression and program synthesis prob-
lems. They attach a corresponding epigenome to each individual, which determines
which genes are active in its structure. Epigenomes are altered by mutation and only
changes that improve fitness or program complexity are accepted. The proposed
approach is able to outperform GP in terms of fitness, exact solutions, and program
sizes.

Castelli et al. [4] integrate local search in Geometric Semantic GP and test it on
a number of real-world symbolic regression problems. They find that the resulting
algorithm severely overfits and propose an alternative approach where local search
is only applied in the first 50 generations of the evolutionary run.

Table 1 offers a detailed summary of previous approaches of local search in
genetic programming. Gradient descent and hill climbing are prevalent local search
methods, while Lamarckian evolution is the preferred local learning behavior. In the
context of learning behavior, Lamarckian and Baldwinian learning refer to the way
GP handles the information obtained via local search, which can be coded back into
the genotype (Lamarckian) or not (Baldwinian). In both cases, local search affects
the selection process and changes the behavior of the algorithm.

1.3 Scope of this study

Only few other works [15, 42, 50] referenced in our survey use gradient-based local
search with GP for symbolic regression. We therefore consider it opportune to revisit
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the topic and investigate additional aspects such as the effectiveness of local search, its
convergent behavior and runtime impact on the evolutionary algorithm.

The main aim of this work is to provide a detailed treatment of gradient-based
numerical optimization in the context of GP local search for symbolic regression. We
follow the Lamarckian model where numerical coefficients optimized via nonlinear
least squares are written back to the genotype. We investigate the benefits of nonlin-
ear least squares optimization for two GP flavors (Standard GP and Offspring Selec-
tion GP [1]) and analyze performance in comparison with several other state-of-the-art
methods on a large selection of benchmark problems [33].

2 Methodology

Our approach for parameter identification in symbolic regression combines automatic
differentiation with gradient-based optimization [19, 20]. This approach is integrated
as a local search mechanism in genetic programming and has been implemented in the
open source framework for heuristic optimization HeuristicLab [47].

2.1 Mathematical formulation

For simplicity, we assume no implicit feature selection is performed and each GP
model uses the entire set of input variables.

1. Let X € R™" be an n X m matrix where each column x; € R",i =1,...,mis an
n-dimensional input variable and each row 5; € R™ j=1,...,nis an m-dimen-
sional training sample. In what follows we take X as training data for the algo-
rithm.

2. Lety € R"be the target vector for the regression problem.

Let & be the GP primitive set and S the syntactic search space defined by it.

4. Let @ be the space of possible expressions and their parameters. That is, the set
of all tuples (E, 0), where E € S is a symbolic expression and § € R?” a parameter
vector of length p corresponding to the numerical parameters of E. Let us call a
tuple (E, 0) a symbolic expression model Mg 4 € ®.

5. LetG : @ x R™" — R"be a function that evaluates a model My, € @ on train-
ing data X and returns an n-dimensional output vector y € R":

e

y=GMgy,X)
The overall symbolic regression goal is to find the optimal model M,,,, = (E,,. 0,,,,)
. 2
M,, = argmin = ||G(Mg,, X) —
= rgmin 5| GM .20 =] M

During local search the model structure £ remains fixed for a model M , while the
parameter vector § € RP is subject to optimization. Thus, for the sake of simplic-
ity we define the local search residual H : R? — R" as a function that evaluates
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parameter vector 6 and returns the difference between the model output and the
actual target:

H(0) = G(Mpy, X) —y

We formulate the goal of local search as a minimization problem:

1
argmin = [|H(O)]* )
oeRrp

To optimize 6 over n training samples we consider the Jacobian J(6) of H(0):

ohy ohy
9, " 96,
Jo=|: - : 3)
oh, oh,
90, """ 00

For nonlinear least squares, at each iteration of the gradient descent algorithm we
use the linearization

H(O+ 40) ~ H(9) + J(6)A0 4)

which leads to the following linear least squares problem:
.1 2
min S {|H(©) + J ()40 6))

The problem described by Eq. (5) can be efficiently solved using trust region or line
search methods [31].

2.2 Local search algorithm

Our implementation uses a trust region gradient descent approach, namely the Lev-
enberg—Marquardt (LM) algorithm [27, 29] with an iteration limit as stopping crite-
rion. Per default the LM algorithm is stopped after ten iterations.

Derivatives are calculated using automatic differentiation [12, 36], since the
structure of the evaluated expressions is known and contains only arithmetic opera-
tions and elementary functions that can be derived using the chain rule.

We integrate linear scaling [16, 17] with local search in order to bring each esti-
mate y in range with the target values y. The reason is to eliminate the need to find
the correct offset and scale for the estimates, allowing GP to focus on finding the
correct model structure.

Linear scaling is achieved in practice by introducing a structural extension such
that a model M is added as an input to a linear transformation block as illustrated
in Fig. 1. The resulting expression will contain four additional nodes and its param-
eter vector 6 will include two additional coefficients (the slope and intercept of the
linear transformation).

@ Springer



480 Genetic Programming and Evolvable Machines (2020) 21:471-501

Fig.1 Model M, extended +
with linear scaling nodes (offset node)

X placeholder
(scaling node) (intercept value)

Model Mg ¢ placeholder
(slope value)

These individual components linear scaling, gradient calculation, and nonlinear least
squares optimization are the building blocks for parameter identification of symbolic
regression models and the whole method is given as pseudo-code in Algorithm 1.

Algorithm 1: Parameter identification for symbolic regression.

input : A symbolic expression tree 7'

/* Prepare model and extract parameter vector */
ME o < prepare T for automatic differentiation and extract numerical coefficients;

Extend Mg ¢ with linear transformation block (see Figure 1);

(SR

/* Start 'Levenberg-Marquardt algorithm */
3 while Stopping criterion of LM not reached do
/* Perform LM iteration */
Compute residual H(6);

Compute J(0) by automatic differentiation;
Solve Equation 5;
Update parameter vector 6;

U RS

®

Write optimized numerical coefficients 6 back to the corresponding nodes in T';
9 Calculate fitness of symbolic expression tree T';

Implementation-wise we prepare a model M , from a tree-based symbolic expres-
sion by first converting it to a data structure with which automatic differentiation can
operate. The initial values for 0 are extracted from the leaf nodes of the tree. At each
iteration the LM algorithm computes the residuals H(#) and the Jacobian J(@) and
updates 6 accordingly.

Then the fitness of the symbolic expression tree is calculated, according to the objec-
tive function used by the algorithm solving the symbolic regression problem. This way,
although the LM algorithm optimizes the mean squared error, another objective func-
tion (for example the coefficient of determination R? or the mean relative error) could
be used to assess the fitness of the generated model. Finally, the optimized numerical
values are written back to the symbolic expression tree according to the Lamarckian
learning model.
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Table 2 Progression .Of 0, 0, 0, 0,

parameter values during

optimization lteration 0 —74.544  —52262  — 12887 79309
Iteration 5 —48.101 —2.164 0.771 99.143
Iteration 10 —31.826 1.516 1.766 106.164
Iteration 15 1.697 1.753 1.923 114.243
Iteration 20 81.793 1.245 0.990 93.486
Iteration 25 128.814 0.973 1.000 39.151
Iteration 30 29.671 1.000 1.000 9.903
Iteration 35 30.000 1.000 1.000 10.000

3 Analysis

We analyze the adaptation of numeric parameter values with respect to achieved
improvement, convergence behavior and runtime overhead. We provide a detailed
breakdown of measured execution time in relation with the number of training
samples and the number of local optimization iterations.

First, we demonstrate the behavior of optimizing the parameters of a prede-
fined model structure that matches the data generating function. The model struc-
ture (Eq. 6) contains three variables x; and four parameters ;. The training data is
generated using Eq. (6) with 8 = {30.0, 1.0, 1.0, 10.0} by randomly sampling 300
data points in the interval [0.05, 2] for x, and x; and [1, 2] for x,. This data gener-
ating procedure corresponds to the original problem definition given in [45]. We
have chosen this particular synthetic problem because the parameters have a non-
linear effect in the model and several iterative steps are required to find the opti-
mal values when using the LM algorithm. The elements of the initial vector 0 are
sampled uniformly from the interval [— 100, 100]. Then, @ is iteratively optimized
until no further improvement can be achieved.

_ 0,(x; — 0,)(x3 — 65)
X2 (x; — 6y)

Mgy (6)

Table 2 illustrates a successful application of the LM algorithm, where the param-
eters of the model are correctly identified. The first row ’Iteration O’ states the initial
parameter values and each subsequent row the updated parameter vector 6. It can
be observed that all parameters are simultaneously adapted according to the cur-
rent gradient information. Furthermore, it could happen that the values deviate more
from the target values compared to previous iterations (see for example 6, between
ITteration 15 and 20), but in this example the correct values are identified after 35
iterations .

Appropriate starting values play a crucial role in the success of the LM algo-
rithm. It requires a starting point within the basin of attraction for the global opti-
mum otherwise it converges to a local optimum. Thus, the algorithm might fail to
identify the optimal model parameters even when an optimal model structure is
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Fig.2 Mean squared errors before and after LM optimization for sin(6x) (Color figure online)

identified by GP. Model structures with multiple optima are particularly vulner-
able to this phenomenon.

We illustrate the importance of good starting values by optimizing the model
structure My, = sin(6x). In contrast with the previous example where § was a
parameter vector, here 6 is a scalar value. This corresponds to identification of
the frequency of a sinusoidal function. We generate a dataset containing 6000
samples for x ranging from — 3.0 to 3.0 with a step size of 0.001 and a frequency
0 =25.

We test different starting values of 8 in the interval [— 10, 10] with a step size of
0.05 and plot the mean squared error between the generated data and the model out-
puts sin(6x) before and after LM optimization. The results illustrated in Fig. 2 show
that LM always improves the mean squared error. However, the global optimum is
only reached if the starting value for 6 lies in the interval [0.8, 4] and thus within the
basin of attraction of the global optimum. Otherwise, the optimization converges
towards a local optimum and a mean squared error of almost zero cannot be reached.

The largest drawback of the methodology is that it is computationally expensive
to perform multiple gradient and function evaluations for each model structure. The
LM algorithm has an asymptotic runtime complexity of O(nd*) with n the number
of training samples and d the number of parameters for a fixed number of iterations.
We empirically analyze its impact on the execution performance of GP using ran-
domly created expression trees. Figure 3 shows the growth in runtime for the LM
algorithm with an increasing number of maximum iterations and training samples.
For this experiment we created 1000 symbolic expression trees with the probabilistic
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Fig.3 Median execution time of parameter identification per tree with varying number of training sam-
ples and LM iterations (‘0 iterations’ indicates no parameter identification) (Color figure online)

tree creator (PTC 2) [28] and report the median execution time of the local search
for an individual tree.!

As expected, the runtime increases linearly with the number of training samples
for the different tested LM iterations. The number of training samples has the largest
influence, as the training error has to be recalculated after each iteration of the LM
algorithm. The number of iterations has a smaller influence on runtime since the LM
algorithm may stop early when no more improvement can be achieved.

Compared to tree evaluation without local search (0 iterations), the accumulated
overhead exceeds one order of magnitude for training data containing more than
1000 training samples. This effect (observed in numerous other publications) can be
alleviated by applying parameter identification to smaller segments of the popula-
tion, selected either probabilistically or according to fitness, or by using fewer train-
ing samples for parameter identification.

4 Experiments and results
We use the Penn Machine Learning Benchmarks (PMLB) collection of benchmark

regression problems developed by Olson et al. [32] with the same choice of prob-
lems as in Orzechowski et al. [33] for evaluating the performance of local search

! Actual performance measurements are acquired using BenchmarkDotNet, a benchmarking framework
providing an automated environment for performance analysis (https://benchmarkdotnet.org). Each test
configuration has been run in an isolated project on an Intel® Core™ i7-8700 processor.
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Table 3 Algorithm configuration of GP and OSGP

Parameter

Value

Function set

Terminal set

Max. tree length

Max. evaluated solutions
Tree initialization
Population size

Selection GP

Selection OSGP

Max. selection pressure OSGP
Crossover probability
Crossover operator

Mutation probability
Mutation operator

Fitness function

Evaluation budget

Local optimization iterations

Linear scaling

Unary functions (square, sqrt, exp, log)

Binary functions (+, —, X, unprotected +)

constant, weight - variable

* Selected via parameter tuning *

100, 000

Probabilistic tree creator (PTC2) [28]

* Selected via parameter tuning *

Tournament group size 2

Gender specific selection (proportional and random) [46]
100

100%

Subtree crossover

25%

Change symbol, single-point, remove branch, replace branch
Pearson’s R? correlation with the target

10’ fitness evaluations

10

Enabled for all variants

within GP. The authors from [33] only consider problems with fewer than 3000
training samples, leaving a total of 94 problems in their benchmark suite.
We test two GP flavors: Standard GP and Offspring Selection GP [1] in both their

standard version using linear scaling and hybridized with nonlinear least squares
(NLS) parameter identification. This results in four configurations: GP, GP NLS,
OSGP and OSG NLS. For each problem we have tuned the following parameters
using grid search and fivefold cross-validation:

e Maximum tree length: 10, 25, 50, 75 nodes
e Population size: 100, 500, 1000 individuals
e Maximum generations: 100, 200, 1000 generations

A fivefold cross-validation is performed on the training data and repeated five
times to account for stochastic effects. Hence, we have created 25 symbolic regres-
sion models (five times fivefold cross validation) that are trained on 4/5 folds of
the training data and evaluated on the remaining fold. Afterwards, we select the
best parameter settings for each algorithm and problem based on the average mean
squared error on the fold not used for training obtained by these 25 generated mod-
els. Using the identified parameter settings we perform 50 repetitions of each algo-
rithm on the whole training partition. The parameter settings for GP and OSGP,
which have not been tuned, are detailed in Table 3.

This results are illustrated graphically in Fig. 4 for GP and Fig. 5 for OSGP,
where each chart column (ordered ascending by the number of training samples)
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Table 4 Performance summary

Training Test
of GP NLS compared to GP and
OSGP NLS compared to OSGP + - ~ + - ~
GP NLS 75 5 14 67 0 27
OSGP NLS 74 6 14 68 4 22
Table 5 Machine learning Name Description

methods used for comparison

taken from Orzechowski GSGP Geometric Semantic Genetic Programming
ctal. [33] AFP Age-fitness Pareto Optimization
MRGP Multiple Regression Genetic Programming
EPLEX e-Lexicase Selection
XGBoost Extreme Gradient Boosting
GradBoost Gradient Boosting Regression
MLP Multilayer Perceptrons (Neural Network) Regression
RF Random Forest Regression

KernelRidge Kernel Ridge Regression

AdaBoost Adaptive Boosting Regression

Lasso Least-angle Regression with Lasso
LinSVR Liner Support Vector Regression
LinReg Linear Regression

SGD Stochastic Gradient Descent Regression

corresponds to a tested problem. These figures show the difference in the median R?
between the local search variant and the standard genetic programming variant. The
color green represents a positive difference in favor of the NLS hybridization while
the color red represents a negative difference. Column hatching indicates statistical
significance calculated using a two-sided Wilcoxon rank-sum test (a = 0.05). Over-
all it can be observed that hybridization with local search drastically improves the
modeling accuracy.

A summary of the overall results is given in Table 4, where it can be seen that
both GP NLS and OSGP NLS produce statistically-better results for the majority of
problems, for both training and test data. For an easier comparison we use symbols
+,— to denote a statistically-significant performance difference between the NLS
hybridization and the baseline variant.

The detailed raw data containing the results of each algorithm repetition is avail-
able for download at the HeuristicLab homepage.? Aggregated results for each prob-
lem are given in Appendix Tables 6 and 7 as median R? + interquartile range on the
training and test data. The last column in each table illustrates how GP NLS and
OSGP NLS compare against their standard counterparts.

We then perform a large-scale comparison between our GP variants and several
symbolic regression methods tested by Orzechowski et al. [33] and summarized in

2 https://dev.heuristiclab.com/trac.fcgi/wiki/AdditionalMaterial.
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Table 5. We follow the original methodology in [33] and calculate algorithm ranks
on the tested problems based on median mean squared error.

The experimental setup has been intentionally chosen as similar as possible to the
benchmarking study [33] so that we can compare the results of our methods with
already published ones. Therefore, we ranked the performance of all algorithms
based on the median mean squared errors. However, we only created new results for
GP, GP NLS, OSGP and OSPG NLS and reused the publicly available results and
scripts for analysis and visualization provided by the Epistasis Lab at the University
of Pennsylvania.’ Box plots showing the rank distribution for each algorithm across
all problems are shown in Fig. 6 for the training set and in Fig. 7 for the test set.

We assess performance on the basis of training and test median ranks, and we
compare the significance of the problem rankings obtained by each algorithm
using the Kruskal test [23] to ascertain that the calculated rank medians are sta-
tistically different and Dunn’s test [9] with Holm-Bonferroni adjustments, to
ascertain whether the pairwise rank differences between the tested algorithms are

3 https://github.com/EpistasisLab/regression-benchmark.
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statistically significant. The calculated p values are shown in Appendix Tables 8
and 9.

In terms of training performance, both GP and OSGP algorithms fall behind
all other GP variants except AFP. At the same time, neither GP NLS and OSGP
NLS distinguish themselves as top performers on this benchmark set as they are
outranked by MRGP, XGBoost and GradBoost.

However, in terms of generalization ability (test performance), the results show
that GP NLS is tied with OSGP NLS, EPLEX-IM and XGBoost and outperforms
all other methods. In turn, OSGP NLS is tied with GP NLS and EPLEX-IM and
outperforms all other methods. Overall, the proposed local search hybridization is
able to significantly improve the generalization ability of algorithms.

5 Conclusion

Hybridization with local search represents a particularly effective approach for improv-
ing GP performance on a wide array of symbolic regression and symbolic classifica-
tion. Many studies in the literature report substantial benefits in terms of solution qual-
ity, convergence speed and model size, with the added cost of increased running time
caused by additional evaluations required by the local improvement procedure.

In this work we described in detail one such hybridization using GP and
Offspring Selection GP for the evolution of model structure and the Leven-
berg—Marquardt algorithm for optimization of numerical parameters for sym-
bolic regression. Implementation-wise, it is straight-forward to integrate linear
scaling by extending the model parameter vector with two additional coefficients
for scale and intercept. In general the approach works remarkably well on the
suite of benchmark problems that we used for testing regardless of the GP variant
employed. However, local search may get trapped in local optima, as we exempli-
fied on the problem of frequency detection for a trigonometric function.

Our testing indicates improved generalization as the main benefit of this
approach. In terms of training quality GP NLS and OSGP NLS rank behind
MRGP (Multiple Regression Genetic Programming), However, on the test set
OSGP NLS produces on average the best predictions among all GP variants.

As future work in this area we plan to investigate in more detail the corre-
spondence between local search effort (in terms of gradient descent iterations)
and algorithm performance within the Lamarckian framework. We conjecture
that a more efficient search model can be attained by tuning the balance between
local and global search effort.
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Appendix
See Tables 6, 7, 8 and 9.

Table 6 GP result comparison

Problem GP GP NLS Compari-
son
R? (train) R? (test) R? (train) R (test) Train Test
1089_USCrime 0.925 + 0.028 0.728 +£0.262 0.887 +0.038 0.749 + 0.166 — ~
659_sleuth_ex1714 0.884 + 0.022 0.618 +0.297 0.880 + 0.025 0.624 +0.385 =~
485_analcatdata_vehicle  0.689 + 0.042 0.591 +0.153 0.719 £0.032 0.614 +0.127 + ~
1096_FacultySalaries 0.897 + 0.021 0.834 +0.180 0.989 +0.012 0970 +0.111 + +
192_vineyard 0.784 + 0.060 0.541 +£0.601 0.785 +£0.072 0.514 +£0.527 = ~
228_elusage 0.847 +0.034 0.781 +£0.120 0.848 +0.036 0.779 + 0.130
542_pollution 0.747 £ 0.040 0.399 + 0.379 0.709 + 0.061 0.412 +0.282 —
687_sleuth_ex1605 0.626 + 0.052 0.569 +0.156 0.635 +£0.048 0.524 + 0.207 = &
527_analcatdata_elec- 1.000 + 0.000 0.999 + 0.001 1.000 + 0.000 1.000 + 0.000 + +
tion2000

706_sleuth_case1202 0.750 +£ 0.038 0.682 +0.137 0.770 +£ 0.040 0.657 + 0.154 +
523_analcatdata_neavote  0.954 + 0.012 0.935 + 0.051 0.954 + 0.012 0.940 + 0.039 =~ ~
591_fri_c1_100_10 0.418 +£0.040 0.322 +0.289 0.862 + 0.066 0.693 + 0.234 + +
594 _fri_c2_100_5 0.603 + 0.032 0.433 +0.253 0.984 + 0.006 0.904 + 0.128 + +
611_fri_c3_100_5 0.769 + 0.038 0.677 +£0.132 0.898 +£0.049 0.802 +0.115 + +
621_fri_c0_100_10 0.739 + 0.045 0.636 +0.169 0.973 +0.005 0.935 +0.032 + +
624_fri_c0_100_5 0.905 + 0.030 0.868 +£0.073 0.974 £ 0.005 0.932 +0.031 + +
634_fri_c2_100_10 0.495 +0.041 0.130 £0.313 0.862 +£0.066 0.679 +0.242 + +
651_fri_c0_100_25 0.698 + 0.051 0.600 + 0.186 0.976 + 0.005 0.932 +0.071 + +
656_fri_c1_100_5 0.446 + 0.045 0.335+£0.267 0.516 £0.083 0.318 +0.309 +
210_cloud 0.890 + 0.031 0.821 +£0.243 0.899 +0.041 0.796 + 0.280 =~

678_visualizing_environ-  0.452 + 0.058 0.272 + 0.218 0.432 + 0.050 0.253 +0.190
mental

663_rabe_266 0.998 £ 0.001 0.997 +0.002 1.000 + 0.000 0.999 +0.002 + +
665_sleuth_case2002 0.432 +0.080 0.290 +0.334 0.419 + 0.058 0.338 +0.248 ~
195_auto_price 0.877 +£0.022 0.821 +0.120 0.882 +0.022 0.824 +0.141 = ~
207_autoPrice 0.862 +0.022 0.825 +0.087 0.885 +0.024 0.778 +0.161 + ~
230_machine_cpu 0.928 +0.022 0.854 +0.136 0.942 +0.012 0.869 +0.124 +

561_cpu 0.992 +0.005 0.979 +0.039 0.999 +0.000 0.995 +0.011 + +
712_chscase_geyserl 0.785 + 0.019 0.770 +£0.053 0.787 +0.014 0.763 +0.060 ~ ~
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Table 6 (continued)

Problem GP GP NLS Compari-
son
R? (train) R? (test) R? (train) R? (test) Train Test

695_chatfield_4 0.887 + 0.015 0.859 + 0.047 0.888 +0.014 0.855 +0.051 =~ ~
579_fri_c0_250_5 0.889 + 0.020 0.872 + 0.050 0.964 + 0.004 0.949 +0.017 + +
596_fri_c2_250_5 0.552 +0.025 0.478 +0.167 0.969 + 0.015 0.952 + 0.038 + +
601_fri_c1_250_5 0.514 +0.027 0.482 +0.201 0.984 +0.003 0.972 + 0.009 + +
602_fri_c3_250_10 0.641 +0.036 0.583 +0.137 0.982 +0.005 0.963 +0.013 + +
603_fri_c0_250_50 0.836 £ 0.042 0.797 + 0.097 0.969 + 0.003 0.947 + 0.017 + +
605_fri_c2_250_25 0.492 +0.023 0.459 +0.165 0.972 +0.013 0.931 +0.043 + +
613_fri_c3_250_5 0.659 +0.030 0.569 + 0.161 0.978 +0.003 0.956 + 0.020 + +
615_fri_c4_250_10 0.642 +0.042 0.586 + 0.158 0.978 +0.009 0.943 + 0.056 + +
635_fri_c0_250_10 0.872 +0.041 0.847 +0.095 0.962 +0.004 0.949 + 0.010 + +
644 _fri_c4_250_25 0.620 +0.041 0.547 +0.144 0.972 +0.012 0.947 +0.026 + +
647_fri_c1_250_10 0.550 + 0.031 0.515 +0.142 0.978 +£0.010 0.962 + 0.018 + +
648_fri_c1_250_50 0.536 + 0.040 0.446 +0.229 0.973 +0.010 0.952 + 0.018 + +
653_fri_c0_250_25 0.847 + 0.062 0.820 = 0.070 0.958 +0.005 0.944 +0.015 + +
657_fri_c2_250_10 0.603 + 0.024 0.558 +0.118 0.965 +0.017 0.942 +0.039 + +
658_fri_c3_250_25 0.641 +0.027 0.583 +0.146 0.969 +0.016 0.925 +0.144 + +
690_visualizing_galaxy ~ 0.954 + 0.022 0.947 +0.030 0.979 +0.003 0.973 +0.011 + +
519_vinnie 0.759 + 0.015 0.726 + 0.056 0.763 £ 0.015 0.717 + 0.050 =~

556_analcatdata_apnea2  0.900 + 0.020 0.878 + 0.056 0.904 +0.022 0.871 +£0.072 =~
557_analcatdata_apneal 0.923 £0.014 0.861 £0.115 0.908 + 0.016 0.864 + 0.081

Q

1027_ESL 0.883 + 0.008 0.850 +0.033 0.874 +0.011 0.843 +0.036 —

522_pml0 0.252 +£0.035 0.189+0.072 0.324 +£0.045 0.221 +0.111 + +
547_no2 0.542 +0.034 0.485 +0.084 0.567 +0.023 0.506 + 0.077 + ~
581_fri_c3_500_25 0.637 +£0.021 0.593 +£0.094 0.967 + 0.020 0.959 +0.024 + +
582_fri_c1_500_25 0.475 +£0.031 0.436 +0.124 0.979 +£0.015 0.975 +0.020 + +
584_fri_c4_500_25 0.602 + 0.050 0.569 +0.110 0.977 +£0.017 0.965 +0.029 + +
597_fri_c2_500_5 0.603 + 0.030 0.579 +£0.075 0.980 +0.004 0.973 +0.011 + +
604_fri_c4_500_10 0.654 +0.022 0.623 +0.075 0.978 +0.006 0.971 +0.012 + +
616_fri_c4_500_50 0.615 £ 0.029 0.557 £0.106 0.964 +0.022 0.946 +0.043 + +
617_fri_c3_500_5 0.586 + 0.032 0.562 +0.094 0.979 + 0.005 0.972 +0.007 + +
626_fri_c2_500_50 0.561 +0.030 0.526 +0.104 0.976 + 0.017 0.964 +0.020 + +
627_fri_c2_500_10 0.559 +£0.025 0.512+0.133 0.978 +0.008 0.964 +0.043 + +
631_fri_c1_500_5 0.529 +0.044 0.497 +0.113 0.980 + 0.004 0.971 +0.008 + +
633_fri_c0_500_25 0.856 + 0.071 0.844 +0.064 0.963 + 0.003 0.956 + 0.010 + +
637_fri_c1_500_50 0.467 +0.034 0.443 +0.092 0.966 + 0.018 0.956 +0.022 + +
641_fri_c1_500_10 0.539 +0.025 0.535+0.115 0.979 +0.006 0.974 +0.009 + +
643_fri_c2_500_25 0.588 +£0.032 0.570 +0.086 0.975 +0.011 0.967 +0.013 + +
645_fri_c3_500_50 0.624 +0.043 0.620 +0.099 0.951 +0.026 0.942 +0.038 + +
646_fri_c3_500_10 0.623 +£0.031 0.611 +£0.098 0.980 + 0.008 0.973 +0.010 + +
649_fri_c0_500_5 0.907 +£0.013 0.894 +0.022 0.962 + 0.002 0.955 +0.008 + +
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Table 6 (continued)
Problem GP GP NLS Compari-
son

R (train) R (test) R (train) R (test) Train Test
650_fri_c0_500_50 0.827 £ 0.039 0.827 +£0.062 0.961 + 0.004 0.955 +0.008 + +
654 _fri_c0_500_10 0.876 +£0.026 0.863 +£0.031 0.958 +0.003 0.951 +0.011 + +
666_rmftsa_ladata 0.685 +0.044 0.675 +£0.140 0.669 + 0.049 0.675 +0.145 =
1028_SWD 0.437 +£0.020 0.380 £ 0.045 0.459 +0.014 0.385 +0.060 + ~
1029_LEV 0.569 +0.026 0.558 +0.083 0.569 + 0.026 0.559 +0.083 =~
1030_ERA 0.391 £ 0.019 0.360 +0.049 0.403 +0.016 0.363 +0.053 +
583_fri_c1_1000_50 0.501 +0.031 0.483 +£0.063 0.975 +0.017 0.966 + 0.024 + +
586_fri_c3_1000_25 0.644 +0.027 0.601 +0.089 0.978 +0.007 0.973 +0.011 + +
588_fri_c4_1000_100 0.679 +0.034 0.665 +0.069 0.976 +0.012 0.971 +0.017 + +
589_fri_c2_1000_25 0.531 +£0.031 0.513 +£0.090 0.979 +0.006 0.976 +0.011 + +
590_fri_c0_1000_50 0.833 +0.074 0.821 +0.077 0.964 +0.002 0.959 + 0.006 + +
592_fri_c4_1000_25 0.657 +£0.029 0.637 +0.060 0.968 +0.015 0.962 +0.020 + +
593_fri_c1_1000_10 0.535 +£0.031 0.541 +£0.055 0.979 +0.005 0.977 +0.009 + +
595_fri_c0_1000_10 0.883 +£0.010 0.875 £0.030 0.956 +0.002 0.953 +0.006 + +
598_fri_c0_1000_25 0.880 + 0.069 0.867 + 0.077 0.964 +0.001 0.960 + 0.004 + +
599_fri_c2_1000_5 0.582 +£0.021 0.556 +0.056 0.980 + 0.004 0.977 +0.007 + +
606_fri_c2_1000_10 0.536 +£0.021 0.521 +£0.056 0.974 +0.007 0.971 +0.011 + +
607_fri_c4_1000_50 0.635 +0.033 0.617 £0.075 0.977 +0.012 0.971 +0.012 + +
608_fri_c3_1000_10 0.640 + 0.024 0.630 +0.055 0.979 +0.006 0.974 +0.010 + +
609_fri_c0_1000_5 0.888 +0.009 0.881 +0.022 0.963 + 0.001 0.960 + 0.004 + +
612_fri_c1_1000_5 0.509 +0.022 0.483 +£0.057 0.979 +0.005 0.974 +0.005 + +
618_fri_c3_1000_50 0.665 +0.035 0.648 +0.068 0.974 + 0.012 0.970 +0.017 + +
620_fri_c1_1000_25 0.496 + 0.024 0.464 +0.077 0.975 +0.013 0.970 + 0.014 + +
622_fri_c2_1000_50 0.555 +£0.031 0.532+0.062 0.976 +0.015 0.969 +0.020 + +
623_fri_c4_1000_10 0.637 +£0.027 0.612 +0.101 0.978 + 0.007 0.973 +0.009 + +
628_fri_c3_1000_5 0.621 +0.024 0.587 +0.069 0.979 +0.007 0.974 +0.012 + +

R* values reported as median + interquartile range. Symbols +, —, ~ denote statistically-better, statisti-
cally-worse and statistically-insignificant differences between GP NLS and GP using a two-sided Wil-
coxon rank-sum test (a = 0.05)
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Table7 OSGP result comparison

Problem OSGP OSGP NLS Comparison

R? (train) R? (test) R? (train) R? (test) Train  Test
1089_USCrime 0.927 + 0.025 0.772 +£0.176  0.898 £0.029  0.769 + 0.180 —
659_sleuth_ex1714 0.915 + 0.019 0.642 +0.509 0.893 +0.029  0.630 +0.217 — ~
485_analcatdata_vehicle 0.701 + 0.049 0.609 +0.135 0.728 +0.035  0.585+0.134  +
1096_FacultySalaries 0.899 + 0.023 0.828 +0.187 1.000 +0.000  0.984 +0.297 + +
192_vineyard 0.795 + 0.044 0.477 +0.697 0.837 +£0.056  0.517 +0.531 +
228_elusage 0.849 + 0.034 0.780 +0.135 0.849 +0.034  0.755+0.135 = ~
542_pollution 0.801 + 0.049 0.436 +0.422 0.731 £0.047  0.324 +0.370 — ~
687_sleuth_ex1605 0.635 + 0.049 0.562 +0.173 0.640 +0.051  0.547 +0.171 =~ ~
527_analcatdata_elec- 1.000 + 0.000 1.000 + 0.003 1.000 +0.000  1.000 + 0.000  + +

tion2000

706_sleuth_case1202 0.757 + 0.042 0.685+0.135 0.773 £0.036  0.659 +0.160  +

523_analcatdata_neav-  0.954 +0.012 0.933 +£0.061 0.954 +£0.012  0.942 + 0.046
ote

R
2

591_fri_c1_100_10 0.462 + 0.027 0.205 +£0.375 0.938 +£0.020  0.859 +£0.131 + +
594_fri_c2_100_5 0.613 + 0.020 0.477 +0.241 0969 +0.011  0.895+0.153 + +
611_fri_c3_100_5 0.781 + 0.028 0.660 +0.172 0.956 +0.011  0.909 +0.060 + +
621_fri_c0_100_10 0.742 + 0.040 0.633 +£0.176 0983 +0.005  0.906 +0.061 + +
624_fri_c0_100_5 0.925 £ 0.016 0.890 +0.041 0.953 +£0.011  0.905 +£0.051 + +
634_fri_c2_100_10 0.565+0.024 —0.092 +0.987 0.674 +0.065 0.524 +0.249 + +
651_fri_c0_100_25 0.710 £ 0.046 0.600 +£0.218 0.947 +£0.018  0.898 £ 0.072 + +
656_fri_c1_100_5 0.487 + 0.059 0.315+0.347 0927 +0.024  0.837 £0.104 + +
210_cloud 0.890 + 0.036 0.818 +£0.215 0.955+0.010 0.718 +0433 + -
678_visualizing_envi-  0.425 £+ 0.048 0.274 +£0.209 0.590 +0.041  0.125+0.521 + -
ronmental

663_rabe_266 0.998 + 0.000 0.998 +0.001 1.000 +0.000  0.999 +£0.000 + +
665_sleuth_case2002 0.431 + 0.084 0.230 +3.251 0.442 +0.059  0.286 + 0.235 ~
195_auto_price 0.864 + 0.023 0.829 +0.076 0.863 +0.023  0.828 £ 0.100 = ~
207_autoPrice 0.866 + 0.023 0.841 +£0.121 0.865+0.018  0.824 £0.094 = ~
230_machine_cpu 0.944 + 0.016 0.893 +£0.089 0.944 +0.010  0.868 + 0.127

561_cpu 0.993 + 0.003 0.981 +£0.021 0.999 +0.000  0.997 £0.017 + +
712_chscase_geyserl 0.786 + 0.017 0.770 £ 0.060 0.788 +£0.018  0.761 +£0.068 =~
695_chatfield_4 0.889 +0.016 0.857 +0.059 0.890 +0.013  0.851 +0.055 = &
579_fri_c0_250_5 0.907 + 0.032 0.902 +0.047 0.963 +0.004  0.949 +0.016 + +
596_fri_c2_250_5 0.604 + 0.027 0.539 +0.155 0.985+0.003 0.976 +0.013 + +
601_fri_c1_250_5 0.509 +0.021 0.509 +0.166 0.979 +0.005  0.968 +0.015 + +
602_fri_c3_250_10 0.679 +0.038 0.609 +0.134 0.980+0.004 0.965+0.015 + +
603_fri_c0_250_50 0.874 + 0.063 0.812+0.101 0.967 +£0.003  0.950 +0.012 + +
605_fri_c2_250_25 0.533 +0.038 0.459 +0.164 0961 +£0.016  0.923 £0.028 + +
613_fri_c3_250_5 0.662 + 0.030 0.594 +0.134 0979 +0.003  0.965 +0.018 + +
615_fri_c4_250_10 0.654 + 0.038 0.601 +0.122 0.960 +0.017  0.920 £ 0.052 + +
635_fri_c0_250_10 0.883 +£0.019 0.855+0.040 0.963 +0.003  0.948 +0.012 + +
644_fri_c4_250_25 0.618 +0.037 0.567 +£0.100 0.958 +£0.019  0.931 £0.034 + +
647_fri_c1_250_10 0.560 + 0.026 0.523 +£0.165 0.968 +£0.015  0.956 £ 0.025 + +
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Table 7 (continued)
Problem OSGP OSGP NLS Comparison
R? (train) R? (test) R? (train) R? (test) Train  Test
648_fri_c1_250_50 0.520 + 0.023 0.458 +£0.206 0.965+0.011  0.943 +0.034 + +
653_fri_c0_250_25 0.871 + 0.047 0.843 +£0.063 0.962+0.004 0.944 +0.014 + +
657_fri_c2_250_10 0.575 +0.023 0.550 £ 0.166 0.979 +0.005  0.966 +0.012  + +
658_fri_c3_250_25 0.641 + 0.027 0.569 +0.185 0.961 +0.014  0.928 +0.058 + +
690_visualizing_galaxy  0.953 + 0.013 0.949 +0.015 0.979 +0.003  0.974 + 0.007 + +
519_vinnie 0.762 £ 0.015 0.721 £0.055 0.763 £0.016  0.722 +0.058 =~ ~
556_analcatdata_apnea2 0.905 + 0.020 0.876 +£0.075 0.899 +0.015  0.884 +0.058 — ~
557 _analcatdata_apneal 0.910 + 0.019 0.878 +£0.066 0.907 +£0.015  0.885+0.069 =
1027_ESL 0.884 + 0.007 0.854 +0.026 0.896 +0.007  0.836 +0.074 + -
522 _pml0 0.275 + 0.030 0.207 £ 0.092 0.344 +0.027  0.277 +0.110 + +
547_no2 0.542 + 0.026 0.492 +0.069 0.516+0.032  0.449 +0.099 — -
581_fri_c3_500_25 0.623 + 0.022 0.588 +£0.068 0.974 +£0.015 0.965 +0.023 + +
582_fri_c1_500_25 0.490 + 0.025 0.456 +£0.091 0.975+0.010 0971 +0.011 + +
584_fri_c4_500_25 0.625 + 0.031 0.581 +£0.069 0.973 +0.009 0.968 +0.016  + +
597_fri_c2_500_5 0.627 + 0.020 0.600 +0.094 0.982+0.002 0.978 £0.009 + +
604_fri_c4_500_10 0.673 +0.021 0.635 +0.107 0.981 +0.004 0973 +0.012 + +
616_fri_c4_500_50 0.610 + 0.032 0.553 £0.073 0.957 +£0.029  0.938 +0.039 + +
617_fri_c3_500_5 0.582 +0.031 0.574 £0.070 0.979 +£0.003  0.974 +0.008 + +
626_fri_c2_500_50 0.556 +0.023 0.514 +£0.129 0976 +0.007  0.969 +0.014  + +
627_fri_c2_500_10 0.559 +0.028 0.498 +0.138 0.983+0.002 0977 +0.016 + +
631_fri_c1_500_5 0.525 +0.020 0.512+0.099 0.980+0.002 0.975+0.004 + +
633_fri_c0_500_25 0.896 + 0.042 0.888 +0.046 0.963 +0.002  0.956 +0.009 + +
637_fri_c1_500_50 0.489 + 0.026 0.476 +0.106 0971 +0.014  0.966 +0.017 + +
641_fri_c1_500_10 0.566 + 0.031 0.568 +0.096 0.983 +0.004 0.978 +£0.008 + +
643_fri_c2_500_25 0.618 +0.025 0.579 £0.120 0.974 +£0.009 0.964 +0.015 + +
645_fri_c3_500_50 0.612 +0.028 0.595 +0.075 0.955+0.031 0.938 +0.037 + +
646_fri_c3_500_10 0.656 + 0.021 0.624 +0.103 0.981 +0.005 0.974 +0.010 + +
649_fri_c0_500_5 0.913 + 0.022 0.907 +0.029 0.962 +0.002  0.955 +0.007 + +
650_fri_c0_500_50 0.876 + 0.068 0.856 +0.075 0.962 +0.002  0.956 +0.009 + +
654_fri_c0_500_10 0.892 + 0.031 0.886 +0.037 0.958 +0.003 0.951 +0.011 + +
666_rmftsa_ladata 0.684 + 0.045 0.647 £0.179 0.667 +£0.047  0.669 +0.143  — ~
1028_SWD 0.449 +0.013 0.383 +£0.045 0.449+0.017 0.384 +0.048 =~ =
1029_LEV 0.568 + 0.027 0.558 +£0.081 0.569 +0.026  0.559 +0.086 =~ ~
1030_ERA 0.395 +0.018 0.363 +£0.056 0.389+0.018 0.359+0.053 = ~
583_fri_c1_1000_50 0.519 + 0.038 0.512 +0.084 0.961 +0.022  0.956 +0.025 + +
586_fri_c3_1000_25 0.658 + 0.025 0.632 +0.070 0.981 +£0.003  0.977 +0.007 + +
588_fri_c4_1000_100  0.687 + 0.023 0.674 +£0.069 0961 +0.028 0.958 +£0.027 + +
589_fri_c2_1000_25 0.554 +0.028 0.538 £0.077 0.982+0.003 0.978 +0.007 + +
590_fri_c0_1000_50 0.874 + 0.082 0.871 £0.071 0.963 +£0.002  0.959 +0.006 + +
592_fri_c4_1000_25 0.692 + 0.026 0.677 £0.064 0.977 +£0.007 0972 +0.009 + +
593_fri_c1_1000_10 0.524 +0.023 0.526 +0.053 0.981 +0.003  0.979 +0.005 + +
595_fri_c0_1000_10 0.888 + 0.029 0.884 +0.038 0.956 +0.002  0.954 +0.008 + +
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Table 7 (continued)

Problem OSGP OSGP NLS Comparison

R? (train) R? (test) R? (train) R? (test) Train  Test

598_fri_c0_1000_25 0.895 +0.028 0.890 £ 0.041  0.964 +0.001  0.960 + 0.004
599_fri_c2_1000_5 0.598 + 0.026 0.579 £ 0.057 0.984 +£0.002  0.981 + 0.003
606_fri_c2_1000_10 0.559 +0.021 0.552 +0.063 0.978 +0.004  0.974 + 0.006
607_fri_c4_1000_50 0.666 + 0.038 0.645 £ 0.051 0.979 £0.007  0.975 £ 0.009
608_fri_c3_1000_10 0.664 + 0.031 0.640 £0.059 0.980 +0.003  0.977 + 0.008
609_fri_c0_1000_5 0.903 +0.035 0.903 £0.037 0.963 +0.002  0.960 + 0.005
612_fri_c1_1000_5 0.544 + 0.029 0.525+0.073 0.982+0.002  0.978 + 0.005

618_fri_c3_1000_50 0.686 + 0.023 0.673 +£0.063 0.979 £ 0.006  0.974 & 0.009
620_fri_c1_1000_25 0.543 +0.028 0.524 £ 0.057 0.978 £0.004  0.974 + 0.007
622_fri_c2_1000_50 0.594 + 0.030 0.548 £0.067 0.980 +£0.007  0.975 £ 0.011
623_fri_c4_1000_10 0.656 + 0.028 0.631 £0.072 0.980 +£0.005  0.977 + 0.006
628_fri_c3_1000_5 0.670 + 0.029 0.644 +£0.079 0.979 £0.004  0.976 + 0.004

+ o+ o+t o+ o+ o+
+ o+ o+t o+ +

R? values reported as median + interquartile range. Symbols +, —, ~ denote statistically-better, statisti-
cally-worse and statistically-insignificant differences between OSGP NLS and OSGP using a two-sided
Wilcoxon rank-sum test (a = 0.05)
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