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Abstract In this special issue of the Glycoconjugate Journal
focusing on glycosciences and development, we summarize
recent advances in our understanding of the role of mucin-
type O-glycans in development and disease. The presence of
this widespread protein modification has been known for
decades, yet identification of its biological functions has
been hampered by the redundancy and complexity of the
enzyme family controlling the initiation of O-glycosylation,
as well as the diversity of extensions of the core sugar.
Recent studies in organisms as diverse as mammals and
Drosophila have yielded insights into the function of this
highly abundant and evolutionarily-conserved protein mod-
ification. Gaining an understanding of mucin-type O-glycans
in these diverse systems will elucidate crucial conserved
processes underlying many aspects of development and
homeostasis.
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Introduction

Proteins are decorated with a variety of carbohydrate side
chains that are responsible for mediating many diverse
cellular and developmental events (reviewed in [1]). The
two major forms of protein glycosylation found in
eukaryotes are N-linked and O-linked, designated as such
by virtue of their glycosidic linkage to the corresponding
amino acid. While many types of O-glycosylation are
known to occur, the most abundant is mucin-type O-
glycosylation, which involves the addition of an N-acetyl-
galactosamine residue (GalNAc) to the hydroxyl group of
either serine or threonine to form the Tn antigen (Tn Ag)
(GalNAc«x1-S/T) (Fig. 1). This type of glycosylation is
evolutionarily conserved, being found in mammals down to
certain types of fungi [2, 3]. Here, we describe the enzymes
responsible for the synthesis of the most common mucin-
type O-glycans and focus on recent advances in our
understanding of their diverse biological roles.

Enzymes responsible for the synthesis of mucin-type
O-glycans

O-glycosylation is initiated by a family of enzymes

Mucin-type O-linked glycosylation is initiated by a family
of enzymes known as the UDP-N-acetylgalactosamine:
polypeptide N-acetylgalactosaminyltransferases (ppGal-
NAcTs or ppGaNTases in mammals and PGANTs in
Drosophila; EC 2.4.1.41) (reviewed in [2, 3]) which are
responsible for catalyzing the transfer of GalNAc from the
nucleotide sugar UDP-GalNAc to the hydroxyl group of
either serine or threonine in protein substrates destined to
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Fig. 1 Biosynthesis of the most common mucin-type O-glycans in
mammals (a) and Drosophila melanogaster (b). The initiation of
mucin-type O-glycosylation is catalyzed by the addition of GaNAc onto
the hydroxyl group of either serine or threonine in protein substrates
destined to be membrane-bound or secreted, forming the Tn antigen (Tn
Ag). Enzymes responsible for the synthesis of core 1 (T antigen), core 2,
core 3 and core 4 structures are shown. Additional extensions of

be membrane-bound or secreted (Fig. 1). There are 15
reports of distinct mammalian ppGalNACcTs in the litera-
ture, 14 of which have been functionally characterized
(reviewed in [2, 3]) (Table 1). There is now evidence for
three additional active isoforms, with homology searches
revealing the potential for a total of 20 isoforms in human
and 18 isoforms in mouse (J. Raman, T. Fritz and L. A.
Tabak, personal communication). Fewer family members
are found in the Drosophila and C. elegans; thus far, the fly
has nine functional transferases (derived from nine distinct
genes), with as many as 12 genes total [4—6]; the worm has
five cDNAs that encode functional transferases (derived
from four genes), with as many as nine transferase-
encoding genes total [7, 8]. All isoforms are type II
transmembrane proteins with a short N-terminal cytoplas-
mic region, a hydrophobic transmembrane region, a
variable length stem region and a conserved catalytic
region. Biochemical analyses have revealed unique as well
as overlapping substrate preferences amongst isoforms [4,
5, 9—14] (reviewed in [2]). Additionally, there is a hierarchy
of action within this family, with certain members acting as
“Initiating” transferases, transferring GalNAc to unmodified
substrates, while other members act only on previously
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b Drosophila mucin-type O-glycan synthesis
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mammalian O-glycans and modifications with sialic acid or fucose are
not shown. There is currently no evidence for sialylated O-glycans in
Drosophila. ppGalNAcTs or PGANTs, UDP-N-acetylgalactosamine:
polypeptide N-acetylgalactosaminyltransferases; Core 1 (33-Gal-T, core
1 p1-3-galactosyltransferase; 33Gn-T6, (31-3 N-acetylglucosaminyl-
transferase; F6GIcNAc-Ts, 31-6 N-acetylglucosaminyltransferase

glycosylated substrates (“glycopeptide transferases”)
[15-18].

Phylogenetic analysis reveals a high degree of sequence
conservation among ppGalNACcTs across species, defining
orthologous groups or pairs [4, 5]. These orthologues
display not only sequence conservation but functional
conservation as well. /n vitro studies revealed that ortho-
logues share similar substrate preferences [4, 5] and
preferred sites of GalNAc addition within those substrates
[4]. This functional conservation suggests unique biological
roles for members of this family that have been maintained
over the course of evolution.

Studies examining the expression of each family
member revealed unique spatial and temporal gene expres-
sion patterns during both mammalian and fly development
[6, 19]. Some members are expressed widely in many
tissues during many stages of development while others are
expressed in a very restricted subset of tissues at specific
times [6, 19]. Collectively, the unique spatial and temporal
expression patterns, along with conserved substrate prefer-
ences and hierarchy of action within this family suggest a
complex and highly regulated process governing the
acquisition of mucin-type O-glycans.
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Table 1 Published reports of mammalian ppGalNAcTs

ppGalNACcT isoform Species Activity demonstrated? Reference

ppGalNAc-T1 Bovine Yes Homa et al. [83], Hagen et al. [84]
ppGalNAc-T1 Rattus norvegicus Yes Hagen et al. [85]

ppGalNAc-T1 Homo sapiens Yes White et al. [86]

ppGalNAc-T1 Mus musculus Yes Hagen et al. [87]

ppGalNAc-T1 Porcine Yes Yoshida et al. [88]

ppGalNAc-T2 Homo sapiens Yes White et al. [86]

ppGalNAc-T3 Homo sapiens Yes Bennett et al. [89]

ppGalNAc-T3 Mus musculus Yes Zara et al. [9]

ppGalNAc-T4 Mus musculus Yes Hagen et al. [87]

ppGalNAc-T4 Homo sapiens Yes Bennett et al. [90]

ppGalNAc-T5 Rattus norvegicus Yes Ten Hagen et al. [13]
ppGalNAc-T6 Homo sapiens Yes Bennett et al. [10]
ppGalNAc-T7* Rattus norvegicus Yes Ten Hagen et al. [15]
ppGalNAc-T7 Homo sapiens Yes Bennett et al. [16]
ppGalNAc-T8® Homo sapiens No White et al. [91]

ppGalNAc-T9 Homo sapiens Yes Toba et al. [92], Zhang et al. [93]
ppGalNAc-T10° Rattus norvegicus Yes Ten Hagen et al. [17]
ppGalNAc-T10 Homo sapiens Yes Cheng et al. [94]

ppGalNAc-T11 Homo sapiens Yes Schwientek et al. [5]
ppGalNAc-T12 Homo sapiens Yes Guo et al. [95]

ppGalNAc-T13¢ Mus musculus Yes Hennet et al. [96], Zhang et al. [93]
ppGalNAc-T13 Homo sapiens Yes Zhang et al. [93]

ppGalNAc-T14 Homo sapiens Yes Wang et al. [97]

ppGalNAc-T15 Homo sapiens Yes Cheng et al. [98]

Originally designated -T6 but renamed -T7 in a note added in proof
®No confirmation of biochemical activity to date

¢ Originally designated -T9 but renamed -T10

9 Originally designated -T8 but renamed -T13

(there is evidence for five additional human isoforms, three of which have confirmed transferase activity; J. Raman, T. Fritz and L. A. Tabak,

personal communication)

Extension of the GalNAcx1-S/T

The most abundant modification of the core GalNAcx!1-S/T
is known as the core 1 or T antigen structure (Galf1-
3GalNAcx1-S/T) (Fig. 1). There is one core 1 [31-3
galactosyltransferase (core 1 33-Gal-T) in mammals respon-
sible for the addition of a galactose in a 31-3 linkage to
GalNAc [20, 21]; the gene encoding this enzyme is widely
expressed in mammals, especially in the liver, kidney, heart
and placenta [20, 21]. This gene is evolutionarily-conserved,
with one core 1 33-Gal-T being functionally described in C.
elegans [22] and at least four functional core 1 (3-Gal-Ts
described in Drosophila [23]. Like its mammalian counter-
part, the C. elegans core 1 33-Gal-T gene is expressed
throughout all developmental stages and in all cells,
suggesting a crucial requirement for this modification [22].
The complete developmental expression pattern of the
multiple Drosophila core 1 3-Gal-T genes is not currently
known, although two are expressed in the developing
salivary glands and one is expressed in the amnioserosa, a
tissue involved in cell migration and adhesion during devel-
opment [23]. Interestingly, the activity of the mammalian core

1 33-Gal-T enzyme requires the coexpression of a molecular
chaperone, Cosmc [24]. Cosmc aids in folding and stability
of the core 1 33-Gal-T enzyme, ensuring proper localization
to the Golgi apparatus [24, 25]. Mutations in Cosmc result in
the loss of core 1 33-Gal-T from the Golgi apparatus and loss
of core 1 activity [24, 25]. In contrast to the mammalian
enzyme, the C. elegans and Drosophila core 1 (33-Gal-Ts
do not appear to require a chaperone for activity [22, 23].

The core 3 modification (GlcNAcf1-3GalNAcx-S/T) is
catalyzed by the (1-3 N-acetylglucosaminyltransferase
(B3Gn-T6) (Fig. 1). There is one B3Gn-T6 in mammals
that is expressed primarily in stomach, small intestine and
colon [26, 27]. Orthologues responsible for synthesizing the
core 3 structure have not been identified in C. elegans or
Drosophila as yet.

The core 2 and core 4 O-glycan branching (Fig. 1) of the
core 1 and core 3 structures, respectively, is catalyzed by
the 31-6 N-acetylglucosaminyltranferases (36GIcNAc-Ts).
There are three core 2 transferases identified to date in
mammals [28-32] (reviewed in [33]), two of which
catalyze the formation of core 2 structures and one that is
responsible for forming both core 2 and core 4 branched
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structures (Fig. 1). The expression pattern of each gene is
distinct, suggesting unique biological roles for each
enzyme. The T-1 isoform is expressed ubiquitously [28],
while T-2 (which is responsible for core 2 and core 4
synthesis) is expressed in the kidney, pancreas, stomach,
intestines and colon [30, 31]; T-3 is expressed in the thymus
and T cells [32], Less is known about the existence of
B6GIcNAc-Ts responsible for this branched structure in C.
elegans or Drosophila. Thus far no functional F6GIcNAc-
Ts have been identified in Drosophila but a gene
homologous to P6GIcNAc-T has been identified in C.
elegans (gly-1) [34]. Itis of note that no mucin-type O-glycans
carrying the core 2, core 3 or core 4 structures or sialic acid were
detected in a recent mass spectroscopy analysis of Drosophila
O-glycans [35]. However, evidence for the presence of
glucuronic acid (GlcA) on the core 1 O-glycans of Drosophila
(M. Tiemeyer, personal communication) and C. elegans has
been reported [36]. Additionally, novel O-linked structures
containing (3-Glc are also observed in C. elegans [36].

Each of the above mentioned branches can be further
extended by the addition of Gal and GIcNAc and further
modified by fucosylation and sialylation. The enzymes
responsible for these additional modifications and other
core structures will not be discussed in this review.

O-glycan function
O-glycosylation during development

A crucial role for mucin-type O-glycans during develop-
ment was first demonstrated in Drosophila. Mutations in
one member of the pgant family (pgant354) were shown to
abrogate enzymatic activity and result in recessive lethality,
with death occurring throughout development [5, 37]. This
was the first example that mucin-type O-glycans were
required for viability in any organism.

Studies of mice deficient for the core 1 33-Gal-T gene (7~
syn—/—), provided more detailed information regarding the
role of O-glycans in specific organ systems during develop-
ment [38, 39]. T-syn—/— mice displayed defective angiogen-
esis and died from fatal brain hemorrhages by embryonic
day 14 (E14) [38]. Specifically, vasculature formation was
irregular in these mice, displaying distorted capillary lumens,
and detachment of endothelial cells from periocytes and the
extracellular matrix. These studies revealed a role for O-
glycans in vascular system/tubular system development,
possibly via influencing cell—cell and/or cell-ECM interac-
tions required for proper tube/diffusion barrier formation.

Studies examining hypomorphic mutations in the core 1
[33-Gal-T gene provided additional evidence for the role of
O-glycans in tubular architecture and function [39]. In this

@ Springer

study, most core 1 33-Gal-T hypomorphic mice died within
200 days due to compromised renal function. The kidneys
of these mice displayed distorted glomeruli and proximal
tubules. The authors propose that the improper glycosyla-
tion of podocalyxin (podxl), a glycoprotein normally
present on the surface of the renal podocyte foot process
is responsible for the disruption in kidney function. podx!
—/— mice die embryonically, with defective kidney forma-
tion [40], lending support for the role of this glycoprotein in
the defects seen in the core 1 (33-Gal-T hypomorph. The
molecular nature of how the O-glycans on podxl are
mediating these biological effects remains to be determined
but it is suggested to be due to cell adhesion defects [39].

The core 1 33-Gal-T hypomorphic mice also displayed
thrombocytopenia [39]. The authors propose that abnormal
glycosylation of Gplbe, a protein present on platelets and
involved in platelet adhesion and function, is responsible
for the thrombocytopenia observed. It is also possible that
loss of the core 1 structure may result in self-reactivity and
clearance of those cells now displaying the Tn Ag (see Tn
syndrome below).

Additional evidence for the specific role for O-glycans in
tubulogenesis was further supported by recent work in
Drosophila. Examination of O-glycans present during
Drosophila development revealed an abundance along the
apical and luminal regions of developing tubular organs
(Fig. 2) [41]. O-glycans detected by lectins and antibodies
were present along the apical surfaces of the developing
hindgut, foregut, salivary glands, malpighian tubules (the
functional equivalent of the kidney) and the tracheal system
[41]. Mutations in one member of the pgant family in
Drosophila (pgant354) resulted in abnormal tracheal tube
formation. Specifically, tracheal tubes of mutants showed
loss of apical and luminal O-glycans and were irregular in
diameter and shape (Fig. 3) [42]. Further examination
revealed a loss of apicobasal polarity and diffusion barrier
formation in the pgant354 mutants. An increase in cyto-
plasmic vesicular staining of proteins destined for the apical
and luminal surfaces was also seen in the mutants [42]. Based
on these results, it was proposed that O-glycosylation is
responsible for proper apical/luminal composition, apico-
basal polarity and diffusion barrier formation in the tracheal
system by influencing the apical delivery of proteins/
glycoproteins [42]. Roles for O-glycans in trafficking,
delivery and/or maintenance of proteins at the cell surface
has also been suggested previously in a number of cell
culture studies [43—49]. Taken together, these studies suggest
a conserved role for O-glycans in the molecular events
governing tubulogenesis across diverse organ systems and
species, possibly by influencing trafficking and stability of
crucial proteins involved in tube architecture and function.

Most recently, studies in Xenopus have implicated mucin-
type O-glycosylation in TGF- signaling during develop-
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stage13

Fig. 2 Tn antigen (GalNAcx-S/T) expression in developing tubular
tissues during Drosophila embryogenesis. The dashed white lines
outline the outer boundaries of each organ shown. Note the intense
apical and luminal presence of the O-glycans in each organ. Stages are

ment [50]. This study demonstrated that over-expression of a
putative ppGalNACcT caused inhibition of both Activin and
BMP signaling during Xenopus embryogenesis. The authors
propose that putative O-glycans on the ActR-IIB receptor
may be responsible for the effects seen, by influencing the
formation of heteromeric receptor complexes. However,
direct demonstration of transferase activity, as well as the
receptors, ligands or other proteins that are normally
O-glycosylated in vivo remains to be determined.

O-glycosylation and disease

Recently studies have highlighted the involvement of
mucin-type O-glycosylation in a number of diseases. One
such example is familial tumoral calcinosis, a recessively
inherited condition characterized by hyperphosphatemia,
increased bone density and the development of ectopic
calcified masses [51]. Studies of affected families revealed
that this disease is the result of mutations in the
glycosyltransferase ppGalNAc-T3 [51-53]. In other affect-
ed groups, mutations in the phosphate-regulating hormone
FGF23 cause the same condition [54], suggesting a link
between FGF23 and O-glycosylation. Patients with muta-
tions in ppGalNAc-T3 have increased levels of cleaved,
inactive FGF23 and a paucity of intact, active FGF23 in
their blood [52, 55]. In vitro studies have demonstrated that
ppGalNAc-T3 can glycosylate FGF23 at a serine near a
protease cleavage site, leading to the hypothesis that O-
glycans normally present on FGF23 confer protection from
proteolysis and aid in the proper secretion of intact FGF23
[56]. In the case of ppGalNAc-T3 mutations, it is proposed
that under-glycosylated FGF23 is prematurely cleaved and
inactivated, leading to improper regulation of phosphate
levels and the resultant phenotypic consequences in
patients. These data suggest a role for O-glycans in
regulating proteolytic events necessary for proper phos-
phate regulation and homeostasis in vivo.

shown in the lower left corner of each panel. fg foregut, Ag hindgut,
mp malpighian tubules, sg salivary gland, #s tracheal system. Adapted
from Glycobiology, 17, 820-827 (2007) by copyright permission of
the Oxford University Press

Additional evidence for the role of O-glycans in disease
comes from examining the molecular basis of Tn syn-
drome, a rare autoimmune disorder that results in throm-
bocytopenia and hemolytic anemia [57]. Mutations in
Cosmc (the chaperone for the core 1 (33-Gal-T) were
shown to be responsible for Tn syndrome in a subset of
hematopoetic cells [24]. Somatic mutations in Cosmc result
in the loss of the core 1 structure on a subpopulation of
hematopoetic cells, exposing the immunoreactive Tn Ag on
these cells and thus leading to hemolysis.

IgA nephropathy (IgAN) is also thought to have its root
in aberrant O-glycosylation. This disease is characterized
by abnormal deposition of IgA1 in the glomerular mesan-
gium, resulting in glomerulonephritis (reviewed in [58]).
IgA1l is normally heavily O-glycosylated in the hinge region
with sialylated core 1 structures [59-62]. However, mesangial
IgAl in IgAN patients is aberrantly O-glycosylated, showing
a loss of the core 1 structure [60, 61, 63—66]. It is thought that
the truncated O-glycans present on IgA1 can cause aggregation
of these molecules, forming IgA immune complexes that
would promote glomerular inflammation. Current studies are
focused on identifying the molecular basis for the changes in
IgA O-glycosylation. While decreased Cosme gene expression
in IgAN patients has been reported by one group [67], another
study failed to find a significant difference in core 1 33-Gal-T
or Cosmc enzymatic activity or gene expression [68]. Thus
far, mutations in the genes responsible for core 1 formation
have not been found in patient populations, suggesting that
the primary defect may reside in another component of the
O-glycosylation machinery.

Recent genome-wide association studies cataloguing loci
that influence plasma lipid levels in humans have identified
a ppGalNAcT (ppGalNAc-T2 or GALNT2) as one of a
number of genes associated with variations in high density
lipoprotein (HDL) levels [69, 70]. ppGalNAc-T2 variants
may contribute to the heritable component of lipid profiles
by glycosylating proteins involved in lipid metabolism,
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Fig. 3 A PGANT O-glycosyltransferase is required for proper
tracheal development and diffusion barrier formation during Dro-
sophila embryogenesis. Wild-type (4-G), pgant35457323775 (4'-G"),
pgant35AHGs/3775 (A4"™-G"). (A) Tracheal luminal marker 2A12 staining
shows the normal development of the tracheal system in wild type
(WT) embryos at stage 17 and abnormal tracheal tube formation at
stage 17 for pgant354573%3775 (4" and pgant3541G%53775 (47
homozygous maternal/zygotic (m/z) mutants. Magnified views (x40) are
shown for wild type (B), pgant35453**77> (B') and pgant3547¥377
(B") m/z mutants. Tracheal staining with the luminal marker 2A12
(green) at stage 15 in pgant354573%377 (C") and pgant3547¥377 (C™
m/z mutants reveals decreased luminal staining and increased cytoplas-
mic staining relative to wild type (WT) (C). Similar results are seen with
Crbs staining at stage 15 in WT (D), pgant35455%37% (D" and
pgant354%¥3775 (D" m/z mutants. At stage 17, the septate junction
protein, Sinuous (Sinu), is mislocalized in the pgant354 m/z mutant

potentially influencing their stability or function. If verified,
future therapeutics to regulate lipid levels and treat
cardiovascular disease may include those directed at O-
linked glycosylation.
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trachea (E' and E”) relative to wild type (E), as the mutants show
reduced lateral localization and increased apical distribution (arrows in
panels £E~E"). Tn Ab staining in the apical and luminal regions of the
trachea of stage 17 embryos (F—F") is lost in pgant35457>%37"3 (F") and
pgant3541983775 (F"y m/z mutants relative to wild type (F). Stage 16—
17 embryos were injected with 10 kD dextran dye and visualized after
30 min. Wild type embryos showed no dye leakage into the tracheal
system (between arrows in G), whereas pgant354 homozygous m/z
mutants had significant dye present in the tracheal tubes (arrows in G’
and G"), indicating loss of paracellular diffusion barrier formation. Scale
bar: 100 um for 4-4"; 50 um for B—B"; 10 um for C—F"; 50 pm for G—
G". Embryos are oriented such that anterior is to the /eft and dorsal is up.
Adapted from The Journal of Biological Chemistry, 282, 606-614
(2007) by copyright permission of The American Society for Biochem-
istry and Molecular Biology, Inc

Finally, the association between altered glycosylation
patterns and tumor formation is well documented [71-74].
Recent studies have begun to directly interrogate this
relationship by altering the activity of the glycosyltransfer-
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ase responsible for the synthesis of the core 3 structure. In
one study where 33Gn-T6 activity was found to be down-
regulated in colon carcinomas, overexpression of 33Gn-T6
in these cells decreased their metastatic ability [75]. In
another study, mice deficient in the 33Gn-T6 gene showed
an increase in intestinal barrier permeability and became
highly susceptible to induced colitis and colorectal tumors
[76]. This study not only further supports the role of O-
glycans in proper diffusion barrier function, but suggests
that a causal role exists between loss of normal O-
glycosylation patterns and tumor formation/progression.

O-glycosylation and the immune system

Many studies in mice have highlighted the importance of
diverse types of glycans in immune system function. Here, we
highlight recent work involving the deletion of specific
glycosyltransferases involved in mucin-type O-glycan biosyn-
thesis. Mice deficient in one of the core 2 transferases
(Core2GIcNACT-1) displayed altered inflammatory responses
combined with decreased neutrophil infusion [77, 78].
Leukocytes from these mice displayed decreased rolling on
P-, E- and L-selectin [78], highlighting a role for core 2 O-
glycans in selectin adhesion as it relates to immune cell
function. Likewise, deletion of a glycosyltransferase that
extends the core 1 structure (Corel-3GIcNACcT) as well as
double mutants of Corel-f3GIcNACT and Core2GIcNACT-1
displayed reduced lymphocyte homing, although compensa-
tion was provided by selectin ligands present on N-glycans as
well [79]. Work by a number of groups has also demonstrated
the importance of fucosylation [80] and sialylation [81], two
common modifications found on mucin-type O-glycans, in
lymphocyte homing and homeostasis, respectively.

Recent work examining mice deficient in a member of
the initiating ppGalNAcT family (ppGalNAc-T1) has
demonstrated a role for O-glycosylation in blood clotting
and immune system function [82]. Mutant mice had
reduced plasma clotting factors and a concomitant increase
in clotting time. Additionally, animals displayed decreased
B cell homing to lymph nodes, the result of significant
reductions in L-selectin ligands on high endothelial venules.
The decreased neutrophil recruitment observed was the
result of decreases in E- and P-selectin ligands on these
cells, resulting in an alteration in their adhesive properties.
Alterations in germinal center formation via increased
apoptosis of B cells normally present there resulted in
decreased IgG production, indicating a crucial role for
ppGalNAc-T1 in the regulation of B cell maturation and
antibody production. While the exact molecular mecha-
nisms by which O-glycans mediate these effects remain to
be determined, these studies highlight the importance of O-
linked glycans in many tissues and cells involved in proper
vascular function and humoral immunity.

Conclusion

Recent advances in deciphering the machinery controlling O-
glycosylation in many experimental systems described herein
have aided our understanding of the in vivo role of mucin-type
O-glycans. Continued efforts to elucidate the molecular role of
O-glycosylation in both development and disease in many
diverse organisms will highlight conserved processes in which
glycosylation plays key regulatory roles, with the eventual
goal of designing better strategies to improve human health.
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