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Abstract First-order applicative rewrite systems provide a natural framework for
modeling higher-order aspects. In this article we present a transformation from
untyped applicative term rewrite systems to functional term rewrite systems that
preserves and reflects termination. Our transformation is less restrictive than other
approaches. In particular, head variables in right-hand sides of rewrite rules can be
handled. To further increase the applicability of our transformation, we study the
method for innermost rewriting and derivational complexity, and present a version
for dependency pairs.
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1 Introduction

In this article we are concerned with proving (innermost) termination of first-
order applicative term rewrite systems. These systems provide a natural framework

This research is supported by FWF (Austrian Science Fund) project P18763 and the
Grant-in-Aid for Young Scientists Nos. 20800022 and 22700009 of the Japan Society
for the Promotion of Science.

N. Hirokawa (B)
School of Information Science, Japan Advanced Institute
of Science and Technology, Nomi, Japan
e-mail: hirokawa@jaist.ac.jp

A. Middeldorp · H. Zankl
Institute of Computer Science, University of Innsbruck, Innsbruck, Austria

A. Middeldorp
e-mail: aart.middeldorp@uibk.ac.at

H. Zankl
e-mail: harald.zankl@uibk.ac.at



280 N. Hirokawa et al.

for modeling higher-order aspects found in functional programming languages. A
prominent example of a first-order applicative system is combinatory logic. The
signature of an applicative term rewrite system consists of constants and a single
binary function symbol called application which is denoted by the infix and left-
associative symbol �. In term rewriting, properties such as termination and innermost
termination are of particular interest since they are essential for many rewriting tech-
niques including equational reasoning and confluence analysis (cf. [39]). Moreover,
innermost termination has received a renewed interest in termination analysis of
functional programs [11].

Proving termination of applicative term rewrite systems is challenging because
the rewrite rules lack sufficient structure. As a consequence, simplification orders
are not effective as � is the only function symbol of non-zero arity. Moreover, the
dependency pair method is of little help as � is the only defined non-constant symbol.
To remedy this issue two solutions have been suggested. The first line of research is
based on types [1–3, 7, 21, 28, 41] and allows to study properties like termination or
strong computability directly. The second approach [13, 18] aims for transformations
that recover the structure of applicative rewrite rules to enable methods that do not
rely on types. The benefit of the first approach is that the type information may make
proving termination properties easier. However, most of those studies are within the
realm of simply typed systems and hence miss polymorphism, which is used in many
functional programming languages. Moreover, in contrast to untyped rewriting, no
powerful automated tools are (yet) available. This is in sharp contrast to the untyped
first-order setting where powerful tools exist as witnessed by the annual competition
of termination tools.1

The main contribution of this article is a new transformation that recovers
the structure in applicative rewrite rules, thereby enabling traditional methods for
proving termination and innermost termination. Our transformation can deal with
partial applications as well as head variables in right-hand sides of rewrite rules. The
key ingredients are the η-saturation of rewrite rules (Definition 7) and the addition
of sufficiently many uncurrying rules to the transformed system. These rules are
also crucial for a smooth transition into the dependency pair framework. Unlike the
transformation of applicative dependency pair problems presented in [13, 40], our
uncurrying processor preserves minimality (cf. Section 6), which means that it can be
used at any node in a modular (non-)termination proof attempt.

We remark that our results for proving innermost termination with the help of
uncurrying are directly applicable for functional programming languages that adopt
an eager evaluation strategy. Surprisingly, these results are also helpful in the case of
lazy evaluation. Since applicative term rewrite systems modeling functional programs
are left-linear and non-overlapping, termination and innermost termination coincide
(see [15] for a more general result). Hence instead of establishing full termination for
lazy languages we investigate innermost termination, which is equivalent in this case
but typically easier to establish. In this context it is worth noting the recent work of
Giesl et al. In [11] they present a two-stage transformation method from (functions
in) Haskell programs to applicative dependency pair problems such that termination
of the former is concluded from innermost finiteness of the latter. This approach

1http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at
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is capable of automatically proving the termination of most functions in standard
Haskell libraries.

The remainder of this article is organised as follows. After recalling preliminaries
in Section 2, we present a new uncurrying transformation and prove that it preserves
and reflects termination for full rewriting in Section 3. Results for innermost termi-
nation and derivational complexity are studied in Sections 4 and 5, respectively. Two
extensions to the dependency pair framework are presented in Section 6. How these
extensions behave for full termination is the topic of Section 6.1 while Section 6.2 is
concerned with their properties concerning innermost termination. Our results are
empirically evaluated in Section 7 and we conclude with a discussion of related work
in Section 8.

A preliminary version of this article appeared in [18]. Several of the results
on innermost rewriting and derivational complexity have been published in [44].
Theorems 6 and 11 are new contributions. So is the material in Section 6.2. Moreover,
we close a non-trivial gap in the proof of [18, Theorem 33]. Some of the new contri-
butions go beyond the scope of uncurrying, e.g., Theorem 11 gives a condition when
the length of reductions is the same for innermost and full rewriting, which has an
immediate impact on (automated) complexity analysis. Another fundamental new
result deals with signature extensions, which do not affect termination [29, 35] but
surprisingly may destroy finiteness of DP problems [37]. Finally, Lemma 19 shows
that innermost finiteness is not affected by signature extensions.

2 Preliminaries

In this section we fix preliminaries on rewriting, complexity, dependency pairs, and
currying.

2.1 Term Rewriting

We assume familiarity with term rewriting [5] in general and termination [47] in
particular. Let F be a signature and V be a set of variables disjoint from F . By
T (F ,V) we denote the set of terms over F and V . The size of a term t is denoted
|t| and the root symbol of t is denoted root(t). A rewrite rule is a pair of terms (�, r),
written � → r such that � is not a variable and all variables in r are contained in �. A
term rewrite system (TRS for short) is a set of rewrite rules. A TRS R is said to be
duplicating if there exist a rewrite rule � → r ∈ R and a variable x that occurs more
often in r than in �. By Fun(R) we denote the set of function symbols that occur in a
TRS R.

Contexts are terms over the signature F ∪ {�} with exactly one occurrence of the
fresh constant � (called hole). The expression C[t] denotes the result of replacing
the hole in C by the term t. A substitution σ is a mapping from variables to
terms and tσ denotes the result of replacing the variables in t according to σ .
Substitutions may change only finitely many variables (and are thus written as
{x1 �→ t1, . . . , xn �→ tn}). The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable and as Pos(t) = {ε} ∪ {iq | q ∈ Pos(ti)} if t = f (t1, . . . , tn). Positions
are used to address occurrences of subterms. The subterm of t at position p ∈ Pos(t)
is defined as t|p = t if p = ε and as t|p = ti|q if p = iq. We say a position p is to the
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right of a position q if p = p1ip2 and q = q1 jq2 with p1 = q1 and i > j. For a term t
and positions p, q ∈ Pos(t) we say t|p is to the right of t|q if p is to the right of q.

A rewrite relation is a binary relation on terms that is closed under contexts and
substitutions. For a TRS R we define →R to be the smallest rewrite relation that
contains R. We call s →R t a rewrite step if there exist a context C, a rewrite rule
� → r ∈ R, and a substitution σ such that s = C[�σ ] and t = C[rσ ]. In this case we
call �σ a redex and say that �σ has been contracted. A root rewrite step, denoted by
s →ε

R t, has the shape s = �σ →R rσ = t for some � → r ∈ R and substitution σ . A
rewrite sequence is a sequence of rewrite steps. The set of normal forms of a TRS R is
defined as NF(R) = {t ∈ T (F ,V) | t contains no redexes}. A redex �σ in a term t is
called innermost if proper subterms of �σ are normal forms, and rightmost innermost
if in addition �σ is to the right of any other innermost redex in t. A rewrite step is
called innermost (rightmost innermost) if an innermost (rightmost innermost) redex
is contracted, written i→ and ri→, respectively.

If the TRS R is not essential or clear from the context the subscript R is omitted
in →R and its derivatives. As usual, →+ (→∗) denotes the transitive (reflexive and
transitive) closure of → and →m its m-th iterate. A TRS is terminating (innermost
terminating) if →+ ( i→+) is well-founded. If s →∗

R t and t ∈ NF(R) then we write
s →!

R t.
An overlap (�1 → r1, p, �2 → r2)μ of a TRS R consists of variants �1 → r1 and

�2 → r2 of rules of R without common variables, a non-variable position p ∈
Pos(�2), and a most general unifier μ of �1 and �2|p. If p = ε then we require
that �1 → r1 and �2 → r2 are not variants of the same rewrite rule. A TRS without
overlaps is called non-overlapping. An overlay system is a TRS whose overlaps
emerge at root positions only.

Let P be a property of TRSs and let � be a transformation on TRSs with �(R) =
R′. We say � preserves P if P(R) implies P(R′) and � ref lects P if P(R′) implies
P(R). Sometimes we call � P preserving if � preserves P and P reflecting if �

reflects P , respectively.

2.2 Derivational Complexity

For complexity analysis we assume TRSs to be finite and (innermost) terminating.
Hofbauer and Lautemann [20] introduced the concept of derivational complexity for
terminating TRSs. The idea is to measure the maximal length of rewrite sequences
(derivations) depending on the size of the starting term. Formally, the derivation
height of a term t (with respect to a finitely branching and well-founded relation →)
is defined on natural numbers as dh(t,→) = max{m ∈ N | t →m u for some u}. The
derivational complexity dcR(n) of a TRS R is then defined as

dcR(n) = max{dh(t,→R) | |t| � n}
Similarly we define the innermost derivational complexity as

idcR(n) = max{dh(t, i→R) | |t| � n}
Since we regard finite TRSs only, these functions are well-defined if R is (innermost)
terminating. If dcR(n) is bounded from above by a linear, quadratic, cubic, . . .

function or polynomial, R is said to have linear, quadratic, cubic, . . . or polynomial
derivational complexity. A similar convention applies to idcR(n).
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For functions f, g : N → N we write f (n) ∈ O(g(n)) if there are constants c, N ∈ N

such that f (n) � c · g(n) for all n � N.
One popular method to prove polynomial upper bounds on the derivational

complexity is via triangular matrix interpretations [33], which are a special instance
of monotone algebras. For a signature F , an F -algebra A consists of a non-empty
carrier A and a set of interpretations fA for every f ∈ F . By [α]A(·) we denote the
usual evaluation function of A according to an assignment α which maps variables to
values in A. An F -algebra A together with a well-founded order � on A is called a
monotone algebra if every fA is monotone with respect to �. Any monotone algebra
(A,�) induces a well-founded order on terms: s �A t if for any assignment α the
condition [α]A(s) � [α]A(t) holds. A TRS R is compatible with a monotone algebra
(A,�) if � �A r for every � → r ∈ R.

Matrix interpretations (M,�) (often just denoted M) are a special form of
monotone algebras. Here the carrier is Nd for some fixed dimension d ∈ N \ {0}. The
order � is defined on Nd as (u1, . . . , ud)

T � (v1, . . . , vd)
T if u1 >N v1 and ui �N vi for

all 2 � i � d. If every f ∈ F of arity n is interpreted as

fM
(−→x1 , . . . ,

−→xn
) = F1

−→x1 + · · · + Fn
−→xn + −→

f

where Fi ∈ Nd×d for all 1 � i � n and
−→
f ∈ Nd then monotonicity of fM is achieved

by demanding that the top left entry of every matrix Fi is non-zero. Such interpreta-
tions have been introduced in [10].

A square matrix A of dimension d is of upper triangular shape if A(i,i) � 1 and
A(i, j) = 0 if i > j for all 1 � i, j � d. A matrix interpretation where for every f ∈ F
all Fi (1 � i � n where n is the arity of f ) are upper triangular is called triangular
(abbreviated by TMI). The next theorem is from [33].

Theorem 1 If a TRSR is compatible with a TMI of dimension d then dcR(n) ∈ O(nd).

Recent generalisations of this result are reported in [31, 34, 42].

2.3 Dependency Pairs

Let R be a TRS over a signature F . The signature F is extended with dependency
pair symbols f 	 for every symbol f ∈ {root(�) | � → r ∈ R}, where f 	 has the same
arity as f . If � → r ∈ R and t is a subterm of r with a defined root symbol that is
not a proper subterm of � then the rule �	 → t	 is a dependency pair of R. Here �	

and t	 are the result of replacing the root symbols in � and t by the corresponding
dependency pair symbols. The set of dependency pairs of R is denoted by DP(R). A
DP problem is a pair of TRSs (P,R) such that the root symbols of the rules in P do
neither occur in R nor in proper subterms of the left- and right-hand sides of rules in
P . The problem is said to be finite if there is no infinite sequence

s1 →ε
P t1 →∗

R s2 →ε
P t2 →∗

R · · ·
such that all terms t1, t2, . . . are terminating with respect to R. Such an infinite
sequence is said to be minimal. The main result underlying the dependency pair
approach states that termination of a TRS R is equivalent to finiteness of the DP
problem (DP(R),R).
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In order to prove a DP problem finite, a number of DP processors have been
developed. DP processors are functions that take a DP problem as input and return
a set of DP problems as output. In order to be employed to prove termination they
need to be sound, that is, if all DP problems in a set returned by a DP processor are
finite then the initial DP problem is finite. In addition, to ensure that a DP processor
can be used to prove non-termination it must be complete which means that if one
of the DP problems returned by the DP processor is not finite then the original DP
problem is not finite.

A DP problem (P,R) is called innermost f inite if there is no infinite sequence

s1 →ε
P t1

i→!
R s2 →ε

P t2
i→!
R · · ·

such that the term s1 is in normal form with respect to R. Soundness and complete-
ness of DP problems for innermost termination are based on this altered notion of
finiteness.

2.4 Currying

Definition 1 An applicative signature is a signature that consists of constants and
a single binary function symbol called application, denoted by the infix and left-
associative symbol �. In examples we often use juxtaposition instead of �. Based on
an applicative signature we define applicative terms (substitutions, contexts, TRSs).
An applicative TRS is abbreviated by ATRS.

Every ordinary TRS can be transformed into an ATRS by currying.

Definition 2 Let F be a signature. The currying system C(F) consists of the rewrite
rules fi+1(x1, . . . , xi, y) → fi(x1, . . . , xi) � y for every n-ary function symbol f ∈ F
and every 0 � i < n. Here fn = f and, for every 0 � i < n, fi is a fresh function
symbol of arity i.

The currying system C(F) is confluent and terminating. Hence every term t has a
unique normal form t↓C(F). For instance, f(a, b) is transformed into f0 a0 b0.

Definition 3 Let R be a TRS over the signature F . The curried system R↓C(F) is the
ATRS consisting of the rules �↓C(F) → r↓C(F) for every � → r ∈ R. The signature of
R↓C(F) contains the application symbol � and a constant f0 for every function symbol
f ∈ F .

In the following we write R↓C for R↓C(F) whenever F can be inferred from the
context or is irrelevant. Moreover, we write f for f0.

Example 1 The TRS R

0 + y → y 0 × y → 0

s(x) + y → s(x + y) s(x) × y → (x × y) + y
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is transformed into the ATRS R↓C

+ 0 y → y × 0 y → 0

+ (s x) y → s (+ x y) × (s x) y → + (× x y) y

Every rewrite sequence in R can be transformed into a sequence in R↓C , but the
reverse does not hold. For instance, with respect to the above example, the rewrite
step + (s (+ 0)) 0 → s (+ (+ 0) 0) in R↓C does not correspond to a rewrite step
in R. Nevertheless, termination of R implies termination of R↓C .

Theorem 2 (Kennaway et al. [23]) A TRS R is terminating if and only if R↓C is
terminating.

A simple self-labeling proof can be found in [30]. As an immediate consequence
we get the following transformation method for proving termination of ATRSs.

Corollary 1 An ATRS R is terminating if and only if there exists a terminating TRS S
such that S↓C = R (modulo renaming).

In [13] this method is called transformation A. As can be seen from the following
example, the method does not handle partially applied terms and, more seriously,
head variables. Hence the method is of limited applicability as it cannot cope with
the higher-order aspects modeled by ATRSs.

Example 2 Consider the ATRS R (from [2])

1 : id x → x 4 : map f nil → nil

2 : add 0 → id 5 : map f (: x y) → : ( f x) (map f y)

3 : add (s x) y → s (add x y)

Rules 1 and 4 are readily translated into functional form:

id1(x) → x map2( f, nil) → nil

However, we cannot find functional forms for rules 2 and 3 because the ‘arity’ of add
is 1 in rule 2 and 2 in rule 3. Because of the presence of the head variable f in the
subterm f x, there is no functional term t such that t↓C = : ( f x) (map f y). Hence
also rule 5 cannot be transformed.

3 Full Termination

In this section we present an uncurrying transformation that can deal with ATRSs
like in Example 2. This transformation preserves and reflects termination.

Throughout this section we assume that R is an ATRS over an applicative
signature F . In the sequel we restrict to TRSs where aa( f ) (see next definition) is
defined for every f ∈ F . Note that aa( f ) is defined ifR is finite but may be undefined
for infinite R.
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Definition 4 The applicative arity aa( f ) of a constant f ∈ F is defined as the
maximum n such that f � t1 � · · · � tn is a subterm in the left- or right-hand side of
a rule in R. This notion is extended to terms as follows:

aa(t) =
{

aa( f ) if t is a constant f

aa(t1) − 1 if t = t1 � t2

Note that aa(t) is undefined if the head symbol of t is a variable and aa( f ) = 0 for a
constant f ∈ F that does not appear in a rule in R.

Definition 5 For an ATRS R the uncurrying system U(R) consists of the following
rewrite rules fi(x1, . . . , xi) � y → fi+1(x1, . . . , xi, y) for every constant f ∈ F and
every 0 � i < aa( f ). Here f0 = f and, for every i > 0, fi is a fresh function symbol
of arity i. We say that R is left head variable free if no subterm of a left-hand side in
R is of the form t1 � t2 where t1 is a variable. We write �-ATRS to denote a left head
variable free ATRS.

The uncurrying system U(R), or simply U , is confluent and terminating. Hence
every term t has a unique normal form t↓U .

Definition 6 The uncurried system R↓U is the TRS consisting of the rules
�↓U → r↓U for every � → r ∈ R.

Example 3 The ATRS R of Example 2 is transformed into R↓U :

id1(x) → x map2( f, nil) → nil

add1(0) → id map2( f, :2(x, y)) → :2( f � x, map2( f, y))

add2(s1(x), y) → s1(add2(x, y))

The TRS R↓U is an obvious candidate of a TRS whose termination implies termi-
nation of the original ATRS. However, as can be seen from the following example,
the rules of R↓U are not enough to simulate an arbitrary rewrite sequence in R.

Example 4 The ATRS R

f x → x x

is non-terminating since f f →R f f →R · · · while the transformed TRS R↓U

f1(x) → x � x

is terminating.

The natural solution is to add U(R). In the following we abbreviate R↓U(R) ∪
U(R) to U+(R). As the following example shows, we do not yet have a sound
transformation.

Example 5 The non-terminating ATRS R

id x → x f x → id f x
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is transformed into the terminating TRS R↓U

id1(x) → x f1(x) → id2(f, x)

Note that aa(id) = 2 and aa(f) = 1. The TRS U+(R) consists of the following rules

id1(x) → x id � x → id1(x) f � x → f1(x)

f1(x) → id2(f, x) id1(x) � y → id2(x, y)

and is easily shown to be terminating.

The ATRS R admits the cycle f x → id f x → f x. In U+(R) we have the rule
f1(x) → id2(f, x) but the term id2(f, x) does not rewrite to f1(x). It would if the rule
id x y → x y were present in R. This inspires the following definition.

Definition 7 Let R be an ATRS. The η-saturated ATRS Rη is the smallest extension
of R such that � � x → r � x ∈ Rη whenever � → r ∈ Rη and aa(�) > 0. Here x is a
variable that does not appear in � → r.

The rules added during η-saturation do not affect the termination behaviour of R,
according to the following lemma. Moreover, Rη is an �-ATRS if and only if R is an
�-ATRS.

Lemma 1 If R is an �-ATRS then →R and →Rη
coincide.

Proof The inclusion →R ⊆ →Rη
trivially follows from the inclusion R ⊆ Rη. For

the reverse inclusion we show that for every rewrite step s = C[�σ ] →Rη
C[rσ ] = t

there exist a rule �′ → r′ ∈ R and a context C′ such that s = C′[�′σ ] and t = C′[r′σ ].
We use induction on the derivation of � → r ∈ Rη. In the base case � → r ∈ R and
we simply take �′ → r′ = � → r and C′ = C. In the induction step we have � → r =
�′ � x → r′ � x for some �′ → r′ ∈ Rη with aa(�′) > 0. Define C′ = C[� � xσ ]. Clearly
s = C′[�′σ ] →Rη

C′[r′σ ] = t. The induction hypothesis yields a rule �′′ → r′′ ∈ R and
a context C′′ such that s = C′′[�′′σ ] and t = C′′[r′′σ ]. ��

In the following we write U+
η (R) for Rη↓U(R) ∪ U(R). We can now state the first

major result of this article.

Theorem 3 An �-ATRS R is terminating if U+
η (R) is terminating.

Before we prepare for the proof of the theorem above we show another subtlety
of the uncurrying transformation. While η-saturation may change applicative arities,
the applicative arities used in the definition of U+

η (R) always refer to those of R and
not Rη.

Example 6 The non-terminating ATRS R

f → g a g → f

is transformed into U+
η (R)

f → g1(a) g → f g1(x) → f � x g � x → g1(x)
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because aa(f) = 0. The resulting TRS is non-terminating. If the applicative arities of
Rη were employed, uncurrying would produce the terminating TRS

f → g1(a) g → f g1(x) → f1(x) g � x → g1(x) f � x → f1(x)

since aa(f) = 1 for Rη.

Before presenting the proof of Theorem 3, we revisit the running example.

Example 7 Consider again the ATRS R of Example 2. Proving termination of the
transformed TRS U+

η (R)

id1(x) → x : � x → :1(x) id � x → id1(x)

add1(0) → id :1(x) � y → :2(x, y) add � x → add1(x)

add2(0, y) → id1(y) add1(x) � y → add2(x, y)

add2(s1(x), y) → s1(add2(x, y)) s � x → s1(x)

map2( f, nil) → nil map � x → map1(x)

map2( f, :2(x, y)) → :2( f � x, map2( f, y)) map1(x) � y → map2(x, y)

is possible using LPO with a quasi-precedence.

The next lemma states an easy result that is freely used in the sequel.

Lemma 2 Let s be an applicative term. If s = x � s1 � · · · � sn then s↓U = x � s1↓U �

· · · � sn↓U and if s = f � s1 � · · · � sn then s↓U = fi(s1↓U , . . . , si↓U ) � si+1↓U � · · · �

sn↓U for i = min{aa( f ), n}.

Proof We show the second claim by induction on n (the first one is similar). In the
base case n = 0 and f↓U = f concludes this case. In the inductive step

s →∗
U s′ = f j(s1↓U , . . . , s j↓U ) � s j+1↓U � · · · � sn+1↓U

for j = min{aa( f ), n} follows from the induction hypothesis and the definition
of (·)↓U . If i < n + 1 then j = i and s′ = s↓U . In the case where i = n + 1 then j = n
and the result follows from

fn(s1↓U , . . . , sn↓U ) � sn+1↓U →U fn+1(s1↓U , . . . , sn↓U , sn+1↓U ) = s↓U

��

The following two lemmas state factorisation properties which are used in the
proof of Theorem 3.

Lemma 3 Let s1, . . . , sn be applicative terms. Then s1↓U � · · · � sn↓U →∗
U

(s1 � · · · � sn)↓U . If aa(s1) � 0 or if aa(s1) is undef ined then s1↓U � · · · � sn↓U =
(s1 � · · · � sn)↓U .

Proof For the first claim observe that s1↓U � · · · � sn↓U
∗
U← s1 � · · · � sn →!

U
(s1 � · · · � sn)↓U . The claim then follows from the confluence of U .
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For the second claim observe that if aa(s1) � 0 or if aa(s1) is undefined then we
have s1↓U � · · · � sn↓U ∈ NF(U) and the result follows from the confluence of U as in
the first case. ��

For an applicative substitution σ , we write σ↓U for the substitution {x �→
σ(x)↓U | x ∈ V}.

Lemma 4 Let σ be an applicative substitution. For every applicative term t,
t↓Uσ↓U →∗

U (tσ)↓U . If t is head variable free then t↓Uσ↓U = (tσ)↓U .

Proof We prove the former claim by induction on the term t. The proof for the head
variable free case is similar. It suffices to consider the step case.

– Consider the step case with t = x � t1 � · · · � tn. Then

t↓Uσ↓U = (x � t1↓U � · · · � tn↓U )σ↓U

= σ(x)↓U � t1↓Uσ↓U � · · · � tn↓Uσ↓U

→∗
U σ(x)↓U � (t1σ)↓U � · · · � (tnσ)↓U

→∗
U (σ (x) � t1σ � · · · � tnσ)↓U = (tσ)↓U

where Lemma 2 is applied in the first equality, the induction hypothesis in the
first →∗

U step, and Lemma 3 in the second →∗
U step.

– Consider the step case with t = f � t1 � · · · � tn. Let i = min{aa( f ), n}. Then

t↓Uσ↓U = ( fi(t1↓U , . . . , ti↓U ) � ti+1↓U � · · · � tn↓U )σ↓U

= fi(t1↓Uσ↓U , . . . , ti↓Uσ↓U ) � ti+1↓Uσ↓U � · · · � tn↓Uσ↓U

→∗
U fi((t1σ)↓U , . . . , (tiσ)↓U ) � (ti+1σ)↓U � · · · � (tnσ)↓U

= fi(t1σ, . . . , tiσ)↓U � (ti+1σ)↓U � · · · � (tnσ)↓U

= ( f � t1σ � · · · � tiσ)↓U � (ti+1σ)↓U � · · · � (tnσ)↓U = (tσ)↓U

where Lemma 2 is applied in the first equality, the induction hypothesis in the
first →∗

U step and Lemma 3 in the last equality. ��

Now we are ready to present the proof of Theorem 3.

Proof of Theorem 3 We show that s↓U →+
U+

η (R)
t↓U whenever s →Rη

t for applica-
tive terms s and t. This entails that any infinite Rη derivation is transformed into an
infinite U+

η (R) derivation. The theorem follows from this observation and Lemma 1.
Let s = C[�σ ] and t = C[rσ ] with � → r ∈ Rη. We use induction on the size of the
context C.

– If C = � then s↓U = (�σ )↓U = �↓Uσ↓U and r↓Uσ↓U →∗
U (rσ)↓U = t↓U by

Lemma 4. Hence s↓U →+
U+

η (R)
t↓U .
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– Suppose C = � � s1 � · · · � sn and n > 0. Since Rη is left head variable free, aa(�)

is defined. If aa(�) = 0 then

s↓U = (�σ � s1 � · · · � sn)↓U = (�σ )↓U � s1↓U � · · · � sn↓U

= �↓Uσ↓U � s1↓U � · · · � sn↓U

and

r↓Uσ↓U � s1↓U � · · · � sn↓U →∗
U (rσ)↓U � s1↓U � · · · � sn↓U

→∗
U (rσ � s1 � · · · � sn)↓U = t↓U

by applications of Lemmas 4 and 3. Hence s↓U →+
U+

η (R)
t↓U . If aa(�) > 0 then

� � x → r � x ∈ Rη for some fresh variable x. We have s = C′[(� � x)τ ] and
t = C′[(r � x)τ ] for the context C′ = � � s2 � · · · � sn and the substitution
τ = σ ∪ {x �→ s1}. Since C′ is smaller than C, we can apply the induction hypo-
thesis which yields the desired result.

– In the remaining case C = s1 � C′. The induction hypothesis yields

C′[�σ ]↓U →+
U+

η (R)
C′[rσ ]↓U

If aa(s1) � 0 or if aa(s1) is undefined then s↓U = s1↓U � C′[�σ ]↓U and t↓U =
s1↓U � C′[rσ ]↓U by Lemma 3. If aa(s1) > 0 then s1↓U = fi(u1, . . . , ui) for the
head symbol f of s1 and some terms u1, . . . , ui. So

s↓U = fi+1(u1, . . . , ui, C′[�σ ]↓U )

and

t↓U = fi+1(u1, . . . , ui, C′[rσ ]↓U )

Hence in both cases we obtain s↓U →+
U+

η (R)
t↓U . ��

The next example shows that the left head variable freeness condition cannot be
weakened to the well-definedness of aa(�) for every left-hand side �.

Example 8 Consider the non-terminating ATRS R

f (x a) → f (g b) g b → h a

The transformed TRS U+
η (R) consists of the rules

f1(x � a) → f1(g1(b)) f � x → f1(x) h � x → h1(x)

g1(b) → h1(a) g � x → g1(x)

and is terminating because its rules are oriented from left to right by the lexicographic
path order with precedence � > g1 > f1 > h1 > a > b. Note that aa(f (x a)) = 0.

The uncurrying transformation is not always useful.

Example 9 Consider the one-rule TRS R

C x y z u → x z (x y z u)
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from [9]. The termination of R is proved by the lexicographic path order with empty
precedence. The transformed TRS U+

η (R) consists of

C4(x, y, z, u) → x � z � (x � y � z � u)

C � x → C1(x) C2(x, y) � z → C3(x, y, z)

C1(x) � y → C2(x, y) C3(x, y, z) � u → C4(x, y, z, u)

None of the tools that participated in the termination competitions between 2005 and
2010 is able to prove the termination of this TRS.

We show that the converse of Theorem 3 also holds. Hence the uncurrying
transformation does not only reflect but also preserve termination. (This does not
contradict the preceding example.) To show this result (Theorem 4) we transform
any infinite sequence in U+

η (R) into an infinite sequence of the original �-ATRS R.
Since U is terminating, any infinite sequence in U+

η (R) must have the shape

→Rη↓U · →∗
U · →Rη↓U · →∗

U · · · (1)

with infinitely many Rη↓U steps. Below we write C ′ for the TRS that is obtained
from U by reversing all rules: {r → � | � → r ∈ U(R)}. The TRS C ′ allows to mimic a
rewrite step →Rη↓U in the original �-ATRS R (Lemma 6) and equates any two terms
that are in the relation →∗

U (Lemma 7). Then the sequence (1) can be transformed
into an infinite sequence in R.

Remark 1 Note that ↓C is not the inverse of ↓U since for the TRS R from Exam-
ple 5 we have R↓U↓C = {id1 x → x, f1 x → id2 f x} which is different from R. But
obviously R↓U↓C′ = R for any ATRS R.

Lemma 5 Let R be an �-ATRS. If t, C, and σ are a term, context, and substitution
over the signature of U+

η (R), then (C[tσ ])↓C′ = C↓C′ [t↓C′σ↓C′ ].

Proof We show (tσ)↓C′ = t↓C′σ↓C′ by induction on t. If t = x then the result follows
since (xσ)↓C′ = σ(x)↓C′ = x↓C′σ↓C′ . If t = fi(t1, . . . , ti) then

(tσ)↓C′ = fi(t1σ, . . . , tiσ)↓C′ = f � (t1σ)↓C′ � · · · � (tiσ)↓C′

= f � t1↓C′σ↓C′ � · · · � ti↓C′σ↓C′ = ( f � t1↓C′ � · · · � ti↓C′)σ↓C′

= fi(t1, . . . , ti)↓C′σ↓C′

by the induction hypothesis. If t = t1 � t2 then

(tσ)↓C′ = (t1σ � t2σ)↓C′ = (t1σ)↓C′ � (t2σ)↓C′ = t1↓C′σ↓C′ � t2↓C′σ↓C′

= (t1↓C′ � t2↓C′)σ↓C′ = t↓C′σ↓C′

by the induction hypothesis.
The proof that (C[u])↓C′ = C↓C′ [u↓C′ ] is by induction on C and similar. The

lemma then follows from these two results. ��

Lemma 6 Let R be an �-ATRS. If s and t are terms over the signature of U+
η (R) then

s →Rη↓U t implies s↓C′ →Rη
t↓C′ .
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Proof From s →Rη↓U t we get s = C[�σ ], t = C[rσ ] for some � → r ∈ Rη↓U . By
Lemma 5 we obtain s↓C′ = C↓C′ [�↓C′σ↓C′ ] and t↓C′ = C↓C′ [r↓C′σ↓C′ ]. The result
then follows in connection with the fact that Rη↓U↓C′ = Rη. ��

Lemma 7 Let R be an �-ATRS. If s and t are terms over the signature of U+
η (R) then

s →U t implies s↓C′ = t↓C′ .

Proof From s →U t we get s = C[�σ ], t = C[rσ ] for some � → r ∈ U . By Lemma 5
we obtain s↓C′ = C↓C′ [�↓C′σ↓C′ ] and t↓C′ = C↓C′ [r↓C′σ↓C′ ]. The result then follows
in connection with the observation that all rules in U↓C′ have equal left- and right-
hand sides. ��

Theorem 4 If R is a terminating �-ATRS then U+
η (R) is terminating.

Proof Assume that U+
η (R) is non-terminating. Since U is terminating, any infinite

rewrite sequence has the form

s1 →Rη↓U t1 →∗
U s2 →Rη↓U t2 →∗

U · · ·
Applications of Lemmas 6 and 7 transform this sequence into

s1↓C′ →Rη
t1↓C′ = s2↓C′ →Rη

t2↓C′ = · · ·
It follows that Rη is non-terminating. Since →R = →Rη

by Lemma 1, we conclude
that R is non-terminating. ��

Next we describe a trivial mirroring technique for TRSs. This technique can be
used to eliminate some of the left head variables in an ATRS.

Definition 8 Let t be a term. The term tM is defined as follows:

tM =
{

t if t is a variable
f (tM

n , . . . , tM
1 ) if t = f (t1, . . . , tn)

Moreover, if R is a TRS then RM = {�M → rM | � → r ∈ R}.

We obviously have s →R t if and only if sM →RM tM. This gives the following
result.

Theorem 5 A TRS R is terminating if and only if RM is terminating.

Example 10 Consider the one-rule ATRS R

x (a a a) → a (a a) x

While R has a head variable in its left-hand side, the mirrored version RM

a (a a) x → x (a a a)

is left head variable free. The transformed TRS U+
η (RM)

a2(a1(a), x) → x � a2(a, a) a � x → a1(x) a1(x) � y → a2(x, y)
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is easily proved terminating with dependency pairs and a matrix interpretation of
dimension one.

4 Innermost Termination

Before we prove that our transformation reflects innermost termination we show
that it does not preserve innermost termination.

Example 11 Consider the ATRS R

f x → f x f → g

In an innermost sequence the first rule is never applied and hence R is innermost
terminating. The TRS U+

η (R)

f1(x) → f1(x) f → g f1(x) → g � x f � x → f1(x)

is not innermost terminating due to the rule f1(x) → f1(x).

The overlap between the rules of R in the above example is essential. This follows
from a result of Gramlich [15] stating that innermost termination and termination
coincide for locally confluent overlay systems. Hence for systems that satisfy the
above conditions preservation of innermost termination can be recovered.

Theorem 6 Let R be a locally conf luent overlay �-ATRS. If R is innermost terminat-
ing then U+

η (R) is innermost terminating.

Proof Suppose R is innermost terminating. From [15] we know that R is terminat-
ing. Since uncurrying preserves termination (Theorem 4) also U+

η (R) is terminating.
In particular, U+

η (R) is innermost terminating. ��

In the sequel we investigate if uncurrying reflects innermost termination. The next
example shows that even in the innermost setting, η-saturation cannot be omitted.
This is surprising since the η-rules are not innermost with respect to the original TRS
but by uncurrying they become applicable at innermost redexes.

Example 12 The ATRS R

h x → f x f → h

is not innermost terminating while U+(R)

h1(x) → f1(x) f → h h � x → h1(x) f � x → f1(x)

is (innermost) terminating. Note that U+
η (R) is not innermost terminating because it

also contains the rule f1(x) → h1(x).

The next example shows that s i→R t does not imply s↓U
i→+
U+

η (R)
t↓U . This does

not contradict that uncurrying reflects innermost termination but shows that the
proof of Theorem 3 cannot be adopted for the innermost case without further ado.
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Example 13 Consider the ATRS R

f → g a → b g x → h

and the innermost step s = f a i→R g a = t. We have s↓U = f � a and t↓U = g1(a). In
the TRS U+

η (R)

f → g a → b g1(x) → h g � x → g1(x)

we have s↓U
i→U+

η (R) g � a but the step from g � a to t↓U is not innermost.

The problem in Example 13 is that uncurrying steps performed after the cor-
responding rewrite step need not be innermost. Moreover, not even an innermost
variant of Lemma 4 holds as the next example demonstrates.

Example 14 Consider the ATRS R consisting of the rules

h → b h x → c

the term t = x � y and the substitution σ = {x �→ h}. We have t↓Uσ↓U = h � y and
(tσ)↓U = h1(y). The TRS U+

η (R) consists of the rules

h → b h1(x) → c h1(x) → b � x h � x → h1(x)

Like in the previous example, the step from t↓Uσ↓U to (tσ)↓U is not innermost.

The above problems can be solved if we consider terms that are not completely
uncurried. In our proof we follow a lazy approach and postpone uncurrying as long
as possible. We show that an innermost root step in an ATRS R can be mimicked by
an innermost sequence in U+

η (R) according to the following diagram (Lemma 10):

To show this result we need that rewriting with →∗
U preserves R-normal forms

(Lemma 8) and does not create innermost redexes (Lemma 9). By considering
rightmost innermost rewriting (Lemma 11) we can then establish that uncurrying
reflects innermost termination (Theorem 7).

Lemma 8 Let R be an �-ATRS. If s is a term over the signature of R, s ∈ NF(R), and
s →∗

U t then t ∈ NF(Rη↓U ).

Proof From Lemma 7 we obtain s↓C′ = t↓C′ . Note that s↓C′ = s because s is a
term over the signature of R. If t /∈ NF(Rη↓U ) then t →Rη↓U u for some term u.
Lemma 6 yields t↓C′ →Rη

u↓C′ and Lemma 1 yields s →R u↓C′ . Hence s /∈ NF(R),
contradicting the assumption. ��
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The following lemma states that uncurrying steps followed by taking a proper
subterm can be reordered into first taking a proper subterm and then perform
uncurrying steps.

Lemma 9 Let R be an �-ATRS. If s is a term over the signature of R then s →∗
U · � u

implies s � · →∗
U u.

Proof Assume s →∗
U t � u. We show that s � · →∗

U u by induction on s. If s is a
variable or a constant then there is nothing to show. So let s = s1 � s2. We consider
two cases.

– If the outermost � has not been uncurried then t = t1 � t2 with s1 →∗
U t1 and

s2 →∗
U t2. Without loss of generality assume that t1 �u. If t1 =u then s � s1 →∗

U t1.
If t1 � u then the induction hypothesis yields s1 � · →∗

U u and hence also
s � · →∗

U u.
– If the outermost � has been uncurried in the sequence from s to t then the head

symbol of s1 cannot be a variable and aa(s1) > 0. Hence we may write s1 = f �

t1 � · · · � ti and t = fi+1(t′1, . . . , t′i, s′
2) with t j →∗

U t′j for all 1 � j � i and s2 →∗
U s′

2.
Clearly, t′j � u for some 1 � j � i or s′

2 � t. In all cases the result follows with the
same reasoning as in the first case. ��

The next lemma states that innermost root steps in an ATRS can be simulated
by a (non-empty) sequence of innermost steps in U+

η (R). Note that i→U+
η (R) means

innermost reduction with respect to all rules in U+
η (R).

Lemma 10 Let R be an �-ATRS. If w is a term over the signature of R then
s ∗
U← w

i→ε
R t implies s i→+

U+
η (R)

· ∗
U← t.

Proof We prove that s i→+
U+

η (R)
r↓Uσ↓U

∗
U← rσ whenever s ∗

U← �σ
i→ε
R rσ for

some rewrite rule � → r in R. By Lemma 4 and the confluence of U ,

s i→∗
U (�σ )↓U = �↓Uσ↓U →U+

η (R) r↓Uσ↓U
∗
U← rσ

It remains to show that the sequence s i→∗
U (�σ )↓U and the step �↓Uσ↓U →U+

η (R)

r↓Uσ↓U are innermost with respect to U+
η (R).

– For the former, let s i→∗
U C[u] i→U C[u′] i→∗

U (�σ )↓U with u i→ε
U u′ and let t

be a proper subterm of u. Obviously �σ →∗
U C[u] � t. According to Lemma 9,

�σ � v →∗
U t for some term v. Since �σ

i→ε
R rσ , the term v is a normal form of

R. Hence t ∈ NF(Rη↓U ) by Lemma 8. Since u i→ε
U u′, t is also a normal form of

U . Hence t ∈ NF(U+
η (R)) as desired.

– For the latter, let t be a proper subterm of (�σ )↓U . According to Lemma 9,
�σ � u →∗

U t. The term u is a normal form of R. Hence t ∈ NF(Rη↓U ) by
Lemma 8. Obviously, t ∈ NF(U) and thus also t ∈ NF(U+

η (R)). ��

The next example shows that it is not sound to replace i→ε
R by i→R in Lemma 10.

Example 15 Consider the ATRS R

f → g f x → g x a → b
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Then f1(a) ∗
U← f � a i→R g � a but f1(a)

i→+
U+

η (R)
· ∗
U← g � a does not hold. To see the

latter, consider the two reducts g1(a) and g � a of g � a with respect to →∗
U . We have

neither f1(a)
i→+
U+

η (R)
g1(a) nor f1(a)

i→+
U+

η (R)
g � a.

In order to extend Lemma 9 to non-root positions, we have to use rightmost
innermost rewriting. This avoids the situation in the above example where parallel
redexes become nested by uncurrying.

Lemma 11 Let R be an �-ATRS and t a term over the signature of R. If s ∗
U← t ri→R u

then s i→+
U+

η (R)
· ∗
U← u.

Proof Let s ∗
U← t = C[�σ ] ri→R C[rσ ] = u with �σ

i→ε
R rσ . We use induction on the

context C. If C = � then s ∗
U← t i→ε

R u. Lemma 10 yields

s i→+
U+

η (R)
· ∗
U← u

For the induction step we consider two cases.

– Suppose C = � � s1 � · · · � sn and n > 0. Since R is left head variable free, aa(�)

is defined. If aa(�) = 0 then

s = t′ � s′
1 � · · · � s′

n
∗
U← �σ � s1 � · · · � sn

i→R rσ � s1 � · · · � sn

with t′ ∗
U← �σ and s′

j
∗
U← s j for 1 � j � n. The claim follows using Lemma 10

and the fact that innermost rewriting is closed under contexts. If aa(�) > 0
then the head symbol of � cannot be a variable. We have to consider two
cases. In the case where the leftmost � symbol in C has not been uncurried we
proceed as when aa(�) = 0. If the leftmost � symbol of C has been uncurried, we
reason as follows. We may write �σ = f � u1 � · · · � uk where k < aa( f ). We have
t = f � u1 � · · · � uk � s1 � · · · � sn and u = rσ � s1 � · · · � sn. There exists an i with
1 � i � min{aa( f ), k + n} such that

s = fi(u′
1, . . . , u′

k, s′
1, . . . , s′

i−k) � s′
i−k+1 � · · · � s′

n

with u′
j

∗
U← u j for 1 � j � k and s′

j
∗
U← s j for 1 � j � n. Because of rightmost

innermost evaluation, the terms u1, . . . , uk, s1, . . . , sn are normal forms of R.
According to Lemma 8 the terms u′

1, . . . , u′
k, s′

1, . . . , s′
n are normal forms of

Rη↓U . Since i − k � aa(�), Rη contains the rule

� � x1 � · · · � xi−k → r � x1 � · · · � xi−k

where x1, . . . , xi−k are pairwise distinct variables not occurring in � → r. Hence
the substitution τ = σ ∪ {x1 �→ s1, . . . , xi−k �→ si−k} is well-defined. We obtain

s i→∗
U+

η (R)
fi(u1↓U , . . . , uk↓U , s1↓U , . . . , si−k↓U ) � s′

i−k+1 � · · · � s′
n

i→U+
η (R) (r � x1 � · · · � xi−k)↓Uτ↓U � s′

i−k+1 � · · · � s′
n

∗
U← (r � x1 � · · · � xi−k)τ � si−k+1 � · · · � sn

= rσ � s1 � · · · � sn = u

where we use the confluence of U in the first sequence.
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– In the second case we have C = s1 � C′. Clearly C′[�σ ] ri→R C′[rσ ]. If aa(s1) � 0
or if aa(s1) is undefined or if aa(s1) > 0 and the outermost � has not been
uncurried in the sequence from t to s then

s = s′
1 � s′ ∗

U← s1 � C′[�σ ] ri→R s1 � C′[rσ ] = u

with s′
1

∗
U← s1 and s′ ∗

U← C′[�σ ]. If aa(s1) > 0 and the outermost � has been
uncurried in the sequence from t to s then we may write s1 = f � u1 � · · · � uk

where k < aa( f ). We have s = fk+1(u′
1, . . . , u′

k, s′) for some term s′ with
s′ ∗

U← C′[�σ ] and u′
i

∗
U← ui for 1 � i � k. In both cases the induction hypothesis

yields

s′ i→+
U+

η (R)
· ∗
U← C′[rσ ]

and, since innermost rewriting is closed under contexts, we obtain

s i→+
U+

η (R)
· ∗
U← u

as desired. ��

We are now ready for the result that uncurrying reflects innermost termination.

Theorem 7 An �-ATRS R is innermost terminating if U+
η (R) is innermost terminating.

Proof For a proof by contradiction assume an infinite sequence

t1
ri→R t2

ri→R t3
ri→R · · ·

Using Lemma 11 this sequence can be transformed into

t1↓U
i→+
U+

η (R)
t′2

i→+
U+

η (R)
t′3

i→+
U+

η (R)
· · ·

for terms t′2, t′3, . . . such that ti →∗
U t′i for i � 2. The proof concludes by the fact that

innermost termination is equivalent to rightmost innermost termination, a result due
to Krishna Rao [26]. ��

5 Derivational Complexity

Next we investigate how the uncurrying transformation affects derivational complex-
ity for full (Section 5.1) and innermost rewriting (Section 5.2).

5.1 Full Rewriting

The next theorem explains why uncurrying can be used as a preprocessor for proving
upper bounds on the derivational complexity.

Theorem 8 If R is a terminating �-ATRS then dcR(n) ∈ O(dcU+
η (R)(n)).

Proof Consider an arbitrary maximal rewrite sequence in R starting from t0

t0 →R t1 →R t2 →R · · · →R tm
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Using the proof of Theorem 3, we can transform the sequence into

t0↓U →+
U+

η (R)
t1↓U →+

U+
η (R)

t2↓U →+
U+

η (R)
· · · →+

U+
η (R)

tm↓U

Moreover, t0 →∗
U+

η (R)
t0↓U holds. Therefore, dh(t0,→R) � dh(t0,→U+

η (R)). Hence
dcR(n) � dcU+

η (R)(n) holds for all n ∈ N, showing the result. ��

Next we show that uncurrying preserves polynomial complexity. Since any dupli-
cating TRS has at least exponential derivational complexity (cf. [19]), we only deal
with non-duplicating TRSs. Furthermore we ignore pathological systems that yield
constant derivational complexity (note that any non-empty ATRS admits at least
derivations linear in the size of the starting term).

A TRS R is called length-reducing if R is non-duplicating and |�| > |r| for all rules
� → r ∈ R. The following lemma is an easy consequence of [19, Theorem 23]. Below,
→R/S denotes →∗

S · →R · →∗
S .

Lemma 12 Let R be a non-empty and non-duplicating TRS over a signature contain-
ing a function symbol of arity at least two. If a TRS S is length-reducing, dcR∪S(n) ∈
O(dcR/S(n)) holds whenever R ∪ S is terminating.

Note that the above lemma does not hold if the TRS R is empty.

Theorem 9 Let R be a non-empty, non-duplicating, and terminating �-ATRS. If
dcR(n) is in O(nk) then dcRη↓U /U (n) and dcU+

η (R)(n) are in O(nk).

Proof Suppose that dcR(n) is in O(nk). First consider a maximal rewrite sequence of
→Rη↓U /U starting from a term t0:

t0 →Rη↓U /U t1 →Rη↓U /U · · · →Rη↓U /U tm

By Lemmas 7 and 1 we obtain the sequence

t0↓C′ →R t1↓C′ →R · · · →R tm↓C′

Thus, dh(t0, →Rη↓U /U ) � dh(t0↓C′ ,→R). Because |t0↓C′ | � 2|t0| holds, we obtain
dcRη↓U /U (n) � dcR(2n). From the assumption the right-hand side is in O(nk), There-
fore, dcRη↓U /U (n) is in O(nk). Because U is length-reducing, dcU+

η (R)(n) is also in
O(nk), by Lemma 12. ��

In practice it is recommendable to investigate dcRη↓U /U (n) instead of dcU+
η (R)(n),

see [45]. The next example shows that uncurrying might be useful to enable criteria
for polynomial complexity.

Example 16 Consider the ATRS R consisting of the rules

add x 0 → x add x (s y) → s (add x y)

The system U+
η (R) consists of the rules

add2(x, 0) → x add2(x, s1(y)) → s1(add2(x, y))

add1(x) � y → add2(x, y) add � x → add1(x) s � x → s1(x)
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It is easy to see that the following TMI M of dimension 2 below orients all rules in
U+

η (R) strictly, inducing a quadratic bound on the derivational complexity of U+
η (R)

(according to Theorem 1):

add1M(�x) = s1M(�x) =
(

1 0
0 1

)
�x +

(
0
1

)

add2M(�x, �y) = �M(�x, �y) =
(

1 1
0 1

)
�x +

(
1 1
0 1

)
�y

sM = 0M = addM =
(

0
1

)

Theorem 8 then establishes a quadratic bound on the derivational complexity of R.
In contrast to U+

η (R), the ATRS R itself does not admit such an interpretation of
dimension 2. To see this, we encoded the required condition as a satisfaction problem
in non-linear arithmetic over the integers. MiniSmt [46] can prove this problem
unsatisfiable by simplifying it into a trivially unsatisfiable constraint. Details can be
inferred from the website mentioned in Footnote 4 on page 31.

5.2 Innermost Rewriting

Next we consider innermost derivational complexity. Let R be an innermost ter-
minating TRS. From a result by Krishna Rao [26, Section 5.1], which has been
generalised by van Oostrom [36, Theorems 2 and 3], we infer that

dh(t, i→R) = dh(t, ri→R)

holds for all terms t.

Theorem 10 Let R be an innermost terminating �-ATRS. Then idcR(n) is in
O(idcU+

η (R)(n)).

Proof Consider a maximal rightmost innermost rewrite sequence

t0
ri→R t1

ri→R t2
ri→R · · · ri→R tm

Using Lemma 11 the sequence can be transformed into

t0
i→+
U+

η (R)
t′1

i→+
U+

η (R)
t′2

i→+
U+

η (R)
· · · i→+

U+
η (R)

t′m

for terms t′1, t′2, . . . , t′m such that ti →∗
U t′i for all 1 � i � m. Thus,

dh(t0,
i→R) = dh(t0,

ri→R) � dh(t0,
i→U+

η (R)).

Hence, we conclude idcR(n) ∈ O(idcU+
η (R)(n)). ��

As Example 11 on page 15 showed, uncurrying does not preserve innermost
termination. Similarly, it does not preserve innermost polynomial complexity even
if the original ATRS has linear derivational complexity.

Example 17 Consider the non-duplicating ATRS R
f → s f (s x) → s (s (f x))



300 N. Hirokawa et al.

Since the right rule is never used in innermost rewriting, idcR(n) ∈ O(n) is shown by
easy induction on n. We show that the innermost derivational complexity of U+

η (R)

is at least exponential. The TRS U+
η (R) consists of the five rules:

f → s f1(s1(x)) → s1(s1(f1(x))) f � x → f1(x)

f1(x) → s1(x) s � x → s1(x)

One can verify

dh(

n
︷ ︸︸ ︷
f1(· · · (f1(s1(x)))),

i→U+
η (R)) � 2n

for all n � 1. Hence idcU+
η (R)(n + 3) � 2n for all n � 0.

Similar to Theorem 6, the result can be recovered for locally confluent overlay
systems. In the sequel a substitution σ is called normalised (for a TRS R) if
xσ ∈ NF(R) for all x ∈ V . The next lemmas state useful properties that prepare
for the proof. The first of these states a trivial diamond-like property of innermost
rewriting. It is used in the proofs of the next lemmas to rearrange innermost rewrite
sequences such that the number of steps is preserved.

Lemma 13 Let R be a TRS. If s i→ t and s i→ u by rewriting innermost redexes at
parallel positions then t i→ v and u i→ v for some term v.

Lemma 14 If tσ i→n u ∈ NF(R) then tσ i→n1 tτ i→n2 u for some normalised substitu-
tion τ and n1, n2 ∈ N with n1 + n2 = n.

Proof We use induction on n. Since the base case is trivial, we consider the inductive
step. Suppose tσ i→n u ∈ NF(R). Without loss of generality we assume Dom(σ ) ⊆
Var(t). We proceed by a case distinction. If σ is normalised then the claim follows
with n1 = 0, n2 = n, and τ = σ . In the other case, by Lemma 13 we can reorder
the sequence such that the first rewrite step takes place in the substitution part.
Therefore, there exists a substitution σ ′ with xσ

i→ xσ ′ for some x ∈ Dom(σ ) and
yσ = yσ ′ for all y ∈ Dom(σ ) \ {x}. Writing k for the number of occurrences of x
in t, we have tσ i→k tσ ′ i→n−k u. Since k � 1, the induction hypothesis applied to
tσ ′ i→n−k u yields tσ ′ i→m1 tτ i→m2 u with m1 + m2 = n − k and normalised τ . Com-
bining this with tσ i→k tσ ′, tσ i→k+m1 tτ i→m2 u is obtained. By taking n1 = k + m1

and n2 = m2, we obtain n1 + n2 = k + m1 + m2 = k + (n − k) = n which proves the
claim. ��

Lemma 15 Let R be a non-duplicating overlay system. If t →m u ∈ NF(R) then also
t i→n u for some n � m.

Proof We use induction on m. Since the base case is trivial, we consider the inductive
step. Suppose

C[�σ ] → C[rσ ] →m u ∈ NF(R)

with � → r ∈ R. The induction hypothesis yields C[rσ ] i→n u for some n � m. By
Lemma 13 this sequence can be written as C[rσ ] i→n1 C[u′] i→n2 u with n = n1 + n2
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and u′ ∈ NF(R). From Lemma 14 we obtain a normalised τ and m1, m2 ∈ N with
m1 + m2 = n1 such that rσ i→m1 rτ i→m2 u′. Because innermost rewriting is closed
under contexts, C[rσ ] i→m1 C[rτ ] i→m2+n2 u. Since R is non-duplicating, we have
C[�σ ] i→m0 C[�τ ] for some m0 � m1. Because R is an overlay system and τ is
normalised �τ

i→ rτ . Hence

C[�σ ] i→m0 C[�τ ] i→ C[rτ ] i→m2+n2 u

Here m0 + 1 + m2 + n2 � m1 + 1 + m2 + n2 = n1 + 1 + n2 = n + 1 � m + 1. ��

By the above lemma the next theorem is obtained.

Theorem 11 If R is a non-duplicating and terminating overlay system then idcR(n) =
dcR(n).

Proof Since R is terminating, Lemma 15 yields dh(t, i→R) � dh(t,→R). Combining
this with the obvious dh(t, i→R) � dh(t,→R) concludes the proof. ��

Using Gramlich’s [15] result on the equivalence of termination and innermost
termination for locally confluent overlay systems we obtain the following corollary
from Theorems 9 and 11.

Corollary 2 Let R be a non-duplicating, innermost terminating, and locally conf luent
overlay �-ATRS. If idcR(n) is in O(nk) then idcU+

η (R)(n) is in O(nk).

6 Uncurrying with Dependency Pairs

In this section we incorporate the uncurrying transformation into the dependency
pair framework [4, 12, 14, 17, 40].

In the sequel we present two DP processors that uncurry applicative DP problems,
which are DP problems over signatures containing constants and two application
symbols: � and �	. Properties for full termination of these processors are studied in
Section 6.1 while innermost termination is considered in Section 6.2.

First we define a suitable set of uncurrying rules for DP problems. Let (P,R)

be an applicative DP problem. Here the applicative arities of function symbols are
computed with respect to � and P ∪ R. By U(P,R) we denote the uncurrying rules
derived from U(P) ∪ U(R). In this section we assume that F is Fun(P ∪ R), write
U(F) for U(P,R) and let U+

η (R,F) denote Rη↓U(F) ∪ U(F). If no confusion can
arise, F is dropped in U(F) and U+

η (R,F). An applicative DP problem (P,R) is
said to be �-applicative if P ∪ R is left head variable free.

Definition 9 Let (P,R) be a DP problem. The DP processor U1 is defined as

(P,R) �→
{

{(P↓U(F),U+
η (R,F))} if (P,R) is �-applicative

{(P,R)} otherwise

where F = Fun(P ∪ R).
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Example 18 Consider the �-applicative (note that it is left head variable free) DP
problem ({x 	 (a a) → (a a a) 	 x}, ∅). Processor U1 transforms it into the problem
({x �	 (a1(a)) → a2(a, a) �	 x}, {a � x → a1(x), a1(x) � y → a2(x, y)}) because the ap-
plicative arity of a is two. The latter DP problem is easily shown finite by a matrix
interpretation of dimension one counting the symbols � and a1.

A drawback of U1 is that dependency pair symbols are excluded from the uncurry-
ing process. Typically, all pairs in P have the same root symbol �	. The next example
shows that uncurrying root symbols of P can be beneficial.

Example 19 Consider the ATRS consisting of the single rule a x a → a (a a) x.
After processing the only SCC in the dependency graph with U1, the rewrite rule
a1(x) �	 a → a1(a1(a)) �	 x must be oriented. This cannot be done with a matrix
interpretation of dimension one nor with a reduction pair based on any other sim-
plification order. If we transform the rule into a	

2(x, a) → a	

2(a1(a), x) this becomes
trivial.

To this end we introduce a simple variant of freezing [43].

Definition 10 A simple freeze is a partial mapping � that assigns to a function symbol
of arity n > 0 an argument position i ∈ {1, . . . , n}. Every simple freeze � induces the
following partial mapping on non-variable terms t = f (t1, . . . , tn), also denoted by �:

– if �( f ) is undefined or n = 0 then �(t) = t,
– if �( f ) = i and ti = g(u1, . . . , um) then

�(t) = � fg(t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn)

where � fg is a fresh function symbol of arity m + n − 1,
– if �( f ) = i and ti is a variable then �(t) is undefined.

We denote {�(�) → �(r) | � → r ∈ R} by �(R).

Now uncurrying for dependency pair symbols is formulated with the simple freeze
�(�	) = 1, transforming fn(t1, . . . , tn) �	 tn+1 to ��	 fn(t1, . . . , tn, tn+1). Writing f 	

n+1 for
��	 fn , we obtain the frozen term f 	

n+1(t1, . . . , tn, tn+1). In Example 19 we have

�({a1(x) �	 a → a1(a1(a)) �	 x}) = {a	

2(x, a) → a	

2(a1(a), x)}
The next definition introduces a condition that remedies that freezing is not sound

in general (cf. Example 20).

Definition 11 A term t is strongly root stable with respect to a TRS R if tσ →∗
R ·→ε

R u
does not hold for any substitution σ and term u. Let � be a simple freeze. A DP
problem (P,R) is �-stable if �(P) is well-defined and ti is strongly root stable for R
whenever s → f (t1, . . . , tn) ∈ P and �( f ) = i.

Definition 12 Let (P,R) be a DP problem and � a simple freeze. The DP processor
� is defined as

(P,R) �→
{

{(�(P),R)} if (P,R) is �-stable
{(P,R)} otherwise
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Furthermore, the DP processor U2 is defined as

(P,R) �→ {�((P ′,R′)) | (P ′,R′) ∈ U1((P,R))}
where �(�	) = 1.

The DP processor � exploits the fact that a root step in P gives rise to a root
step in �(P) and vice versa. This follows from the root stability of the left argument
of left-hand sides rooted by �	, which is a consequence of the �-stability of (P,R).
Moreover, t →∗

R u if and only if �(t) →∗
�(R)

�(u) because �	 does not occur in the
rules of R.

6.1 Full Termination

Recently it has been observed by Sternagel and Thiemann [37] that the signature
influences whether a DP problem is finite or not. In particular, restricting the
signature of a non-finite DP problem (P,R) to the function symbols that occur in
P ∪ R may make it finite. This is in sharp contrast to (innermost) termination of
TRSs [29] (and innermost non-f initeness of DP problems, cf. Lemma 19).

We first show that for �-applicative DP problems this cannot happen.2

Lemma 16 Let (P,R) be an �-applicative DP problem over the signature G. If (P,R)

is f inite over F and � ∈ F then (P,R) is f inite over G.

Proof Let V ′ = V � {x f | f ∈ G \ F}. We define a mapping I from T (G,V) to
T (F ,V ′) as follows:

I(t) =

⎧
⎪⎨

⎪⎩

t if t ∈ V
f (I(t1), . . . , I(tn)) if t = f (t1, . . . , tn) and f ∈ F
x f � I(t1) � · · · � I(tn) if t = f (t1, . . . , tn) and f ∈ G \ F

Note that I(u) = u for u ∈ T (F ,V). Obviously I(C[tσ ]) = I(C)[I(t)I(σ )] and hence
we immediately obtain that s →ε

P t implies I(s) →ε
P I(t) and that s →R t implies

I(s) →R I(t) because � = I(�) and r = I(r) for all � → r ∈ P ∪ R. To show that
any I(t) is terminating with respect to R whenever t ∈ T (G,V) is terminating with
respect to R, we show that if I(t) →R u for some term u ∈ T (F ,V ′) then there exists
a term s ∈ T (G,V) with t →R s and I(s) = u. Now let I(t) = C[�σ ] →R C[rσ ] = u
for some � → r ∈ R. Clearly t = C′[vσ ′] for some C′, v, and σ ′ with C = I(C′),
� = I(v), and σ = I(σ ′). By left head variable freeness of R we obtain v = � ∈
T (F ,V). Hence by injectivity of I we conclude t = C′[�σ ′] →R C′[rσ ′] = s. These
observations guarantee that any presupposed minimal sequence using terms from
T (G,V) is transformed by the mapping I into a minimal sequence using terms from
T (F ,V ′). It follows that (P,R) is finite over G. ��

2An alternative proof has been independently obtained by Sternagel and Thiemann [38].
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The next result prepares for the soundness proof of U1.

Lemma 17 Let (P,R) be an �-applicative DP problem. If �σ →ε rσ with � → r ∈ P
then (�σ )↓U(F) →ε

P↓U(F)
r↓U(F)σ↓U(F).

Proof By Lemma 4 and the assumption that � is head variable free. ��

Theorem 12 The DP processor U1 is sound and complete.

Proof Let (P,R) be an �-applicative DP problem. If � /∈ F then U1((P,R)) =
{(P,R)} and there is nothing to show. If � ∈ F then according to the preceding
lemma we may assume that the signature of the DP problem (P,R) is F .

We first show soundness. Suppose the DP problem (P↓U ,U+
η (R)) is finite. We

have to show that (P,R) is finite. Suppose to the contrary that (P,R) is not finite.
So there exists a minimal rewrite sequence

s1 →ε
P t1 →∗

R s2 →ε
P t2 →∗

R · · · (2)

By Lemmas 17 and 4 together with the claim in the proof of Theorem 3, this sequence
can be transformed into

s1↓U →ε
P↓U

u1 →∗
U t1↓U →∗

U+
η (R) s2↓U →ε

P↓U
u2 →∗

U t2↓U →∗
U+

η (R) · · ·

It remains to show that all terms u1, u2, . . . are terminating with respect to U+
η (R). Fix

i. We have ui↓C′ = ti↓U↓C′ = ti. Due to the minimality of (2), ti is terminating with
respect to R and, according to Lemma 1, also with respect to Rη. Hence, due to the
proof of Theorem 4, ui is terminating with respect to U+

η (R).
Next we show completeness of the DP processor U1. Suppose that the DP problem

(P↓U ,U+
η (R)) is not finite. So there exists a minimal rewrite sequence

s1 →ε
P↓U

t1 →∗
U+

η (R) s2 →ε
P↓U

t2 →∗
U+

η (R) · · ·

Using Lemmas 6 and 7 this sequence can be transformed into

s1↓C′ →ε
P t1↓C′ →∗

Rη
s2↓C′ →ε

P t2↓C′ →∗
Rη

· · ·
In order to conclude that the DP problem (P,R) is not finite, it remains to show
that the terms t1↓C′ , t2↓C′ , . . . are terminating with respect to Rη. This follows from
the assumption that the terms t1, t2, . . . are terminating with respect to U+

η (R) in
connection with the proof of Theorem 3. An application of Lemma 1 concludes the
proof. ��

Theorem 13 The DP processor � is sound and complete.

Proof Let (P,R) be a �-stable DP problem. We show that every minimal rewrite
sequence

s1 →ε
P t1 →∗

R s2 →ε
P t2 →∗

R · · ·
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can be transformed into the minimal sequence

�(s1) →ε
�(P) �(t1) →∗

R �(s2) →ε
�(P) �(t2) →∗

R · · ·
and vice versa. This follows from the following three observations.

– si →ε
P ti if and only if �(si) →ε

�(P)
�(ti)

We have si →ε
P ti if and only if si = �σ and ti = rσ with � → r ∈ P . Since �(P) is

well-defined and � is injective on terms, the latter is equivalent to

�(si) = �(�σ ) = �(�)σ →ε
�(P) �(r)σ = �(rσ) = �(ti)

– ti →∗
R si+1 if and only if �(ti) →∗

R �(si+1)

Since ti and si+1 have the same root symbol we can write ti = f (u1, . . . , un) and
si+1 = f (u′

1, . . . , u′
n). If �( f ) is undefined or n = 0 then �(si) = si →∗

R ti = �(ti).
Suppose �( f ) = k. Since ti is an instance of a right-hand side of a pair in P
and �(P) is well-defined, uk cannot be a variable. Write uk = g(v1, . . . , vm).
According to �-stability, uk is root stable and thus u′

k = g(v′
1, . . . , v

′
m). Hence

ti = f (u1, . . . , uk−1, g(v1, . . . , vm), uk+1, . . . , un)

si+1 = f
(
u′

1, . . . , u′
k−1, g

(
v′

1, . . . , v
′
m

)
, u′

k+1, . . . , u′
n

)

and

�(ti) = � fg(u1, . . . , uk−1, v1, . . . , vm, uk+1, . . . , un)

�(si+1) = � fg
(
u′

1, . . . , u′
k−1, v

′
1, . . . , v

′
m, u′

k+1, . . . , u′
n

)

Consequently, ti →∗
R si+1 if and only if u j →∗

R u′
j for 1 � j � n with j �= k and

v j →∗
R v′

j for 1 � j � m if and only if �(ti) →∗
R �(si+1).

– ti terminates with respect to R if and only if �(ti) terminates with respect to R
This follows immediately from the observation above that all reductions in ti take
place in the arguments u j or v j. ��

Corollary 3 The DP processor U2 is sound and complete.

Proof Immediate from Theorems 12 and 13 together with the fact that the com-
position of sound and complete DP processors yields a sound and complete DP
processor. ��

The next example shows that �-stability is essential for soundness.

Example 20 Consider the non-terminating ATRS R consisting of the two rules

f a → g a g → f

which induces the infinite DP problem (P,R) with P consisting of the rules

f 	 a → g 	 a f 	 a → g	

Since P↓U = P and U1 is sound, the DP problem (P,U+
η (R)) is also infinite. The set

�(P↓U ) consists of the rules

f	1(a) → g	

1(a) f	1(a) → g	

Clearly, the DP problem (�(P),U+
η (R)) is finite. Note that (P,U+

η (R)) is not �-stable
as g →ε

U+
η (R)

f.
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Since �-stability is undecidable in general, for automation we need to approximate
strong root stability. We present a simple criterion which is based on the term
approximation TCAP from [13], where it was used to give a better approximation
of dependency graphs.

Definition 13 (Giesl et al. [13]) Let R be a TRS and t a term. The term TCAPR(t) is
inductively defined as follows. If t is a variable, TCAPR(t) is a fresh variable. If t =
f (t1, . . . , tn) then we let u = f (TCAPR(t1), . . . , TCAPR(tn)) and define TCAPR(t) to
be u if u does not unify with the left-hand side of a rule in R, and a fresh variable
otherwise.

Lemma 18 A term t is strongly root stable for a TRS R if TCAPR(t) /∈ V .

Proof The only possibility for TCAPR(t) /∈ V is when t = f (t1, . . . , tn) and the term
u = f (TCAPR(t1), . . . , TCAPR(tn)) does not unify with a left-hand side of a rule
in R. Assume to the contrary that t is not strongly root stable. Then there are
a substitution σ and a left-hand side � of a rule in R such that tσ →∗

R �τ . Write
� = f (l1, . . . , ln). We have tσ = f (t1σ, . . . , tnσ) with tiσ →∗

R liτ for 1 � i � n. Hence
TCAPR(ti)δi = liτ for some substitution δi ([13, proof of Theorem 13]). Since the
terms TCAPR(t1), . . . , TCAPR(tn) are linear and do not share variables, it follows
that u unifies with �, contradicting the assumption. ��

Example 21 Consider the DP problem (P↓U ,U+
η (R)) of Example 19 with P↓U

consisting of the rule

a1(x) �	 a → a1(a1(a)) �	 x

and U+
η (R) consisting of the rules

a2(x, a) → a2(a1(a), x) a � x → a1(x) a1(x) � y → a2(x, y)

Since TCAPU+
η (R)(a1(a1(a))) = a1(a1(a)) is not a variable, a1(a1(a)) is strongly root

stable. Hence (P↓U ,U+
η (R)) is �-stable.

6.2 Innermost Termination

We start this section with a motivating example (which is related to Example 18).

Example 22 Consider the ATRS R consisting of the rule x (a a) → (a a a) x. The
only SCC in the dependency graph is P := {x 	 (a a) → (a a a) 	 x}. Since P ∪ R is
not left head variable free the processor U1 cannot be applied. For proving innermost
termination the usable rules processor [13] transforms (P,R) into (P, ∅) since
the rule in R is not usable. Because U1 is sound for innermost termination (cf.
Theorem 14), Example 18 finishes the innermost termination proof of R.

In the following we deal with applicative DP problems (P,R) for innermost ter-
mination. The following is the counterpart of Lemma 16 for innermost termination.
Note that in contrast to Lemma 16, the result holds for arbitrary DP problems.
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Lemma 19 Let (P,R) be a DP problem over the signature G. If (P,R) is innermost
f inite over F then (P,R) is innermost f inite over G.

Proof Let V ′ = V � {xt | t ∈ T (G,V)}. Similar to the proof of Lemma 16 we define a
mapping I from T (G,V) to T (F ,V ′) as follows:

I(t) =

⎧
⎪⎨

⎪⎩

t if t ∈ V
f (I(t1), . . . , I(tn)) if t = f (t1, . . . , tn) and f ∈ F
xt if t = f (t1, . . . , tn) and f ∈ G \ F

Note that I(t) = t for t ∈ T (F ,V). First we show that s →ε
P t implies I(s) →ε

P I(t).
From s →ε

P t we get s = �σ and t = rσ for some � → r ∈ P . Since �, r ∈ T (F ,V)

we get � = I(�) and r = I(r) and consequently I(s) = �I(σ ) →ε
P rI(σ ) = I(t). Since

t →R s need not imply I(t) →R I(s) in general, we restrict ourselves to terms
satisfying a special property. Let T be the set of all terms in T (G,V) whose G \ F -
rooted subterms are normal forms. Note that if C[�σ ] ∈ T for some � → r ∈ R
then I(C) = C since C cannot contain a symbol from G \ F . Hence t →R s with
t ∈ T implies I(t) = C[�I(σ )] →R C[rI(σ )] = I(s) and I(s) ∈ T (since →R cannot
introduce function symbols from G \ F). Together with the fact that I(s) ∈ NF(R)

whenever s ∈ NF(R) this ensures that I(t) i→!
R I(s) whenever t i→!

R s and t ∈ T.
Hence any presupposed sequence

s1 →ε
P t1

i→!
R s2 →ε

P t2
i→!
R · · ·

with s1 ∈ NF(R) (and hence si, ti ∈ T for all i � 1) using terms from T (G,V) is
transformed into a sequence

I(s1) →ε
P I(t1)

i→!
R I(s2) →ε

P I(t2)
i→!
R · · ·

with I(s1) ∈ NF(R) using terms from T (F ,V ′). It follows that (P,R) is innermost
finite over G. ��

Theorem 14 The DP processor U1 is sound for innermost termination.

Proof Let (P,R) be an �-applicative DP problem. By the preceding lemma we may
assume without loss of generality that the signature of (P,R) is F . Assume (P,R) is
not innermost finite. According to Krishna Rao [26] there exists an infinite sequence

s1 →ε
P t1

ri→!
R s2 →ε

P t2
ri→!

R · · ·
with s1 ∈ NF(R). We show that there is a sequence

s1↓U →ε
P↓U

t′1
i→!
U+

η (R) s2↓U →ε
P↓U

t′2
i→!
U+

η (R) · · ·
with terms t′1, t′2, . . . such that ti →∗

U t′i for i � 1. Fix i and let � → r be the rule
from P that is used in si →ε

P ti. So ti = rσ for some substitution σ . Lemma 17 yields
si↓U →ε

P↓U
t′i for the term t′i = r↓Uσ↓U . Clearly ti →∗

U t′i. Repeated application of
Lemma 11 yields

t′i
i→∗
U+

η (R) s′
i+1

∗
U← si+1

for some term s′
i+1 that is a normal form of Rη↓U due to Lemma 8 and the fact that

si+1 is a normal form of R. It follows that s′
i+1

i→∗
U+

η (R)
si+1↓U by repeated applications
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of Lemma 8 and innermost normalising s′
i+1 with respect to U . (Note that U is

terminating and confluent.) Since si+1↓U is a normal form of U+
η (R), we obtain

t′i
i→!
U+

η (R)
si+1↓U . Since s1↓U ∈ NF(U+

η (R)) whenever s1 ∈ NF(R) (Lemma 8) we
conclude that the DP problem (P↓U ,U+

η (R)) is not innermost finite, as desired. ��

Theorem 15 The DP processor � is sound and complete for innermost termination.

Proof Let (P,R) be �-stable. Every infinite sequence

s1 →ε
P t1

i→!
R s2 →ε

P t2
i→!
R · · ·

can be transformed into the sequence

�(s1) →ε
�(P) �(t1)

i→!
R �(s2) →ε

�(P) �(t2)
i→!
R · · ·

and vice versa. This is obvious from the first observation in the proof of Theorem 13
and the following two facts: (1) ti

i→∗
R si+1 if and only if �(ti)

i→∗
R �(si+1) and (2)

si ∈ NF(R) if and only if �(si) ∈ NF(R) for all i � 1 (which follow from the proof of
the second observation in the proof of Theorem 13). ��

Corollary 4 The DP processor U2 is sound for innermost termination.

Proof Immediate from Theorems 14 and 15 together with the fact that the composi-
tion of sound DP processors yields a sound processor. ��

The next example shows that U1 is not complete for innermost DP problems.
(Note that Example 11 on page 293 does not provide a counterexample.)

Example 23 Consider the ATRS R

f x → g a x g x → f g → h

which is innermost terminating because the rule g x → f cannot be used in an
innermost sequence and without this rule R is easily seen to be terminating. Hence
also the DP problem (P,R) with P consisting of

f 	 x → g a 	 x f 	 x → g 	 a g 	 x → f

is innermost terminating. However, after applying the DP processor U1 there is an
infinite innermost sequence:

f 	 x →ε
P↓U

g1(a) 	 x i→U+
η (R) f 	 x →ε

P↓U
· · ·

Note that f 	 x ∈ NF(U+
η (R)).

Because of the completeness of �, U2 inherits incompleteness for innermost
termination from U1.



Uncurrying for Termination and Complexity 309

Table 1 Full termination for 195 ATRSs

direct as processor

1 3 3 + 5 none A A′ U1 U2 3 + 5 + U2
∑

subterm criterion 1 47 48 41 – – 41 58 61 61
matrix (1) 4 90 101 66 68 86 95 101 109 110
matrix (2) 7 108 131 108 111 128 133 134 138 138
matrix (3) 9 109 132 110 114 133 136 138 140 142

7 Experiments

The transformations presented in this paper are implemented in the termination
prover TTT2 [25]. For experimentation version 7.0.2 of the termination problem data
base (TPDB)3 has been considered which contains 195 ATRSs for full and 18 for
innermost rewriting. All tests have been performed on a single core of a server
equipped with eight dual-core AMD Opteron® processors 885 running at a clock rate
of 2.6 GHz and 64 GB of main memory. Comprehensive details of the experiments4

give evidence that the proposed transformations ease proving termination and upper
bounds on the derivational complexity.

For proving (innermost) termination we considered two popular termination
methods, namely the subterm criterion [17] and matrix interpretations [10] of
dimensions one to three. For a matrix of dimension d the coefficients are represented
by 5 − d bits, one additional bit is allowed for intermediate results. Both methods are
integrated within the dependency pair framework using dependency graph reasoning
and usable rules as proposed in [13, 14, 16].

Table 1 differentiates between applying the transformations as a preprocessing
step (direct) or within the dependency pair framework (as processor). For rows
labeled “matrix”, the numbers in parentheses refer to the dimension of the interpre-
tations. The direct method of Corollary 1 (Theorem 3, Theorems 3 and 5) applies to
10 (141, 170) systems. If used directly, the numbers in the table refer to the systems
that could be proved terminating in case of a successful transformation. Mirroring
(when the original system is not left head variable free) does increase applicability of
our (direct) transformation significantly.

The middle part of Table 1 states the number of successful termination proofs
for transformation A ([13, 40]) and the processors U1 (Definition 9) and U2

(Definition 12). Since transformation A does not preserve minimality (Example 24
in Section 8) one cannot use it together with the subterm criterion. In [40] it is shown
that minimality is preserved when the transformation A is fused with the reduction
pair and usable rules processors. Our implementation is based on the processor
presented in [40, Theorem 6.17(D)]. In the column labeled A the transformation
is fused with the reduction pair processor based on matrix interpretations while
for column A′ in addition the usable rules are computed based on TCAP. The first
version is more suitable for a comparison with our processors (since U1 and U2 do also
not incorporate usable rules) while the second version shows that transformation A

3http://termination-portal.org/wiki/TPDB
4http://cl-informatik.uibk.ac.at/software/ttt2/11jar/

http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/software/ttt2/11jar/
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Table 2 Innermost termination for 213 ATRSs

direct as processor

1 7 7 + 5 none A U1 U2 7 + 5 + U2
∑

subterm criterion 2 60 62 52 – 53 79 83 83
matrix (1) 4 101 112 76 97 114 120 126 126
matrix (2) 7 120 143 120 140 145 146 151 151
matrix (3) 9 121 144 122 144 149 150 153 154

can be combined with other termination criteria to obtain more advanced processors.
Nevertheless the processors U1 and U2 admit more successful termination proofs.
(In [40] further non-trivial extensions of the transformation A are considered.)

It is a trivial exercise to extend mirroring to DP problems. Our experiments
revealed that (1) mirroring works better for the direct approach (hence we did not
incorporate it into the middle block of the table) and (2) the uncurrying processors
should be applied before other termination processors. Although Theorem 3 and the
processor U2 are incomparable in power we recommend the usage of the processor.
One reason is the increased strength and another one the modularity which allows to
prevent pitfalls like Example 9. Last but not least, the processors U1 and U2 are not
only sound but also complete (for full termination) which makes them suitable for
non-termination analysis in principle. At least with TTT2 we could not detect that this
makes proving non-termination easier.

The right block of Table 1 gives the accumulated score for our transformations.
As reference the total number of systems is given (labeled

∑
) that any method

in the corresponding row could prove terminating, showing that the cost for the
auxiliary uncurrying rules is negligible compared to the gains in power. To see how
the uncurrying transformation improves the power of a “full” termination prover we
dropped it from the 2010 competition version of TTT2. Then the number of successful
termination proofs for applicative TRSs drops from 157 to 131.

Table 2 shows the results for innermost termination and admits similar conclu-
sions. In contrast to the experiments reported in [44], for this table TTT2 uses an
approximation for the innermost dependency graph [13, 16] and drops non-usable
rules [13]. Due to the latter, the results for columns A and A′ coincide.

Table 3 reports the performance of TTT2 for derivational complexity. Since TTT2
has no special methods for proving innermost derivational complexity, the num-
bers for dc and idc coincide. In this table columns labeled “–” do not use any
preprocessing transformation whereas 1, 8/10 indicate applications of Corollary 1
and Theorems 8/10, respectively. We remark that Corollary 1 preserves deriva-
tional complexity. This is straightforward from [23, Lemma 2.1(3)]. Here TMIs of
dimension one to four as presented in Theorem 1 are considered. Coefficients of
TMIs are represented with max{2, 5 − d} bits; again an additional bit is allowed for
intermediate results. If Theorem 8 is used as preprocessing transformation, TMIs can,

Table 3 (Innermost) derivational complexity for 195 (213) ATRSs

TMI (1) TMI (2) TMI (3) TMI (4)

– 1 8/10 – 1 8/10 – 1 8/10 – 1 8/10

dc/idc 3 3 4 10 10 14 12 14 26 12 16 28
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e.g., show 26 systems to have at most cubic derivational complexity while without
uncurrying (with Theorem 1) the method only applies to 12 (14) systems. Especially
for larger dimensions in Table 3 our transformation admits significant gains in power.
We only tested the direct transformations, because proofs with dependency pairs give
upper bounds on the derivational complexity much beyond exponential [32]. Since
many of the ATRSs in this testbed contain partially applied terms or head variables
in the right-hand sides this hampers applicability of Corollary 1.

8 Related Work

The transformation A of Giesl et al. [13] requires proper applicative DP problems,
which are DP problems with the property that all occurrences of each constant have
the same number of arguments. No uncurrying rules are added to the processed DP
problems. This destroys minimality which means that not all DP processors (i.e.,
only those not relying on minimality) may be applied after transformation A. The
following example is from [40].

Example 24 Consider the �-applicative DP problem (P,R) with P consisting of the
rewrite rule (g x) (h y) 	 z → z z 	 z and R consisting of the rules

c x y → x c (g x) y → c (g x) y

c x y → y c x (g y) → c x (g y)

The DP problem (P,R) is not finite because of the following minimal rewrite
sequence:

(g x) (h x) 	 (c g h x) →ε
P (c g h x) (c g h x) 	 (c g h x)

→R (g x) (c g h x) 	 (c g h x)

→R (g x) (h x) 	 (c g h x)

Applying the DP processor U1 produces (P↓U ,U+
η (R)) with P↓U consisting of the

rewrite rule g1(x) � h1(y) �	 z → z � z �	 z and U+
η (R) consisting of the rules

c2(x, y) → x c2(g1(x), y) → c2(g1(x), y) g � x → g1(x)

c2(x, y) → y c2(x, g1(y)) → c2(x, g1(y)) h � x → h1(x)

c � x → c1(x) c1(x) � y → c2(x, y)

This DP problem is not finite:

g1(x) � h1(x) �	 (c2(g, h) � x) →ε
P↓U

(c2(g, h) � x) � (c2(g, h) � x) �	 (c2(g, h) � x)

→∗
U+

η (R)
(g � x) � (h � x) �	 (c2(g, h) � x)

→∗
U+

η (R)
g1(x) � h1(x) �	 (c2(g, h) � x)

Note that c2(g, h) � x is terminating with respect to U+
η (R).

The uncurrying rules are essential in this example, even though in the original
DP problem all occurrences of each constant have the same number of arguments.
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Indeed, transformation A leaves out the uncurrying rules, resulting in a DP problem
that admits infinite rewrite sequences but no minimal ones since one has to instanti-
ate the variable z in g1(x) � h1(y) �	 z → z � z �	 z by a term that contains a subterm
of the form c2(g1(s), t) or c2(s, g1(t)) and the rules c2(g1(x), y) → c2(g1(x), y) and
c2(x, g1(y)) → c2(x, g1(y)) ensure that these terms are non-terminating.

Thiemann [40, Sections 6.2 and 6.3] addresses the loss of minimality by incorporat-
ing reduction pairs, usable rules, and argument filterings into the transformation A.
(The first two refinements were considered in the column labeled A′ in Table 1.)
In [40] it is further remarked that transformation A works better for innermost
termination than for termination. This also holds for our processors U1 and U2 (cf.
Section 7).

Recently Sternagel and Thiemann have generalised uncurrying to relative rewrit-
ing and non-applicative signatures and formalised it in the theorem prover Is-
abelle/HOL [38]. In particular their work comprises the certification of Theorem 3
(see [38, Corollary 11]) and the soundness direction of Theorem 12 (see [38,
Theorem 15]) and Corollary 3 (see [38, Theorem 20]), respectively.

Aoto and Yamada [1, 2] present transformation techniques for proving termi-
nation of simply typed ATRSs. After performing η-saturation, head variables are
eliminated by instantiating them with ‘template’ terms of the appropriate type. In a
final step, the resulting ATRS is translated into functional form.

Example 25 Consider again the ATRS R of Example 2. Suppose we adopt the fol-
lowing type declarations: 0 : int, s : int → int, nil : list, (:) : int → list → list, id : int →
int, add : int → int → int, and map : (int → int) → list → list. The head variable f in
the right-hand side : ( f x) (map f y) has type int → int. There are three template
terms of this type: s, id, and add z. Instantiating f by these three terms in Rη

produces the ATRS R′:

id x → x map f nil → nil

add 0 → id map s (: x y) → : (s x) (map s y)

add 0 y → id y map id (: x y) → : (id x) (map id y)

add (s x) y → s (add x y) map (add z) (: x y) → : (add z x) (map (add z) y)

The TRS R′↓U is terminating because its rules are oriented from left to right by the
lexicographic path order. According to the main result of [2], the simply typed ATRS
R is terminating, too.

The advantage of the simply typed approach is that no uncurrying rules are
necessary because the application symbol has been eliminated from R′↓U . This
typically results in simpler termination proofs. It is worthwhile to investigate whether
a version of head variable instantiation can be developed for the untyped case. We
would like to stress that with the simply typed approach one obtains termination
only for those terms which are simply typed. Our approach, when it works, provides
termination for all terms, irrespective of any typing discipline. In [3] the dependency
pair method is adapted to deal with simply typed ATRSs. Again, head variable
instantiation plays a key role.
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Applicative term rewriting is not the only model for capturing higher-order
aspects. The S-expression rewrite systems of Toyama [41] have a richer structure
than applicative systems, which makes proving termination often easier. The notion
of strong computability is often employed for proving termination of typed lambda
calculi and variations like typed rewriting calculi [8]. Recent methods (e.g. [7, 21])
use types to exploit strong computability, leading to powerful termination methods
which are directly applicable to higher-order systems. In [28] strong computability
is used to analyse the termination of simply typed ATRSs with the dependency
pair method, and recently this approach was extended to higher-order rewrite sys-
tems [27]. Finally, in [24] many concepts from the dependency pair framework have
been lifted to algebraic functional systems, a higher-order concept based on simple
types and explicit β-reduction.

While in this article we used termination techniques for ordinary TRSs to show
termination of uncurried TRSs, it is worth noting that there is a specialised technique
for uncurried TRSs. Van Bakel and Fernández [6] introduced the class of curryf ied
TRSs and its type system for normalisation. This class contains almost all uncurried
TRSs. Notable exceptions are �-ATRSs that contain a rule � → r with aa(�) > 0. In
[6] it is shown that a typable curryfied TRS is terminating if it satisfies the general
scheme of [22].

We are not aware of other investigations dedicated to (derivational) complexity
analysis of ATRSs.
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