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Abstract When only a small number of labeled samples are available, supervised dimen-
sionality reduction methods tend to perform poorly because of overfitting. In such cases,
unlabeled samples could be useful in improving the performance. In this paper, we pro-
pose a semi-supervised dimensionality reduction method which preserves the global struc-
ture of unlabeled samples in addition to separating labeled samples in different classes from
each other. The proposed method, which we call SEmi-supervised Local Fisher discriminant
analysis (SELF), has an analytic form of the globally optimal solution and it can be com-
puted based on eigen-decomposition. We show the usefulness of SELF through experiments
with benchmark and real-world document classification datasets.
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1 Introduction

The goal of dimensionality reduction is to obtain a low-dimensional representation of high-
dimensional data samples while preserving most of the ‘intrinsic information’ contained in
the original data (Roweis and Saul 2000; Tenenbaum et al. 2000; Hinton and Salakhutdinov
2006). If dimensionality reduction is carried out appropriately, the compact representation
of the data can be used for various tasks such as visualization and classification.

In supervised learning scenarios where data samples are accompanied with class labels,
Fisher discriminant analysis (FDA) (Fisher 1936; Fukunaga 1990) is a popular dimension-
ality reduction method. FDA seeks an embedding transformation such that the between-
class scatter is maximized and the within-class scatter is minimized. FDA works very well
if the samples in each class follow Gaussian distributions with a shared covariance struc-
ture. However, FDA tends to give undesired results if the samples in a class form several
separate clusters or there are outliers (Fukunaga 1990). To overcome this drawback, Local
FDA (LFDA) has been proposed (Sugiyama 2007). LFDA localizes the evaluation of the
within-class scatter, and thus works well even when within-class multimodality or outliers
exist. In addition, LFDA overcomes a critical limitation of the original FDA in dimensional-
ity reduction—the dimension of the FDA embedding space should be less than the number
of classes (Fukunaga 1990), while LFDA does not suffer from this restriction in general.
Moreover, LFDA was shown to compare favorably with other supervised dimensionality
reduction methods through experiments (Sugiyama 2007).

However, the performance of LFDA (and all other supervised dimensionality reduction
methods) tends to be degraded when only a small number of labeled samples are available.
Namely, the supervised dimensionality reduction methods tend to find embedding spaces
which are overfitted to the labeled samples. In such cases, it is effective to make use of un-
labeled samples that are often available abundantly—such a setup is called semi-supervised
learning (Chapelle et al. 2006). Through extensive experiments, it was shown that prin-
cipal component analysis (PCA) (Jolliffe 1986), which is an unsupervised dimensionality
reduction method for preserving the global data structure, works moderately well in semi-
supervised learning scenarios (see e.g., Chap. 21 of Chapelle et al. 2006).

Although PCA was reported to work well, it may not be the best possible choice in the
semi-supervised situation because of its unsupervised nature. In this paper, we propose an
alternative semi-supervised dimensionality reduction method. Our basic idea is to smoothly
bridge LFDA and PCA so that our reliance on the global structure of unlabeled samples and
information brought by (a small number of) labeled samples can be controlled. We show ex-
perimentally that the proposed method, which we refer to as semi-supervised LFDA (SELF),
compares favorably with other methods. Note that SELF maintains the same computational
advantage of LFDA and PCA, i.e., a global solution can be analytically computed based
on eigen-decomposition. Therefore, SELF is still computationally as efficient as LFDA and
PCA.

The rest of this paper is organized as follows. In Sect. 2, the linear dimensionality reduc-
tion problem addressed in this paper is formulated and some mathematical facts used in the
following sections are briefly summarized. In Sect. 3, existing supervised and unsupervised
dimensionality reduction methods are reviewed in a systematic and unified manner. This
unified view will be the foundation for developing our new method in the following section.
Those who are familiar with the existing methods and interested in immediately looking at
the new method may choose to skip the review materials provided in Sect. 3. In Sect. 4, we
propose the new semi-supervised dimensionality reduction method SELF and show its prop-
erties. Section 5 is devoted to experiments showing the usefulness of the proposed approach.
Finally, in Sect. 6, we conclude with a discussion on possible future directions.
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2 Preliminaries

In this section, we formulate the linear dimensionality reduction problem and give some
mathematical background.

2.1 Formulation

Let xi ∈ R
d (i = 1,2, . . . , n) be d-dimensional sample vectors and let X ∈ R

d×n be the
matrix of all samples:

X := (x1|x2| · · · |xn).

Let z ∈ R
r (1 ≤ r ≤ d) be a low-dimensional representation of a high-dimensional sample

x ∈ R
d , where r is the dimensionality of the reduced space. For the moment, we focus on

linear dimensionality reduction, i.e., using a transformation matrix T ∈ R
d×r , an embedded

representation z of the sample x is obtained as

z = T �x,

where � denotes the transpose of a matrix or a vector. Later, we extend our discussion to
cases where the mapping from x to z is non-linear.

2.2 Generalized eigenvalue problem

Many dimensionality reduction techniques developed so far involve an optimization prob-
lem of the following form:

T (OPT) := argmax
T ∈Rd×r

[
tr
(
T �BT (T �CT )−1

)]
. (1)

Roughly speaking, B encodes the quantity that we want to increase (e.g., between-class
separability), and C corresponds to the quantity that we want to decrease (e.g., within-class
scatter). In the next section, we show how B and C are designed in some specific cases. Note
that the same solution T (OPT) can also be obtained as follows (see e.g., Fukunaga 1990):

T (OPT) = argmax
T ∈Rd×r

[tr(T �BT )] subject to T �CT = I r ,

T (OPT) = argmax
T ∈Rd×r

[
det(T �BT )

det(T �CT )

]
,

(2)

where I r is the identity matrix on R
r and det(·) denotes the determinant of a matrix.

Let {ϕk}d
k=1 be the generalized eigenvectors associated with the generalized eigenvalues

{λk}d
k=1 of the following generalized eigenvalue problem:

Bϕ = λCϕ. (3)

The generalized eigenvectors are C-orthogonal (Bai et al. 2000), i.e., for k �= k′,

ϕ�
k Cϕk′ = 0.

We assume that the generalized eigenvalues are sorted in descending order as

λ1 ≥ λ2 ≥ · · · ≥ λd, (4)
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and the generalized eigenvectors are normalized as

ϕ�
k Cϕk = 1 for k = 1,2, . . . , d. (5)

Note that this normalization is often carried out automatically by an eigen-solver. Then a
solution T (OPT) is analytically given as follows (e.g., Fukunaga 1990):

(ϕ1|ϕ2| · · · |ϕr ).

It can be confirmed that (1) is invariant under linear transformations (Fukunaga 1990),
i.e., for any r-dimensional invertible matrix U , T (OPT)U is also a global solution. This im-
plies that the range of the embedding space can be uniquely determined by (1), but the
metric in the embedding space is arbitrary. A practically useful heuristic (e.g., Sugiyama
2007) is to set

U = diag(
√

λ1,
√

λ2, . . . ,
√

λr), (6)

where diag(a, b, . . . , c) denotes the diagonal matrix with the diagonal elements a, b, . . . , c

and we assume that the generalized eigenvalues {λk}d
k=1 are non-negative. Then the solution

is given as

T (OPT) = (
√

λ1ϕ1|
√

λ2ϕ2| · · · |
√

λrϕr ). (7)

Thus, the minor eigenvectors are deemphasized according to the square root of the eigen-
values. We will use this weighted solution in this paper.

2.3 Pairwise expression of scatter matrices

When addressing dimensionality reduction problems, we are often dealing with a matrix of
the following pairwise form (Belkin and Niyogi 2003; Sugiyama 2007), since it is conve-
nient to describe the relation between pairs of features regarding whether pairs are close
together or far apart:

S := 1

2

n∑

i,j=1

Wi,j (xi − xj )(xi − xj )
�, (8)

where W is some n × n matrix. Let D be the n × n diagonal matrix with

Di,i :=
n∑

j=1

Wi,j ,

and let L be

L := D − W .

Then the matrix S can be expressed in terms of L as

S =
n∑

i,j=1

Wi,jxix
�
i −

n∑

i,j=1

Wi,jxix
�
j

=
n∑

i=1

Di,ixix
�
i − XWX� = XLX�. (9)



Mach Learn (2010) 78: 35–61 39

If we regard W as a weight matrix for a graph with n nodes, L can be regarded as a
graph Laplacian matrix in spectral graph theory (Chung 1997). If W is symmetric and its
elements are all non-negative, L is known to be positive semi-definite.

In the following, we frequently use the matrices S(·), W (·), D(·), and L(·). They are all
defined as above.

3 Review of existing dimensionality reduction methods

In this section, we review the existing dimensionality reduction methods. Our review will
be in terms of the pairwise expression (8) in a unified framework. This unified formulation
facilitates the development of a new method in the following sections. Those who are fa-
miliar with existing methods of supervised and unsupervised dimensionality reduction and
interested in immediately looking at the new method may skip this section and go directly
to Sect. 4.

3.1 Principal component analysis (PCA)

A fundamental unsupervised dimensionality reduction method is principal component
analysis (PCA) (Jolliffe 1986), which iteratively finds the maximum-variance direction of
the data points. Below, we formulate PCA in a slightly different manner based on the pair-
wise expression (8).

Let S(t) be the total scatter matrix:

S(t) :=
n∑

i=1

(xi − μ)(xi − μ)�,

where μ is the mean of all of the samples:

μ := 1

n

n∑

i=1

xi .

Note that S(t) can be expressed in a pairwise form as

S(t) =
n∑

i=1

xix
�
i − nμμ�

= 1

n

n∑

i,j=1

xix
�
i − 1

n

n∑

i,j=1

xix
�
j

= 1

2

n∑

i,j=1

W
(t)
i,j (xi − xj )(xi − xj )

�,

where W (t) is the n × n matrix with

W
(t)
i,j := 1

n
. (10)
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The PCA transformation matrix T (PCA) is defined as

T (PCA) := argmax
T ∈Rd×r

[
tr
(
T �S(t)T (T �T )−1

)]
. (11)

If we use the equivalent formulation (2), we see that PCA seeks a transformation matrix T

such that the scatter in the embedding space is maximized. A solution T (PCA) is given by (3)
and (7) with

B = S(t) and C = I d .

3.2 Locality-preserving projection (LPP)

Another useful unsupervised dimensionality reduction technique is locality-preserving pro-
jection (LPP) (He and Niyogi 2004).

Let A be an affinity matrix, i.e., an n × n matrix with Ai,j being the affinity between xi

and xj . We assume that Ai,j ∈ [0,1], where Ai,j is large if xi and xj are ‘close’ and Ai,j is
small if xi and xj are ‘far apart’. There are several different manners of defining A, such as
using the nearest neighbors (Roweis and Saul 2000) or the heat kernel (Belkin and Niyogi
2003). In this paper, we use the local scaling heuristic (Zelnik-Manor and Perona 2005) as
the definition of the affinity matrix A, i.e.,

Ai,j = exp

(
−‖xi − xj‖2

σiσj

)
.

The parameter σi represents the local scaling around xi defined by

σi := ‖xi − x
(k)
i ‖,

where x
(k)
i is the k-th nearest neighbor of xi . A heuristic choice of k = 7 was shown to be

useful through experiments (Zelnik-Manor and Perona 2005; Sugiyama 2007).
Let S(n) and S(l) be the normalization matrix and the local scatter matrix defined by

S(n) := XD(n)X�,

S(l) := 1

2

n∑

i,j=1

W
(l)
i,j (xi − xj )(xi − xj )

�,

where D(n) is the n × n diagonal matrix with

D
(n)
i,i := 1

n

n∑

j=1

Ai,j ,

and W (l) is the n × n matrix with

W
(l)
i,j := 1

n
Ai,j .

The LPP transformation matrix T (LPP) is defined as

T (LPP) := argmin
T ∈Rd×r

[
tr
(
T �S(l)T (T �S(n)T )−1

)]
.
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Taking into account the equivalence between (1) and (2), we see that LPP seeks a transfor-
mation matrix T such that nearby data pairs in the original space R

d are kept close in the
embedding space R

r (with (T �S(n)T )−1 regarded as a normalization constraint). Thus, LPP
tends to preserve the local structures of the data.

As shown above, LPP is formulated as a minimization problem. To make this consistent
with the other methods reviewed here, let us consider an inverted version of LPP.

T (iLPP) := argmax
T ∈Rd×r

[
tr
(
T �S(n)T (T �S(l)T )−1

)]
.

When S(n) is an identity, the inverted LPP (iLPP) agrees with the original LPP according
to (3); otherwise the iLPP solution may be different from that of the original LPP.

A solution T (iLPP) is given by (3) and (7) with

B = S(n) and C = S(l).

3.3 Fisher discriminant analysis (FDA) for dimensionality reduction

Fisher discriminant analysis (FDA) is a popular supervised dimensionality reduction tech-
nique (Fisher 1936; Fukunaga 1990). When discussing supervised learning problems, we
suppose that we have n′ labeled samples {(xi , yi)}n′

i=1, where yi ∈ {1,2, . . . , c} is a class la-
bel associated with the sample xi and c is the number of classes. Let n′

m be the number of
labeled samples in class m ∈ {1,2, . . . , c}:

n′ =
c∑

m=1

n′
m.

Let S(b) and S(w) be the between-class scatter matrix and the within-class scatter matrix:

S(b) :=
c∑

m=1

n′
m(μm − μ)(μm − μ)�,

S(w) :=
c∑

m=1

∑

i:yi=m

(xi − μm)(xi − μm)�,

where
∑

i:yi=m indicates the summation over i such that yi = m and μm is the mean of
samples in class m:

μm := 1

n′
m

∑

i:yi=m

xi .

The FDA transformation matrix T (FDA) is defined as

T (FDA) := argmax
T ∈Rd×r

[
tr
(
T �S(b)T (T �S(w)T )−1

)]
.

That is, FDA seeks a transformation matrix T such that the between-class scatter in the em-
bedding space (i.e., T �S(b)T ) is ‘maximized’ and the within-class scatter in the embedding
space (i.e., T �S(w)T ) is ‘minimized’. A solution T (FDA) is given by (3) and (7) with

B = S(b) and C = S(w).
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It is known (e.g., Fukunaga 1990) that S(b) and S(w) are related to the total scatter matrix
S(t) as

S(t) = S(b) + S(w). (12)

This can also be confirmed from the fact that S(b) and S(w) are expressed in the pairwise
form (8) with the following weight matrices (Sugiyama 2007):

W
(b)
i,j :=

{
1/n′ − 1/n′

yi
if yi = yj ,

1/n′ if yi �= yj ,

W
(w)
i,j :=

{
1/n′

yi
if yi = yj ,

0 if yi �= yj ,

where n′
yi

denotes the number of labeled samples in class yi ∈ {1,2, . . . , c}. In this case, we
have

W (t) = W (b) + W (w),

since W
(t)
i,j := 1/n′ in the current setup (cf. (10)).

The between-class scatter matrix S(b) has at most rank c − 1 (Fukunaga 1990). This
implies that FDA allows us to obtain at most c − 1 meaningful features (or equivalently
the dimensionality r of the embedding space should be at most c − 1), and the remaining
features found by FDA are arbitrary in the null space of S(b). This is an essential limitation
of FDA in dimensionality reduction.

3.4 Local Fisher discriminant analysis (LFDA)

Local Fisher Discriminant Analysis (LFDA) is a supervised dimensionality reduction
method (Sugiyama 2007) which overcomes the weakness of the original FDA against
within-class multimodality or outliers (Fukunaga 1990).

Let S(lb) and S(lw) be the local between-class scatter matrix and the local within-class
scatter matrix defined by

S(lb) := 1

2

n′∑

i,j=1

W
(lb)
i,j (xi − xj )(xi − xj )

�,

S(lw) := 1

2

n′∑

i,j=1

W
(lw)
i,j (xi − xj )(xi − xj )

�,

where W (lb) and W (lw) are the n′ × n′ matrices with

W
(lb)
i,j :=

{
Ai,j (1/n′ − 1/n′

yi
) if yi = yj ,

1/n′ if yi �= yj ,
(13)

W
(lw)
i,j :=

{
Ai,j /n

′
yi

if yi = yj ,

0 if yi �= yj .
(14)

Ai,j is the affinity value between xi and xj based on the local scaling heuristic (see
Sect. 3.2). Note that the local scaling is computed in a classwise manner in LFDA since
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we want to preserve the within-class local structure (Sugiyama 2007). This also contributes
to reducing the computational cost for nearest neighbor search when computing the local
scaling. The LFDA transformation matrix T (LFDA) is defined as

T (LFDA) := argmax
T ∈Rd×r

[
tr
(
T �S(lb)T (T �S(lw)T )−1

)]
.

In other words, LFDA seeks a transformation matrix T such that the local between-class
scatter in the embedding space (i.e., T �S(lb)T ) is ‘maximized’ and the local within-class
scatter in the embedding space (i.e., T �S(lw)T ) is ‘minimized’.

In (13) and (14), Ai,j (1/n′ −1/n′
yi
) is negative while Ai,j /n

′
yi

and 1/n′ are positive. Thus
LFDA imposes nearby data pairs in the same class to be close together and the data pairs in
different classes to be far apart; far apart data pairs within the same class are not imposed to
be close together. Samples in different classes are separated from each other irrespective of
their affinity values. A solution T (LFDA) is given by (3) and (7) with

B = S(lb) and C = S(lw).

When Ai,j = 1 for all i, j (i.e., no locality), S(lw) and S(lb) are reduced to S(w) and S(b).
Thus, LFDA can be regarded as a localized variant of FDA. The between-class scatter matrix
S(b) has at most rank c − 1, while its local counterpart S(lb) usually has full rank (given
n′ ≥ d). Therefore, LFDA can be applied to dimensionality reduction into spaces of any
dimension, which is also a significant advantage over the original FDA when the number of
classes is small.

However, the performance of LFDA (and all other supervised dimensionality reduction
methods) tends to be degraded if only a small number of labeled samples are available. The
purpose of this paper is to give a new method that can overcome this weakness.

4 Semi-supervised LFDA (SELF)

In this section, we propose a new dimensionality reduction method for semi-supervised
learning scenarios. From here on, we consider the case where, among all of the samples
{xi}n

i=1, only {xi}n′
i=1 (1 ≤ n′ ≤ n) are labeled and the rest are unlabeled.

4.1 Basic idea

When only a small number of labeled samples are available, supervised dimensionality re-
duction methods tend to find the embedding spaces overfitted to the labeled samples. In such
situations, the use of unlabeled samples can mitigate this problem—indeed, in Chap. 21 of
Chapelle et al. (2006), it was shown through extensive experiments that PCA works well
on the whole. Our experimental results in Sect. 5.1 also show that PCA is sometimes better
than LFDA. This means that preserving the global structure of all of the samples in an un-
supervised manner can be better than relying too much on class information provided by a
small number of labeled samples.

Figure 1 depicts 2-dimensional 2-class examples. The circles and triangles denote the
samples in positive and negative classes and the filled or unfilled symbols denote the la-
beled or unlabeled samples. The solid and dashed lines denote the 1-dimensional embed-
ding spaces (onto which the data samples will be projected) found by LFDA and PCA,
respectively.
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Fig. 1 Illustrative examples of LFDA and PCA for toy datasets. The circles and triangles denote the samples
in positive and negative classes and the filled or unfilled symbols denote the labeled or unlabeled samples.
The solid and dashed lines denote the 1-dimensional embedding spaces (onto which the data samples will be
projected) found by LFDA and PCA, respectively. The dataset is common to (a) and (b), but the choice of
labeled samples is different. This only affects the LFDA solution because of its supervised nature; the PCA
solution does not change because of its unsupervised nature. The choice of labeled samples is common to (a)
and (c), but the vertical scaling of the data is doubled in (c). This affects both the LFDA and PCA solutions,
but the PCA solution is more influenced because of its unsupervised nature

For the dataset in Fig. 1(a), both LFDA and PCA can find good embedding spaces which
clearly separate unlabeled samples in different classes from each other. However, for the
dataset in Fig. 1(b), which contains the same sample points as (a) but in which the choice
of the labeled samples is different, LFDA finds an embedding space that is overfitted to the
labeled samples. Note that the choice of labeled samples only affects the LFDA solution—
the PCA solution does not change because of its unsupervised nature. This illustrates a
possible drawback of LFDA which relies strongly on a small number of labeled samples.

The dataset described in Fig. 1(c) has the same choice of labeled samples as (a), but the
vertical scaling of the data is doubled. Although this change of scales affects both the LFDA
and PCA solutions, LFDA is not strongly influenced by the change of scales because of its
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supervised nature. In contrast, PCA is significantly influenced by the change of scales and
does not work well for the dataset (c). This illustrates a possible weakness of PCA arising
from its unsupervised nature.

The above result shows that LFDA and PCA have their own drawbacks. However, the
above result also implies that LFDA and PCA can compensate for each other’s weaknesses,
i.e., LFDA can utilize label information, while PCA can avoid overfitting. Our experimental
results with the benchmark datasets in Sect. 5.1 also show that LFDA and PCA tend to work
in a complementary manner. Motivated by these facts, we propose to bridge LFDA and
PCA so that our reliance on the global structure of unlabeled samples and class information
brought by the labeled samples can be smoothly controlled. We refer to the proposed method
as semi-supervised LFDA (SELF).

The embedding transformations of LFDA and PCA can be analytically computed through
eigen-decomposition, as reviewed in the previous section. Based on this fact, we combine
the eigenvalue problems of LFDA and PCA and solve them together. This allows us to retain
the computational efficiency of LFDA and PCA.

As described in Sect. 3.4, LFDA includes FDA as a special case. Therefore, the idea of
combining LFDA and PCA detailed below is also applicable to FDA.

4.2 Definition

More specifically, we propose to solve the following generalized eigenvalue problem:

S(rlb)ϕ = λS(rlw)ϕ, (15)

where S(rlb) and S(rlw) are the regularized local between-class scatter matrix and the regu-
larized local within-class scatter matrix defined by

S(rlb) := (1 − β)S(lb) + βS(t), (16)

S(rlw) := (1 − β)S(lw) + βI d . (17)

β ∈ [0,1] is a trade-off parameter—SELF is reduced to LFDA when β = 0 and SELF is
reduced to PCA when β = 1. In general, SELF with 0 < β < 1 inherits the characteristics
of both LFDA and PCA (discussed in detail in Sect. 4.3). One may use different trade-off
parameters in S(rlb) and S(rlw) to increase the flexibility. However, this in turn makes the
trade-off parameter choice laborious. For this reason, we focus on using the single shared
trade-off parameter β for S(rlb) and S(rlw) below.

The optimization problem of SELF is expressed as

T (SELF) := argmax
T ∈Rd×r

[
tr
(
T �S(rlb)T (T �S(rlw)T )−1

)]
.

In other words, SELF seeks a transformation matrix T such that the regularized local
between-class scatter in the embedding space (i.e., T �S(rlb)T ) is ‘maximized’ and the reg-
ularized local within-class scatter in the embedding space (i.e., T �S(rlw)T ) is ‘minimized’.
Since this optimization problem is the same form as LFDA and PCA, a solution T (SELF) can
be computed as

T (SELF) = (
√

λ1ϕ1|
√

λ2ϕ2| · · · |
√

λrϕr ), (18)

where {ϕk}d
k=1 are the generalized eigenvectors of (15) associated with the generalized

eigenvalues {λk}d
k=1. We assume that {λk}d

k=1 are sorted in descending order as in (4) and
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Fig. 2 Pseudo-code for SELF. 1n denotes the n-dimensional vector with ones and diag(w) denotes the
diagonal matrix with the diagonal elements specified by a vector w. A MATLAB implementation of SELF is
available from http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SELF

{ϕk}d
k=1 are normalized as in (5). In Sect. 4.3, we will prove that all the generalized eigen-

values are non-negative, which guarantees that the solution (18) is always valid.
In the original LFDA, the nearest neighbor search (involved in the computation of local

scaling σi in the affinity matrix A) is carried out in a classwise manner (Sugiyama 2007). On
the other hand, in SELF, we determine the local scaling using all of the samples {xi}n

i=1 since
the number of labeled samples is typically small in semi-supervised learning. SELF requires
affinity values Ai,j only for the pairs of labeled samples in the same class. This means that
we need to compute local scaling values only for the labeled samples and affinity values
only for the labeled sample pairs in the same class. This contributes greatly to reducing
the computational costs. The total scatter matrix S(t) in the original PCA is computed for
unlabeled samples, but we use all of the samples {xi}n

i=1 (i.e., both the labeled and unlabeled
samples) in SELF. The pseudo-code for SELF appears in Fig. 2.

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SELF
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4.3 Properties

First, we give an interpretation of S(rlb). The matrix S(rlb) can be expressed in a pairwise
form as

S(rlb) := 1

2

n∑

i,j=1

W
(rlb)
i,j (xi − xj )(xi − xj )

�, (19)

where W (rlb) is the n × n matrix with

W
(rlb)
i,j :=

⎧
⎪⎨

⎪⎩

(1 − β)Ai,j (1/n′ − 1/n′
yi
) + β/n if yi = yj ,

(1 − β)/n′ + β/n if yi �= yj ,

β/n otherwise.

(20)

The first case in (20) is negative if

β < Bi,j ,

where

Bi,j := Ai,jn(n′ − n′
yi
)

Ai,j n(n′ − n′
yi
) + n′n′

yi

.

Note that 0 ≤ Bi,j < 1. This implies that SELF tries to make sample pairs in the same class
close together if β is smaller than Bi,j , while it separates them farther from each other if
β is larger than Bi,j . Thus the local data structures in the same class tend to be preserved
when β is small, but are no longer preserved when β is large. Bi,j is reduced when Ai,j is
increased, so Bi,j is smallest in the case of FDA where Ai,j = 1 for all i, j .

The second case in (20) is always positive for any β ∈ [0,1], implying that SELF always
tries to make sample pairs in different classes farther apart for any β . This would be nat-
ural in (semi-)supervised learning scenarios. The third case in (20) is always non-negative,
implying that unlabeled samples are separated from each other to preserve the global data
structure.

S(rlb) includes the total scatter matrix S(t) (see (16)), which is equivalent to the sum of
S(b) and S(w) (see (12)). If samples in different classes were highly localized and clearly
separated from each other, S(b) would be dominant in S(t) and thus S(t) and S(b) would be
similar to each other. However, since S(b) needs to be computed from a small number of
labeled samples in semi-supervised learning, it is often unreliable. In contrast, S(t) can be
computed in a more reliable manner using a large number of unlabeled samples.1 For this
reason, including S(t) in S(rlb) will improve the reliability of the solution.

Next, we give an interpretation of S(rlw). When β = 0, S(rlw) (= S(lw)) could be ill-
conditioned. This is particularly crucial when the dimension d of the original data space
is larger than the number n′ of labeled samples. In such situations, βI d included in S(rlw)

(see (17)) works as a regularizer and SELF can avoid overfitting the labeled samples
(cf. Friedman 1989; Mika et al. 2003). Therefore, SELF is regarded as a regularized variant
of LFDA and would be more stable and more reliable than the original LFDA, particularly
when the number of labeled samples is small. Note that unlike (19), S(rlw) does not have a
pairwise expression since I d cannot be expressed in a pairwise form.

1This may partially explain why PCA is useful under the cluster assumption—samples in the same cluster
are likely to have a common label (Chapelle et al. 2006).
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Finally, we investigate the positive (semi-)definiteness of S(rlb) and S(rlw). Let

W (�lb) = W (lb) − W (b),

which means that W (�lb) is the n × n matrix with

W
(�lb)
i,j :=

{
(Ai,j − 1)(1/n′ − 1/n′

yi
) if yi = yj ,

0 otherwise.

Note that (Ai,j −1)(1/n′ −1/n′
yi
) is non-negative. Then taking into account the relation (9),

we can express S(lb) as

S(lb) = S(b) + XL(�lb)X�,

where L(�lb) is defined with W (�lb) (see Sect. 2.3). Since S(b) and L(�lb) are both symmetric
positive semi-definite, S(lb) is also symmetric positive semi-definite. In addition, since S(t) is
symmetric positive semi-definite and β and 1 − β are non-negative, S(rlb) is also symmetric
positive semi-definite (see (16)). On the other hand, since S(lw) is symmetric positive semi-
definite and I d is symmetric positive definite, S(rlw) is symmetric positive definite if β > 0.
The facts that S(rlb) is symmetric positive semi-definite and S(rlw) is symmetric positive
definite guarantee that the generalized eigenvalues of (15) are non-negative (Bai et al. 2000).
Thus, the solution (18) is always valid.

4.4 Numerical examples

To illustrate how SELF behaves, we used the Olivetti face dataset.2 The dataset consists of
400 gray-scale images of faces (40 people, 10 images per person). Each image consists of
4096 (= 64 × 64) pixels and each pixel takes an integer value between 0 and 255 as the
intensity level. In this experiment, we used the image samples of only 10 subjects (i.e., 100
images in total) to make the visualization results clear. We experimentally confirmed that
the results do not change significantly (though points are more overlapped) when all 400
images are used.

Among the 10 people used for the experiments, 3 subjects are wearing glasses and the
other 7 subjects are without glasses (see Fig. 3(a)). Our task was to embed the face images
into a two-dimensional space so that the subjects with and without glasses were separated
from each other. We labeled 1 image per person (so 3 faces are labeled as with glasses and 7
faces as without glasses in total) and the rest are treated as unlabeled. Since each class con-
tains several different subjects, this dataset is thought to possess within-class multimodality.

The embedded results are depicted in Fig. 3, where the circles and triangles denote the
faces with or without glasses and the filled or unfilled symbols denote the labeled or unla-
beled samples. The figure shows that FDA and LFDA perfectly separate the labeled samples
in the two classes from each other. However, the unlabeled samples tend to be mixed because
of an overfitting phenomenon. PCA and iLPP tend to mix the labeled samples in different
classes because of their unsupervised natures. As a result, the unlabeled samples in different
classes are also mixed. In contrast, SELF with β = 0.5 clearly separates the labeled samples
in the two classes from each other, and at the same time, it also effectively separates the un-
labeled samples in the two classes. We note that, in this visualization experiment, the result
of SELF is not sensitive to the choice of the trade-off parameter β . The results are almost
unchanged for 0.01 ≤ β ≤ 0.99.

2The dataset is available from http://www.cs.toronto.edu/~roweis/data.html.

http://www.cs.toronto.edu/~roweis/data.html
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Fig. 3 Embedded face samples (glasses vs. non-glasses). The circles and triangles are the faces with or
without glasses and the filled or unfilled symbols are the labeled or unlabeled samples. In the plots of FDA,
LFDA, and SELF, all the labeled points in the same class are concentrated in one point
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4.5 Discussion

Here we discuss several issues related to SELF.

4.5.1 Combination of LFDA and iLPP

Semi-supervised learning is regarded as a situation between supervised learning and unsu-
pervised learning. Similarly, SELF may also be interpreted as a dimensionality reduction
method between supervised and unsupervised methods. This implies that our choice does
not have to be restricted to LFDA and PCA—other powerful supervised and unsupervised
methods could also be combined in a similar manner. Sugiyama (2007) showed that LFDA
is a useful supervised dimensionality reduction method through experiments, so the use of
LFDA in the semi-supervised dimensionality reduction method would be reasonable.

On the other hand, the performance of an unsupervised dimensionality reduction method
is heavily dependent on label distributions. Clearly there are situations where PCA performs
poorly (as in Fig. 1(c)). An alternative choice of the unsupervised counterpart would be iLPP
(see Sect. 3.2), which results in

B = (1 − β)S(lb) + βS(n),

C = (1 − β)S(lw) + βS(l).

Although this variant is still computationally as efficient as the original SELF, the combi-
nation of LFDA and iLPP was shown to be less useful in our experiments (see Sect. 5.1).
This was because the global data structure is not taken into account. That is, iLPP tries to
make samples in the same cluster close together, but it does not impose different clusters to
be separated from each other. Therefore, several clusters may merge without any penalties
and iLPP may lose the global cluster structure.

We also tested a combination of three methods—LFDA, PCA, and iLPP—with two trade-
off parameters, but this did not improve the performance over the original SELF.

4.5.2 Distance metric learning

The performance of distance-based learning methods such as nearest neighbor classifiers
depends heavily on the definition of the distances between samples. The idea of distance
metric learning is to optimize a metric M used for computing the distances between samples
(Xing et al. 2003; Goldberger et al. 2005; Globerson and Roweis 2006; Weinberger et al.
2006):

dist(xi ,xj ;M) = (xi − xj )
�M(xi − xj ).

By definition, the metric matrix M is symmetric and positive semi-definite. For this reason,
metric learning is typically formulated as a semi-definite programming problem, which is a
convex optimization problem for which the unique global solution can be obtained (Boyd
and Vandenberghe 2004; Weinberger et al. 2006).

If the rank of the d × d matrix M is constrained to r , then the distance metric learning
methods are automatically causing implicit dimensionality reduction. More specifically, the
symmetricity and positive semi-definiteness of the metric matrix M implies that M can be
decomposed as

M = T T �,
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where T is a d × r matrix. Then T �xi could be regarded as an explicit expression of a sam-
ple xi after dimensionality reduction. However, simultaneously reducing the dimensionality
of samples and learning the distance metric is usually hard since the rank constraint is non-
convex (Boyd and Vandenberghe 2004). Thus it may not be possible to obtain the global
optimal solution.

In contrast, our approach to dimensionality reduction is formulated by (1), which is not
convex but which still allows us to access the global solution in terms of the range of the
embedding space. This means that we can obtain the unique solution for the metric matrix
by combining SELF (or any other dimensionality reduction method formulated by (1)) with
a convex metric learning method (such as Weinberger et al. 2006). That is, a two-stage
procedure of first reducing the dimensionality (i.e., determining the range of the embedding
space) with SELF and then learning the metric in the embedding space without the rank
constraint. We expect that this procedure is practically useful.

4.5.3 Kernelization

So far, we focused on linear dimensionality reduction. Using the standard kernel trick
(Schölkopf et al. 1998), we can easily obtain a non-linear variant of SELF.

Let

L(rlw) = (1 − β)L(lw) + β(X�X)†,

where † denotes the Moore-Penrose generalized inverse (Albert 1972). Recalling that S =
XLX� (see (9)), we can express the eigenvalue problem solved in SELF as

XL(rlb)X�ϕ = λXL(rlw)X�ϕ. (21)

In the derivation of this expression, we used the fact that I d in (17) can be replaced with a
projection matrix X(X�X)†X� without essentially changing the solution when X�X is not
invertible.

Since X�ϕ in (21) belongs to the range of X�, it can be expressed by using some vector
α ∈ R

n as follows:3

X�ϕ = X�Xα = Kα,

where K is the n × n matrix with

Ki,j := x�
i xj .

Then multiplying (21) by X� from the left-hand side yields

KL(rlb)Kα = λKL(rlw)Kα.

Note that one of the properties of the Moore-Penrose generalized inverse implies that
KL(rlw)K can be simply computed as

KL(rlw)K = (1 − β)KL(lw)K + βK.

When KL(rlw)K is not of full rank, we may need to regularize it (Schölkopf et al. 1998),
i.e., for a small positive scalar ε, we replace (21) with

KL(rlb)Kα = λ(KL(rlw)K + εI n)α. (22)

3Here, we are not equating ϕ with Xα, but we equate X�ϕ with X�Xα.
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Let {αk}d
k=1 be the generalized eigenvectors associated with the generalized eigenvalues

{λk}d
k=1 of (22), where they are sorted and normalized as

λ1 ≥ λ2 ≥ · · · ≥ λd

and

α�
k (KL(rlw)K + εI n)αk = 1 for k = 1,2, . . . , d.

Then the embedded representation z of an original sample x can be computed in terms of
{αk}r

k=1 as

z = (
√

λ1α1|
√

λ2α2| · · · |
√

λrαr )
�(x�

1 x,x�
2 x, . . . ,x�

n x)�.

This implies that the data samples appear only via their inner products. We note that the
affinity values as well as the local scaling can also be computed in terms of the inner products
between data samples. Therefore, if the inner product x�

i xj is replaced by a reproducing
kernel K(xi ,xj ) (Aronszajn 1950), we can obtain a non-linear variant of SELF—linear
dimensionality reduction is carried out in an implicit kernel feature space (Schölkopf et al.
1998).

Beyond non-linearization, kernel SELF is also useful in the following two scenarios. The
first is that the kernelized variant also allows us to reduce the dimensionality of non-vectorial
structured data such as strings, trees, and graphs by employing kernel functions defined for
such structured data (Lodhi et al. 2002; Duffy and Collins 2002; Kashima and Koyanagi
2002; Kondor and Lafferty 2002; Kashima et al. 2003; Gärtner et al. 2003; Gärtner 2003).

Another possible usage of the kernel formulation would be for computational efficiency.
The size of matrices to be eigen-decomposed in the kernel formulation depends only on the
number of samples, not on the input dimensionality. Thus when the number of samples is
smaller than the input dimensionality, using the kernel formulation with the linear kernel
could be more efficient in terms of both computation time and memory space consumption
than the original formulation (see also Sect. 5.2).

5 Experiments

In this section, we experimentally evaluate the performance of SELF and other dimension-
ality reduction methods using standard classification benchmark datasets.

5.1 Benchmark datasets

In Chap. 1 of Chapelle et al. (2006), systematic experiments were conducted for comparing
various semi-supervised learning methods. The results showed that each method performs
very well for a particular type of dataset, but at the same time, it tends to be poor for other
kinds of datasets. Thus, the performance of semi-supervised learning methods is highly
dependent on the types of the datasets and there seems to be no single best method. In
contrast, although it may not be the best possible method in semi-supervised classification,
the 1-nearest neighbor classifier has been shown to perform reasonably well across various
datasets. In order to avoid any bias caused by the choice of the learning methods, we decided
to use the 1-nearest neighbor classifier in our experiments.
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The misclassification rate is sometimes monotonically decreasing as the dimensionality
is reduced4 (see Fig. 4). In such cases, if the best dimensionality is chosen (e.g., by cross-
validation), the largest dimension is mostly chosen (i.e., no dimensionality reduction). Then
we may not be able to compare the performance of the dimensionality reduction methods in
a meaningful way. Fixing the reduced dimensionality r to some number in advance would
be a possible option for avoiding this comparison problem, but the evaluation results can
strongly depend on the choice of the dimensionality. For this reason, we decided to use the
average misclassification rate over the reduced dimensions (or equivalently the area under
the classification error curve) as our error metric, which we believe to be reasonable in the
current experiments.

First we use the benchmark datasets used in Chapelle et al. (2006), which consist of 9
semi-supervised learning datasets.5 We refer to them as the SSL datasets. We did not test
the SSL8 and SSL9 datasets since the SSL8 dataset contains too many samples (n is over
one million) and the SSL9 dataset has too many dimensions (d is over ten thousand). The
SSL6 dataset contains 6 classes, while the other datasets have 2 classes. Table 1 describes
the means and standard deviations of the misclassification rates over 12 repetitions. Since
we encountered a numerical problem when computing LFDA, we slightly regularized it and
treat SELF with β = 0.001 as LFDA.

The cluster assumption, stating that the samples in the same cluster are likely to have the
same label, is often regarded as an important assumption for the success of semi-supervised
classification (Chapelle et al. 2006). We roughly evaluated the correctness of the cluster
assumption (denoted as ‘CA’ in Table 1) by the correct classification rate of all the training
and test samples using the 1-nearest-neighbor classifier (the cases in which the label of
the target point is correctly predicted by the label of the nearest sample). Note that CA is
computed before the dimensionality reduction, so it represents the correctness of the cluster
assumption for the original data samples. The larger the value of CA is, the more reliable
the cluster assumption becomes.

When the number of labeled samples is 100 (see the upper half of Table 1), LFDA and
PCA tend to work well in a complementary way—LFDA works well if CA is small while
PCA works well if CA is large.6 ‘SELF(0.5)’ (SELF with β = 0.5) tends to compensate for
the weaknesses of each method. It even outperforms both LFDA and PCA in some cases.
We also tested ‘SELF(CV)’, where β in SELF is chosen from {0.001,0.25,0.5,0.75,1} by
using 10-fold cross-validation. The results in Table 1 show that SELF(CV) further improves
the performance over SELF(0.5). These results also show that iLPP does not work so well.
The combination of LFDA and iLPP (indicated by SELF’(CV) in the table) also does not
perform as well as SELF(CV). We also tested the combination of LFDA, PCA, and iLPP
with two trade-off parameters, but this did not further improve the performance over SELF,
so we omit these details.

Figure 4 depicts the mean misclassification rates as a function of the reduced dimen-
sionality for LFDA, PCA, and SELF(CV). This also shows that LFDA and PCA tend to

4Even so, dimensionality reduction is still useful since a compact representation of the data can yield faster
computation in the test phase.
5The datasets are available from http://www.kyb.tuebingen.mpg.de/ssl-book/.
6The success of PCA depends, of course, on the scaling of the data (see Fig. 1 again). However, for the
SSL datasets, it was shown through extensive experiments that PCA works well on the whole (see Chap. 21
of Chapelle et al. 2006). This implies that the scaling of the data is well-conditioned for PCA in the SSL
datasets.

http://www.kyb.tuebingen.mpg.de/ssl-book/
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Fig. 4 Mean misclassification rates for the SSL datasets as a function of the reduced dimensionality r when
n = 100
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work well in a complementary way and SELF(CV) tends to compensate for the weak-
nesses of each method. We note that the curves are almost flat for large dimensions
since minor eigenvectors are deemphasized according to the square root of eigenvalues
(see (7)).

When the number of labeled samples is only 10 (see the lower half of Table 1), the
performance differences among the methods shrink but SELF(CV) is still slightly better
than the other methods.

We also conducted similar experiments using the IDA datasets7 (Rätsch et al. 2001),
which consist of supervised classification tasks. We randomly extracted labeled and unla-
beled samples from the pool of all samples, testing n′ = 100 and 30. The results are sum-
marized in Table 2, showing that SELF(CV) still compares favorably with the alternative
methods. From these results, we demonstrated that SELF(CV) performs reasonably well
across various datasets.

5.2 Document classification

Here, we apply the proposed dimensionality technique, SELF, to real-world document clas-
sification tasks and evaluate its performance. We used the datasets in the Technion Reposi-
tory of Text Categorization8 (TechTC; Davidov et al. 2004). The TechTC repository contains
295 binary document classification tasks. Each task contains a few hundred documents with
category labels and a document is expressed by a bag-of-words vector of term frequencies,
which has an entry in the vector corresponding to each word in the dictionary and its num-
ber of occurrences in the document. Following convention (Joachims 2002), we multiply the
term frequency by the logarithm of the inverse ratio of the documents containing the cor-
responding word. The feature vectors constructed in this way is called the term frequency-
inverse document frequency (TFIDF) vector and TFIDF is widely used as a standard feature
extraction scheme in the document analysis community.

The TFIDF vector x usually has a large number of dimensions. In our experiments, its
dimensionality ranged from thousands to tens of thousands (depending on the tasks since
we removed the entries of zero occurrences for all of the documents). In general it is not
possible to directly solve eigenvalue problems in such high dimensional spaces. Here, we
used the kernel formulation (see Sect. 4.5.3; we used the linear kernel so that SELF is still a
linear dimensionality reduction), relying on the number of samples being much smaller than
the input dimensionality in our experiments.

We compare the performance of ‘Plain’ (without dimensionality reduction), LFDA, PCA,
‘SELF(0.5)’ (SELF with β = 0.5), and ‘SELF(CV)’ (SELF with β chosen by using 5-fold
cross-validation). In each method, the dimensionality of the reduced space r is chosen by
using 5-fold CV from9 {1,2, . . . ,10}. For each dataset, we consider 4 configurations with
different degrees of supervision. Given n document samples, we randomly choose 20%,
40%, 60%, and 80% of them as the training data and the rest are treated as unlabeled data.
The 1-nearest neighbor method was again used to evaluate the classification accuracy of the
unlabeled samples. For each dataset and each training sample configuration, the experiments
were repeated 100 times with randomly selected training samples.

7The datasets are available from http://ida.first.fhg.de/projects/bench/benchmarks.htm.
8The datasets are available from http://techtc.cs.technion.ac.il/techtc300/techtc300.html.
9We set the upper limit of r to 10 mainly for computational reasons. However, as shown later, the value of r

chosen by CV is typically less than 10, so this restriction does not cause a serious performance change.

http://ida.first.fhg.de/projects/bench/benchmarks.htm
http://techtc.cs.technion.ac.il/techtc300/techtc300.html
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Table 3 Means and standard deviations of the misclassification rates of the document classification tasks
over 295 datasets for 100 runs each (i.e., 29,500 total trials). The mean value of the reduced dimensionality r

chosen by CV was also included in the table

n′ = 0.2n Plain LFDA SELF(0.5) PCA SELF(CV)

Mean error 20.8 18.4 16.3 18.5 16.4

Std. error 3.4 2.3 2.1 1.7 1.7

# Bests 41 76 252 46 242

Mean chosen r – 2.2 3.3 4.6 3.5

n′ = 0.4n

Mean error 20.8 15.0 13.8 17.0 13.9

Std. error 3.8 1.6 1.5 1.6 1.5

# Bests 10 115 239 34 220

Mean chosen r – 3.0 4.0 5.3 3.9

n′ = 0.6n

Mean error 21.1 13.9 12.7 16.2 12.7

Std. error 3.4 1.5 1.6 1.7 1.6

# Bests 8 126 235 50 242

Mean chosen r – 3.5 4.2 5.7 3.9

n′ = 0.8n

Mean error 21.5 13.6 12.0 15.6 12.1

Std. error 2.9 2.0 2.2 2.4 2.3

# Bests 9 134 245 72 240

Mean chosen r – 3.8 4.1 6.0 3.8

The means and standard deviations of the misclassification rates are summarized in Ta-
ble 3. The table shows that all of the dimensionality reduction methods perform better than
Plain, so dimensionality reduction evidently contributes to improving the accuracy of docu-
ment classification. Among these methods, SELF consistently works better than LFDA and
PCA.

The mean value of β in SELF(CV) for the four configurations, 20%, 40%, 60%, and
80%, are 0.57, 0.52, 0.48, and 0.46, respectively. This shows that, as the degree of supervi-
sion increases, the value of β decreases and therefore SELF approaches LFDA. This agrees
well with our intuition. However, since all of the values are rather close to 0.5 in this ex-
periment, SELF(0.5) tends to perform slightly better (and is computationally more efficient)
than SELF(CV). It is also intuitive that LFDA tends to outperform PCA as the degree of
supervision increases.

Overall, SELF—a combination of LFDA and PCA—was shown to be a useful dimen-
sionality reduction method in practical document classification tasks.

6 Conclusions, discussion, and future work

Our approach to dimensionality reduction in the current work is called the filter approach,
meaning that the dimensionality reduction procedure is independent of subsequent classi-
fication algorithms (Guyon and Elisseeff 2003). Our experimental results showed that the
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proposed method, SELF, works well when it is combined with the 1-nearest-neighbor clas-
sifier. On the other hand, it is also important to explore wrapper methods (Kohavi and John
1997) for semi-supervised dimensionality reduction, which explicitly take the properties of
subsequent classification algorithms into account. A wrapper approach would be particu-
larly useful in semi-supervised learning scenarios since the performance of elaborate semi-
supervised learning methods is highly dependent on the reliability of the assumptions on the
unlabeled samples, such as cluster or manifold structure (Chapelle et al. 2006).

We showed in Sect. 4.5.3 that a non-linear variant of SELF can be created by employing
the standard kernel trick. However, a kernelized SELF shares the common difficulty of ker-
nel methods, the question of how to choose the kernel function. This must be investigated
in the context of semi-supervised dimensionality reduction. In future work, we will explore
semi-supervised dimensionality reduction of structured data using kernel SELF.

In SELF, we linearly combined the eigenvalue problems of LFDA and PCA since this
approach allows us to maintain the computational advantages of LFDA and PCA. This ap-
proach was demonstrated to be useful through our experiments in Sect. 5. Although we
examined some properties of the combined method in Sect. 4.3, it is important to provide
a better understanding of the mechanism of the proposed method. Also, our proposed ap-
proach for combining LFDA and PCA is not the only possibility. A future direction would
be to explore other ways to combine supervised and unsupervised methods for further per-
formance improvement.

An advantage of SELF is that its solution can be obtained analytically by solving a gen-
eralized eigenvalue problem. When the number of samples is very large, solving the eigen-
value problem by using the algorithm in Fig. 2 would be still computationally tractable as
long as the input dimensionality is not too high. On the other hand, when the input dimen-
sionality is very high, the kernel formulation with the linear kernel (see Sect. 4.5.3) is still
computationally tractable as long as the number of samples is moderate (as demonstrated
by the document classification experiments in Sect. 5.2). However, when the number and
dimensionality of the samples are both very large, a naive implementation may not be com-
putationally tractable. Thus an important future work along this line is to further investigate
the computational aspects of SELF and develop efficient algorithms that can deal with high-
dimensional and large-scale datasets, perhaps by utilizing the sparsity of the data matrix or
the kernel matrix.

A remaining important issue to be discussed, which is common to all semi-supervised
learning techniques, is how to optimize the tuning parameters. We may simply use cross-
validation for this purpose, but that approach has two potential problems. The first problem
is that the number of labeled samples is typically small in semi-supervised learning scenar-
ios, so cross-validation is not reliable (Chapelle et al. 2006). Fortunately, our experiments
showed that SELF is not very sensitive to the choice of the trade-off parameter β in small
sample cases, but there is still room for improvement. The second problem is that labeled
samples and unlabeled samples can have different (input) distributions. Such a situation is
referred to as covariate shift (Shimodaira 2000; Quiñonero-Candela et al. 2009) and ordi-
nary cross-validation is known to be significantly biased in such situations (Zadrozny 2004),
while importance-weighted cross-validation is unbiased under covariate shift (Sugiyama et
al. 2007). In future work, we will investigate how such covariate shift adaptation techniques
can be used in the context of semi-supervised dimensionality reduction.

The properties of a family of linear discriminant analysis algorithms were studied in
Ye (2005, 2008) and Loog (2007, 2008), but the methods discussed in these papers do not
take the locality of the data into account as LFDA does. Therefore our current work is
essentially different from these existing methods. Another alternative to our approach in-
volves regularized linear discriminant analysis methods for semi-supervised dimensionality
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reduction based on LPP (Cai et al. 2007) or manifold regularization (Belkin et al. 2006;
Song et al. 2008). These methods suffer from the weakness of the original FDA, i.e., the
maximum dimension of the reduced subspace is dominated by the number of classes. In
contrast, our method offers advantages for classification tasks with rather small numbers of
classes. A relevant dimensionality reduction method has also been proposed in the context of
semi-supervised clustering (Zhang et al. 2007). However, the locality of the data is still not
addressed. Recently, a non-linear dimensionality reduction method based on a neural net-
work has been proposed (Hinton and Salakhutdinov 2006). However, neural-network-based
methods are prone to suffer from local optimality because of the non-convexity of opti-
mization. Also, this optimization is usually carried out via a gradient method and is com-
putationally inefficient. Therefore another important research direction is to extend such
neural-network-based methods to semi-supervised setups and compare their accuracy and
computational efficiency with discriminant-analysis-based methods.
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