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Abstract Manga (Japanese comics) are popular worldwide. However, current e-manga
archives offer very limited search support, i.e., keyword-based search by title or author.
To make the manga search experience more intuitive, efficient, and enjoyable, we propose
a manga-specific image retrieval system. The proposed system consists of efficient mar-
gin labeling, edge orientation histogram feature description with screen tone removal, and
approximate nearest-neighbor search using product quantization. For querying, the system
provides a sketch-based interface. Based on the interface, two interactive reranking schemes
are presented: relevance feedback and query retouch. For evaluation, we built a novel dataset
of manga images, Manga109, which consists of 109 comic books of 21,142 pages drawn
by professional manga artists. To the best of our knowledge, Manga109 is currently the
biggest dataset of manga images available for research. Experimental results showed that
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the proposed framework is efficient and scalable (70 ms from 21,142 pages using a single
computer with 204 MB RAM).

Keywords Manga · Sketch · Retrieval · Dataset

1 Introduction

Manga are Japanese black-and-white comics (Fig. 1). They are popular worldwide. Nowa-
days, manga are distributed not only in print, but also electronically via online stores. Some
e-manga archives are very large; e.g., the Amazon Kindle store sells more than 130,000 e-
manga titles.1 Therefore, users of online stores must retrieve titles from large collections
when they purchase new manga.

However, current e-manga archives offer very limited search support, i.e., keyword-based
search by title or author. They are not suitable for large-scale search and searches cannot
take the images (contents) of manga into consideration. For this reason, applying content-
based multimedia retrieval techniques to manga search would have the potential to make
the manga-search experience more intuitive, efficient, and enjoyable.

In this paper, we propose a content-based manga retrieval framework. The framework is com-
posed of three steps: labeling of margin areas, an objectness-based edge orientation histogram
(EOH) feature description [35] with screentone removal [23], and approximate nearest-
neighbor (ANN) search using product quantization (PQ) [26]. For querying, the framework
provides a sketch-based interface. Based on the interface, two interactive reranking schemes
are proposed for an intuitive search: relevance feedback and query retouch. The main
contribution of this paper is to build an efficient large-scale framework for manga search.

An overview of the GUI implementation of the proposed system is shown in Fig. 2. Given
a query sketch (Fig. 2a), the system retrieves similar areas from a manga dataset in real
time, and shows the top results in thumbnail windows (Fig. 2c). The retrieval is performed
automatically after each stroke is completed. If a user clicks on one of the retrieved results in
the thumbnail windows, a page containing the result is shown in a preview window (Fig. 2d).
In this case, the page containing the first-ranked result is shown. Please see the supplemental
video for more details.

There are two technical challenges associated with content-based manga retrieval. First,
image description for naturalistic images may not be suited to describing manga images
because the visual characteristics of manga images are different from those of naturalistic
images. Second, it is necessary to retrieve not only an image but also a part of the image
because a manga page comprises several frames (rectangular areas). Both problems are
tested using the proposed framework.

For evaluation, we built a novel dataset of manga images drawn by professional manga
artists, Manga109, which consists of 109 comic books with a total of 21,142 pages.
Manga109 will be very beneficial for the multimedia research community because it has
been difficult for researchers to use “real” manga in experiments due to the copyright
problem. Research so far has been limited to the small scale. We made this dataset with per-
mission from 94 professional creators. The dataset covers a wide range of manga genres,
and is publicly available for academic use.

1Amazon.co.jp Kindle Comic. Retrieved from September 27, 2015, from http://amzn.to/1KD5ZBK

http://amzn.to/1KD5ZBK
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(b) page

(c) frame

(a) book (title)

Motoei Shinzawa

Fig. 1 Manga examples. a A manga book (title) consists of 200 pages on average. b A page (an image) is
composed of several frames (rectangular areas). c Characters, text balloons, and background are drawn in
each frame. Typically, manga are drawn and printed in black and white

Our contributions are summarized as follows:

– We built an efficient large-scale framework for manga search. The framework enables
us to retrieve a manga image in 70 ms from 21,142 pages with 204 MB using a single
PC.

– We provided a publicly available manga dataset, Manga109, which includes 109 manga
titles containing 21,142 pages that will be useful for manga image-processing research.

– We verified that EOH with screentone removal is effective to manga image retrieval
compared to those used in the state of the art sketch based retrieval system [54, 62].

– As far as we know, this is the first work to make use of sketch to retrieve manga or
comics.

(b)

Gasan(a) (c) (d)

Fig. 2 An interface for the retrieval system. a A canvas for the user’s sketch. b Visualized EOH features,
where the left figure shows a query and the right shows the retrieved result. c Thumbnail windows for the
retrieved results. d A preview window of a manga page
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A preliminary version of this paper appeared in our recent conference paper [39]. This
paper contains significant differences: (1) we constructed and released the publicly avail-
able manga dataset; (2) we significantly improved the proposed algorithm by leveraging
an objectness measure, PQ, and screentone removal; and (3) we performed massive exper-
imental evaluations using the new dataset, including comparisons with state-of-the-art
methods.

The rest of the paper is organized as follows: Section 2 introduces related work. Section 3
presents our retrieval system and Section 4 shows the proposed query interaction schemes.
A novel dataset is introduced in Section 5 and evaluations are given in Section 6.

2 Related work

We discuss related studies in content-based manga retrieval by categorizing them into manga
description, retrieval–localization, ANN search, and querying. Additionally, we introduce
research related to manga.

2.1 Manga image description

In the literature of content-based image retrieval, many methods have been proposed
to describe images. A query and dataset images are converted to some form of vector
representation to evaluate their similarity. A typical form is the bag-of-features (BoF) rep-
resentation [57], in which local features such as SIFT [37] are extracted from an image and
quantized into a sparse histogram. The distance between a query histogram and a dataset
histogram can be computed efficiently using an inverted index structure. The BoF form has
been studied widely because it achieved successful image description with fast computation.

Various extensions of BoF have been proposed so far, including query expansion [12],
soft voting [45], and Hamming embedding [24]. The state-of-the-art in this line are the
vector of locally aggregated descriptors (VLAD) and Fisher vector (FV) approaches [27,
59], which are interpreted as generalized versions of BoF [52].

However, all of the above methods were designed for naturalistic images for both query
and dataset. For example, texture-based features such as Local Binary Pattern (LBP) [42] is
not effective for manga because manga images do not contain texture information (Fig. 3).
Thus, special attention has been paid to cases in which a query is a line drawing, i.e., a
sketch.

If a query is presented as a form of sketch, several special features tailored for sketch
queries have been proposed. BoF using a histogram of oriented gradients [13] was pro-
posed [16, 54, 75]. Because sketch images usually have a flat background of uniform white
pixels, several methods tried to fill such blank areas with meaningful values and interpreted
them as a feature vector; e.g., distance-transformed values from edge pixels [65] and Poisson
image-editing-based interpolation values [21, 22]. Chamfer matching, which is a successful
method for computing the similarity between two contours of objects, was incorporated in
the sketch-based retrieval framework [8, 48, 62].

In the manga feature description task, we compared the proposed method with (1) BoF,
(2) large-window FV as the state-of-the-art of BoF-based methods [54], and (3) com-
pact oriented chamfer matching (Compact OCM) as the state-of-the-art of chamfer-based
methods [62].

Note that deep-learning techniques are becoming quite popular in image recognition
because of their superior performance. These technologies are being applied to the sketch
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(a) (b) The distance from (a) is
 1464.6

(c) The distance from (a) is
 396.7

Fig. 3 Poor performance of LBP. For each image, streentone is removed [23] , and the LBP feature is
extracted. The differences between LBP features are then computed. Clearly, the visual characteristics of
(a) and (b) are similar, whereas (a) and (c) are dissimilar. However, the distance between the LBP features
for (a) and (b) is 1464.6, and between (a) and (c) is 396.7. This illustrates that the LBP feature cannot express
visual similarities of line drawings. Note that the results become even worse if we do not remove screentone

processing. However, the effectiveness of such methods has not yet been discussed suffi-
ciently. For example, Yu and colleagues [72] reported that traditional methods such as FV
are still competitive for a sketch recognition task, and therefore such deep learning-based
features are beyond the scope of this paper.

2.2 Retrieval and localization

As shown in Fig. 2d, our objective is to find not only a similar page, but also iden-
tify a similar region in the retrieved image. This kind of task has been tackled in spatial
verification-based reranking methods [7, 25, 33, 44, 71, 74]. These methods first find can-
didate images by BoF, and rerank the top results by spatial information such as relative
positions among extracted SIFT features. However, such methods cannot be applied to
manga for two reasons. First, the manga image’s structure is more complex than that of a
naturalistic image. A single manga page usually consists of several frames, each of which
is a totally different visual scene (see Fig. 1b). Therefore, a manga page can be interpreted
as a set of images if we treat each frame as a single image. This is a much harder condition
than those usual in image processing tasks such as retrieval or recognition, which assume
that at least an image is a single image rather than a set of images. Second, BoF does not
work well for manga as shown in the experimental section.

Another related area is object-detection methods, in which the position of a target object
is identified in an input image. A number of methods have been proposed so far. Among
them, contour-based object localization methods [56, 70] are closely related to our manga
problem because an object is represented by its contour. In such methods, an instance of a
target object such as “giraffe” is localized from an image by matching a query contour of
giraffe, which is learned from training data. If we apply such methods to all dataset pages
and select the best result, we might achieve both retrieval and localization at once. However,
this is not realistic because: (1) these methods usually require learning to achieve reasonable
performance, i.e., many giraffe images are required to localize an instance of giraffe, but
a query is usually a single sketch in our case; and (2) localization usually takes time and
cannot be scaled to a large number of images.
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The proposed method makes use of a window-based matching approach. It is simple but
usually slow. We formulate the search and localization as a single nearest-neighbor problem,
and solve it using ANN methods.

2.3 Approximate nearest neighbor search

To determine similar vectors efficiently, several approximate nearest neighbor search
methods have been proposed. The two main branches of ANN methods include product-
quantization-based methods [18, 26] and hashing-based methods [36, 68, 69, 73]. Hashing-
based methods mainly focus on supervised searches, i.e., label information is considered,
such as image categories. Product-quantization-based methods approximate a distance mea-
sure more directly, which is more closely related to our considerations. Therefore, we
employ product quantization in our pipeline for an efficient search.

2.4 Querying

How to query multimedia data has been an important problem in content-based multimedia
retrieval. Although many approaches have been proposed, including keywords, images, and
spatial/image/group predicates [58], we focus on sketches drawn by users. Sketch-based
interaction is the most natural way for humans to describe visual objects, and is widely
adapted not only for image retrieval, but also in many applications such as shape model-
ing [43], image montage [9], texture design [29], and as a querying tool for recognizing
objects [15, 54].

2.5 Manga

From an image-processing perspective, manga has a distinctive visual nature compared
with naturalistic images. Several applications for manga images have been proposed: col-
orization [47, 53, 63], vectorization [31], layout recognition [64], layout generation [5, 20],
element composition [6], manga-like rendering [46], speech balloon detection [49], segmen-
tation [2], face tailored features [11], screen tone separation [23], and retargeting [40]. The
research group at Université de La Rochelle constructed a comic database [19], which we
mention in Section 5, and analyzed the structure of visual elements in a page to understand
the comics content semantically [50].

Several studies have explored manga retrieval [14, 34, 60, 61]. In these methods, inputs
are usually not pages but cropped frames or characters, and evaluations were conducted
using a small number of examples. In addition, the runtimes of these methods have not been
discussed. Therefore, it is not known whether these methods can scale to a large dataset. On
the other hand, our proposed method can perform a retrieval from 21,142 pages in 70 ms on
a single computer.

3 Manga retrieval system

In this section, we present the proposed manga retrieval system. Figure 4 shows the frame-
work of the system. First, input pages are preprocessed offline (Fig. 4d, as discussed
in Section 3.4). Next, region of interest (ROI) areas are detected and EOH features are
extracted with screentone removal (Fig. 4a, as described in Section 3.1). These features are
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Fig. 4 Framework of the proposed system

then compressed into PQ codes (Fig. 4b, as discussed in Section 3.2). At the query phase,
given a query sketch, similar EOF regions are retrieved (Fig. 4c, as discussed in Section 3.3).

The proposed framework is based on the window search paradigm; i.e., several features
are extracted from dataset images using a generic object detector, and a query feature is
compared with all features. Compared with the traditional image retrieval problem, such
a window system is usually too slow to handle a large number of features. We formulate
the problem as a single ANN search, and solve it using PQ, with effective preprocessing
including the labeling of margin areas.

3.1 EOH feature description of object windows with screentone removal

We first show a core part of the system, feature description (Fig. 4a). Given a page, can-
didate areas of objects are detected automatically (Fig. 4(a1)), then EOH features [35] are
described from selected areas (Fig. 4(a2)). The retrieval is performed by matching an EOH
feature of the query against the EOH features in the dataset. Note that we delete screentones
in advance by applying our previously proposed method [23]. This process significantly
improves both the ROI detection and the feature description. Figure 5 shows an example of
the feature representation. The EOF feature of the red square area in Fig. 5a is visualized as
shown in Fig. 5b. The result of the screen tone removal is shown in Fig. 5c, and the feature is
visualized in Fig. 5d. Comparing these two figures, we can observe that screentone removal
effectively extracts line structures of the target, and suppresses noisy features caused by
screentones. EOH is not new, but we found that it is effective to sketch based manga retrieval
when screentone removed is applied in advance. Hereafter EOH in this paper means EOH
with screentone removal.

The candidate areas of objects are detected by generic object detectors [1, 10, 66], which
are successful ways to replace a sliding window paradigm. (Fig. 4(a1)). Intuitively, these
detectors compute bounding boxes, which are more likely to contain any kinds of objects.
These bounding boxes are considered as candidates for object instances, and a processing
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Atsushi Sasaki

Atsushi Sasaki

(a) (b)

(c) (d)

Fig. 5 An example of an EOH feature. a An image and a selected area. b The visualized EOH feature
extracted from the area in (a). As can be seen, the visual characteristics of a manga page can be captured
using such a simple histogram. c The image with screen tone removal [23]. d The visualized EOH feature
extracted from the area in (c). By removing the screen tone, the quality of the feature is improved, e.g., the
left bottom area of the feature in (b) includes random directions because of the background, where the feature
in (d) does not

task such as image recognition is applied only to the bounding box areas, which greatly
reduces computational costs compared with a simple sliding window approach.

We found that objectness measures can detect candidate manga image objectives more
effectively than the sliding window approach. We conducted an experiment using a small
dataset in which ground-truth objects (a head of a man) are annotated. The detection rate
of a few methods were evaluated as shown in Fig. 6. BING [10], selective search [66], and
sliding window (baseline) [39] are compared. From the results, we concluded that selective
search is the best approach for this dataset. In the rest of this paper, we use selective search
for our object detector. Note that a horizontally or vertically long bounding box is divided
into several square boxes with overlaps because we restrict the shape of object areas to a
square.

After object areas have been detected (typically, 600 to 1000 areas are selected from a
page), their EOF features are described (Fig. 4(a2)). The selected square area is divided into
c × c cells. The edges in each cell are quantized into four orientation bins and normalized,
and the whole vector is then renormalized. Therefore, the dimension of the EOH vector is
4c2. Note that we discard features in which all elements are zero. For manga, the features
should be robust against scale changes because we want to find areas of any size that are
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Fig. 6 Detection rate (DR) given #WIN proposals, which is a standard evaluation metric for evaluating
objectness [1, 10, 66]. DR shows the percentage of ground-truth objects covered by proposals, which are
generated by each method. An object is considered covered only when the PASCAL overlap criteria is satis-
fied (intersection over union is more than 0.5 [17]). The area under the curve (AUC), which is a single-value
summary of performance for each curve, is shown on the legends. We evaluated methods using the dataset
used for the localization task, see details on Section 6.2

similar to the input sketch. For example, if a certain character’s face is the target, it can
be either small or large. To achieve matching across different scales, we simply accept any
sizes of patches, but restrict the shape of an area to square. Whatever the patch sizes, the
same-dimensional EOH features are extracted and used for matching.

By describing EOF features of candidate areas, a page is represented by a set of EOH
features:

X = {xn}Nn=1, (1)

where X means the page, xn denotes an EOH feature for the nth window, and N is the
number of features extracted from the page. Note that integral images are utilized to enable
the fast computing of features in the same manner as in [35]. In the comparative study,
we show this simple representation achieves better accuracy than previous sketch-based
retrieval methods, and we confirm that EOH-based description gives a good solution to the
manga image representation problem.

In summary, given a page, screenton removal is applied, candidate areas are detected
by selective search, and EOH features are extracted, then the page is represented as a set
of EOH features. This window-based representation is simple and efficient at finding a
matching area in the page because a feature implicitly contains its position in the page,
which is particularly useful for manga pages.

3.2 Feature compression by product quantization

Given a set of EOH features, we compress them into binary codes using PQ [26], which is
a successful ANN method, as shown in Fig. 4b. Applying PQ greatly reduces the compu-
tational cost of matching and reduces memory usage. After the features are compressed to
binary codes, the approximate distances between a query vector and dataset codes can be
computed efficiently by lookup operations (asymmetric distance computation (ADC) [26]).
Therefore, the search can be performed efficiently even for large number of dataset vectors.
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Each feature xn is compressed into a binary code, q(xn), and the page is represented as

XPQ = {q(xn)}Nn=1, (2)

where XPQ is a set of quantized EOH features for a page. Because each q(xn) is recorded
as a tuple of M subcentroid indices (8 bits uint8 t), which take 8M bits, XPQ is stored
by 8MN bits.

3.3 Search

Let us describe how to retrieve the nearest PQ-encoded feature from many manga pages
(Fig. 4c). Suppose there are P manga pages, and the quantized EOH features of the pth

page are represented as X p
PQ = {

q(xp
n )

}Np

n=1, where Np means the number of EOH features
from the pth page, and p ∈ {1, . . . , P }. Given an EOH feature y from a query sketch, the
search engine computes the nearest neighbors using:

〈
p∗, n∗〉 = arg min

p∈{1,...,P }, n∈{1,...,Np}
dAD

(
y, q(x

p
n )

)
, (3)

where dAD(·, ·) measures an approximate Euclidean distance between an uncompressed
vector and a compressed PQ code [26]. This can be computed efficiently by lookup
operations (ADC [26]).

By computing dAD from y to each q(x
p
n ) and selecting the smallest one, p∗ and n∗ are

computed. This is a linear search problem for PQ codes, which can be solved efficiently;
e.g., 16 ms for searching one million 64-bit codes. Then we can say that the n∗th feature
from the p∗th page is the nearest to the query sketch. The point here is that the problem is
separated into a feature description and an ANN search. Therefore, even if the number of
features is very large, we can employ the ANN techniques. In our system, searching from
21,142 pages takes 793 ms (without parallel thread implementation) or 70 ms (with parallel
thread implementation) on a single computer using a PQ linear scan, which is fast enough.
The search could be faster if we employ ANN data structures such as [3, 28].

3.4 Skipping margins

Although PQ computing is fast, effective preprocessing of the manga pages of the dataset
is essential (Fig. 4d). A manga page comprises a series of frames and the interframe spaces
(margins) are not important. For efficient searching, margin exclusion from retrieval can-
didates should be performed before extracting features. We label the margins as shown in
Fig. 7. First, the lines of the manga page image (Fig. 7a) are thickened by applying an ero-
sion [55] to the white areas (Fig. 7b), thereby filling small gaps between black areas. Next,
the white-connected areas are labeled by connected-component labeling [38] as shown in
Fig. 7c, where different colors for the labels have been used for visualization. Finally, areas
are selected as margins by finding the most frequent label appearing in the outermost periph-
eral regions (Fig. 7d). Because interframe spaces tend to connect to the outer areas, the
method succeeds in most cases.

Let us define the patch area of x as S(x), and the margins as U(x) (e.g., the colored areas
shown in Fig. 7d). We extract a feature only if its area ratio U/S is less than a threshold,
which we set to 0.1. Equation (2) is therefore rewritten as

XPQ =
{
q(xn)

∣∣∣∣
U(xn)

S(xn)
< 0.1, n ∈ {1, . . . , N}

}
. (4)
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Ken Akamatsu

(a) (b) (c) (d)

Fig. 7 a An input page. b Erosion is applied to white regions to thicken the lines. c White-connected areas
are labeled with the same value. d The margin areas are selected

Intuitively, this means that if an area belongs to the margin, it is skipped in the feature
extraction step. An example of the process is shown in Fig. 8.

4 Query interaction

Querying is a difficult issue for manga retrieval. For a natural and intuitive interface, we
prefer sketch-based queries. Because manga itself comprise sketches drawn by authors,
sketching is compatible with manga.

In addition, we can make use of sketching not only for the initial query, but also for
additional interaction with the retrieved results. The queries that can be performed using
our framework are summarized as follows: (1) sketch querying, the proposed sketch-based
retrieval described above; (2) relevance feedback, which reuses the retrieved results; and
(3) query retouch, in which the results of relevance feedback are modified and reused.

(a) Input page (b) The unnecessary label

Ken Akamatsu

(i)

(ii)

(iii)

Fig. 8 a Input image. b Its margin labels. In case of (i), the red area (i) in (a) is skipped because
U/S = 0.6 > 0.1. In case (ii), in contrast, the corresponding area is all black, and the feature is therefore
extracted. In case (iii), U/S = 0.08 < 0.1, and an EOH feature is extracted
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Relevance feedback We propose an interaction to reuse retrieved results, which is
inspired by the relevance feedback techniques proposed in the information retrieval liter-
ature [41]. Users can reuse a retrieved result simply by selecting a region in the retrieved

(a)

(b)

(c)

Chikae Ide

Fig. 9 Relevance feedback. a A user draws strokes and finds a target (Japanese-style clothes) in the third
and fifth results (red borders). b By selecting the region in the retrieved page, another retrieval is performed
automatically with this as the query. c A wide range of images of Japanese-style clothes is obtained
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manga page, as shown in Fig. 9. With relevance feedback, even novice users can use pro-
fessional manga images as queries. Note that a user can use any region in the page as a
query.

(a)

(b)

(c)

Ken Akamatsu

Fig. 10 Query retouch. a Results of relevance feedback. Target characters have red borders. b A user adds
strokes and draws glasses on the target character. Other target characters with glasses are then successfully
retrieved (red borders). Note that users can erase lines using an eraser tool. c Both relevance feedback and
query retouch can be conducted multiple times
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Query retouch We propose a new methodology for modifying and reusing the results. In
query retouch, we can modify either the initial sketch or a query taken from the results of
a retrieval (Fig. 10). As the query is changed by adding lines or partial erasure, the results
will change immediately. As a result, we can intuitively change the retrieval results in the
direction that we want.

According to Mei and colleagues [41], these interactions are classified as “interactive
reranking,” and are especially useful for the visual search problem because “visual data is
particularly suited for interaction, as a user can quickly grasp the vivid visual information
and thus judge the relevance at a quick glance.” [41].

Note that we have designed the proposed pipeline to be scale-invariant, rotation-
variant, and flip-variant. Scale-invariance is required because the query should match with
image regions of any size. This is achieved by extracting features of the same dimension
from a given region (Section 3.1). Regarding rotations, the system does not accept results
that are similar to the query if rotated. We decided on this design in order to inhibit unusual
results, such as upside-down faces. Regarding flips, we decided to reject flipped results in
order to make the sketch interaction more intuitive. Note that a flip-invariant search is tech-
nically easy to implement, simply by flipping the query feature and performing the retrieval
again.

5 Manga dataset

In this section, we introduce a new dataset of manga images, namely the Manga109 dataset
for evaluation. The Manga109 dataset consists of 109 manga titles, and is made publicly
available for academic research purposes with proper copyright notation. Figure 11 shows
example pages from the Manga109 dataset.

A large-scale dataset of manga images is important and useful for manga research.
Although several papers related to manga image processing have been published, fair com-
parisons among the proposed methods have not been conducted because of the lack of a
dataset with which the methods can be evaluated. In preparing a dataset, the most seri-
ous and intractable problem is copyright. Because manga is artwork and protected by
copyright, it is hard to construct a publicly available dataset. Therefore, researchers have
collected their own manga images or used manga images drawn by amateurs. These are not

(a) (b) (c) (d) (e)

Fig. 11 Example images from the Manga109 dataset. Each caption shows the bibliographic information of
an image (title, volume, and page)
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appropriate for manga research because: (1) the number of manga images is small; (2) the
artistic quality of the manga images is not always high; and (3) they are not publicly avail-
able. The Manga109 dataset, on the other hand, clears these three issues. It contains 21,142
pages in total, and we can say that it is currently the largest manga image dataset. The
quality of the images is high because all titles were drawn by professional manga authors.

As is widely known, well-crafted image datasets have played critical roles in evolving
image processing technologies, e.g., the PASCAL VOC datasets [17] for image recognition
in the 2000s, and ImageNet [51] for recent rapid progress in deep architecture. We hope the
Manga109 dataset will contribute to the further development of the manga research domain.

Image collection All manga titles in the Manga109 dataset have been previously pub-
lished in manga magazines,2 i.e., they were drawn by professional manga authors. The
manga titles are in an archive “Manga Library Z” run by J-Comic Terrace. It has more than
3,000 titles, most of which are currently out of print. With the help of J-Comic Terrace, we
chose 109 titles from the archive that cover a wide range of genres and publication years.
We obtained permission from the creators to use them for academic research purposes.
Thus researchers can use them freely with appropriate citation for their research challenges,
including not only for retrieval and localization, but also for colorization, data mining from
manga, and so on. The manga titles were originally published from the 1970s to the 2010s.
The Manga109 dataset covers various kinds of categories, including humor, battle, romantic
comedy, animal, science fiction, sports, historical drama, fantasy, love romance, suspense,
horror, and four-frame cartoons. Please see the details (titles, author names, and so on) in
our project page [32].

Dataset statistics The dataset consists of 109 manga titles. Each title includes 194 pages
on average, with a total of 21,142 pages. The average size of images is 833 × 1179, which
is bigger than the image sizes usually used for object recognition and retrieval tasks, e.g.,
482 × 415 pixels on average for ILSVRC 2013.3 This is because manga pages contain
multiple frames and thus require higher resolutions.

Relation to other datasets eBDtheque [19] is a publicly available comic dataset. It con-
sists of 100 comic pages with detailed meta-information such as text annotations. Compared
with eBDtheque, our Manga109 dataset contains a much larger number of pages. Manga109
is useful for large-scale experiments, whereas eBDtheque is beneficial for small but detailed
evaluations such as object boundary detection.

6 Experimental results

In this section, we present three evaluations: (1) a comparative study with previous methods
for manga description (Section 6.1); (2) a localization evaluation (Section 6.2); and (3) a
large-scale qualitative study (Section 6.3). In the comparative study and the localization
evaluation, we used a single-thread implementation for a fair comparison, and employed a
parallel implementation for the large-scale study.

2Japanese manga is usually published in a manga magazine first, which contains many manga titles. Then it
comes out in an independent book form for each manga title.
3http://www.image-net.org/challenges/LSVRC/2014/index#data

http://www.image-net.org/challenges/LSVRC/2014/index#data
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Ken Akamatsu

Tarou Minamoto

Ryusei Deguchi

Fig. 12 Targets for the comparative study. Left to right: query sketches by novice artists, skilled artists,
ground-truth images, and ground-truth images with screentone removal. Top to bottom: targets, Boy-with-
glasses, Chombo, and Tatoo

6.1 Comparative study

A comparative study was performed to evaluate how well the proposed framework could
represent manga images compared with previous methods such as those introduced in
Section 2. We compared our proposal with a baseline (BoF with large window SIFT [54]),
the state-of-the-art of BoF-based methods (FV [54]), and the state-of-the-art of chamfer-
based methods (Compact OCM [62]). All experiments were conducted on a PC with a
2.8 GHz Intel Core i7 CPU and 32 GB RAM, using C++ implementations.

Frame image dataset For evaluation, we cropped frames from 10 representative manga
titles from the Manga109 dataset.4 There were 8,889 cropped frames, and the average size
was 372 × 341. We used these frames for retrieval. Note that we used frames instead of
pages for this comparison because the features of BoF, FV, and Compact OCM are only

4Lovehina vol.1, Gakuen Noise, DollGun, Hanzai Kousyounin Minegishi Eitarou, Bakuretsu KungFu Girl,
Aosugiru Haru, OL Lunch, Mukoukizu no Chombo, Highschool Kimengumi vol.1, and PLANET7
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comparable within a frame. Although the frame is less complex than the page, retrieval is
not easy because the size of frames varies greatly, and the localization problem still exists as
shown in Fig. 12c, where the target (a head of a boy) is small and the frame includes other
objects and backgrounds.

Target images To make the comparisons, we chose three kinds of targets: Boy-with-
glasses (Fig. 12c), Chombo (Fig. 12g), and Tatoo (Fig. 12k), which are from manga titles
Lovehina vol. 1, Mukoukizu no Chombo, and DollGun, respectively. Boy-with-glasses is an
easy example, Chombo is much harder because the face might be either to the right or left,
and Tatoo is the most difficult because it is so small compared with the size of the frame.
These target images are treated as ground truths.

Query images To prepare query sketches, we invited 10 participants (seven novices and
three skilled artists, such as a member of an art club), and asked them to draw sketches.
First, we showed them query images for 20 s. Next, they were asked to draw a sketch for
the query. Each participant drew all target objects; therefore, we collected 10 × 3 = 30
queries. Examples of queries are shown in Fig. 12. We used a 21-inch pen display (WACOM
DTZ-2100) for drawing.

Results of comparative study Using the queries, we evaluated each method using stan-
dard evaluation protocols in image retrieval: recall@k and mean average precision [4]. Note
that the ground-truth target images were labelled manually. All frame images were used
for the evaluation, and the images of the different targets were regarded as distractors. The
statistics of the frame images are shown in Table 1.

Figure 13 shows the results for each target. Note that this task is challenging, and all
scores tend to be small. The queries from users are not always similar to the target. On the
contrary, some novices even drew queries that were dissimilar to the target, as shown in
Fig. 12e. Still, in all cases, the proposed method achieved the best scores. In particular, the
proposed method outperformed the other methods for Boy-with-glasses. Note that BoF and
FV received almost zero scores for the Tatoo case because they are not good at finding a
relatively small instance from an image. From these experiments, we can say that BoF-based
methods do not satisfy the purpose in manga retrieval.

Note that we did not apply any approximation steps for a fair comparison. Compact OCM
measures an original chamfer distance without an approximation (a sparse projection). We
did not compress a feature using PQ in this experiment.

About quantization When we applied PQ to the features, the score decreased according
to the quantization level, as shown in Fig. 14. There is a clear trade-off between the rate of
compression and accuracy. From the result, we accepted M = 16 as a reasonable option;
i.e., a feature is divided into 16 parts for PQ compression and encoded to a 16-byte code.

Table 1 Image statistics for comparative study. All images are cropped frames from the Manga109 dataset

target type difficulty #ground truth #dataset #query

Boy-with-glasses easy 67 8563 30

Chombo normal 178 8563 30

Tatoo hard 81 8563 30
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Fig. 13 Results of the comparative study. Values in the legend show Recall@100

Note that, interestingly, there is not a clear relation between accuracy and the number of
cells (c2). The feature description becomes finer with a large number of cell divisions, but
it does not always achieve higher recall. This indicates that some level of abstraction is
required for the sketch retrieval task. We employed c = 8 for all experiments, i.e., a selected
area is divided into 8 × 8 areas for feature description.

4
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Fig. 14 The effect of feature compression by PQ. The Y -axis represents the retrieval performance. The X-
axis shows the number of cells. Each line corresponds to a compression level. As the features are compressed
by PQ (i.e., the feature is represented by a smaller number of subvectors (M)), the score decreases compared
with the original uncompressed feature
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Parameter settings and implementation details We show parameter settings and
implementation details used for the evaluation. For BoF, SIFT features are densely extracted
where the size of a SIFT patch is 64×64 pixels, with a 2×2 spatial pyramid, and the number
of vectors in the dictionary is set to 1024. The final number of dimension is 4096. For FV,
a Gaussian Mixture Model with 256 Gaussians was used, with a 2 × 2 spatial pyramid. The
dimensions of SIFT are reduced from 128 to 80 by PCA. For BoF and FV, we leveraged the
same parameter settings as in Schneider and colleagues [54], with the vlfeat implemen-
tation [67]. For selective search, we employed the dlib implementation [30], with little
Gaussian blurring before applying selective search. To train code words for BoF, FV, and
PQ, we randomly selected 500 images from the dataset. Note that they were excluded and
not used for testing. To eliminate small patches, we set a minimum length of a patch as 100
pixels and discarded patches that were smaller than that.

6.2 Localization evaluation

Next, we evaluated how well the proposed method can localize a target object in manga
pages. The setup is similar to that for image detection evaluation [17].

Images As query sketches, we used the Boy-with-glasses sketches collected in Section 6.1.
We prepared two datasets for evaluation. (i) A Lovehina dataset, which is a title of Lovehina
vol.1, and consists of 192 pages, including the pages containing ground-truth windows. (ii)
The Manga109 dataset, which is the sum of all manga data, consists of 109 titles with a
total of 21,142 pages. Note that the Lovehina data is included in the Manga109 dataset, so
(i) is a subset of (ii). The ground-truth area (69 windows) were manually annotated from a
Lovehina dataset.

In contrast to the previous comparative study, this is an object localization task, i.e., given
a query image, find a target instance in an image. In our case, we must find the target from
many manga pages (21,142 pages, for Manga109).

Evaluation criteria For evaluation, we employed a standard PASCAL overlap crite-
rion [17]. Given a bounding box (retrieved result) from the method, it is judged to be true
or false by measuring the overlap of the bounding box and ground-truth windows. Denote
the predicted bounding box as Bp, and the ground-truth bounding box as Bgt , the overlap is
measured by:

r = area(Bp ∩ Bgt )

area(Bp ∪ Bgt )
. (5)

We judged the retrieved area is true if r > 0.5. If multiple bounding boxes are produced, at
most one among them is counted as correct.

For each query, we find the top 100 areas using the proposed retrieval method from the
dataset (Lovehina or Manga109), then the retrieved areas are judged using (5). Then we can
compute the standard mAP@100 from the result (true/positive sequence).

Table 2 Results for localization evaluation (single thread implementation)

#image #patch mAP@100 memory runtime

Lovehina 192 138K 1.12 ×10−2 2.21 MB 11.6 ms

Manga109 21,142 14M 1.43 ×10−4 204 MB 331 ms
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Results from Manga109Results from Lovehina

Query

1st result, failure 2nd result, success 11th result, success 35th result, success1st result, failure

Ken Akamatsu Mai AsatsukiKen Akamatsu Ken Akamatsu

Fig. 15 Examples of localization experiments for the Lovehina dataset and Manga109 dataset

Result of localization evaluation We show the results in Table 2. With our single imple-
mentation, searching the Manga109 dataset (14M patches) took 331 ms. This is fast enough
for interaction, and the computation cen be further improved (70 ms) using a parallel
implementation as discussed in Section 6.3. We also show theoretical values of memory
consumption for EOH features (#patch×8M). The whole Manga109 dataset consumes only
204 MB. As can be seen from mAP, this task is difficult because there are possibly hun-
dreds of thousands of candidate areas in the windows (138K for Lovehina, and 14M for
Manga109) for only 69 ground-truth areas. Examples of retrieved results are shown in
Fig. 15. For the Lovehina data, the first result is a failure but the second is correct. For the
Manga109 dataset, the first success can be found at the 35th result. The first result shares
similar characteristics to the query (wearing glasses) even though the result is incorrect.

6.3 Large-scale qualitative study

In this section, we show a qualitative study of retrieval from the Manga109 dataset. The
whole system was implemented using a GUI as shown in Fig. 2.

We employed a parallel implementation using the Intel Thread Building Library, and the
average computation time was 70 ms for the Manga109 dataset (21,142 images). The par-
allelization was straightforward. Neighbors were computed for each manga title in parallel.
In the implementation, we selected the most similar feature from a page (not keeping all
features per page), then merged the results.

Qualitative study using a sketch dataset We qualitatively evaluated the proposed
method using a public sketch dataset as queries. We used representative sketches [15] as
queries. The 347 sketches each had a category name, e.g., “panda.”

Figure 16a and b show successful examples. We could retrieve objects from the
Manga109 dataset successfully. In particular, the retrieval works well if the target consists of
simple geometric shapes such as squares, as shown in Fig. 16b. This tendency is the same as
that for previous sketch-based image retrieval systems [16, 62]. Figure 16c shows a failure
example, although the retrieved glass is similar to the query.

As can be seen in Fig. 16c, text regions are sometimes retrieved and placed at the top
of the ranking. Because users usually do not require such results, detecting and eliminating
text areas would improve the results, which remains as a future work.

More results by relevance feedback We show more results from queries of character
faces using the proposed relevance feedback in Fig. 17. We see that the top retrieved results
were the same as (or similar to) the characters in the query. In this case, all the results were
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Hidehisa Masaki

Tetsuya Kurosawa / Hidehisa Masaki

Masako Yoshi

(a)

(b)

(c)

Fig. 16 Results of the subjective study using representative sketches [15] as queries

drawn by the same author. Interestingly, our edge histogram feature captured the charac-
teristic of authors. Figure 17b shows the results of “blush face.” In Japanese manga, such
blush faces are represented by hatching. By the relevance feedback, blushed characters
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Yuki Kiriga

Kaoru Kawakata

Yasuyuki Ono

(a)

(b)

(c)

Fig. 17 More results for relevance feedback from Manga109 dataset

were retrieved from various kinds of manga titles. These character-based retrievals are made
possible by content-based search. This suggests that the proposed query interactions are
beneficial for manga search.
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7 Conclusions

We proposed a sketch-based manga retrieval system and novel query schemes. The retrieval
system consists of three steps: labeling of margin areas, EOH feature description with
screen tone removal, and approximate nearest-neighbor search using product quantization.
The query schemes include relevance feedback and query retouch, both of which are new
schemes that interactively rerank the retrieved results. We built a new dataset of manga
images, Manga109, which consists of 21,142 manga images drawn by 94 professional
manga artists. To the best of our knowledge, Manga109 is currently the biggest manga
image dataset. It is available to the research community. Experimental results showed that
the proposed framework is efficient and scalable (70 ms from 21,142 pages using a single
computer with 204 MB).

Combining the sketch- and keyword-based searches is a promising direction for future
work.
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