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Abstract
Image captioning, which aims to automatically generate a sentence description for an image, has attracted much research
attention in cognitive computing. The task is rather challenging, since it requires cognitively combining the techniques from
both computer vision and natural language processing domains. Existing CNN-RNN framework-based methods suffer from
two main problems: in the training phase, all the words of captions are treated equally without considering the importance
of different words; in the caption generation phase, the semantic objects or scenes might be misrecognized. In our paper, we
propose a method based on the encoder-decoder framework, named Reference based Long Short Term Memory (R-LSTM),
aiming to lead the model to generate a more descriptive sentence for the given image by introducing reference information.
Specifically, we assign different weights to the words according to the correlation between words and images during the
training phase. We additionally maximize the consensus score between the captions generated by the captioning model and
the reference information from the neighboring images of the target image, which can reduce the misrecognition problem.
We have conducted extensive experiments and comparisons on the benchmark datasets MS COCO and Flickr30k. The
results show that the proposed approach can outperform the state-of-the-art approaches on all metrics, especially achieving
a 10.37% improvement in terms of CIDEr on MS COCO. By analyzing the quality of the generated captions, we come to
a conclusion that through the introduction of reference information, our model can learn the key information of images and
generate more trivial and relevant words for images.
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Introduction

Benefiting from the significant advances of large-scale
labeled datasets, such as ImageNet [7] and deep learning,
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especially deep convolutional neural networks (CNN) [24,
33]; the problems of image classification [73] and object
recognition [56, 72] have been studied thoroughly. As
a result, computers even outperform humans at these
tasks [60]. Recently, automatically generating a sentence
description for an image, has attracted much research
attention in artificial intelligence. This problem, known
as image captioning, plays an important role in computer
vision, i.e., enabling computers to understand images,
which can be exploited in wide applications, such as video
tracking [28–32], cross-view retrieval [10, 39], sentiment
analysis [36, 52], childhood education [54], and visual
impairment rehabilitation [11]. However, image captioning
is a challenging task due to the coverage of both computer
vision and natural language processing technologies. Apart
from the need for identifying the objects contained in an
image [37], the generator should also be able to analyze their
states, understand the relationship among them, and express
the semantic information in natural language [59].

Cognitive Computation (2019) 11:763 777–

/ Published online: 8 August 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-018-9581-x&domain=pdf
http://orcid.org/0000-0003-4361-956X
mailto: schzhao@gmail.com
mailto: jungonghan77@gmail.com
mailto: dinggg@tsinghua.edu.cn


The early efforts on image captioning mainly adopt
the template-based methods, which require recognizing the
various elements, such as objects as well as their attributes
and relationships in the first phase. These elements are then
organized into sentences based on either templates [15, 25,
35, 62] or pre-defined language models [13, 26, 27, 46],
which normally end up with rigid and limited descriptions.
As a typical transfer-based method, nearest neighbor (NN)
is employed to retrieve a description from the corpus for
a given image [9]. Although this method cannot generate
any novel sentence, it suggests that NN can indeed provide
valuable information.

Inspired by recent advances in machine translation [6,
41, 55, 57], neural network-based methods have been
widely applied in image captioning tasks [12, 14, 23,
43, 59] and achieved great success. These methods are
primarily based on the encoder-decoder pipeline, consisting
of two basic steps. First, visual features are extracted using
CNN to encode the image into a fixed length embedding
vector. Second, recurrent neural network (RNN), especially
long short-term memory (LSTM) [18] is adopted as the
decoder to generate the sentence description by maximizing
the likelihood of a sentence given the visual features.
Thanks to the feature representation capability of CNN
and the temporal modeling of RNN, the neural network-
based methods are more flexible, which can generate new
sentences coherently. On the other hand, motivated by the
attention [58] mechanisms, which have been proven to be
effective in visual scene analysis [2, 47], different attention
mechanisms are proposed for image captioning, such as
region-based attention [21], visual attention [61], semantic
attention [65], global-local attention [34], and spatial and
channel-wise attention [3].

Fig. 1 Motivation of the proposed model. a Traditional methods treat
all the words (on the right of each image) equally without considering
the relative importance. On the right of the words are the assigned
weights based on the overall occurrences. b The main subjects or
scenes are misrecognized using the traditional methods (red), which
can be corrected with the help of consensus score between the
neighboring references and the target image (green)

Despite achieving the state-of-the-art performance, exist-
ing CNN-RNN framework-based methods suffer from two
main problems, as illustrated in Fig. 1:

– Information inadequateness problem. These methods
treat different words of a caption equally, which
makes distinguishing the important parts of the caption
difficult.

– Misrecognition problem. The main subjects or scenes
might be misrecognized using the traditional methods.

Obviously, in an image description, the words are not
equally important. Take the first image of Fig. 1a as an
example, the words “surfboards” and “wave” should be the
most important as they constitute the main content of the
image; “men” is the subject and “riding” is the status of the
subject, which are less important; “two” “on” “a” “small”
are relatively uninformative. Furthermore, once the subjects
or scenes are misrecognized, the generation error would
accumulate and cannot be easily corrected. The subsequent
words in the caption may be disturbed by these irrelevant
text context. Motivated by these observations, we propose
to make use of the visual features and the labeled captions
of the training images as references to address the above
mentioned problems. The references are incorporated in
both the training phase and the generation phase of the
LSTM framework, which constitute the novel R-LSTM
model. In the training phase, we endow the words in a
caption with different weights in terms of their relevance
to the target image, part of speech, and corresponding
synonyms. A word with higher relevance score indicates
high importance to describe the image, and thus a larger
weight value is assigned to it when calculating the loss. In
this way, the model could learn more in-depth information
of the caption, such as what the principal objects are, which
attributes are important to them and how they relate to
each other. In the generation phase, the NNs of the input
image are employed as references by jointly combining
the consensus score [8] and the likelihood of generating
sentence. The information provided by the NNs could help
reduce the misrecognition from beginning, and better match
the habit of human cognition.

We evaluate the proposed R-LSTM model on the MS
COCO and Flickr30k datasets. The comparative results
demonstrate the significant superiority of R-LSTM over the
state-of-the-art approaches. We also report the performance
of our method on the MS COCO Image Captioning
Challenge. Comparing with all the latest approaches, we
obtain comparable performances on all the 14 metrics.

The main contributions of this paper are threefold:

1. We propose to use the training images as references and
design a novel model, named Reference based Long
Short Term Memory (R-LSTM), for image captioning.
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2. In the training phase, we assign unequal weights to
different words according to the overall occurrences,
part of speech, and corresponding synonyms. Such a
training biased by the weights can better learn the
in-depth information of the captions, which helps to
address information inadequateness problem.

3. In the caption generation phase, we define a novel
objective function by combining the consensus score
and the traditional log likelihood to exploit the reference
information from neighbor images of the target image.
Reference-based generation can help to address the
misrecognition problem and make the descriptions
more natural sounding.

One preliminary conference version on R-LSTM for
image captioning was first introduced in our previous
work [4]. The enhancements in this paper as compared
to the conference version lie in the following three
aspects. First, we perform a more comprehensive review
of related work. Second, we extend the weighted training
by combining the overall occurrences, part of speech
and corresponding synonyms. Third, we conduct more
comparative experiments and enrich the analysis of results.

The rest of this paper is structured as follows. Section
“Related Work” briefly reviews related work on image cap-
tioning. Section “System Overview” gives an overview of the
proposed model. Detailed algorithms, including weighted
training and reference-based generation are described in
“Weighted Training” and “Generation Using Reference,”
respectively. Experimental results and analysis are pre-
sented in “Experiments,” followed by a conclusion and the
summary of future works in “Conclusion.”

RelatedWork

Generally, the existing image captioning algorithms can be
divided into three categories based on the way of sentence
generation [20]: template-based methods, transfer-based
methods, and neural network-based methods.

The template-based methods either use templates or
design a language model, which fill in slots of a template
based on co-occurrence relations gained from the corpus
[15], conditional random field [25], or web-scale n-gram
data [35]. More complicated models have also been used
to generate relatively flexible sentences. Mitchell et al.
[46] exploited syntactic trees to create a data-driven model.
Visual dependency representation is proposed to extract
relationships among the objects [13]. The template-based
methods are simple and intuitive, but are heavily hand-
designed and unexpressive, which are not flexible enough to
generate meaningful sentences.

The transfer-based methods are based on the retrieval
approaches, which directly transfer the descriptions of the
retrieved images to the query image. Some approaches
[16, 19] took the input image as a query and selected
a description in a joint image-sentence embedding space.
Kuznetsova et al. [26, 27] retrieved images that are similar to
the input image, extracted segments from their captions, and
organized these segments into a sentence. Devlin et al. [9]
simply found similar images and calculated the consensus
score [8] of the corresponding captions to select the one with
the highest score. The generated sentences by the transfer-
based methods are often with correct grammar. However,
these methods may misrecognize the visual content and
cannot generate novel phrases or sentences, and thus are
limited in image captioning. Notwithstanding, they indicate
that we can take advantage of the images similar to the input
image. This idea can be applied in other approaches, such as
re-ranking candidate descriptions generated by other models
[44] and emotion distribution prediction [70, 71]. We also
undertake this idea in our generation process.

The neural network-based methods come from the recent
advantages in machine translation [6, 55, 57], with the
use of RNN. Mao et al. [43] proposed a multimodal layer
to connect a deep CNN for images and a deep RNN
for sentences, allowing the model to generate the next
word given the input word and the image. Inspired by the
encoder-decoder model [6] in machine translation, Vinyals
et al. [59] used a deep CNN to encode the image instead
of a RNN for sentences, and then used LSTM [18], a
more powerful RNN, to decode the image vector to a
sentence. Many works follow this idea, and apply attention
mechanisms in the encoder. Xu et al. [61] extracted features
from a convolutional layer rather than the fully connected
layer. With each feature representing a fixed-size region
of the image, the model can learn to change the focusing
locations. Jin et al. [21] employed a pre-trained CNN for
object detection to analyze the hierarchically segmented
image, and then ran attention-based decoder on these visual
elements. Combining the whole image feature with the
words obtained from the image by attribute detectors can
also drive the attention model [65]. Li et al. [34] proposed
a global-local attention mechanism by integrating local
representation at object-level with global representation at
image level.

More recently, reinforcement learning has been inte-
grated in the encoder-decoder framework. To address the
deficiencies of exposure bias and a loss, which does not
operate at the sequence level in traditional encoder-decoder
frameworks, Ranzato et al. [51] proposed a novel sequence
level training algorithm, named Mixed Incremental Cross-
Entropy Reinforce (MIXER), that directly optimizes the
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metric used at test time. Liu et al. [40] proposed a novel
training procedure for image captioning models based on
policy gradient methods, which directly optimize for the
metrics of interest, rather than just maximizing likelihood
of human generated captions. Self-critical sequence training
(SCST) [53] is proposed for image captioning by utiliz-
ing the output of its own test-time inference algorithm
to normalize the rewards it experiences. It is noticed that
directly optimizing the CIDEr metric with SCST and greedy
decoding at test time is highly effective.

Please note that there are other captioning tasks that are
related to our research, such as dense captioning [22] and
video captioning [1, 48].

Similarly, our work follows the encoder-decoder model.
But different from [59], the words in a caption are weighted
in the training phase according to their relevance to the
corresponding image, which well balances the model with
the importance of a word to the caption. In the generation
phase, we take advantage of the consensus score [8]
to improve the quality of the sentences. Different from
[44], which simply used the consensus score to re-rank
the final candidate descriptions, we use this score in the
whole generation process, which means that the decoder
takes the neighbors’ information of the input image into
account. With the likelihood of a sentence combined, we
propose a better evaluation function than just maximizing
the likelihood.

SystemOverview

Our goal is to generate a description sentence for an
image. Suppose we have N training images I1, I2, · · · , IN ,
which also denote related visual features. For image
In(n = 1, 2, · · · , N), we have Mn correct description
sentences Sn1, Sn2, · · · , SnMn . Our task aims to maximize

the likelihood of the correct descriptions given the training
images by the following:

θ∗ = arg max
θ

N∑

n=1

Mn∑

m=1

L(Snm|In; θ), (1)

where θ are the parameters of our model and L() is a
pre-defined likelihood function. In the next section, we
will firstly describe the conventional likelihood function
for image captioning used in previous works [42, 64] (see
Eq. 4), and then we will introduce the proposed likelihood
objective function (see Eq. 5).

After training, we can generate a sentence for a test image
J by the following:

R = arg max
R′ O(R′|J ; θ∗), (2)

where O() is a pre-defined objective function. This
objective function aims to generate the best sentence for
the given image J . Usually, the log likelihood function
is previously employed to replace O(). However, the
conventional log likelihood function roughly selects the
sentence with the highest probability learned by the model
and may cause the misrecognition issue. In this paper, we
introduce the supervision of the reference sentence and
reformulate this objective function, aiming to resolve the
misrecognition issue in the generation stage. The details are
provided in “Generation Using Reference.”

The overview of the proposed image captioning method is
illustrated in Fig. 2, which consists of two stages: weighted
training and reference-based generation. For both stages, the
deep ResNet-101 model [17] is employed as the encoder
to extract CNN features of the target image and the
training images. During the weighted training stage, the
weight attached to each word in the training captions is
calculated firstly. Then, the LSTM model is trained using
the weighted words and CNN features of the training images

CNN

LSTM

Target Image

Training Set

Reference based 

Generation

Weighted Training

Weights

…

Input Word

Next Word

()w

()l

…

CNN

k-Nearest 

Neighbor images

()h

Fig. 2 Overview of the proposed R-LSTM model, including two parts:
weighted training (in blue rectangle) and reference-based generation
(inred rectangle). Each part is an encoder-decoder model, using CNN
to encode the image and LSTM to decode the sentence. The functions

w() and h() indicate that the reference information is used to weigh
the input words when training and improve the output sentences when
generating, respectively. l() is the log likelihood
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under the proposed weighted likelihood objective. In the
reference-based generation stage, the trained LSTM plays
as a decoder role, which takes the CNN features of the
target image as input and generates the description words
one by one. Besides, in the generation stage, we jointly
consider the likelihood and the consensus score as the
evaluation function in beam search. Details can be referred
to “Weighted Training” and “Generation Using Reference.”

Weighted Training

For similarity, we use I and S to replace In and Snm in Eq. 1,
respectively. Suppose S = {s0, s1, s2, ..., sT , sT +1}, where
{s1, s2, ..., sT } is the original labeled words, s0 is a special
start word, sT +1 is a special stop word and T is the length of
this particular sentence, which depends on I . At time t , the
likelihood of word st is decided by the input image I and
previous words s0, s1, ..., st−1:

p(st |I, s0, s1, ..., st−1). (3)

The joint log likelihood of description S, namely the
objective likelihood function L() in Eq. 1 of the NIC model
[59], is calculated by the chain rule:

L(S|I ) = log p(S|I )=
T +1∑

t=1

log p(st |I, s0, s1, ..., st−1), (4)

where the dependency on θ is dropped for convenience.
As stated in “Introduction” and illustrated in Fig. 1,

different words are not equally meaningful and important.
It is reasonable that the subject and its corresponding status
express more information than the articles and prepositions.
Unlike the NIC model [59], we take into consideration
the words’ importance by assigning different weights to
the words, which enables the model to be concentrated
on the main information of the captions. Logically, we
assign higher weights to the words, which correspond to
important elements, such as the main subject, its status,
and the environment, etc. Suppose the weight of word st to
image I is w(st , I ), then our model is trained to maximize
the weighted log likelihood:

L(S, I ) =
T +1∑

t=1

w(st , I ) log p(st |I, s0, s1, ..., st−1). (5)

Note that in the training phase, the words s0, s1, ..., st are
given by the labeled caption. So their weights could be
calculated as a preprocessing step.

There are different ways to calculate the weights of
different words. We propose three schemes based on the
overall occurrences, part of speech, and corresponding syn-
onyms, respectively. The overall occurrence-based scheme

follows the tag ranking approach [38] by calculating the
weight of word si to image I as follows:

w1(si , I ) = βp(si |I )

p(si)
, i = 1, 2, · · · , N, (6)

where β is a parameter to ensure the average of all the
weights is 1, and p(si |I ) denotes the likelihood of si in
the captions of image I . The reason for dividing p(si |I ) by
p(si) is that a frequent word, such as “a” and “the,” is not
informative although it may appear in most descriptions.

Based on Bayes’ rule, we have as follows:

w1(si , I ) = βP (I |si)P (si)

P (I)P (si)
= βP (I |si)

P (I)
. (7)

Since P(I) is determined given image I , we can redefine
(7) as follows:

w1(si , I )
.= βP (I |si). (8)

Based on kernel density estimation (KDE) [50],

w1(si , I ) = βP (I |si) = β

|Gsi |
∑

Ij ∈Gsi

Kσ (I − Ij ), (9)

where Gsi denotes the set of images whose captions contain
word si , and the Gaussian kernel function Kσ is defined as
follows:

Kσ (I − Ij ) = exp(− (
∥∥I − Ij

∥∥)2

σ 2
), (10)

where the radius parameter σ is set as the average distance
of each two images in the training set, and the image vectors
are extracted from a deep CNN. Therefore, in a set of images
containing a same description word, if an image is very
similar to others, it is natural to infer that the word is very
relevant to the image, and thus will be assigned with a high
weight in the image’s captions. Otherwise, if an image does
not look like other images, which means that the word is
not important or is even noise to the image, the word will
be given a low weight. Equation 10 is meaningful in two
aspects: it measures the importance of different words in
a same caption (Fig. 3) and the importance of a word to
different images (Fig. 4).

The part-of-speech-based strategy is conducted on the
basis of the overall occurrences. We observe that the nouns
and verbs in the captions are relatively more important and
convey more information than others. The contributions
of prepositions, conjunctions, and qualifiers to the whole
caption sentence are relatively small. Therefore, we enlarge
the weights of all the nouns and verbs, and reduce the
weights of all the prepositions, conjunctions, and qualifiers
by the following:

w2(si , I ) = μsi ∗ w1(si , I ), (11)
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bicycle parking area on a 
city sidewalk next to a 
parking garage

a bicycle on a rack 
near a piece of luggage

a bicycle next to a 
parking meter with 
books on it

a bicycle
parked next 
to a bench in 
a train station

0.612 285.0865.0

0.3480.3590.372

large piles of carrots and 
potatoes at a crowded 
outdoor market

a couple of dogs that are 
in a grassy field

Some people on a raft 
are getting towed down 

the river

Fig. 3 The Kσ values of the target image with some other images,
whose captions contain “bicycle” or “a” respectively. It is obvious
that the former images have higher Kσ values than the latter ones,
suggesting that images labeled with “bicycle” are similar to the target
image whose main subject is a bicycle, while the uninformative “a”
leads to less similarity

a bicycle parked next to a 
bench in a train station

0.386

0.437 0.450

a blue train sitting at a 
train station

a person walking on 
a train station 
platform

a train is seen coming 
out of a tunnel

a long train that is on a 
rail road track

0.641 0.544

0.728

Fig. 4 The Kσ values of two target images with some other images
whose captions contain “train.” For the first target image, “train”
along with “station” denotes the scene of the image, while in the
second target image, “train” is the main subject. Therefore, the set of
images containing “train” are more similar to the second target image,
resulting in higher Kσ values

σ σ tanh σ

+

forget  gate input gate output  gate
ht-1

ct-1

ht

ct

xt

Fig. 5 A typical LSTM unit, consisting of forget gate, input gate, and
output gate

where μsi is the parameter that controls the relative
importance, the value of which depends on the different part
of speech as follows:

μsi =

⎧
⎪⎪⎨

⎪⎪⎩

μ1, if pos(si) = noun,

μ2, if pos(si) = verb,

μ3, if pos(si) = qualifier,
μ4, if pos(si) = preposition/conjunction,

(12)

where pos(si) is the part of speech of word si . The
values of different part of speeches have a great impact
on learning the primary parts of sentence. Therefore,
we assign different weights to different part of speeches
according to the information they have. Generally, nouns
and verbs are much more informative to the image than
qualifiers or prepositions/conjunctions, and thus make more
contributions to the quality of the sentence. Motivated by
this observation, we endow more values to the noun and
the verb to direct the model to learn the informative words
better. While for qualifiers, prepositions, and conjunctions,
we put less weights to them. In the experiment, μ1, μ2, μ3,
and μ4 are set to be 1.1, 1.05, 0.9, and 0.8, respectively.

The third scheme is based on the synonyms. We observe
that many different words have similar meanings, such
as role, character, and function. Jointly, modeling them
together to calculate the weights may complement each
other. We propose a weighting strategy based on words’
similarity by considering the semantic information. For
word si , suppose the synonym set (‘synset’) of its kth
meaning is ssik by WordNet,1 we compute the weight of the
synset as follows:

ŵ3(ssik, I ) = β

|Gssik |
∑

Ij ∈Gssik

Kσ (I − Ij ), (13)

where Gssik denotes the set of images whose captions contain
“synset” ssik. Since a word belongs to several different

1https://wordnet.princeton.edu
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“synsets,” we use the maximum value as the final weight:

w3(si, I ) = max
k∈Csi

ŵ3(ssik, I ), (14)

where Csi is the set of different semantic meanings of si .
After obtaining the encoded CNN features of the training

images and the weights attached to each word in the training
captions, we can train the LSTM model, as shown in Fig. 5,
by optimizing (1) with likelihood function defined in Eq. 5.
The detailed operations of a LSTM unit are as follows:

x−1 = I, xt = West (t = 0, 1, · · · , T − 1),

ft = σ(Wfxxt + Wfhht−1 + bf ),

it = σ(Wixxt + Wihht−1 + bi),

ot = σ(Woxxt + Wohht−1 + bo),

ct = ft ⊗ ct−1 ⊕ it ⊗ tanh(Wcxxt + Wchht−1 + bc),

ht = ot ⊗ ct ,

pt+1 = Softmax(ht ),

(15)

where ⊗, ⊕, tanh(·), and σ(·) are the product with a
gate value, sum operation, hyperbolic tangent function, and
sigmoid function, respectively. W∗x , W∗h, We, and b∗ are
the parameters learned by our model and shared in all steps.

Generation Using Reference

After training, the model can generate a description R =
{r0, r1, r2, ..., rM, rM+1} (r0 and rM+1 are special start word
and stop word, respectively) for test image J by optimizing
the following objective function:

O(R, J ) = (1 − α)l(R, J ) + αh(R, J ), (16)

where h(R, J ) is the consensus score of sentence R, and
l(R, J ) is the log likelihood:

l(R,J )= log p(R|J )=
M+1∑

t=1

log p(rt |J,r0, r1, ..., rt−1), (17)

which is obtained by Eq. 15. When α = 1, the objective
function O(R, J ) turns to the one in the NIC model [59].

The idea of consensus score comes from transfer-based
methods, which indicate that the descriptions of similar
images are very helpful in image captioning. Some existing
transfer-based methods directly use the captions of the
similar images as the description of the input image. For
example, Devlin et al. [9] simply utilized the k-nearest
neighbor model. First, retrieve k nearest neighbors of the
input image and obtain the set of their captions C =
{c1, c2, ..., c5k} (five captions for each image). Second,
calculate the n-gram overlap F score for every two captions
in C. The consensus score of ci is defined as the mean of its
top m F scores. Finally, select the caption with the highest
consensus score as the description of the input image.

Similar to [9], we calculate the consensus score h(R, J ) for
image J and the generated sentence R (including incomplete
ones that are being generated by the decoder) as follows:

h(R, J ) = 1

|CJ |
∑

c∈CJ

sim(R, c), (18)

where CJ is the caption set of the k-nearest neighbor images
of image J , and sim(·, ·) is the function to calculate the
similarity between two sentences (we use BLEU-4 [49] in
experiments).

Since l(R, J ) is much larger than h(R, J ) in terms of
absolute value, we normalize them before linear weighting:

l′(R, J ) = l(R,J )−minc∈H l(c,J )
maxc∈H l(c,J )−minc∈H l(c,J )

,

h′(R, J ) = h(R,J )−minc∈H h(c,J )
maxc∈H h(c,I )−minc∈H h(c,J )

,
(19)

where H is the set of generated candidate descriptions. The
final evaluation function is as follows:

O(R, J ) = (1 − α)l′(R, J ) + αh′(R, J ), 0 ≤ α ≤ 1. (20)

Different from training, in the generation phase, the
labeled captions are no longer available, and the input word
at time t is the output word rt−1. Besides, as our dictionary
size is large, which is up to about 10000 words after filtering
out infrequent ones on the MS COCO dataset, the searching
space is too large for an exhaustive enumeration. Therefore,
we implement the beam search as an approximation. At
each time step, we keep a set of K (called “beam size”)
best sentences from K2 candidates according to Eq. 20.
When a sentence is completed (the next word generated by
the decoder is the stop word, or the sentence reaches the
maximum length), it will be moved to the final pool, which
also has the size of K and is maintained according to Eq. 20.

Experiments

To evaluate the effectiveness of the proposed method, we
carry out extensive experiments on the Flickr30k dataset
[66] and MS COCO dataset [5].

Experimental Settings

Datasets Flickr30k dataset [66] contains 31,783 images,
while the more challenging MS COCO dataset [5] consists
of 123,287 images. Each image is labeled with at least
five captions by different Amazon Mechanical Turk (AMT)
workers. Since there is no standardized split on both
datasets, we follow the publicly available split2 as in [19,
23, 61, 65] on Flickr30k dataset and in [23, 61, 65] on MS
COCO for fair comparison. That is, 1000 images are used
for validation, 1000 for testing and the rest for training in

2https://github.com/karpathy/neuraltalk
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Flickr30; 5000 images are selected for validation, 5000 for
testing, and the rest for training in MS COCO.

Evaluation Metrics Following the evaluation API provided
by the MS COCO server, we report the results on
different metrics, including BLEU-1, 2, 3, 4, METEOR,
ROUGE-L and CIDEr. BLEU is based on the n-gram
precision. METEOR is based on the harmonic mean of
uni-gram precision and recall, which weighs recall higher
than precision. Different from BLEU, METEOR seeks
correlation at the corpus level. ROUGE-L is used to measure
the common subsequence with maximum length between
the target and source sentences. CIDEr is designed to
evaluate image descriptions using human consensus. Higher
values represent better performances for all these metrics.

Implementation Details The proposed R-LSTM model is
implemented based on the NIC model [59]. The sentences
are preprocessed following the publicly available code3.
Unless specified otherwise, the beam size K used in the
beam search is set to 10, similar to [21], while parameter
α is set to 0.7 for Flickr30k and 0.4 for MS COCO. The
LSTM cell size is 512 and the number of layers is 1. The
image feature is extracted from the last 2048-dimensional
fully connected layer of the ResNet-101 CNN model [17].

Results onWeightedWord Training

Some of the weighted words are shown in Fig. 6. Take the
second image in the first row for example, considering the
overall occurrences, the weights of the main subjects “girls”
and “pizzas” are the largest, followed by the modifiers
“little” and “pepperoni.” The part of speech strategy
enlarges the weights of the nouns “girls” “pepperoni” and
“pizzas” to emphasize the importance of these words. The
synonyms-based method adjusts the weights based on the
semantic meanings of corresponding synonyms. The last
column combines the part-of-speech- and synonym-based
methods together. We can conclude that after weighting, the
main contents in the image are emphasized.

The performances of the LSTM networks trained before
and after weighting the words are shown in the first and
second rows in Tables 1 and 2 on Flickr30k and MO
COCO datasets, respectively. The best performances are
emphasized in italic. We can see that compared with the
original NIC model [59], the performance is improved by
all kinds of weighting schemes. On the CIDEr metric, the
enhanced weighting versions “part of speech,” “synonyms,”
and “part of speech + synonyms” outperform the previous
“occurrences” version [4]. The combined weighting method
generally performs better than others on MS COCO

3https://github.com/karpathy/neuraltalk

dataset, while the “synonyms” method achieves the best
performance on four metrics on Flickr30k dataset. Unless
otherwise specified, we report the results of the combined
weighting method in the following experiments.

Results on Reference-based Generation

To compare the performance contribution of weighted
training and reference-based generation, we also conduct
experiments on R-LSTM with no weighted training
involved. The results on Flickr30k dataset and MS COCO
dataset are shown in the last row of Tables 1 and 2,
respectively. The best results of each column are highlighted
in bold. It is clear that the reference-based generation
achieves the best results on all the metrics with the
significant performance gains. In view of this comparison,
we can conclude that the reference-based generation
contributes more than weighted training in the proposed
R-LSTM model.

On Parameter α

The parameter α in Eq. 20 is crucial in our methods,
which determines to what extent the generator depends on
references. The black lines in Figs. 7a and 8a show how the
quality of generated captions (on CIDEr) varies with respect
to α on Flickr30k and MO COCO datasets, respectively. We
can see that for both datasets with the increase of α, the
performance firstly becomes better and then drops, which
demonstrates that referring neighboring images can improve
the performance but relying too much on references will
lead to poor performance. The best α is 0.7 and 0.4 for
Flickr30k and MO COCO datasets, respectively. We can
conclude that the best α depends on the dataset.

In the generation phase, the sentence length is increasing.
Since a sentence certainly becomes more informative when
it has more words, it may not be a good idea to keep
the same weight of the references. We try to change α

in different generation stages. For similarity, in the early
stage, we set α = α1, and in the final pool stage, we
set α = α2. To adjust α2, we conduct experiment with
α1 = 0.7 and α1 = 0.4 fixed for Flickr30k and MO
COCO datasets, respectively. As shown in the blue lines
of Figs. 7b and 8b, we can obtain better a performance
by varying α2 from 0.0 to 0.4, and the performance tends
to decrease when α2 > 0.4. We can conclude that there
exists the best α2 for the specified α1. We repeat this
process for α1 = 0, 0.1, 0.2, ..., 1, and they all perform
better by adjusting α2 (the red lines in Figs. 7a and 8a). We
believe that further changing α in more details (i.e., in each
generation step) may achieve better performance, which is
our future work. In the following experiments, we report the
results when α1 = 0.7, α2 = 0.4 and α1 = 0.4, α2 = 0.4
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Fig. 6 Results of weighted words. On the right of each image are the original caption words and assigned weights by the overall occurrences, part
of speech, corresponding synonyms, and the combination of the latter two, respectively

Table 1 Performance comparison (%) of different weighting methods and reference-based generation on Flickr30k dataset after fine tuning the
CNN encoder

BL-1 BL-2 BL-3 BL-4 METEOR ROU-L CIDEr

Google NIC [59] 66.3 42.3 27.7 18.3 - - -
Occurrences 62.4 43.2 29.4 19.9 18.1 43.3 38.6
Part of speech 61.6 42.8 29.4 19.9 17.3 42.6 37.6
Synonyms 62.9 43.9 30.0 20.4 17.8 43.1 37.2
Part of speech
+ synonyms 61.7 42.9 29.1 19.4 17.8 42.4 38.9

Reference-based generation 67.3 47.8 32.6 22.1 19.5 45.9 44.4

Table 2 Performance comparison (%) of different weighting methods and reference-based generation on MS COCO dataset after finetuning the
CNN encoder

BL-1 BL-2 BL-3 BL-4 METEOR ROU-L CIDEr

Google NIC [59] 66.6 46.1 32.9 24.6 - - -
Occurrences 71.1 54.2 40.5 30.5 25 52.5 95.7
Part of speech 71.7 54.7 41.1 31 25.1 52.9 95.8
Synonyms 71 54.1 40.6 30.7 25.0 52.6 95.4
Part of speech
+ synonyms 71.4 54.6 41.1 31.2 25.2 53.0 96.1

Reference

based generation 76.8 60.5 45.8 34.2 26.1 55.5 105.5

Fig. 7 The influence of α in the proposed generator on Flickr30k dataset. a The black and red lines are the influence of parameter α (i.e.,
α2 = α1 = α) and α1 (when optimizing α2), respectively. b The blue line is the performance of the generator with different α2 when α1 = 0.7
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Fig. 8 The influence of α in the proposed generator on MS COCO dataset. a The black and red lines are the influence of parameter α (i.e.,
α2 = α1 = α) and α1 (when optimizing α2), respectively. b The blue line is the performance of the generator with different α2 when α1 = 0.4

for Flickr30k and MO COCO datasets respectively, unless
otherwise specified.

We take the ninth image in Fig. 9, for example, to
understand the beam search process of Eq. 20, i.e., the
significance of α1 �= 0. We can see that the subject “sheep”
is misrecognized as “cattle” without using the consensus
score, whose beam search process is illustrated in Fig. 10a.
At the beginning, the model is waving between “sheep,”
“cattle,” and ‘animal.” As α1 = 0, the model cannot utilize
the neighbor images to correct the mistake. When t = 12,
there is no “sheep” in the candidate sentences. Regardless of
the value of α2, this mistake cannot be corrected. However,
when α1 �= 0, this situation is avoidable with the help of

references, as shown in Fig. 10b, from which we can see that
when t = 8, all the candidate sentences contain the correct
subject “sheep.”

On Beam Search Size K

In order to analyze the effect of the beam search size K in
the testing stage, we illustrate the performances on CIDEr
of the best α1 and α2 as in “On Parameter α” with the beam
size in the range of {1, 2, 3, 5, 10, 20} in Fig. 11. We can
see that the performances are like the “∧” shapes on both
datasets when beam size K varies from 1 to 20. The best
K is 10 for both datasets, which is the adopted beam size

a dog is sitting in the
back seat of a car
a dog looking out the
window of a car

1 2 3 4

5 6 7 8

9 10 11 12

a man standing in a kitchen
preparing food
a man cooking hot dogs on a
grill

a little girl sitting on
top of a wooden bench

a little girl that is standing
on a skateboard

a woman sitting on a bench
using a laptop
a person sitting on the floor
with a suitcase

a herd of cattle grazing on a lush
green field

a herd of sheep standing in a pen

a train is traveling down the
railroad tracks
a train traveling down tracks
next to a forest

a black and white photo of a
man in a truck
a man standing next to an
old truck

a black and white dog
laying on a bed

a dog laying on a blanket
next to a stuffed animal

a plate of food on a table

a white plate topped with rice
and vegetables

a little boy with a toothbrush in
his mouth
a baby boy brushing his teeth
with a toothbrush

a man holding a nintendo wii
game controller
two men in a living room
playing a video game

a bowl of fruit is sitting on a
table
a bowl filled with lots of
fruits and vegetables

Fig. 9 Examples of generated captions by Google NIC [59] (in black) and the proposed R-LSTM model (in red)
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Fig. 10 The beam search process of the given image ranked by Eq. 20 when a α1 = 0, b α1 = 0.4 after weighted training. The red lines are the
generating captions correctly recognizing the subject “sheep”

in experiment when comparing with other methods. We can
conclude that a larger would not necessarily mean better
performances.

Comparison with the State-of-the-arts

Tables 3 and 4 show the comparison of the completed
model and several state-of-the-art methods on Flickr30k
and MO COCO datasets respectively, where “-” represents
unknown scores. From Table 3, we can see that the proposed
method outperforms the state-of-the-art methods on all the
metrics except for BLEU-4. It is clear from Table 4 that our
approach performs the best on all the metrics, respectively
achieving 5.52%, 8.45%, 9.83%, 10.26%, 5.60%, 4.50%,
and 10.37% improvements compared with previous best
results. These comparisons demonstrate the effectiveness of
the proposed R-LSTM model for image captioning.

We also test our approach on the online MS COCO
server (a sort of competition). The results compared with the
latest methods are reported in Table 5. Despite keen com-
petition, we are still one of the top ten methods in terms
of the overall performance. It is noted that those methods,

which outperform our method, utilize either more compli-
cated REINFORCE to maximize the likelihood [40, 53] or
time-consuming attribute learning [64] and adaptive atten-
tion [42]. In principle, our idea of using weighted training
and reference can also be applied to the frameworks, such
as reinforcement learning and attribute learning, which will
be one of our future works. We want to emphasize that our
method performs the best when compared with those pub-
lished papers [59, 63, 65] adopting the structure of CNN-
RNN. In addition, compared with our previous conference
version (THU-MIG* (ours)) [4], the enhanced algorithm
achieves superior performances on almost all metrics.

To verify that the proposed approach can significantly
improve the image captioning model, we carry out the T test
experiments on both MS COCO and FLickr30k datasets. We
choose the NIC as the control group, because our approach
focuses on optimizing the training objective function and
generation process, sharing the same architecture as Google
NIC [59]. The results are shown in Table 6. We can see that,
the p values of all metrics on both datasets are all smaller
than 5%, which demonstrates the significant improvement
of the proposed approach.

Fig. 11 The influence of beam search size K in the R-LSTM model
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Table 3 Performance (%) of the proposed model compared with several state-of-the-art methods on Flickr30k dataset

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Google NIC [59] 66.3 42.3 27.7 18.3 - - -

m-RNN [44] 60.0 41.0 28.0 19.0 - - -

LRCN [12] 58.7 39.1 25.1 16.5 - - -

Toronto [61] 66.9 43.9 29.6 19.9 18.5 - -

ATT [65] 64.7 46.0 32.4 23.0 18.9 - -

SCA-CNN [3] 66.2 46.8 32.5 22.3 19.5 - -

R-LSTM (ours) 67.7 48.0 32.6 22.1 19.5 45.7 45.0

Table 4 Performance (%) of the proposed model compared with several state-of-the-art methods on MS COCO dataset

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Google NIC [59] 66.6 45.1 30.4 20.3 - - -

m-RNN [44] 67.0 49.0 35.0 25.0 - - -

LRCN [12] 66.9 48.9 34.9 24.9 - - -

Toronto [61] 71.8 50.4 35.7 25.0 23.0 - -

ATT [65] 70.9 53.7 40.2 30.4 24.3 - -

USC [21] 69.7 51.9 38.1 28.2 23.5 50.9 83.8

SCA-CNN [3] 71.9 54.8 41.1 31.1 25.0 - -

GLA-BEAM3 [34] 72.5 55.6 41.7 31.2 24.9 53.3 96.4

R-LSTM (ours) 76.5 60.3 45.8 34.4 26.4 55.7 106.4

Table 5 Evaluation results (%) of the latest captioning methods on dataset c5 and c40 on the online MS COCO server (http://mscoco.org/dataset/#
captions-leaderboard) by December 8, 2016

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Watson multimodal [53] 77.3 92.9 60.9 85.6 46.1 75.1 34.4 63.6 26.8 35.3 55.9 70.4 112.3 114.6
MSM@MSRA [64] 75.1 92.6 58.8 85.1 44.9 75.1 34.3 64.6 26.6 36.1 55.2 70.9 104.9 105.3
G-RMI(PG-SPIDEr-TAG) [40] 75.1 91.8 59.1 84.1 44.5 73.8 33.1 62.4 25.5 34.0 55.1 69.5 104.2 103.2
MetaMind/VT GT [42] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9
ATT-IMG (MSM@MSRA) 75.2 92.6 59.0 85.2 44.9 75.2 34.0 64.5 26.2 35.6 55.1 70.7 102.3 103.6
G-RMI (PG-BCMR) [40] 75.4 91.6 59.1 84.2 44.5 73.8 33.2 62.4 25.7 33.9 55.0 69.4 101.3 107.1
DONOT FAIL AGAIN 73.4 91.2 56.4 82.9 42.5 72.4 32.0 61.2 26.2 35.5 54.2 69.8 101.0 102.6
DLTC@MSR 74.0 91.7 57.5 83.9 43.6 73.9 33.1 63.1 25.7 34.8 54.3 69.6 100.3 101.3
THU MIG (Ours) 76.5 91.7 59.3 83.9 44.2 73.1 32.3 61.4 25.3 33.6 54.2 68.5 99.0 101.3
Postech CV 74.3 91.5 57.5 83.2 43.1 72.2 32.1 60.7 25.5 34.1 53.9 68.6 98.7 100.1
Feng 74.3 91.7 57.8 84.0 43.4 73.5 32.3 62.1 25.5 34.3 54.0 69.1 98.6 100.2
THU MIG * (Ours) [4] 75.1 91.3 58.3 83.3 43.6 72.7 32.3 61.6 25.1 33.6 54.1 68.8 96.9 98.8

Reviewnet [63] 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9

ATT [65] 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8

Google NIC [59] 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6
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Table 6 Results of T test (p value) compared with Google NIC [59] on MS COCO and Flickr30k datasets

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

MS COCO 9.72e-6 1.99e-6 3.73e-6 2.32e-6 2.82e-5 2.54e-5 3.92e-7

Flickr30k 8.42e-6 2.69e-6 2.89e-6 6.53e-5 1.43e-5 9.80e-6 2.66e-5

Case Study

Some examples of the generated sentences are illustrated
in Fig. 9. The captions in red show how the proposed
R-LSTM improves the generation quality as compared to
Google NIC [59]: misrecognizion is fixed in image 3
(bench->floor, laptop->suitcase), image 6 (kitchen->grill),
image 8 (bench->skateboard), image 9 (cattle->sheep);
more semantic details are given in image 1 (next to a forest),
image 7 (rice and vegetables), image 10 (next to), and image
12 (blanket and a stuffed animal); better match the habit
of human cognition in image 2 (sitting on a table vs. filled
with lots of), image 4 (sitting in the back seat vs. looking
out of the window), image 5 (with a toothbrush in his mouth
vs. brushing his teeth with a toothbrush), and image 11
(when holding a nintendo wii game controller, the people
are actually playing a video game).

Conclusion

In this paper, we have presented a reference-based LSTM
model, where the central idea is to use the training images
as references to improve the quality of generated captions.
In the training phase, the words are weighted in terms
of their relevance to the image, including the overall
occurrences, part of speech and corresponding synonyms,
which drives the model to focus on the key information
of the captions. In the generation phase, we proposed
a novel evaluation function by combining the likelihood
with the consensus score, which could fix misrecognition
and make the generated sentences more natural sounding.
Extensive experiments conducted on the MS COCO and
Flickr30k datasets corroborated the superiority of the
proposed R-LSTM over the state-of-the-art approaches for
image captioning. In further studies, we plan to incorporate
the attention mechanisms [21, 34, 61, 65] into the reference
model and try other weighting strategies. How to generate
stylized image captions with emotion [67, 68] and sentiment
[45] and extend it to personalized settings [69] is also worth
studying. In addition, combining the reference information
with reinforcement learning [53] may further improve the
image captioning performance.
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