
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2018) 32:165–176
https://doi.org/10.1007/s13218-018-0548-6

TECHNICAL CONTRIBUTION

Industrial Applications of Answer Set Programming

Andreas Falkner2 · Gerhard Friedrich1 · Konstantin Schekotihin1  · Richard Taupe2  · Erich C. Teppan1

Received: 5 September 2017 / Accepted: 31 May 2018 / Published online: 13 June 2018
© The Author(s) 2018

Abstract
Automated problem solving in combination with declarative specifications of search-problems have shown to substantially
improve the implementation and maintenance costs as well as the man-machine interaction of deployed industrial applica-
tions. The knowledge representation and reasoning (KRR) framework of answer set programming (ASP) offers a rich rep-
resentation language and high performance solvers. Therefore, ASP has become very attractive for the representation and
solving of search-problems both for academia and industry. This article focuses on the latest industrial applications of ASP.
We do not only present successful applications of ASP but also describe the development process and the design of ASP
programs in an industrial context. Finally, we discuss current approaches to tackle the most significant application challenges
such as grounding and runtime improvements by heuristics.

Keywords  Answer set programming · Applications

1  Introduction

One of the most successful areas of artificial intelligence
(AI) is the automatic generation of solutions for declara-
tively specified search-problems. Informally, given a search-
problem, a programmer specifies the search space and the
required properties such that for every problem instance
(i.e. the inputs of a problem solver) the required properties
are fulfilled by the solutions (i.e. the outputs of a problem
solver).

As an example, consider the problem of configuring a
safety installation. A programmer describes all techni-
cally feasible assemblies and the customer requirements an
assembled system must satisfy. Ideally, it is not necessary to

specify an algorithm to compute a solution. The automated
problem solver generates the solutions just by exploiting the
specification of the solution space and the required proper-
ties of the solutions. In addition, solutions may be ranked
according to an optimization criterion.

The automatic generation of solutions to declaratively
specified search-problems is extremely interesting for indus-
try because it allows a substantial reduction of implementa-
tion and maintenance costs as well as the enhancement of
user interactions, e.g. by the generation of explanations of
inconsistent requirements. In [30], a reduction of the main-
tenance costs by more than 80% was reported.

In order to support a compact representation of search-
problems, Answer Set Programming (ASP) offers many
important language constructs such as recursive definition
of predicates, default negation for dealing with the absence
of information, disjunction, aggregation, weak constraints,
and optimisation statements. All of them are employed in
solving problems from classical areas of AI such as configu-
ration, design, planning, scheduling, and diagnosis. Conse-
quently, ASP has a very broad application range in research
and practice.

In order to support the dissemination of ASP in practice
it is important to present successful showcases as well as
current engineering challenges. Regarding successful show-
cases, excellent reports have already been published, i.e.
[11, 26, 45, 46, 51]. These reports are complemented by an

 *	 Konstantin Schekotihin
	 konstantin.schekotihin@aau.at

	 Andreas Falkner
	 andreas.a.falkner@siemens.com

	 Gerhard Friedrich
	 Gerhard.Friedrich@aau.at

	 Richard Taupe
	 richard.taupe@siemens.com

	 Erich C. Teppan
	 Erich.Teppan@aau.at

1	 Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
2	 Siemens AG Österreich, Vienna, Austria

http://orcid.org/0000-0002-0286-0958
http://orcid.org/0000-0001-7639-1616
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-018-0548-6&domain=pdf

166	 KI - Künstliche Intelligenz (2018) 32:165–176

1 3

extensive listing of references of ASP applications and their
areas.1 The goal of this paper is to provide the latest status
of industrial ASP applications and to present and discuss
current engineering challenges and their solutions based on
our long-standing experience in implementing solutions for
industrial problems. First, we will give an overview of well-
known industrial showcases of ASP and round this up by
recent developments in Sect. 2. For ASP applications we
describe the development process in Sect. 3 and the design
in Sect. 4. Current challenges arising in applications are the
grounding of large problem instances and, as many problems
addressed by ASP are NP-hard, their efficient solving. We
discuss state-of-the-art methods to meet these challenges in
Sect. 5, which deals with grounding, and in Sect. 6, which
is dedicated to heuristics.

2 � General Overview of ASP Applications

Reports on ASP applications can be roughly divided into
those where real-world data is employed by researchers to
test the feasibility of applying ASP-based problem solving
without commercial intention and those where companies
or organisations are applying ASP to solve business cases.
Subsequently we mainly concentrate on the latter, i.e. appli-
cations of ASP where companies are investing resources.

In the following, we will structure the description of
applications along the classical application areas of AI, i.e.
configuration, diagnosis and repair, planning, and classifica-
tion. Afterwards, we will report on recent industrial appli-
cations of Datalog, which in its original form is a subset of
ASP, and on further emerging industrial applications of ASP.

Configuration One of the most successful application
areas of ASP is the configuration of systems. To our knowl-
edge, [71] represents the first time that the benefits of ASP
for solving configuration problems were discussed. Based
on these results, configuration solutions were offered by
Variantum Oy. Later, ASP was successfully applied to the
configuration of Linux packages [39]. By means of this work
the power of ASP was demonstrated in the Mancoosi solver
competition of 2012 where the ASP-based configurator won
all tracks.2

After promising tests of various ASP solvers for model-
based diagnosis and repair of failed workflow instances [34]
ASP was evaluated by Siemens within the RECONCILE3
project. Thus, ASP was successfully applied to configure
parts of a railway safety system of Siemens where special-
ised configurators failed to generate solutions for some hard

real-world instances. This configuration problem became
well known as the Partner Units Problem [74] since it is
both a highly relevant real-world configuration problem and
particularly hard to solve for general problem solvers [3]. A
recent application of ASP in the area of configuration and
design is the synthesis of optimal-sized concentrators [15].

If we regard a configuration task as the selection of enti-
ties such that constraints are satisfied and preferences are
maximised then the application regarding automatic allot-
ment of tourist packages (described in [51]) belongs to
this class of tasks. In this application employed by the tour
operator Top Class s.r.l., a set of tour packages and their pre-
booked quantities are selected such that costs are minimised.

A further application where the output is a selection of
entities is the assignment of employees to tasks such that
these tasks can be accomplished and labour regulations are
obeyed. In particular, ASP is applied to support team-build-
ing at the seaport of Gioia Tauro [66].

Repacking can be regarded as a classical reconfiguration
task. ASP was successfully applied within a portfolio solver
which solves the station repacking problem of reallocating
the frequency bands of television broadcasters. By this tech-
nique a combination of a SAT solver and clasp was able
to significantly improve runtime and the number of solved
instances [33].

Diagnosis and Repair In the area of diagnosis, an ASP-
based system was employed to analyse failures of the auto-
matic whitelisting systems of Google’s Dynamic Remarket-
ing Ads [12]. Diagnostic reasoning in form of a decision tree
was implemented by ASP to diagnose whitelisting failures of
advertisers, e.g. the reasons why an advertiser does not qual-
ify for whitelisting. The ASP-based diagnosis system was
implemented by a hybrid ASP system, which supports the
integration of external procedures such as calls to a database.

Manually feeding tumor registries with data leads to dif-
ferent schemas for representing data as well as incomplete
and erroneous information. With the help of an ASP-based
system developed in cooperation with Pentaho Kettle,
erroneous tuples are identified and corrected. In [51], it is
reported that only 2% of the input tuples were detected as
wrong and not repairable after cleaning. The input table was
composed of 1,000,000 tuples collecting records from 155
municipals. The dictionary stored 15,000 tuples.

Planning In the area of planning an ASP-based system
was introduced, which validates and generates plans for set-
ting up the space shuttle for manoeuvres [62]. Usually such
plans are prepared for standard situations. However, it was
not possible to preplan all eventualities in case of failures.
Consequently, an ASP-based system was implemented,
which generates such plans to aid the human controllers.
This work is based on the language P-log [11], which
extends ASP by probabilistic arguments. Indeed, ASP serves
as an excellent framework for realizing knowledge-based

1  http://dropb​ox.com/s/pe261​e4qi6​bcyyh​/aspAp​pTabl​e.
2  http://www.manco​osi.org/misc-2012/resul​ts/.
3  http://isbi.aau.at/recon​cile/.

http://dropbox.com/s/pe261e4qi6bcyyh/aspAppTable
http://www.mancoosi.org/misc-2012/results/
http://isbi.aau.at/reconcile/

167KI - Künstliche Intelligenz (2018) 32:165–176	

1 3

planning including conformant (e.g. [24]) and conditional
planners (e.g. [77, 80]). Because of its rich representation
capabilities, ASP is applied in many applications of planning
in robotics (e.g. [63]) and the combination of monitoring,
diagnosis, and replanning (e.g. [28]). Furthermore, concepts
of ASP are applied to implement a planner, which generates
an executable workflow for producing desired outputs. In
[61], a web service composition framework is described,
which is employed for extracting and reusing phylogenetic
trees. This framework comprises a planning module, a work-
flow configuration module, and an execution & monitoring
module.

Classification Many recommender systems provide a
classification of items, which best fit the customers’ needs.
Following this approach a tourist advisor was implemented
in ASP and integrated in an e-tourism portal [49, 51]. In
particular, given the preferences of customers, the properties
of holiday packages, and background knowledge (e.g. beach
holidays are not recommended in winter) the system selects
those holiday packages which best fit the customers’ needs.

A classification system for incoming calls to a contact
centre of Telecom Italia is implemented by Exeura.4 The
purpose of the classification is to assign customers to a
category and to exploit this category to route calling cus-
tomers to the most appropriate service. The classification
uses various background data related to customers in order
to anticipate their needs. Since categories may be adapted
frequently, the system allows the maintenance of the clas-
sification knowledge by call center operators. Operators are
enabled to define categories by a decision graph, which is
eventually translated to ASP rules.

Current question answering (QA) systems usually retrieve
predefined answers which closely match the questions. Obvi-
ous problems are the completeness and the lack of explain-
ing the reasons for an answer. [78] shows how ASP can be
applied to improve QA for customers who intend to buy
products for do-it-yourself projects. The basic question the
system answers is ‘Can I use an alternative tool/material
instead of the suggested one under a certain circumstance?’
Consequently, the main problem solving task is to classify
new tools/materials as possible alternatives to tools/mate-
rials designated for a specific project a customer pursues.
The basic solution idea is to specify the project-independent
properties of tools/materials in a domain knowledge base
and to describe project-specific properties of tools or mate-
rials in a project knowledge base. Recommendations for
replacements are generated by exploiting the knowledge
bases, the project rules, and the project constraints to iden-
tify the best matches. In addition, the system also addresses

the knowledge acquisition problem by extracting parts of the
domain knowledge base from documents using ASP.

Datalog Industrial success stories of Datalog are worth
mentioning as well because of Datalog’s close relation to
ASP. In DIADEM [35], Datalog is employed to identify and
extract information from web sites with high accuracy. This
approach is commercially exploited by the spin-out Wrapid-
ity, which was acquired by Meltwater. Furthermore, Data-
log is successfully applied by LogicBlox [47] to implement
enterprise software such as consumer demand prediction and
supply chain optimisation.

Emerging Industrial Applications Beside the applications
described above, where a business case exists and compa-
nies and organisations are investing in order to use ASP for
their businesses, numerous applications were implemented
showing the utility of ASP in real-world instances. In the
following, we give examples for various application areas.

Bioinformatics In [58], ASP is applied to support hypoth-
eses formulation in the context of signalling networks by an
action language and abduction. In [36], ASP is employed to
detect, explain, and repair errors in large-scale biological
networks and datasets. Applications of ASP to phylogenetic
systematics are described in [13]. In [22], the abstraction
of the protein structure prediction problem is studied. [17]
explores the use of ASP in genomics studies, such as haplo-
type inference and phylogenetic inference, in structural stud-
ies, such as RNA secondary structure prediction and protein
structure prediction, as well as in systems biology. Similarly,
haplotype inference by ASP is investigated in [29]. Moreo-
ver, [65] employs ASP for searching time-dependent rela-
tionships in the genomic and epigenomic analysis of cancer.
[27] shows how ASP is used for generating explanations for
complex biomedical queries related to drug discovery.

Scheduling The optimisation capabilities and the rich set
of KR constructs allow a simple representation of scheduling
problems, e.g. nurse scheduling [21].

Timetabling In [8] the successful application of ASP
to the curriculum-based timetabling problem was dem-
onstrated. The implementation based on clingo is able to
compete with state-of-the-art special purpose solvers. This
is underlined by discovering new bounds for many problem
instances used in timetabling competitions. Moreover, the
ASP approach allows for extensible and flexible problem
formulations because of a first-order encoding.

Robotics ASP offers elegant solutions for representing
actions and the associated representation problems such as
the frame, ramification, and qualification problem. Con-
sequently, there are numerous applications in the robotics
domain, e.g. coordinating multiple robots tidying up a house
as in [25].

Dynamic reconfiguration As described in [10], ASP
is applied to configure caching strategies of routers in

4  http://exeur​a.eu/en/solut​ion/custo​mer-profi​ling.

http://exeura.eu/en/solution/customer-profiling

168	 KI - Künstliche Intelligenz (2018) 32:165–176

1 3

content-centric networking such that the overall network
performance is optimised.

Information integration In [1], a classical application
of ASP in the area of detecting inconsistent information is
reported, which allows for the identification of inconsistent
news information, e.g. whether or not different sources are
talking about the same event. More generally, query answer-
ing in case of inconsistent data is an important application
area of ASP [54].

Software engineering In software engineering ASP is
successfully applied for the generation of test suites [7], in
particular for constrained combinatorial testing. It turned
out that the high-level implementation using ASP matched
the performance of or even outperformed specialised tools.

Design of embedded systemsThe design of embedded
systems is supported by systems synthesis where a task-
level behavioural description is transformed into a struc-
tural representation. In order to accomplish this task ASP
is combined with special problem solvers for background
theories developed in the area of embedded systems. This
allows the description, synthesis, and optimization of more
sophisticated and complex systems [59, 60].

These applications show the broad and successful
employment of ASP. ASP is of particular value for declara-
tively specified search-problems where an encoding of the
problem specification by relations is most appropriate for
programmers and domain experts. In the next sections we
will describe important engineering topics for a successful
application of ASP in practice.

3 � Development Process of ASP Applications

Answer-set programs are often encoded according to a
guess-and-check methodology, where part of the program
encodes nondeterministic generation of solution candidates
and another part rules out invalid ones by use of constraints.

Complementarily to that, preliminary work on so-called
‘achievement-based’ answer set programming is presented
in [53]. Under this approach, a programmer constructs an
answer-set program by appending rules in an order such
that after every rule, the programmer can declare that a cer-
tain mathematical property ‘has been achieved’, which then
holds until the program is completed. By accumulating rules
and corresponding achievements, an answer-set program and
a skeleton of a proof of its correctness grow hand in hand.
This approach, however, may not be useful for programs
with defaults. Also, to the best of our knowledge, it has so
far only been applied to small example problems and tool
support for automatic proofs does not yet exist.

Compared to academia, industrial applications show
two main aspects: the domain of interest is typically a com-
plex system of numerous interacting and interdependent

components with a rich history, and there is a changing
variety of regulations and methodologies which must be
obeyed. For example, development must comply with pro-
ject management (PM) standards such as ISO 21500:2012
or systems development approaches such as SDLC (Systems
Development Life Cycle) [67] and must cover all the phases
involved: initiation, system concept development, planning,
requirements analysis, design, development, integration and
testing, implementation, operations and maintenance, as well
as disposal. For the last few decades, object-oriented (OO)
analysis, design, and programming have become the main
paradigm for software (SW) development [68]. In addition,
over the last years, agile processes [32] have gained wide
acceptance in industry due to their advantages: concentra-
tion on customer value, continuous deployment of working
software, high responsiveness to changing requirements.

Taking all this into account, we propose the following
steps to introduce ASP into industry:

Identify the needs Watch out for problems which are not
(satisfactorily) solved with conventional methods and where
the strengths of ASP can help. Define and document the
application requirements properly, especially which parts of
the whole application are relevant.

Design a valid specification of the problem Implement an
ASP specification of the core problem. Validate this specifi-
cation by ‘small’ test instances. The correct formulation of
a problem is a time-consuming and error-prone task. ASP
allows interactive problem refinement and tuning with stake-
holders, thus reducing design costs [51].

Performance engineering Evaluate scalability to ‘real-
world’ size. Try alternative ASP program implementations
and evaluate their performance. See Sects. 5 and 6 for details
on important performance aspects such as main memory
consumption and runtime performance.

Integrate into the existing environment Design interfaces
and implement a complete and efficient transformation from
legacy input data to ASP and back for returning the solu-
tions. Choose the best ASP program variant from the fea-
sibility study and implement a clean ASP program which
processes the transformed data. See Sect. 4 for an exem-
plary best-practice approach to this design phase. Define the
necessary reasoning services, e.g. model checking, model
finding, optimisation. If the usage scheme is highly interac-
tive (in contrast to batch mode), consider possibilities for
incremental solving. For many use cases, post-processing of
the solutions (answer sets) will be necessary, e.g. extracting
a Pareto front from all solutions, generating explanations, or
giving recommendations to the user.

Testing and debugging Provide automated regression tests
in order to ensure high quality. Debugging of ASP programs
is difficult, especially if the program unexpectedly returns
unsatisfiability for some input data. Knowledge-based diag-
nosis methods such as [70] are of great support.

169KI - Künstliche Intelligenz (2018) 32:165–176	

1 3

Maintenance Structure the program well and use under-
standable wording, because industrial applications are
long-lived and will be regularly changed and extended. The
modularity of ASP fosters later adaptions.

In this development process, we regard knowledge base
design and performance engineering as the steps most
important and most different from conventional software
engineering. Consequently, we elaborate on them in more
detail in the next sections.

4 � Design of ASP Applications

As an object-oriented (OO) approach is used to design soft-
ware systems in many industrial domains, we suggest the
OOASP approach which allows to analyse OO software
models and their instances by means of ASP [31]. In particu-
lar, we consider models which can be described by a model-
ling language corresponding to a UML class diagram [68].
Such a language allows a software developer to specify an
object model and additional constraints a valid instantiation
must satisfy. OOASP has been implemented as a potential
extension to any OO modelling environment and its practica-
bility has been evaluated together with CSL (Configuration
Specification Language) [19], which is a Siemens-internal
tool for the design of product configurators based on the
methodology of generative constraint satisfaction problems
(GCSPs) [72].

An OOASP program comprises facts encoding the OO
classes, attributes, associations and constraints. Integrity
constraints encode model requirements to relations between
objects of an instantiation and are derived from the given
model automatically. Domain-specific constraints ensure
satisfaction of requirements to a model instantiation. They
could be derived from definitions given in a specification
language, such as the Object Constraint Language (OCL).5

The OOASP framework supports the following reason-
ing tasks:

Validation (model checking) Verifies whether all integrity
and domain-specific constraints hold in a given (complete or
partial) instantiation.

Completion (model finding) Finds an extension of a given
partial instantiation which satisfies all constraints or shows
that such an extension does not exist (an empty instantiation
can be seen as a special case).

Reconciliation (model repair) Finds a (preferred) set of
changes required to transform a legacy instantiation of an
outdated OO model to a valid instantiation of the new up-
to-date model.

A typical workflow of the integration of (OO)ASP into
an OO industrial application is depicted in Fig. 1. The
development starts with the creation or adaption of the OO
model. For existing (legacy) applications, the relevant part
of the model is selected and automatically transformed to
an OOASP program comprising the data structure (model)
and integrity constraints. The definition of domain-specific
constraints is done in (OO)ASP and requires ASP knowledge
(either by engaging a specialized developer or by training
the available OO developer).

For example, the following domain-specific OOASP
rule leads to the derivation of an ooasp_cv atom if the
constraint that two modules of type ModuleA must not be
placed next to each other in a hardware configuration prob-
lem is violated (for details refer to [31]):

This domain-specific constraint is defined using domain-
independent predicates of the OOASP framework. For
instance, ooasp_associated defines associations
between objects, whereas ooasp_isa describes class
membership.

During operations (or similarly during testing), the
user inputs data via the (graphical) user interface (GUI) to
achieve some desired results. In the corresponding OO pro-
gram this leads to the creation or changing of instances, e.g.
in a configurator some decision parameters are set. Implic-
itly, the application transforms those inputs to (OO)ASP,
solves the corresponding ASP program, and transforms the
solutions (answer sets) back to OO instances, e.g. derived

Fig. 1   Integration of (OO)ASP in an industrial application

5  http://www.omg.org/spec/OCL/2.4/.

http://www.omg.org/spec/OCL/2.4/%20

170	 KI - Künstliche Intelligenz (2018) 32:165–176

1 3

settings or recommendations for further decisions. If there
are multiple alternatives (answer sets) then the user needs
to select one in order to actually change the existing OO
instances accordingly and start with the next interaction
cycle.

After developing a valid specification of the problem in
a design phase, it must be ensured in a feasibility evalua-
tion and implementation phase that the answer-set program
can handle real-world problem instances and finish such an
interaction cycle in reasonable time. The next two sections
describe important challenges and current solutions for the
performance engineering of ASP applications.

5 � Tackling the Grounding Challenge

Most ASP systems follow the so-called ground-and-solve
paradigm and split the solving process into two steps: First,
a grounder transforms the input program containing vari-
ables into a propositional encoding. Then, solutions for the
resulting variable-free program are generated by a solver.
However, grounding may increase the size of the input pro-
gram substantially. Consequently, ASP programs must be
implemented by considering this grounding step especially
for large problem instances. A valid ASP program could
serve as a basis for rewriting in order to reduce the size of
the grounded program. However, it can be the case that no
suitable ASP program is available for required sizes of prob-
lem instances such that the ground-and-solve paradigm is
applicable. This leads to the so-called grounding bottleneck.

One example to demonstrate this is incremental schedul-
ing with problem instances from the ASP competition [14].6
For the instances incorporating 60 job operations the size of
the grounding is more than 5 GB whereas 120 job operations
require more than 50 GB. In industrial scheduling domains,
the sizes of problem instances can be significantly higher.
Scheduling instances of semiconductor manufacturers like
Infineon incorporate >10,000 job operations for a weekly
workload performed on >100 machines in the back-end
(i.e. where chips are cut and packaged) and >100,000 jobs
for a weekly workload performed on >1000 machines in
the front-end (i.e. where the chips are actually produced).
Thus, such instances are clearly out of reach for current
ground-and-solve approaches. In particular, a superlinear
increase of memory consumption in the size of the problem
instances is a challenge for some application cases. Hence,
various ASP-based approaches to tackle the grounding issue

have emerged, which are described in the remainder of this
section.

Constraint ASP Constraint answer set programming
(CASP) [56] is a hybrid approach extending ASP by con-
straint programming (CP) features. Conceptually, it is very
close to satisfiability modulo theory (SMT) approaches,
which integrate first-order formulas with additional back-
ground theories such as real numbers or integers [69].

There are basically two approaches to combining ASP
and CP. First, solvers like Clingcon [64] are based on the
extension of the ASP input language in order to support the
formulation of constraints. A different approach is followed
by the solvers Ezcsp [4] and ASCASS [75] where ASP and
CP are not integrated into one language. ASP rather acts as
a specification language for constraint satisfaction problems
(CSPs). The main idea is that answer sets constitute CSP
encodings, which are used as input for a constraint solver.
Thus, CSPs are expressed by means of special predicates for
CSP variable definitions and different types of constraints.

A key success factor for CASP systems are global con-
straints provided by constraint solvers. The usage of appro-
priate global constraints can significantly reduce the size of
a CSP representation. For certain classes of problems like
industrial-size scheduling CASP has already been applied
successfully [5]. Especially search problems with large vari-
able domains often profit from the CASP representation due
to the alleviation of the grounding bottleneck [52].

Multi-shot solving Multi-shot answer set solving [38]
enables continuously changing logic programs, which can
expand the domain of discourse step-by-step until a solution
is found. Such a domain usually exists in configuration or
planning problems, i.e. the maximum number of objects or
steps. In contrast to the ground-and-solve approach, which
requires definition of the maximum domain size beforehand,
multi-shot solving allows for finding the domain size while
searching for a solution. This results in ground programs that
are as small as required to find a solution. Of course, if the
minimal domain size is too large, multi-shot solving cannot
help to overcome the grounding bottleneck.

Lazy grounding The main problem of CASP and multi-
shot approaches is that they require custom encodings which
mix standard ASP with other declarative and/or procedural
languages. In turn, lazy grounding and solving approaches
can be applied to arbitrary programs in standard ASP and
avoid the grounding bottleneck by interleaving grounding
and search. Known approaches to lazy grounding for ASP
include ASPeRiX [50], GASP [16], Omiga [18], and, most
recently, Alpha [79].

While lazy-grounding systems are able to limit their
memory usage, their time consumption is not yet compa-
rable to that of state-of-the-art solvers. One reason for this
is that most of these systems do not exploit conflict-driven
nogood learning (CDNL), which is a key success factor of

6  Find instances, encodings and grounders/solvers at www.mat.unica​
l.it/aspco​mp201​4. Our tests were done with gringo 4 and the 2014
version of the encoding.

http://www.mat.unical.it/aspcomp2014
http://www.mat.unical.it/aspcomp2014

171KI - Künstliche Intelligenz (2018) 32:165–176	

1 3

state-of-the-art ASP solvers. Alpha is the first lazy-ground-
ing system to employ CDNL [79]. It consists of a grounder
and a solver which, however, do not work in sequence (as in
ground-and-solve), but interact cyclically.

6 � Tackling the Heuristics Challenge

Solving real-world instances of industrial problems is hard,
since a large number of these problems are intractable and
no efficient algorithms are known. Nevertheless, recent
breakthroughs in solving and optimization algorithms used
in modern ASP solvers have allowed for their successful
application to various industrial problems. For example,
evaluation results for a configuration problem presented
in [3] show that ASP was able to solve many test instances
including real-world problems outperforming constraint
and mixed integer programming. However, this study also
shows that solving large industrial instances is not possi-
ble with any of the reasoning techniques applied. As the
analysis indicates, the negative results are mostly due to a
large number of indistinguishable alternative choices, i.e.
non-deterministic decisions. Hence, the ability of a solver
to make good decisions is crucial for its success.

One of the possibilities to improve the performance is,
of course, to write better encodings of problems. Using
the standard programming techniques ASP users can write
simple, succinct and general encodings of various real-
world problems in a short period of time. However, such
encodings are often not optimal from the solver’s point of
view as they allow for symmetric solutions, lead to many
unnecessary non-deterministic choices, provide no hint on
preferred orders in which those choices have to be made,
etc. For recent ASP competitions, such as [14, 42], highly
sophisticated encodings have been developed by the best
ASP programmers. Such encodings result in a significant
improvement of solvers’ performance in many situations,
but they (a) require a highly experienced and competent ASP
programmer to write such an encoding, and (b) are often
efficient for subclasses of the problem only. Moreover, in
the case of industrial problems, including the Combined
Configuration Problem (CCP) [43] or Incremental Schedul-
ing, timeouts were observed for a majority of considered
instances although the best encodings available were used.

The next possibility for improving the performance is to
tune the solver configuration. Modern solving algorithms,
such as used in wasp [2] or clasp [41], are highly para-
metrisable and provide numerous possibilities to influence
the underlying search procedure. For instance, a user can
select a domain-independent heuristic, which is used to
make decisions each time a non-deterministic choice must
be effected. Most of the modern solvers use look-back heu-
ristics, such as vsids [57] or BerkMin [44]. These heuristics

analyse the conflicts, i.e. non-solutions of a given problem
instance found during the search, and make decisions allow-
ing the solver to concentrate on a conflict until it is com-
pletely learned. This new information helps the solver to
make better decisions and avoid non-solutions in the future.
In addition, by using a specific restart strategy a solver can
reinitialize the search and use previously found conflicts to
make better decisions from the start. Since the number of
found conflicts can be large, a conflict deletion strategy can
influence the solver’s memory consumption. Also, a con-
figuration might define how a solver should handle differ-
ent types of rules, backtracking modes in case of a conflict,
optimization strategies, etc. Given such a large number of
possible configurations it is hard for an ASP user to select
the best one. Portfolio solvers like me-asp [55] or claspfo-
lio [48] aim to solve this problem by employing machine
learning techniques to train a classifier that returns the best
solver configuration for a given problem instance. Applica-
tions of portfolio solvers have enabled further improvement
of performance, as demonstrated in ASP competitions [14,
42]. For instance, me-asp was an overall winner of the sixth
competition. However, this improvement also did not result
in the solution of large industrial cases. For instance, only
the three smallest CCP instances were solved by me-asp.

Therefore, recent research efforts have focused on devel-
oping methods allowing for integration of domain-specific
heuristics into ASP solvers. There are two approaches to
introduce such heuristics: machine learning and manual
encoding. An example of the first approach is given in [6],
where the general idea is to learn heuristics from experi-
ence the solver obtains while searching for solutions of small
instances. This method assumes that both small and large
instances of the given problem are not random but contain
some repetitive structures and the difference is only in the
number of such structures. As a consequence, heuristics
learned on the small instances can also be efficiently used
for larger ones.

The manual definition of domain-specific heuristics can
be either performed in a declarative or in a procedural way.
The declarative approach allows a programmer to specify
heuristics directly in the ASP program using specific exten-
sions of the language. A representative declarative approach
presented in [40] introduces the _heuristic predicate.
Atoms over this predicate are treated by the solver hclasp in a
special way resulting in modification of values stored in vsids
heuristic. Thus, a user can define initial weights, importance
factors, decision levels and sign selection for atoms involved
in non-deterministic decisions. hclasp was successfully
applied in [43] to find solutions for the CCP instances. The
authors created two simple algorithms computing good initial
heuristic weights for a given instance, encoded them using
_heuristic predicate, and added them to the instance.
This approach allowed to find solutions for 15 instances out

172	 KI - Künstliche Intelligenz (2018) 32:165–176

1 3

of 32, which is 12 instances more than me-asp. The heuristic
predicate has been integrated into clasp and subsequently
replaced by the #heuristic directive [37].

Another approach to declarative specification of heuristics
is based on the application of hybrid reasoning techniques
in ASP, e.g. heuristic constraint answer set programming
(HCASP) [75]. This has been investigated in our research
project HINT,7 resulting in the ASCASS solver already
mentioned in Sect. 5. Since CP languages provide versatile
possibilities for declaration of domain-specific heuristics,
they can also be used in HCASP approaches. For instance,
in Ezcsp [4] or in ASCASS [75] it is possible to define an
order on CP variables in which a CP solver should assign
values to them. In addition, in HCASP systems one can use
global constraints, like alldifferent or knapsack,
allowing for application of heuristic propagation algorithms
that might result in significant performance improvements.
Finally, some HCASP systems provide expressive languages
for definition of complex domain-specific heuristics. One of
the examples is the ASCASS implementation of the Quick-
Pup heuristic [76]. This implementation scales well and can
be applied to solve large PUP instances [73].

ASP solvers can also be extended with procedural defini-
tions of domain-specific heuristics which are integrated in a
way similar to the native ASP heuristics such as vsids. For
instance, the clingo solver allows for definitions of custom
propagators that are invoked just before the invocation of a
native heuristic [37]. The propagator is an algorithm imple-
mented in a procedural language, e.g. C++, that has access
to various solver-internal structures. Given the current state
of the solver an algorithm can output conflicts, i.e. partial
assignments that are not in any solution. If new conflicts are
saved, the native heuristic is not invoked and the solver tries
to use the new information to find a solution. In this way a
user can influence the search by resolving non-deterministic
choices by means of conflicts. Another approach, imple-
mented in hwasp [20], allows a user to define procedures
replacing the native heuristics with custom ones. Using a
specific data exchange interface the heuristic communicates
with the solver and is invoked instead of the standard one
if a non-deterministic choice has to be made. Experiments
with such heuristics indicate that they allow ASP solvers to
significantly improve their performance and to find solutions
for very large instances of industrial problems. For instance,
hwasp solver equipped with simple procedural domain-spe-
cific heuristics presented in [23, 43, 76] was able to find
solutions for all instances of CCP and PUP problems. In
case of CCP, hwasp required less than 200 seconds to return
all solutions, including the ones of the largest 17 instances,
which were previously unsolved.

7 � Conclusions

Declarative KRR frameworks have shown their great utility
in practice, especially for search-problems such as design,
configuration, planning, classification, and diagnosis.

ASP is one of the most attractive KRR frameworks
because of its rich representation language. Therefore, ASP
is used in academia and in industry for the encoding and
solving of problems.

In this paper, we gave an overview of the best-known
industrial showcases of ASP and described latest applica-
tions. This report was rounded up with additional emerging
industrial applications of ASP and structured along the clas-
sical application areas of AI. This impressively shows the
broad applicability of ASP.

Based on our industrial background, we outlined the
development process and the latest engineering methods for
successfully implementing ASP applications such as object-
oriented design of ASP knowledge-bases and approaches to
tackle memory and runtime challenges.

Although powerful solvers already allow many successful
applications, we must be aware that ASP was designed for,
and consequently is applied to, NP-hard problems. There-
fore, further research in pushing the applicability frontier of
ASP is most appreciable for expanding the usage of knowl-
edge representation and reasoning in industry.

Acknowledgements  Open access funding provided by University of
Klagenfurt. Work has been conducted in the scope of the research
projects DynaCon (FFG-PNr.: 861263) and Productive4.0 (H2020-
ECSEL-GANo.: 737459). DynaCon is funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT) under the
program “ICT of the Future” between 2017 and 2020 (see https​://iktde​
rzuku​nft.at/en/ for more information). We thank Agostino Dovier for
valuable suggestions.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Albanese M, Broecheler M, Grant J, Martinez MV, Subrahmanian
VS (2011) PLINI: a probabilistic logic program framework for
inconsistent news information. In: Balduccini M, Son TC (eds)
Logic programming, knowledge representation, and nonmono-
tonic reasoning—essays dedicated to Michael Gelfond on the
occasion of his 65th birthday, Lecture notes in computer science,
vol 6565. Springer, Berlin, Heidelberg, pp 347–376

	 2.	 Alviano M, Dodaro C, Leone N, Ricca F (2015) Advances in
WASP. In: Calimeri F, Ianni G, Truszczynski M (eds) Logic
programming and nonmonotonic reasoning—13th international
conference, LPNMR 2015, Lecture notes in computer science,
vol 9345. Springer, Cham, pp 40–547  http://isbi.aau.at/hint/.

https://iktderzukunft.at/en/
https://iktderzukunft.at/en/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://isbi.aau.at/hint/

173KI - Künstliche Intelligenz (2018) 32:165–176	

1 3

	 3.	 Aschinger M, Drescher C, Friedrich G, Gottlob G, Jeavons P,
Ryabokon A, Thorstensen E (2011) Optimization methods for
the partner units problem. In: Achterberg T, Beck JC (eds) Inte-
gration of AI and OR techniques in constraint programming for
combinatorial optimization problems—8th international confer-
ence, CPAIOR 2011, Lecture notes in computer science, vol 6697.
Springer, Berlin, Heidelberg, pp 4–19

	 4.	 Balduccini M (2009) Representing constraint satisfaction prob-
lems in answer set programming. ICLP09 workshop on answer
set programming and other computing paradigms (ASPOCP09)

	 5.	 Balduccini M (2011) Industrial-size scheduling with ASP+CP. In:
Delgrande JP, Faber W (eds) Logic programming and nonmono-
tonic reasoning—11th international conference, LPNMR 2011,
Lecture notes in computer science, vol 6645. Springer, Berlin,
Heidelberg, pp 284–296

	 6.	 Balduccini M (2011) Learning and using domain-specific heuris-
tics in ASP solvers. AI Commun 24(2):147–164

	 7.	 Banbara M, Inoue K, Kaneyuki H, Okimoto T, Schaub T, Soh T,
Tamura N (2017) catnap: generating test suites of constrained
combinatorial testing with answer set programming. In: Balduc-
cini M, Janhunen T (eds) Logic programming and nonmono-
tonic reasoning—14th international conference, LPNMR 2017,
Lecture notes in computer science, vol 10377. Springer, Cham,
pp 265–278

	 8.	 Banbara M, Inoue K, Kaufmann B, Okimoto T, Schaub T, Soh
T, Tamura N, Wanko P (2018) teaspoon: solving the curricu-
lum-based course timetabling problems with answer set pro-
gramming. Ann Oper Res

	 9.	 Baral C, Gelfond M, Rushton JN (2009) Probabilistic reasoning
with answer sets. TPLP 9(1):57–144

	10.	 Beck H, Bierbaumer B, Dao-Tran M, Eiter T, Hellwagner H,
Schekotihin K (2016) Rule-based stream reasoning for intelli-
gent administration of content-centric networks. In: Michael L,
Kakas AC (eds) Logics in artificial intelligence—15th European
conference, JELIA 2016, Lecture notes in computer science, vol
10021. Springer International Publishing, pp 522–528

	11.	 Brewka G, Eiter T, Truszczynski M (2011) Answer set program-
ming at a glance. Commun ACM 54(12):92–103

	12.	 Brik A, Remmel JB (2015) Diagnosing automatic whitelisting
for dynamic remarketing ads using hybrid ASP. In: Calimeri F,
Ianni G, Truszczynski M (eds) Logic programming and non-
monotonic reasoning—13th international conference, LPNMR
2015, Lecture notes in computer science, vol 9345. Springer,
Cham, pp 173–185

	13.	 Brooks DR, Erdem E, Erdogan ST, Minett JW, Ringe D (2007)
Inferring phylogenetic trees using answer set programming. J
Autom Reason 39(4):471–511

	14.	 Calimeri F, Gebser M, Maratea M, Ricca F (2016) Design and
results of the fifth answer set programming competition. Artif
Intell 231:151–181

	15.	 Dahlem M, Jain T, Schneider K, Gillmann M (2017) Automatic
synthesis of optimal-size concentrators by answer set program-
ming. In: Balduccini M, Janhunen T (eds) Logic programming
and nonmonotonic reasoning—14th international conference,
LPNMR 2017, Lecture notes in computer science, vol 10377.
Springer, Cham, pp 279–285

	16.	 Dal Palù A, Dovier A, Pontelli E, Rossi G (2009) GASP: answer
set programming with lazy grounding. Fundamenta Inform
96(3):297–322

	17.	 Dal Palù A, Dovier A, Formisano A, Pontelli E (2014) Explor-
ing life through logic programming: answer set programming
in bioinformatics. Tech Rep TR-CS-NMSU-2014-10-24, New
Mexico State University. https​://www.cs.nmsu.edu/wp/wp-conte​
nt/uploa​ds/2014/10/TR-CS-NMSU-2014-10-24.pdf

	18.	 Dao-Tran M, Eiter T, Fink M, Weidinger G, Weinzierl A (2012)
Omiga: an open minded grounding on-the-fly answer set solver.

In: del Cerro LF, Herzig A, Mengin J (eds) Logics in artificial
intelligence—13th European conference, JELIA 2012, Lecture
notes in computer science, vol 7519. Springer, Berlin, Heidel-
berg, pp 480–483

	19.	 Dhungana D, Falkner AA, Haselböck A (2013) Generation of
conjoint domain models for system-of-systems. In: Järvi J, Käst-
ner C (eds) Generative programming: concepts and experiences,
GPCE’13, ACM, Indianapolis, IN, USA—October 27–28, 2013,
pp 159–168

	20.	 Dodaro C, Gasteiger P, Leone N, Musitsch B, Ricca F, Schekoti-
hin K (2016) Combining answer set programming and domain
heuristics for solving hard industrial problems (application
paper). TPLP 16(5–6):653–669

	21.	 Dodaro C, Maratea M (2017) Nurse scheduling via answer set
programming. In: Balduccini M, Janhunen T (eds) Logic pro-
gramming and nonmonotonic reasoning—14th international
conference, LPNMR 2017, Lecture notes in computer science,
vol 10377. Springer, Cham, pp 301–307

	22.	 Dovier A, Formisano A, Pontelli E (2009) An empirical study
of constraint logic programming and answer set programming
solutions of combinatorial problems. J Exp Theor Artif Intell
21(2):79–121

	23.	 Drescher C (2012) The partner units problem a constraint pro-
gramming case study. In: IEEE 24th international conference on
tools with artificial intelligence, ICTAI 2012, IEEE Computer
Society, pp 170–177

	24.	 Eiter T, Faber W, Leone N, Pfeifer G, Polleres A (2003) A
logic programming approach to knowledge-state planning, II:
the DLVK system. Artif Intell 144(1–2):157–211

	25.	 Erdem E, Aker E, Patoglu V (2012) Answer set programming
for collaborative housekeeping robotics: representation, reason-
ing, and execution. Intell Ser Robot 5(4):275–291

	26.	 Erdem E, Gelfond M, Leone N (2016) Applications of answer
set programming. AI Magaz 37(3):53–68

	27.	 Erdem E, Öztok U (2015) Generating explanations for biomedi-
cal queries. TPLP 15(1):35–78

	28.	 Erdem E, Patoglu V, Saribatur ZG (2013) Integrating hybrid
diagnostic reasoning in plan execution monitoring for cognitive
factories with multiple robots. In: IEEE international conference
on robotics and automation, ICRA 2015, IEEE, pp 2007–2013

	29.	 Erdem E, Türe F (2008) Efficient haplotype inference with
answer set programming. In: Fox D, Gomes CP (eds) Proceed-
ings of the 23rd AAAI conference on artificial intelligence,
AAAI 2008. AAAI Press, pp 436–441

	30.	 Falkner AA, Friedrich G, Haselböck A, Schenner G, Schreiner
H (2016) Twenty-five years of successful application of con-
straint technologies at Siemens. AI Magaz 37(4):67–80

	31.	 Falkner AA, Ryabokon A, Schenner G, Shchekotykhin KM
(2015) OOASP: connecting object-oriented and logic program-
ming. In: Calimeri F, Ianni G, Truszczynski M (eds) Logic pro-
gramming and nonmonotonic reasoning—13th international
conference, LPNMR 2015, Lecture notes in computer science,
vol 9345. Springer, Cham, pp 332–345

	32.	 Fowler M, Highsmith J (2001) The agile manifesto. Softw Dev
9(8):28–35

	33.	 Fréchette A, Newman N, Leyton-Brown K (2016) Solving the
station repacking problem. In: Schuurmans D, Wellman MP
(eds) Proceedings of the thirtieth AAAI conference on artificial
intelligence. AAAI Press, pp 702–709

	34.	 Friedrich G, Fugini M, Mussi E, Pernici B, Tagni G (2010)
Exception handling for repair in service-based processes. IEEE
Trans Softw Eng 36(2):198–215

	35.	 Furche T, Gottlob G, Grasso G, Gunes O, Guo X, Kravchenko
A, Orsi G, Schallhart C, Sellers AJ, Wang C (2012) DIADEM:
domain-centric, intelligent, automated data extraction method-
ology. In: Mille A, Gandon FL, Misselis J, Rabinovich M, Staab

https://www.cs.nmsu.edu/wp/wp-content/uploads/2014/10/TR-CS-NMSU-2014-10-24.pdf
https://www.cs.nmsu.edu/wp/wp-content/uploads/2014/10/TR-CS-NMSU-2014-10-24.pdf

174	 KI - Künstliche Intelligenz (2018) 32:165–176

1 3

S (eds) Proceedings of the 21st World Wide Web conference,
WWW 2012. ACM, pp 267–270

	36.	 Gebser M, Guziolowski C, Ivanchev M, Schaub T, Siegel A,
Thiele S, Veber P (2010) Repair and prediction (under incon-
sistency) in large biological networks with answer set program-
ming. In: Lin F, Sattler U, Truszczynski M (eds) Principles
of knowledge representation and reasoning: proceedings of the
twelfth international conference, KR 2010. AAAI Press

	37.	 Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T,
Wanko P (2016) Theory solving made easy with clingo 5. In:
ICLP (Technical Communications), OASICS, vol 52. Schloss
Dagstuhl, pp 2:1–2:15

	38.	 Gebser M, Kaminski R, Kaufmann B, Schaub T (2017) Multi-
shot ASP solving with clingo. CoRR abs/1705.09811

	39.	 Gebser M, Kaminski R, Schaub T (2011) aspcud: a linux pack-
age configuration tool based on answer set programming. In:
Drescher C, Lynce I, Treinen R (eds) Proceedings second work-
shop on logics for component configuration, LoCoCo 2011,
EPTCS, vol 65, pp 12–25

	40.	 Gebser M, Kaufmann B, Romero J, Otero R, Schaub T, Wanko
P (2013) Domain-specific heuristics in answer set programming.
In: des Jardins M, Littman ML (eds) Proceedings of the twenty-
seventh AAAI conference on artificial intelligence. AAAI Press

	41.	 Gebser M, Kaufmann B, Schaub T (2012) Conflict-driven
answer set solving: from theory to practice. Artif Intell
187:52–89

	42.	 Gebser M, Maratea M, Ricca F (2015) The design of the sixth
answer set programming competition—report. In: Calimeri F,
Ianni G, Truszczynski M (eds) Logic programming and non-
monotonic reasoning—13th international conference, LPNMR
2015, Lecture notes in computer science, vol 9345. Springer,
Switzerland, pp 531–544

	43.	 Gebser M, Ryabokon A, Schenner G (2015) Combining heu-
ristics for configuration problems using answer set program-
ming. In: Calimeri F, Ianni G, Truszczynski M (eds) Logic pro-
gramming and nonmonotonic reasoning—Proceedings of 13th
international conference, LPNMR 2015, Lexington, KY, USA,
September 27–30, 2015, Lecture notes in computer science, vol
9345. Springer, Cham, pp 384–397

	44.	 Goldberg E, Novikov Y (2007) Berkmin: a fast and robust sat-
solver. Discrete Appl Math 155(12):1549–1561

	45.	 Grasso G, Leone N, Manna M, Ricca F (2011) ASP at work:
spin-off and applications of the DLV system. In: Balduccini
M, Son TC (eds) Logic programming, knowledge representa-
tion, and nonmonotonic reasoning—essays dedicated to Michael
Gelfond on the occasion of his 65th birthday, Lecture notes in
computer science, vol 6565. Springer, Berlin, Heidelberg, pp
432–451

	46.	 Grasso G, Leone N, Ricca F (2013) Answer set programming:
language, applications and development tools. In: Faber W,
Lembo D (eds) Web reasoning and rule systems—7th interna-
tional conference, RR 2013, Lecture notes in computer science,
vol 7994. Springer, Berlin, Heidelberg, pp 19–34

	47.	 Green TJ, Aref M, Karvounarakis G (2012) Logicblox platform
and language a tutorial. In: Barceló P, Pichler R (eds) Datalog in
academia and industry—second international workshop, Data-
log 2.0, Lecture notes in computer science, vol 7494. Springer,
Berlin, Heidelberg, pp 1–8

	48.	 Hoos H, Lindauer MT, Schaub T (2014) claspfolio 2: advances
in algorithm selection for answer set programming. TPLP
14(4–5):569–585

	49.	 Ielpa SM, Iiritano S, Leone N, Ricca F (2009) An asp-based
system for e-tourism. In: Erdem E, Lin F, Schaub T (eds) Logic

programming and nonmonotonic reasoning, Proceedings of 10th
international conference, LPNMR 2009, Potsdam, Germany,
September 14–18, 2009. Lecture notes in computer science,
vol 5753. Springer, Berlin, Heidelberg, pp 368–381

	50.	 Lefèvre C, Béatrix C, Stéphan I, Garcia L (2017) Asperix, a
first-order forward chaining approach for answer set computing.
TPLP 17(3):266–310

	51.	 Leone N, Ricca F (2015) Answer set programming: a tour from
the basics to advanced development tools and industrial applica-
tions. In: Faber W, Paschke A (eds) Reasoning web. Web logic
rules—11th international summer school 2015, tutorial lectures,
Lecture notes in computer science, vol 9203. Springer, Cham,
pp 308–326

	52.	 Lierler Y, Smith S, Truszczynski M, Westlund A (2012)
Weighted-sequence problem: ASP vs CASP and declarative vs
problem-oriented solving. In: Russo CV, Zhou N (eds) Practi-
cal aspects of declarative languages—14th international sympo-
sium, PADL 2012, Lecture notes in computer science, vol 7149.
Springer, Berlin, Heidelberg, pp 63–77

	53.	 Lifschitz V (2017) Achievements in answer set programming.
TPLP 17(5–6):961–973

	54.	 Manna M, Ricca F, Terracina G (2013) Consistent query
answering via ASP from different perspectives: theory and
practice. TPLP 13(2):227–252

	55.	 Maratea M, Pulina L, Ricca F (2012) The multi-engine ASP
solver me-asp. In: del Cerro LF, Herzig A, Mengin J (eds) Log-
ics in artificial intelligence—13th European conference, JELIA
2012, Lecture notes in computer science, vol 7519. Springer,
Berlin, Heidelberg, pp 484–487

	56.	 Mellarkod VS, Gelfond M, Zhang Y (2008) Integrating answer
set programming and constraint logic programming. Ann Math
Artif Intell 53(1–4):251–287

	57.	 Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001)
Chaff: engineering an efficient SAT solver. In: Proceedings of
the 38th design automation conference, DAC 2001. ACM, pp
530–535

	58.	 Nam TH, Baral C (2009) Hypothesizing about signaling net-
works. J Appl Logic 7(3):253–274

	59.	 Neubauer K, Wanko P, Schaub T, Haubelt C (2017) Enhancing
symbolic system synthesis through aspmt with partial assignment
evaluation. In: Atienza D, Natale GD (eds) Design, automation
and test in Europe conference and exhibition, DATE 2017. IEEE,
pp 306–309

	60.	 Neubauer K, Wanko P, Schaub T, Haubelt C (2018) Exact multi-
objective design space exploration using aspmt. In: 2018 design,
automation and test in Europe conference and exhibition, DATE
2018. IEEE, pp 257–260

	61.	 Nguyen TH, Son TC, Pontelli E (2018) Automatic web services
composition for phylotastic. In: Calimeri F, Hamlen KW, Leone
N (eds) Practical aspects of declarative languages—20th interna-
tional symposium, PADL 2018, Lecture notes in computer sci-
ence, vol 10702. Springer, Cham, pp 186–202

	62.	 Nogueira M, Balduccini M, Gelfond M, Watson R, Barry M
(2001) An a-prolog decision support system for the space shut-
tle. In: Ramakrishnan IV (ed) Practical aspects of declarative
languages, Proceedings of third international symposium, PADL
2001, Las Vegas, Nevada, March 11–12, 2001, Lecture notes in
computer science, vol 1990. Springer, Berlin, Heidelberg, pp
169–183

	63.	 Nouman A, Yalciner IF, Erdem E, Patoglu V (2016) Experimental
evaluation of hybrid conditional planning for service robotics.
In: Kulic D, Nakamura Y, Khatib O, Venture G (eds) Interna-
tional symposium on experimental robotics, ISER 2016, Springer

175KI - Künstliche Intelligenz (2018) 32:165–176	

1 3

proceedings in advanced robotics, vol 1. Springer, Cham, pp
692–702

	64.	 Ostrowski M, Schaub T (2012) ASP modulo CSP: the clingcon
system. TPLP 12(4–5):485–503

	65.	 Palù AD, Dovier A, Formisano A, Policriti A, Pontelli E (2016)
Logic programming applied to genome evolution in cancer. In:
Fiorentini C, Momigliano A (eds) Proceedings of the 31st Italian
conference on computational logic, Milano, Italy, June 20–22,
2016, CEUR workshop proceedings, vol 1645. CEUR-WS.org,
pp 148–157

	66.	 Ricca F, Grasso G, Alviano M, Manna M, Lio V, Iiritano S, Leone
N (2012) Team-building with answer set programming in the
gioia-tauro seaport. TPLP 12(3):361–381

	67.	 Roebuck K (2012) Systems development life cycle (SDLC).
Emereo Publishing

	68.	 Rumbaugh J, Jacobson I, Booch G (2005) The unified modeling
language reference manual, 2nd edn. Addison-Wesley

	69.	 Sebastiani R (2007) Lazy satisability modulo theories. JSAT
3(3–4):141–224

	70.	 Shchekotykhin KM (2015) Interactive query-based debugging of
ASP programs. In: B Bonet, S Koenig (eds) Proceedings of the
twenty-ninth AAAI conference on artificial intelligence. AAAI
Press, pp 1597–1603

	71.	 Soininen T, Niemelä I (1999) Developing a declarative rule
language for applications in product configuration. In: Gupta G
(ed) Practical aspects of declarative languages, first international
workshop, PADL’99, Lecture notes in computer science, vol 1551.
Springer, Berlin, Heidelberg, pp 305–319

	72.	 Stumptner M, Friedrich G, Haselböck A (1998) Generative con-
straint-based configuration of large technical systems. AI EDAM
12(4):307–320

	73.	 Teppan EC (2016) Solving the partner units configuration problem
with heuristic constraint answer set programming. In: Configura-
tion workshop, pp 61–68

	74.	 Teppan EC (2017) On the complexity of the partner units decision
problem. Artif Intell 248:112–122

	75.	 Teppan EC, Friedrich G (2016) Heuristic constraint answer set
programming. In: GA Kaminka, M Fox, P Bouquet, E Hüller-
meier, V Dignum, F Dignum, F van Harmelen (eds) ECAI 2016—
22nd European conference on artificial intelligence, frontiers in
artificial intelligence and applications, vol 285. IOS Press, pp
1692–1693

	76.	 Teppan EC, Friedrich G, Falkner AA (2012) Quickpup: a heuristic
backtracking algorithm for the partner units configuration prob-
lem. In: MPJ Fromherz, H Muñoz-Avila (eds) Proceedings of the
twenty-fourth conference on innovative applications of artificial
intelligence. AAAI

	77.	 Tu PH, Son TC, Baral C (2007) Reasoning and planning with
sensing actions, incomplete information, and static causal laws
using answer set programming. TPLP 7(4):377–450

	78.	 Wang Y, Lee J, Kim DS (2017) A logic based approach to answer-
ing questions about alternatives in DIY domains. In: SP Singh, S
Markovitch (eds) Proceedings of the thirty-first AAAI conference
on artificial intelligence. AAAI Press, pp 4753–4759

	79.	 Weinzierl A (2017) Blending lazy-grounding and CDNL search
for answer-set solving. In: Balduccini M, Janhunen T (eds) Logic
programming and nonmonotonic reasoning—14th international
conference, LPNMR 2017, Lecture notes in computer science,
vol 10377. Springer, Cham, pp 191–204

	80.	 Yalciner IF, Nouman A, Patoglu V, Erdem E (2017) Hybrid
conditional planning using answer set programming. TPLP
17(5–6):1027–1047

Andreas Falkner  holds an MS and
a Ph.D. degree in computer sci-
ence from the Vienna University
of Technology. Since 1992 he
has been developing product
configurators for complex tech-
nical systems in various domains
at Siemens AG Österreich. At
present, he is a senior research
scientist at Siemens Corporate
Technology, Research Group
Configuration Technologies, and
senior key expert for product
conf igu ra t ion and mass
customization.

Gerhard Friedrich  is a full profes-
sor of computer science at the
University Klagenfurt, Austria.
He is the dean of the Faculty of
Engineering and Technology and
directs the research group on
Intelligent Systems and Business
Informatics. Before his academic
career, he was the head of the
Department for Configuration
and Diagnosis Systems at Sie-
mens AG Austria. His research
interests include configuration,
planning, diagnosis as well as
knowledge representation, acqui-
sition, maintenance and reason-

ing. Gerhard Friedrich received a PhD and a MS in Informatics from
Vienna University of Technology, Austria. In 2012 he became a fellow
of the European Association for Artificial Intelligence.

Konstantin Schekotihin  is an asso-
ciate professor of computer sci-
ence at the University Klagenfurt,
Austria. He received his MS in
Informatics from NTU “Kharkow
Polytechnic Institute”, Ukraine
and his PhD from University Kla-
genfurt. His research focus lies
mainly on various aspects of
knowledge representation and
reasoning systems including
knowledge acquisition and main-
tenance, reasoning techniques as
well as different applications such
as, e.g., configuration, planning,
recommendation, etc.

176	 KI - Künstliche Intelligenz (2018) 32:165–176

1 3

Richard Taupe  is a research sci-
entist in the Configuration Tech-
nologies research group at Sie-
mens’ Corporate Technology.
His research interests include
answer set programming, con-
straint programming, and the
application of such methods to
industrial use cases. He received
his MSc degree in computer sci-
ence from the University of Kla-
genfurt, Austria, where he is cur-
rently pursuing a doctoral
degree.

Erich Teppan  is an associate pro-
fessor at the University of Kla-
genfurt, Austria. He studied at
the University of Klagenfurt and
at the Westminster University
(UK) and received his Engineer
and Ph.D. degrees in computer
science from the University of
Klagenfurt. Teppan worked as a
software engineer for various
companies in Austria and Swit-
zerland. His main research areas
include human computer interac-
tion, recommender systems, logic
programming, heuristic search
and artificial intelligence.

	Industrial Applications of Answer Set Programming
	Abstract
	1 Introduction
	2 General Overview of ASP Applications
	3 Development Process of ASP Applications
	4 Design of ASP Applications
	5 Tackling the Grounding Challenge
	6 Tackling the Heuristics Challenge
	7 Conclusions
	Acknowledgements
	References

