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Abstract
Recent success in Artificial Intelligence (AI) and Machine Learning (ML) allow problem solving automatically without 
any human intervention. Autonomous approaches can be very convenient. However, in certain domains, e.g., in the medical 
domain, it is necessary to enable a domain expert to understand, why an algorithm came up with a certain result. Conse-
quently, the field of Explainable AI (xAI) rapidly gained interest worldwide in various domains, particularly in medicine. 
Explainable AI studies transparency and traceability of opaque AI/ML and there are already a huge variety of methods. For 
example with layer-wise relevance propagation relevant parts of inputs to, and representations in, a neural network which 
caused a result, can be highlighted. This is a first important step to ensure that end users, e.g., medical professionals, assume 
responsibility for decision making with AI/ML and of interest to professionals and regulators. Interactive ML adds the 
component of human expertise to AI/ML processes by enabling them to re-enact and retrace AI/ML results, e.g. let them 
check it for plausibility. This requires new human–AI interfaces for explainable AI. In order to build effective and efficient 
interactive human–AI interfaces we have to deal with the question of how to evaluate the quality of explanations given by an 
explainable AI system. In this paper we introduce our System Causability Scale to measure the quality of explanations. It is 
based on our notion of Causability (Holzinger et al. in Wiley Interdiscip Rev Data Min Knowl Discov 9(4), 2019) combined 
with concepts adapted from a widely-accepted usability scale.
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Abbreviations
AI	� Artificial intelligence
aML	� Automatic (or autonomous) machine learning
DL	� Deep learning
FRT	� Framingham Risk Tool
iML	� Interactive machine learning
ML	� Machine learning
SCS	� System Causability Scale
SUS	� System Usability Scale

1  Introduction

Artificial intelligence (AI) is an umbrella term for algorithms 
aiming at delivering task solving capabilities comparable to 
humans. A dominant sub-field is automatic (or autonomous) 
machine learning (aML) with the aim to develop software 
that can learn fully automatically from previous experience 
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to make predictions based on new data. One currently very 
successful family of aML methods includes deep learning 
(DL), which is based on the concepts of neural networks, 
and the insight that the depth of such networks yields sur-
prising capabilities.

Automatic approaches are present in daily practice of 
human society, supporting and enhancing our quality of life. 
A good example is the breakthrough achieved with DL [2] 
on the task of phonetic classification for automatic speech 
recognition. Actually, speech recognition was the first com-
mercially successful application of DL [3]. Autonomous 
software is able today to conduct conversations with clients 
in call centers; Siri, Alexa and Cortana make suggestions 
to smartphone users. A further example is automatic game 
playing without human intervention [4]. Mastering the game 
of Go has a long tradition and is a good benchmark for pro-
gress in automatic approaches, because Go is hard for com-
puters [5] because it is strategic, although games are a closed 
environment with clear rules and a large number of games 
can be simulated for big data.

Even in the medical domain, automatic approaches 
recently demonstrated impressive results: automatic image 
classification algorithms are on par with human experts or 
even outperforms them [6]; automatic detection of pulmo-
nary nodules in tomography scans detected the tumoral for-
mations missed by the same human experts who provided 
the test data [7]; neural networks outperformed a traditional 
segmentation methods [8], consequently, automatic deep 
learning approaches became quickly a method of choice for 
medical image analysis [9]

Undoubtedly, automatic approaches are well motivated 
for theoretical, practical and commercial reasons. Unfor-
tunately, such approaches have also several disadvantages. 
They are resource consuming, require much engineering 
effort, need large amounts of training data (“big data”), 
but most of all they are often considered as black-box 
approaches which do not foster trust and acceptance and 
most of all responsibility. International concerns are raised 
on ethical, legal and moral aspects of developments of AI 
in the last years, particularly in the medical domain [10]. 
One example of such international effort is the Declaration 
of Montreal.1

Lacking transparency means that such approaches do not 
expose explicitly the decision process [11]. This is due to the 
fact that such models have no explicit declarative knowledge 
representation, hence they have difficulty in generating the 
required explanatory structures which considerably limits 
the achievement of their full potential [12].

Consequently, in the medical domain a human expert 
involved in the decision process can be beneficial yet 

mandatory [13]. However, the problem is that many algo-
rithms, e.g. deep learning, are inherently opaque, which 
causes difficulties both for the developers of the algorithms, 
as well as for the human-in-the-loop.

Understanding the reasons behind predictions, queries 
and recommendations [14] is important for many reasons. 
Among the most important reasons is trust in the results 
which is improved by an explanatory interactive learning 
framework, where the algorithm is able to explain each step 
to the user and the user can interactively correct the explana-
tion [15]. The advantage of this approach, called interactive 
machine learning (iML) [16], is to include the strengths of 
humans, in learning and explaining abstract concepts [17].

Current ML algorithms work asynchronously in connec-
tion with a human expert who is expected to help in data 
pre-processing (refer to [18] for a recent example of the 
importance of data quality). Also the human is expected to 
help in data interpretation - either before or after the learn-
ing algorithm. The human expert is supposed to be aware 
of the problem’s context and to correctly evaluate specific 
data sets.

The iML-approaches can therefore be effective on prob-
lems with scarce and/or complex data sets, when aML meth-
ods become inefficient. Moreover, iML enables important 
mechanisms, including re-traceability, transparency and 
explainability, which are important characteristics for any 
future information system [19].

The efficiency and the effectiveness of explanations 
provided by ML and iML require further study [20]. One 
approach to the problem examines how people understand 
explanations from ML by qualitatively rating the effective-
ness of three explanatory models [21, 22]. Another approach 
measures a proxy for utility such as simplicity [11, 23] or 
response time in an application [24]. Our contribution is to 
directly measure the user’s perception of an explanation’s 
utility, including cause aspects, by adapting a well-accepted 
approach in usability [25].

2 � Causability and Explainability

2.1 � Definitions

A statement s (see Fig. 1) is either be made by a human sh or 
a machine sm . s = f (r, k, c) is a function with the following 
parameters: 

r	� representations of an unknown (or unobserved) fact ue 
related to an entity,

k	� pre-existing knowledge, which is for a machine embed-
ded in an algorithm, or made up for human by explicit, 
implicit and tacit knowledge,

1  https​://www.montr​ealde​clara​tion-respo​nsibl​eai.com.
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c	� context, for a machine the technical runtime environ-
ment, and for humans the physical environment the deci-
sion was made (pragmatic dimension).

An unknown (or unobserved) fact ue represents a ground 
truth gt that we try to model with machines mm or as humans 
mh . Unobserved, hidden or latent variables are found in the 
literature for Bayesian models [26], hidden Markov models 
[27] and methods like probabilistic latent component analy-
sis [28].

The overall goal is, that a statement is congruent with the 
ground truth and the explanation of a statement highlights 
applied parts of the model.

3 � Process of Explanation 
and the Importance of a Ground Truth

In an ideal world the human and machine statement are iden-
tical, sh = sm , and congruent with the ground truth, which is 
defined for machines and humans within the same, mh = mm 
(a connection between them, see Fig. 1).

However, in the real world we face two problems: 

	 (i)	 ground truth is not always well defined, especially 
when making a medical diagnosis; and

	 (ii)	 although human (scientific) models are often based 
on understanding causal mechanisms, today’s suc-
cessful machine models or algorithms are typically 
based on correlation or related concepts of similarity 
and distance.

The latter approach in ML is probabilistic in nature and 
is viewed as an intermediate step which can only pro-
vide a basis for further establishing causal models. When 

discussing the explainability of a machine statement we 
therefore propose to distinguish between

–	 Explainability, which in a technical sense highlights 
decision relevant parts of machine representations rm 
and machine models mm—i.e., parts which contributed 
to model accuracy in training, or to a specific prediction. 
It does not refer to a human model mh.

–	 Causability [1] as the extent to which an explanation of 
a statement to a user achieves a specified level of causal 
understanding with effectiveness, efficiency and satisfac-
tion in a specified context of use.

As causability is measured in terms of effectiveness, effi-
ciency, satisfaction related to causal understanding and its 
transparency for a user, it refers to a human understandable 
model mh . This is always possible for an explanation of a 
human statement, as the explanation is per se defined related 
to mh . To measure the causability of an explanation em of a 
machine statement sm either mh has to be based on a causal 
model (which is not the case for most ML algorithms) or a 
mapping between mm and mh has to be defined.

4 � Background

The System Usability Scale (SUS) has been in use for three 
decades and proved to be very efficient and necessary to 
rapidly determine the usability of a newly designed user 
interface. The SUS measures how usable a system’s user-
interface is, while our proposed System Causability Scale 
measures how useful explanations are and how usable the 
explanation interface is.

The SUS was created by John Brooke already in 1986 
when working at the Digital Equipment Corporation 

Fig. 1   The Process of Explanation. Explanations (e) by humans and machines (subscripts h and m) must be congruent with statements (s) and 
models (m) which in turn are based on the ground truth (gt). Statements are a function of representations (r), knowledge (k) and context (c)
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(DEC). 10 years later he published it as a book chapter 
[25] which received (as of 01.10.2019) 7949 citations on 
Google Scholar with an amazing trend upwards.

The success factor is simplicity: SUS consists of a 10 
item questionnaire, each item having five response options 
for the end-users. Consequently, it provides a quick and 
dirty tool for measuring the usability, which proofed to be 
very reliable [29], and it is used for a wide variety of any 
products, not only user-interfaces [30].

When a SUS is used, participants are asked to score the 
following ten items with one of five responses that range 
from strongly agree to strongly disagree: 

	 1.	 I think that I would like to use this system frequently.
	 2.	 I found the system unnecessarily complex.
	 3.	 I thought the system was easy to use.
	 4.	 I think that I would need the support of a technical 

person to be able to use this system.
	 5.	 I found the various functions in this system were well 

integrated.
	 6.	 I thought there was too much inconsistency in this sys-

tem.
	 7.	 I would imagine that most people would learn to use 

this system very quickly.
	 8.	 I found the system very cumbersome to use.
	 9.	 I felt very confident using the system.
	10.	 I needed to learn a lot of things before I could get going 

with this system

Interpreting SUS scores can be difficult and one big disad-
vantage is that the scores (since they are on a scale from 
0 to 100) are often wrongly interpreted as percentages. 
The best way to interpret results involves normalizing the 
scores to produce a percentile ranking. Consequently, the 
participants scores for each question are converted to a 
new number, added together and then multiplied by 2.5 to 
convert the original scores of 0–40 to 0–100. Though the 
scores are 0–100, these are not percentages and should be 
considered only in terms of their percentile ranking.

Based on a lot of research, a SUS score above 68 
would be considered above average and anything below 
68 is below average, however the best way to interpret 
the results involves normalizing the scores to produce a 
percentile ranking.

A further disadvantage is that SUS has been assumed 
to be unidimensional. However, factor analysis of two 
independent SUS data sets reveals that the SUS actu-
ally has two factors Usable (8 items) and Learnable (2 
items specifically, Items 4 and 10). These new scales 
have reasonable reliability (coefficient alpha of 0.91 and 
0.70, respectively). They correlate highly with the over-
all SUS (r = 0.985 and 0.784, respectively) and correlate 

significantly with one another (r = 0.664), but at a low 
enough level to use as separate scales [31].

5 � The System Causability Scale

In the following we propose our System Causability Scale 
(SCS) using the Likert scale similar to SUS. The Likert 
method [32] is widely used as a standard psychometric scale 
to measure human responses (see about the limitations in the 
conclusions). The purpose of our SCS is to quickly deter-
mine whether and to what extent an explainable user inter-
face (human–AI interface), an explanation, or an explanation 
process itself is suitable for the intended purpose. 

	 1.	 I found that the data included all relevant known causal 
factors with sufficient precision and granularity.

	 2.	 I understood the explanations within the context of my 
work.

	 3.	 I could change the level of detail on demand.
	 4.	 I did not need support to understand the explanations.
	 5.	 I found the explanations helped me to understand cau-

sality.
	 6.	 I was able to use the explanations with my knowledge 

base.
	 7.	 I did not find inconsistencies between explanations.
	 8.	 I think that most people would learn to understand the 

explanations very quickly.
	 9.	 I did not need more references in the explanations: e.g., 

medical guidelines, regulations.
	10.	 I received the explanations in a timely and efficient 

manner.

As an illustration, SCS was applied by a medical doctor from 
the Ottawa Hospital (see the acknowledgement section) to 
the Framingham Risk Tool (FRT) [33]. FRT was selected as 
a classic example of a prediction model that is in use today.

FRT estimates the risk of coronary artery disease in 
10 years for a patient without diabetes mellitus or clini-
cally evident cardiovascular disease, and uses data from the 
Framingham Heart Study [34]. FRT includes the follow-
ing input features: sex, age, total cholesterol smoking, HDL 
(high density lipoprotein) cholesterol, systolic blood pres-
sure and hypertension treatment. The ratings for the SCS 
score are reported in Table 1.

6 � Conclusions

The purpose of the System Causability Scale is to provide 
a simple and rapid evaluation tool to measure the quality 
of an explanation interface (human–AI interface) or an 
explanation process itself. We were inspired by the System 
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Usability Scale and the Framingham model which is often in 
use in daily routine. The limitations of the SCS is that Likert 
scales fall within the ordinal level of measurement, meaning 
that the response categories have a rank order. However, 
the intervals between values cannot be presumed equal (it 
is illegitimate to infer that the intensity of feeling between 
strongly disagree and disagree is equivalent to the inten-
sity of feeling between other consecutive categories on the 
Likert scale). The legitimacy of assuming an interval scale 
for Likert-type categories is an important issue, because the 
appropriate descriptive and inferential statistics differ for 
ordinal and interval variables and if the wrong statistical 
technique is used, the researcher increases the chance of 
coming to the wrong conclusion [35]. We are convinced 
that our Systems Causability Scale is useful for the interna-
tional machine learning research community. Currently we 
are working on an evaluation study with the application in 
the medical domain.
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