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Abstract – We investigated the connection between foraging activity of honey bees (Apis mellifera ) and local
weather conditions. We measured bee egress rate along with temperature, solar radiation, atmospheric pressure,
humidity, rainfall, wind direction and speed. Data was collected from two hives, over the periods June–September
2013 (hive 1) and July–September 2014 (hive 2). We fitted an ordinary-least-squares generalised linear model to the
data, using weather to predict bee egress rate. We found that 78% of the observed variation in bee activity was
explained by variation in temperature and solar radiation. We discuss the potential application of this approach for
continuous, remote monitoring of honey bee colonies with possible implications for early detection and prevention
of hive abandonment disorders.
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1. INTRODUCTION

Continuous monitoring of honey bee hives has
been the subject of considerable attention from
beekeepers, apidologists and researchers for over
a century (Meikle and Holst 2015). Many differ-
ent metabolic and environmental parameters have
been considered to characterise the state and
health of honey bee colonies. Such parameters
include local CO2 gas concentrations to determine
metabolic rate (Seeley 1974), temperature and
humidity in the hive to investigate hive metabolic
activity and homeostasis (Southwick and Moritz
1987; Human et al. 2006), hive weight to indicate
colony size and food reserves (Meikle et al. 2008),
vibration and sound to indicate swarming events
(Ferrari et al. 2008) and bee foraging activity as a

behavioural method to assess the effects of pesti-
cide exposure (Pham-Delegue et al. 2002;
Schneider et al. 2012).

Previous research has shown that bee species
are affected by weather conditions in various
ways. Bumble bees have been shown to preferen-
tially collect pollen over nectar when the weather
conditions at the foraging site are warm, dry and
windy and to prefer nectar otherwise (Peat and
Goulson 2005). Honey bees have ways of
assessing the likelihood of rainfall in the future,
evidenced by higher levels of foraging effort the
day before heavy rainfall (He et al. 2016). Differ-
ent bee species also prefer to forage at different
temperatures (Vicens and Bosch 2000). Weather
directly impacts hygro and thermodynamic pro-
cesses within the pollinator, impacting survival
rate and energy cost of foraging (Corbet 1990).
Weather also affects pollinator activity indirectly,
by altering the quantity and sugar concentration of
nectar in flowers (Corbet 1990). A complete un-
derstanding of the factors influencing bee forag-
ing effort has yet to emerge. It is, however, clear
that weather assessment, in terms of the potential
risk and reward of foraging, is an important aspect
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of bee sensory ecology. A better understanding of
the relationship between bees and the weather
could potentially help farmers identify and match
suitable bee species to their crops, given latitude,
flowering season and local climate.

Honey bee foraging rate can be readily mea-
sured as the rate of bee ingress and egress from the
hive. This rate can hold information about the
supply and demand for food in the colony
(Mclellan 1977). The supply is determined by
the amount of nectar and pollen that is available
for bees to collect from flowers within their for-
aging range, as well as the amount of food stored
in the hive as honey. Demand is dependent on
colony size and age distribution (Mclellan 1977).
To better document the influence of hive-extrinsic
conditions on bee activity, data from hive moni-
toring equipment can be coupled with data from
other sensors, such as those from a meteorological
station (Burrill and Dietz 1981; Devillers et al.
2004).

A pioneering study (Burrill and Dietz 1981)
investigated the response of bee colonies to two
meteorological variables: temperature and solar
radiation (SR). Bee activity was measured using
electro-optical counters that recorded each ingress
and egress from the hive. This study reported a
positive correlation between temperature and bee
activity. For SR, the data show a positive correla-
tion up to a certain radiation threshold (0.66 Lang-
leys or 460 W/m2) followed by a negative corre-
lation for higher SR levels (> 460 W/m2). Al-
though strictly correlative, this evidence strongly
suggests that bee foraging effort is modulated by
external weather conditions. Thus, bees, as indi-
viduals, must be capable of detecting and evalu-
ating these atmospheric conditions.

With the proliferation of affordable microelec-
tronics, several companies have brought bee hive
activity monitoring to market: ApiScan® (Low-
land Electronics, Leffinge, Belgium) came tomar-
ket in the 1990s and offers remote counting of bee
ingress and egress rates via electro-optical sensors
at the hive entrance. More recently, Arnia® (Arnia
Remote Hive Monitoring, United Kingdom) and
HiveMind® (HiveMind Precision Agriculture,
Christchurch, New Zealand) have integrated ac-
tivity sensors with internal and external environ-
mental sensors that provide remote data collection

and at-a-glance analysis of the data to beekeepers.
They purport to provide instant hive theft detec-
tion as well as information about the productivity
and health of each of the user’s honey bee
colonies.

Here, we present a method that captures hive
activity, rain, solar radiation, temperature, humid-
ity, wind speed and wind direction continuously at
a time resolution of 1 sample/min. We attached a
custom-made multichannel electro-optical bee
counter to a national honey bee hive situated at a
field site in North Somerset, UK (latitude:
51.4237; longitude: − 2.6711). We also deployed
a weather station to record meteorological vari-
ables at the site of the hive. Both devices fed data
into a central database for data storage and subse-
quen t quan t i t a t i v e ana l y s i s ( f o r f u l l
methodological detail, see supplementary online
material). The aims of this study are to investigate
the influence of weather on bee foraging activity
and to explore the utility of predictive modelling
for commercial honey bee health monitoring.

We present data from experimental periods
covering two foraging seasons: July–September
2013 and June–September 2014, using a different
honey bee colony for each. Each colony was
housed in a standard National hive with one large
brood box and one standard super for honey stor-
age. These periods include several days reserved
for hive maintenance (Varroa treatment and other
beekeeping activities). Data from these days were
omitted from the analysis. In total, there are 42 full
days of data from 2013 and 74 full days from
2014. The omitted days were 25th July, 19th
August and 17th September in 2013, and 1st
August 2014.

We determined the correlation between each
measured meteorological variable and bee egress
rate (ER ). We then fitted a generalised linear
model (GLM) to the data. We assessed the power
of our model to predict bee activity when given
novel data, not used in the fitting of the model.
Model predictive power was assessed by examin-
ing the coefficient of determination between pre-
dicted and observed values from the novel dataset.
We discuss the possible application of predictive
modelling for real-time health monitoring of hon-
ey bee colonies in the context of the above-
mentioned automated bee monitoring services.
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2. RESULTS

2.1. Example data

Visual inspection of the data clearly shows
periods of low solar radiation and temperature
accompanied by low bee egress rate (ER). This
can be illustrated with an example: Figure 1 shows
bee activity, temperature and solar radiation re-
corded between 0600 and 2200 on June 7th, 2014.
Sunrise on this day was at 0455, but there was
significant cloud cover until shortly after 1100, as
can be seen from the solar radiation data. Follow-
ing the gradual increase in light level as the cloud
cover subsides, the bees begin to leave the hive in
larger numbers, as shown by the increase in ER.
Another drop in ER can be observed around 1330,
when cloud cover returns. ER increases again
when these clouds subside between 1400 and
1430 (Figure 1).

2.2. Initial analysis of correlation

For each day of data, we calculate the correla-
tion between temperature and bee ER, and be-
tween solar radiation and bee ER, using either
Spearman rank method or Pearson linear method.
Using Spearman’s rank correlation, we find that
RS (SolRad, ER) = 0.81 and RS (Temp, ER) =
0.83, indicating a very high positive correlation
(Figure 2). For humidity, the correlation is nega-
tive, with R S (Hum, ER) = − 0.74. Pearson’s line-
ar correlation on the same dataset is similar to
Spearman’s (RP = 0.72, 0.78, − 0.75 respectively)
indicating that the correlations are mostly linear.
We find a correlation of > 0.6 (or <− 0.6) for the
large majority of days. The other meteorological
variables measured for this experiment were not
well correlated with bee activity. Rainfall rate,
atmospheric pressure and wind speed give corre-
lations of RS (Rain, ER) = − 0.06, RS (Pres, ER) =
− 0.08 and RS (Wind, ER) = 0.42.
The variables temperature, solar radiation and

humidity are also well correlated with one anoth-
er. RS (SolRad, Temp) = 0.75, RS (SolRad,
Hum) = − 0.63 and RS (Temp, Hum) = − 0.82.
Colinearity between predictor variables can lead
to increased uncertainty when calculating regres-
sion coefficients. To measure this uncertainty, we

calculated the variance inflation factor (VIF) as-
sociated with each variable. All predictor vari-
ables had a VIF of less than 3, below the accept-
able maximum value, which varies in the litera-
ture between 10 (e.g. Kennedy 2003) and 4 (e.g.
Pan and Jackson 2008). This means that the co-
linearity between the predictor variables does not
significantly affect our confidence in the calculat-
ed model coefficients.

2.3. Model results

Before fitting our models, we split our dataset
into two, with 90% of the samples placed in a
training dataset and the remaining samples into a
validation dataset. The training set is used to per-
form the model fitting. The resultant model is then
evaluated using the values of the predictor vari-
ables in the validation set, and the predicted ER is
compared to the observed values. We measured fit
quality using the coefficient of determination (R 2)
between the predicted and observed values.

To be able to create a single model for multiple
hives, we needed to correct for the difference in
overall hive population between each hive or else
ER for high population hives would be
underestimated and low population hives would
be overestimated (Figure 3a). Since the actual
population is not known, a constant scaling pa-
rameter λ was calculated for each hive, equal to
the average of the daily maximum ER across the
entire dataset for that hive. After adding the scal-
ing parameter, the error distribution for both hives
is similar (Figure 3b). Including multiple hives
helps to decouple the model fit from specific
idiosyncrasies of individual hives (direction,
shade, wind exposure etc.).

We first created a model using just temperature
and solar radiation as predictor variables. Individ-
ually, these variables yield models with R 2 = 0.53
(temp) and R 2 = 0.37 (SR). When they are used
together as predictors, the model fit is greatly
improved (R 2 = 0.78). Figure 4a shows 8 days of
ER data from the validation set (four from each
hive), along with the predicted value from the
model. The empirical cumulative probability dis-
tribution function (CPDF) of the prediction errors
yi−ŷið Þ gives the probability that the prediction is
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accurate to within a certain number of counts
(Figure 4b, c). The σ, 2σ and 3σ confidence
bounds are also displayed to visualise the confi-
dence of each prediction. When tested against
validation data, the model’s predictions were with-
in 10 counts per minute (cpm) of the measured
value 65% of the time. It was within 39 cpm of the

measured value 95% of the time (R 2 = 0.78; σ =
10, 39, 76).

Figure 5 shows the same day of data given in
the example above (July 7th, 2014, Figure 1) with
the predicted egress rate shown against the mea-
sured one. To create this figure, the entire example
day was kept as part of the validation set and was

Figure 1. Example day of data (7 June 2014) showing bee egress rate (blue), temperature (red) and solar radiation
(orange, filled). This day began with cloud cover until shortly after 11 am. Immediately after the clouds cleared,
indicated by an increase in solar radiation then temperature, the bees begin to leave the hive at an increased rate.

Figure 2. Spearman’s rank correlation of each day of solar radiation data against bee egress rate R(S,ER) in yellow,
temperature against bee egress rate R(T,ER) in orange and humidity against egress rate R(H,ER) in blue. Boxplot
shows the median (line), interquartile range (box) and the top and bottom 1 percentile (whiskers). Outliers are
marked with black crosses. Most fall above 0.6 (or below − 0.6), which indicates a good correlation. The median
correlation is better than 0.8 for temperature and solar radiation and very close to − 0.8 for humidity.
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not used for fitting the model. Two of the key
features of this day of data are the low bee activity
until it increases sharply shortly after 11:00, and
the distinct decrease around 14:00. Both features
are clearly represented in the predicted as well as
the observed data (Figure 5).

The correlation between the actual (Act) and
predicted (Pre) values R (Act , Pre ) = 0.90
(Spearman) and R (Act , Pre ) = 0.88 (Pearson),
indicating a strong, linear correlation between
the model predictions and the actual measured
value. The geometrical features in the measured
data clearly appear in the model’s predictions
(Figures 4a and 5). Since there is no temporal
component to themodel, this shows that the tem-
poral fluctuations in daily bee activity are driven
by instantaneous fluctuations in solar energy ei-
ther as light or heat. The R 2 value for the model
was 0.78 suggesting that a majority of the varia-
tion in bee egress rate is explained by variation in
the model’s predictors. The rest of the variation
canbeencapsulatedinanoise term,whichdrawsa
value at random from the empirical cumulative
probability distribution of the prediction errors.

Importantly, this analysis does not rule out the
contribution of other meteorological variables as
determinants of bee foraging activity, but the pow-
er of this simplified model to explain the observed
data suggests that solar radiation and temperature
play a dominant role.

2.4. Ranking the contributions of each
predictor variable to the model fit

The contribution of each predictor variable is
measured as the average increase in model R 2

when the variable is used as a predictor, compared
with when it is left out. The strongest contribution
to model fit is temperature followed by solar
radiation, humidity and pressure (Table I). The
addition of pressure does improve the model fit
but only slightly: R 2 = 0.81; σ = 9, 35, 80 with
pressure included compared with R 2 = 0.78; σ =
10, 39, 76 with pressure excluded. The contribu-
tions from wind speed and rainfall are negligible.

Colinearity between temperature, solar radia-
tion and humidity introduces some uncertainty in
the relative contributions we have assigned to

Figure 3.Model prediction errors for small and large hives, and size normalisation with scale factor lambda included
as a predictor. a Distribution of errors in the predicted daily mean value of bee egress rate with temperature and solar
radiation as predictors. ER is underestimated for the smaller colony (2013, red) and is overestimated for the large
colony (2014, blue). b The inclusion of a scaling factor normalises both distributions around zero and allows for
size-independent comparison.
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them. This error is within generally acceptable
bounds (VIF < 3 for each), and it does not affect
the relative contributions assigned to rainfall,
pressure and wind speed, since these do not co-
vary with the other variables. We can therefore
conclude that while the relative contributions of
temperature, solar radiation and humidity are sub-
ject to some small error, the combined influence
of all three is the primary explanatory factor for
the observed bee foraging rate.

2.5. Model generalisation to longer time
scales

Taking a less fine-grained approach, the daily
average of both predicted and measured ER can
be determined (Figure 6). This approach can
establish whether the model’s predictions hold
on across a wider time frame, visualising the
predicted versus the actual daily averages of
bee activity (Figure 6a). The relation y = x is

Figure 4. A generalised linear model was fitted to data using temperature, solar radiation and a scale factor as
predictors, and bee egress rate as a response. a Measured (blue) and predicted (red) value for bee egress rate for
7 days of data that were not used in the fitting of the model. The grey lines show the 1σ confidence bounds of the
prediction. b Histogram of errors in the predictions, showing an exponential distribution in both the original fitting
data (blue) and the validation data (red). c Empirical cumulative probability distribution of the errors, showing a
65% chance that the prediction falls within 10 bees per minute of the measured result, and a 95% chance that it falls
within 40cpm.
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also shown (points lying on this line are perfect-
ly predicted by the model). Estimation errors are
distributed roughly around 0 (mean prediction
error = 0.3825 ± 0.07,N = 116 data points), with
a 90% chance of falling within 10 counts per
minutes of the observed value (Figure 6b, c). If
this analysis is repeated with weekly instead of
daily averages, the agreement between observed
and predicted values remains (N = 18 data
points, data not shown). This shows that the
model can be applied at different temporal res-
olutions and provide useful predictions of about
bee activity.

3. DISCUSSION

3.1. Bee hive biology and sensory ecology

We have shown that the day-to-day and
minute-to-minute variations in the number of for-
aging bees leaving the hive is well explained by
the weather conditions external to the hive. The
number of bees leaving the hive to forage is most
strongly correlated to the local temperature and
solar radiation. Continuous monitoring of these
variables along with bee egress rate allows us to
generate an accurate (within a quantified error

Figure 5. Bee egress rate for the example day from Figure 1 (July 7th, 2014) (blue), along with the model predicted
value (red). Several features of the measured data are replicated in the prediction, including low levels until 11:00 h, a
drop in ER around 14:00 and the gradual cessation of foraging after 18:00 h. Grey lines show the 1σ confidence
bounds of the prediction.

Table I. The improvement in model coefficient of determination (R 2) and Akaike information criterion (AIC) when
each variable is added as a predictor. The top row shows the improvement each individual predictor has when it is
added to a constant model, the bottom row shows the mean improvement when added to models containing every
other combination of predictors

Temp Solar Humidity Pressure Wind Rain

R 2 Improvement over constant 0.53 0.37 0.41 0.04 − 0.02 − 0.03
Average improvement 0.24 0.14 0.13 0.03 0.01 0

AIC Improvement over constant 4000 3390 3350 1210 966 863

Average improvement 1400 955 798 191 74 33
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margin) prediction for the current egress rate of
the hive. This result suggests that information
about current local meteorological conditions, in
particular, temperature and solar radiation, may be
continuously gathered by bees and used to make
decisions about whether or not to leave the hive. It
is reasonable to suppose also that similar weather-
monitoring and decision-making processes are
occurring outside of the hive, influencing deci-
sions about when to return to the hive from the
foraging trip.

At least one other study reports the use of
predictive modelling to investigate the relation-
ship between bees and local climate (Devillers
et al. 2004). These authors perform co-inertia
analysis to show that both solar radiation and
temperature data share common structure with
bee egress rate. They did not find such common
structure between humidity, rainfall and wind
speed, when compared with bee egress rate. The
radiation and temperature values are then used in a

partial least squares regression like that described
here. They produce models separately for each of
the hives in their experiment, achieving coeffi-
cients of determination of 0.62–0.72 (Devillers
et al. 2004). They suggest that barometric pressure
would be a valuable quantity to investigate, but
they did not deploy pressure sensors in their ex-
periment. Here, we include barometric pressure
data as a predictor variable, and we show that we
can mix data from two hives and produce predic-
tions for both hives using the same model.

Our results are in general agreement with
Devillers et al. (2004), though we have improved
agreement between model predictions and ob-
served data (R 2 = 0.62–0.72 for Devillers et al.,
R 2 = 0.79–0.81 in our study). This may be because
we mix training data from more than one hive
(adding a per-hive linear scaling factor to do so).
The combination of two independent hives to pro-
duce training data for our models captures more of
the possible variation in bee activity than one hive

Figure 6. Comparing model predictions to observed data on a per-day basis. b Mean daily egress rate predicted by
the general linear model against the measured value. Relation y = x is shown for comparison to perfect fit. Grey error
bars show standard error in the mean in both the actual and predicted data. b Cumulative probability distribution
function (CPDF) of the residuals, showing that 90% of the predictions are within 10 cpm of the measured value. c , d
Distribution of the residuals (xi−x̂i). The model shown includes atmospheric pressure as a predictor.
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alone can do. We also record data from two differ-
ent foraging seasons so we capture more variation
in weather conditions. Finally, we have added
pressure sensors to our experiment. Barometric
pressure accounts for an additional 2% of the var-
iation in bee egress rate when added as a predictor
variable alongside solar radiation and temperature,
suggesting that it is not an important influence on
bee foraging activity. The improvement in predic-
tive power gained from mixing the data from two
hives suggests that it may be further improved with
the addition of yet more independent hives. A
large-scale study of this kind, over several years,
with many instrumented hives is warranted.

For any predictive model to be used as an
explanation for an observed animal behaviour, it
must not require extensive processing or memory
exceeding what may be reasonably attributed to
the animal itself. At the point of evaluation, our
model is a simple function of instantaneous input
values, read directly from sensors. This has the
advantage of not having large storage and pro-
cessing requirements. There are therefore fewer
demands on bee neural circuitry to implement a
functionally similar model. This benefit also ex-
tends to the application of this model in practice:
low storage and processing requirements would
allow the creating of integrated sensor packages
that store only the pre-trained model function, and
no data, locally. This would allow for small size
and low-cost devices, which could cover more
hives for a given budget.

The predictive success of our model, despite
having no temporal component, may indicate that
bees do not need to hold past meteorological ob-
servations in memory to effectively modulate their
current foraging behaviour. Instead, it may be that
instantaneous local observations are sufficient to
generally produce effective foraging behaviour.

The sensory ecology and neurobiology of the
interaction between bees and their environment,
specifically with respect to climate, may prove to
be a promising and useful area of investigation.
We propose that further study into this matter is
timely, specifically in view of the uncertainties of
the Earth’s climate. The overall production levels
and health of bee species directly impact human
food security through pollination services (Rader
et al. 2015). More abundant and detailed

knowledge of the response of bee colonies to
changing climatic conditions could lead to better
informed conservation efforts of domesticated and
wild bees in general and improved colony man-
agement by commercial bee keepers.

3.2. Remote hive health monitoring: a
possible warning system for bee
keepers

Commercial bee keepers typically manage sev-
eral thousand hives. In 2010, in the Pacific North-
West of the USA for example, the average com-
mercial beekeeping operation maintained 3284
colonies and grossed US$488,660 in colony rental
fees (Burgett 2011). The US department of agri-
culture estimates that the cost to commercial bee
keepers of replacing lost colonies was US$2 billion
between 2006 and 2012 (Epstein et al. 2012). If the
labour cost of hive maintenance can be reduced via
automation, or if hive abandonment can be detect-
ed early, before the complete loss of the colony,
this may have a significant economic impact on the
industry. To become applicable, our model must be
generalisable to an arbitrary number of hives. To
do this, a large training data set usingmany hives in
a wide range of weather conditions would be re-
quired. If the predictive accuracy demonstrated
above with two hives holds for more hives, then
the predictions may be of general practical value.

With the availability of commercial remote
hive monitoring solutions such as Arnia® and
HiveMind®, commercial and scientific apiaries
can be readily equipped with all the sensors re-
quired to generate predictive models such as those
described here. Input from the meteorological
sensors could generate predictions for the activity
level in real time. A Bcalibration mode^ would
allow the model to train itself using incoming
data, allowing for the automatic estimation of the
parameters such as the scaling factor for each
hive. Hive activity monitoring can perform the
same analytical processes described above, except
performed dynamically using live, incoming data.

Comparison of model predictions with observed
bee count rates may indicate aberrant behaviour
such as hive abandonment, parasite infestation or
swarming. The monitoring program could easily
implement simple logical checks based on the

394 D. Clarke, D. Robert



difference between observed and predicted bee ac-
tivity. Discrepancies could be tracked over time and
simple thresholds applied to raise warnings to the
user. The severity of these warnings could be deter-
mined by the strength of the discrepancy and the
length of time over which it has occurred. Large
discrepancies on the time scale of days, perhaps
weeks, could be detected by averaging prediction
error over these time-scales. On the other hand, brief
discrepancies at the scale of minutes could be re-
corded and quantified but selectively ignored if only
transient. Warning thresholds could also be calcu-
lated automatically during calibration mode by
performing the present model analysis (Figure 5)
at multiple time-scales. First, the CPDF of the re-
siduals is calculated for a training set, then residuals
that are larger than a specified percentile would
generate warnings for the beekeeper. Confidence
in this system could save labour by reducing the
need for systematic and periodic checking of all
hives in a large commercial apiary. Rather, focused
hive inspections could be in response to specific
alerts indicating a high probability of deviation from
expected hive activity.

In our study, we did not encounter or generate
hive pathology or swarming, so we are unable to
offer empirical evidence that pathological devia-
tions can be detected with our system. Combining
experiments like those described here, with de-
tailed, manual colony health assessment could
illuminate this further.

The addition of other sensors may reveal pre-
dictor variables that were not considered here, in
particular, variables associated with the interior
of the hive. Brood temperature and sound mea-
surements have been successfully used in the
context of continuous hive monitoring experi-
ments (Dietlein 1985; Ferrari et al. 2008). It was
shown that prior to swarming, there was a sig-
nificant increase in sound amplitude within the
hive at certain characteristic frequencies, and
that hive temperature was raised by 3 °C in the
period immediately prior to swarming (Ferrari
et al. 2008). Hive sound and temperature sen-
sors, gas sensors and other continuous monitor-
ing equipment could be deployed, along with
bee activity monitors. The contribution of these
variables to model predictive power could then
be investigated.

4. CONCLUSION

The use of in-hive bee activity and meteoro-
logical sensors can be used to create predictive
models that accurately capture the behavioural
response of a bee colony to external stimuli. Here,
we have shown that bee foraging effort, measured
as the number of bees that leave the hive on
foraging flights in each minute, is tightly coupled
to the coincident meteorological conditions near
the hive. The most important of these conditions
are temperature and solar radiation. The reaction
period between changes in weather conditions and
changes in bee foraging activity is less than 1 min.
These results suggest that bees continuously mon-
itor their external environment and use the infor-
mation gained to make decisions about whether to
embark on foraging journeys. The sensory biolog-
ical mechanisms mediating this phenomenon at
the individual level of a bee, and/or level of a hive,
are not well understood and warrant further
investigation.

We suggest that the predictive modelling that
was applied here could be applied to monitor
honey bee hives in real time. In a large-scale
experiment with many hives equipped with
networked egress sensors, those hives showing
large departures from model predictions could be
manually investigated and directly compared with
those that are behaving as expected. This could
shed light on other behaviour-influencing factors
in the bees’ environment, both internal and exter-
nal to the hive. Further, such activity monitoring
approach is likely to help identify meteorological
conditions that endanger bee colonies, putting
them under metabolic stress or increasing their
susceptibility to disease. It would also help to
determine if anomalously large errors in predic-
tion correlate to hive pathologies or other aberrant
conditions which may be useful for generating
health warnings in commercial hive monitoring
equipment. The proposed activity warnings could
enhance the effectiveness and focus of beehive
healthmonitoring by reducing the need for regular
manual inspection of apiaries. Detailed investiga-
tion of coincident meteorological conditions, air
quality, pesticide presence and other potential
stressors could reveal currently unknown interac-
tions between bees and their environment.
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