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Abstract

In state-of-the-art mixed-integer programming solvers, a large array of reduction tech-
niques are applied to simplify the problem and strengthen the model formulation before
starting the actual branch-and-cut phase. Despite their mathematical simplicity, these
methods can have significant impact on the solvability of a given problem. However, a
crucial property for employing presolve techniques successfully is their speed. Hence,
most methods inspect constraints or variables individually in order to guarantee linear
complexity. In this paper, we present new hashing-based pairing mechanisms that help
to overcome known performance limitations of more powerful presolve techniques that
consider pairs of rows or columns. Additionally, we develop an enhancement to one
of these presolve techniques by exploiting the presence of set-packing structures on
binary variables in order to strengthen the resulting reductions without increasing run-
time. We analyze the impact of these methods on the MIPLIB 2017 benchmark set
based on an implementation in the MIP solver SCIP.

Keywords Linear programming - Mixed-integer linear programming - Optimization
solver - Presolve

Mathematics Subject Classification 90CO05 - 90C10 - 90C11 - 65Y05

1 Introduction

Presolve for mixed-integer programming (MIP) is a set of routines that remove redun-
dant information and strengthen the model formulation with the aim of accelerating a
subsequent main solution process, which is usually a branch-and-cut approach. Fur-
ther, presolve is an excellent complement to branch-and-cut, because it focuses on
model reductions and reformulations that are commonly not in the working space of
branch-and-cut, e.g., greatest common divisor reductions or redundancy detection.
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Presolve can be very effective, and it frequently makes the difference between a prob-
lem being intractable and solvable (Achterberg and Wunderling 2013).

Considering that presolve is undisputedly an important building block in solving
MIP problems, there exist comparatively few articles in the MIP literature. Only in
the last few years there has been a moderate increase in the number of publications
on this subject. One of the earliest contributions was by Brearley et al. (1975). Later
Johnson and Suhl (1980), Guignard and Spielberg (1981), Crowder et al. (1983), and
Hoffman and Padberg (1991) investigated presolve techniques for zero-one inequal-
ities. Savelsbergh (1994) published preprocessing and probing techniques for MIP
problems. Many of the methods published in it are now standard in almost every MIP
solver. Presolve also plays an important role in linear programming (Andersen and
Andersen 1995) and especially for interior point algorithms (Gondzio 1997). In recent
years, presolve as a research topic has become increasingly important (Gamrath et al.
2015; Achterberg et al. 2014). Finally, the very recent publication by Achterberg et al.
(2019) deserves special attention. Not only does it present many new presolve meth-
ods, but also highlights theoretically interesting details of presolve reductions and
relations to number theory.

How the presolve algorithms are implemented frequently makes the difference
between a beneficial and a harmful method. Often it is reasonable to weight the strength
of the reductions against the runtime behavior in order to rank the presolve methods
appropriately. Details on implementation of various presolve reductions are discussed
in Suhl and Szymanski (1994), Martin (2001), Atamtiirk and Savelsbergh (2005),
and Achterberg (2007). Investigations concerning the performance impact of different
features of a MIP solver were published in Bixby et al. (2004), Bixby and Rothberg
(2007), and Achterberg and Wunderling (2013). These publications confirmed that
presolve and cutting plane techniques are by far the most important components of
modern MIP solvers.

In the most simple and usually fastest case, individual rows or columns are con-
sidered for presolve reductions. Some interactions between reductions may take place
through, e.g., tightened variables bounds, but strictly speaking this approach is lim-
ited to local information and thus often yields weak reductions. On the other hand
one could try to find stronger reductions by building global data structures such as
for example the clique table, which collects mutual incompatibilities between binary
variables, or by considering larger parts of the problem or even the whole problem,
which generally leads to higher runtimes.

It is therefore important to strike a good balance between effectiveness and com-
putational overhead. One way to achieve this would be to examine two rows or two
columns simultaneously. Bixby and Wagner (1987) published an efficient algorithm
to find parallel rows or columns of the constraint matrix. Multi-row presolve reduc-
tions were also the subject of research in Achterberg et al. (2014), where they derive
improvements to the model formulation by simultaneously examining multiple prob-
lem constraints. Finally, considering more than one row or column at a time allows
more techniques to be used. For instance, matrix sparsification techniques as described
in Chang and McCormick (1993), Gondzio (1997) and, more recently, Achterberg et al.
(2019), cannot be applied when considering only one row or one column at a time.
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In many of the publications mentioned above, amazing results have been achieved
with presolve reductions for solving MIPs. However, these results often are closely
related to the exact details of the underlying implementation. In particular, two-row
or two-column techniques immediately raise the question of how to find promising
pairs of rows or columns as simple enumeration of all combinations is usually too
computationally expensive in a presolve context. In most publications there is no
answer to this question. Therefore, in this article we develop two efficient methods for
determining suitable pairs for presolve reductions via hashing methods (Knuth 1998).
In addition, we describe new presolve approaches or extensions of existing techniques
that, to the best of our knowledge, have not been published yet.

The paper is organized as follows. Section 2 introduces the notation and some
basic concepts used in the remainder of the paper. Sections 3—5 constitute the main
part of the paper. Five new presolve approaches or extensions of already published
methods are described in Sect. 3. The first two methods deal with sparsification of
the constraint matrix, two more methods focus on bound tightening, and the method
presented last is a dual approach resulting in variable and constraint fixings. Next, in
Sect. 4, we describe the hashing methods we use to address the question of finding
promising pairs of two rows or columns of the problem for the previously presented
presolve methods. Subsequently, Sect. 5 provides computational results to assess their
performance impact. Finally, we summarize our conclusions in Sect. 6.

2 Notation and background

This document builds on the following notation. Let A = {1,...,n} and M =
{1,...,m} be index sets. Given a matrix A € R"™*", vectors c € R", b € R",
e (RU{—oo})", u € (RU {oo})", variables x € R" withx; € Zfor j € Z C N,
and relations o; € {=, <, >} forall i € M of A, a mixed-integer program (MIP) can
be formulated in the following form:

min ¢'x

s.t. Axob, 0
Cj<xj<u; foralljeN,
x; €l forall j € 7.

The set of feasible solutions of (1) is defined by
Pvip = {x e R" |Xj eZVj EI/\A)CObAﬂj =xj Suj‘v’j GN}

In addition, we define the set of feasible solutions of the linear programming relaxation
of (1) by

PLp:Z{xERn|Axob/\Zj ijfuj\?’je./\/}.
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The single coefficients of A are denoted by a;; withi € M and j € N. We use the
notation A;. to identify the row vector given by the i-th row of A. Similarly, A_; is the
column vector given by the j-th column of A. Let R € M and V C N, then Agy
denotes a matrix consisting of the coefficients of A restricted to the row indices i € R
and column indices j € V. Similarly, xy denotes the vector x limited to the index set
V.

In some cases, we consult the support function which determines the indices of
the nonzero entries of a vector. With supp(A;.) = {j € N | a;j # 0} we denote the
support of row A;.. Correspondingly, supp(A.;) = {i € M | a;; # 0} designates the
support of column A_;.

Depending on the coefficients of the matrix A and the bounds of the variables x,
the minimal activity and maximal activity for each row i € M in (1) are given by

inf(Aix | € <xj <ujVjeNy= Y ajli+ Y aiju; )
jeN jeN
a,-j>0 al-j<()
and
sup{A;x | €; <x; <u;VjeN}= Zaijuj—i-zaijﬁj, 3)
jeN jeN
a;jj>0 a;j<0

respectively. As infinite lower or upper bounds on the variables x are allowed, infinite
minimal or maximal activities may occur. To simplify notation we write

inf(A;yxy) := inf{A;yxy | £ <xj<u;jvVje Vi
sup(Ajvxy) :==sup{A;vxy | €; <x; <u;VjeV}

for row i and a subset V € N of variable indices, in order to refer to partial minimal
and maximal activities. This coincides with (2) and (3) for V = N.
Consider an inequality constraint

Aijvxy +aijx; > b;
where i € M, j € N,V =supp(A;.) \ {j}, and a;; # 0. Before deriving bounds for

X j, an important question is how to determine bounds Eiv , ulv € RU {—o0, oo} with
reasonable computational effort such that

¢/ < Ayxy <u)
holds for all x € Pyp. There are various possibilities in order to achieve this and the

most simple approach for single-row presolve is to optimize in linear time over the
bounding box, i.e.

eV = inf(A;jyxy), ulV = sup(A;jyxy). “4)

1
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It ulV is finite, we can determine bounds on variable x ;. Depending on the sign of a;;
we distinguish two cases. For a;; > 0 a valid lower bound on x; is given by

xj > (b —ul)/a; (5)
and hence, we can replace £; by
max{¢;, (b; —u})/ai;}. 6)
Analogously, for a;; < 0, a valid upper bound on x; is given by
xj < (bi —ul)/ai; )
and hence, we can replace u; by
min{uj, (b; —u')/aij}. ®)
If x; is an integer variable, we replace (6) by

max{¢;, (b; —u)/a;;}] ©)

and analogously (8) by
[minu, (b —u])/aij}). (10)

The observations above together with (4) can be used to realize an approach called
feasibility-based bound tightening (FBBT), which is an iterative range-reduction tech-
nique (Davis 1987). Itinvolves tightening the variable ranges using all of the constraint
restrictions. This procedure is iterated as long as the variable ranges keep changing.
FBBT might fail to converge finitely (see Achterberg et al. (2019)). Therefore, in
practice one stops iterating when the improvement after one or several iterations is too
small, an alternate approach to deal with this special case is described in Belotti et al.
(2010).

Instead of trivially optimizing over the bounding box one could calculate

ZZ.V = min{A;yxy | x € Pyrp},

uiv = max{A;yxy | x € Puip}-

However, this approach would usually be very time consuming as it amounts to solving
problem (1) with a different objective function. A lightweight alternative to solving
the complete MIPs is to only consider the linear programming relaxation

¢/ = min{A;vxy | x € PLp},

ulV = max{A,-VxV |x S PLP}-

Still, this procedure is often too time-consuming.
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A more reasonable compromise between computational complexity and tightness
of the bounds is to use only a small number of constraints of the system instead of all
constraints over which we maximize or minimize. This can again be done via solving
a MIP or an LP. If we just use a single constraint, then solving the corresponding LP is
of particular interest, since such problems can be solved in linear time in the number
of variables, see Dantzig (1957) and Balas and Zemel (1980).

A closely related procedure is the so-called optimization based bound tightening
(OBBT), which firsthas been applied in the context of global optimization by Shectman
and Sahinidis (1998) and Quesada and Grossmann (1995). Here, the block we want
to minimize and maximize consists of just one variable:

min{xj | x € Pymrp) < xj < max{xj | x € Pyrp).

Again, instead of solving the full MIP one can solve any relaxation of the problem to
obtain valid bounds for x;.

Presolve methods can be classified into two groups: primal and dual presolve
methods. Primal presolve methods derive reductions based on the feasibility argument
and thus are valid independently of the objective function. In contrast, dual presolve
methods derive reductions by utilizing the information from the objective function
while ensuring at least one optimal solution is retained, as long as the problem was
feasible.

3 Two-row and two-column presolve methods

In this section we will outline five presolve methods for which we developed the
pairing mechanisms following in Sect. 4. First, Sect. 3.1 presents a primal presolve
method to increase sparsity of the constraint matrix by cancelling nonzero coefficients
using pairs of rows and the method in Sect. 3.2 extends this idea onto using columns
for nonzero cancellation. The next two primal presolve methods, outlined in Sects. 3.3
and 3.4, improve variable bounds via FBBT on pairs of rows. Although these two
methods work in a similar way, they have different advantages. In short, the method
in Sect. 3.3 is easier to implement and can be applied to single variables but cannot
tighten bounds on all variables present in the involved constraints. Finally, Sect. 3.5
presents a way to reuse the method presented in Sect. 3.4 in order to improve a dual
presolve method.

3.1 Two-row nonzero cancellation

This presolve method tries to find pairs consisting of an equality and a second constraint
such that adding the appropriately scaled equality to the other constraint sparsifies
the latter by cancelling nonzero coefficients. This approach to reduce the number of
nonzeros in the constraint matrix A has already been used by Chang and McCormick
(1993), Gondzio (1997) and, more recently, Achterberg et al. (2019). More precisely,
assume two constraints
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Ajyxy + Ajvxy + Aiwxw = b;,
Aruxy + Arvxy + Aryxy o by,

with i, r € M and disjoint subsets of the column indices U, V, W, Y C N. Further,
assume there exists a scalar A € R such that A,y — AA;y = 0and A, — LAjr # 0
for all k € V. Subtracting A times the equality i from constraint r yields

Ajuxy + Ajivxy + Ajwxw = b;,

11
(Ary — AAjv)xy — AMjwxw + Aryxy or by — ADb;. (i

The difference in the number of nonzeros of A is |U|—|W/|. Since the case |U |—|W| <
0 does not seem to offer any advantage, the reduction is applied only if the number of
nonzeros actually decreases. In all cases, this procedure takes at most O (J\]) time.
For mixed-integer programming, reducing the number of nonzeros of A has two
main advantages. First, many subroutines in a MIP solver depend on this number.
In particular, the LP solver benefits from sparse basis matrices. Secondly, nonzero
cancellation may open up possibilities for other presolve techniques to perform useful
reductions or improvements on the formulation. One special case occurs if W = {,
that is, the support of the equality constraint is a subset of the support of the other
constraint. This case is of particular interest because decompositions may take place.

3.2 Two-column nonzero cancellation

This presolve method extends the idea of the previous presolve method onto columns,
i.e. we now aim for nonzero cancellations based on two columns of the constraint
matrix A. To be more precise, consider the sum of two columns of problem (1)

Ayj Ay

Ayj Avi
X + Xk, 12

Ay

where j,k € N and U, V, W, Y € M are disjoint subsets of the row indices. We
first discuss the case where x; is a continuous variable. Suppose there exists a scalar
A € Rsuchthat AAy; — Ayr =0, LAy — Ay # 0. By rewriting (12) as

AUj
AVj AVk — )\.AV]'
Xi+ Axg) + Xk,
AWj ( J k) _ )\.AWj k
Ay

and introducing a new variable z := x; + Axy, we obtain
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Ayj

Ay Ay — MAy;

Aw; zZ + — AAwj Xk (13)
Ay

From the definition of z, it follows that the lower and upper bounds of z are

o | G+l fora >0, o Jujtdug, for i >0,
ST 4+ Aug, for <0, 7 \uj 4+ by, fori <0,

respectively. However, in order to keep the bounds of £; < x; < u;, the constraint
0j <z—hxr <uj (14)

needs to explicitly be added to problem (1). As is the case for the sparsification
method from Sect. 3.1, the new representation consisting of (13) is of interest when
|U|—|W] > 0holds. One difference to the row-based version is that the reformulation
contains the additional overhead of adding the constraint (14) to the problem (1).
However, if x| is a free variable, i.e. £ ; = —oo and u ; = oo hold, the constraint (14)
is redundant and does not need to be added to the problem (1). When the bounds of x;
are implied by the constraints and the bounds of other variables, x; can also be treated
as a free variable. In this case one speaks of an implicit free variable.

We now consider the case where x; is an integer variable. To maintain integrality, we
require that x is also an integer variable and A is an integral scalar. This guarantees that,
when reversing the transformation during post-processing, we can obtain an integral
value of x; from the values of x; and the new integer variable z.

Note that applying this presolve method to the problem (1) can be seen as applying
the row-based version to the associated dual problem. Therefore it takes time linear
in the number of constraints, i.e. its time complexity is O (] M|). Due to the additional
overhead resulting from constraint (14), the difference in the number of nonzeros
|U| — |W] is generally required to be larger than in the row-based method.

3.3 LP-based bound tightening on two constraints

The idea of using two rows of the constraint matrix A to determine tighter variable
bounds or redundant constraints has already been described in Achterberg et al. (2019).
We will first present the presolve method and then discuss an important observation
to omit unnecessary calculations.

Consider two arbitrary constraints of (1)

Aryxy + Ayyxy > by,
Asyxy + Aswxw = by,

where r,s € Mand U, V, W C N. Note that for any i € M with o; € {<, =} the
corresponding constraint can be normalized to be of the form above. Together with
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the variable bounds ¢ < x < u we exploit the special form of the two constraints to
set up the following two LPs

Ymax = max A,yxy
s.t. Asuxy + Agswxw > by
L <x<u,
Ymin = min A,yxy
s.t. Asuxy + Agswxw > by
L <x<u.

15)

As shown in Dantzig (1957) and Balas and Zemel (1980), each of these problems
can be solved within linear time. Provided we have finite values for ymax and ymin,
i.e. the above problems have been feasible and bounded, the results can be used to,
again in linear time, derive potentially stronger variable bounds and detect redundancy
of constraint ». Bounds on variables x;, j € V, can be calculated via (16) where
V' = V\ {j} and constraint r is redundant if condition (17) holds. Note the similarity
of (16) to (5) and (7), where sup(A,yxy) is replaced by ymax as well as the fact that
Ymax 18 at least as strong, and potentially stronger, as sup(A,yxy).

br—sup(A, y/Xy/)—Ymax

X; > - , fora,; >0
’ by —SUp(A oty ! (16)

Xj S » —Sup ravr;xv/ Ymax , fOI' arj < 0
inf(A,vxy) > by — Ymin (I7)

Note that the roles of the rows r and s are interchangeable. As the following lemma
shows, bound tightening on the constraints » and s may only improve the bounds on
variables x;, j € V if there exists at least one variable x;,7 € U with a,; < 0 < ay;
orag; <0 < ay;.

Lemma 3.1 If for all variables x;,i € U, the corresponding coefficients a,; and ag;
are either both non-negative or both non-positive, then inequality (16) cannot improve
the bounds on the variables x, j € V, over regular FBBT on constraint r.

Proof Let x;,i € U be a variable such that its coefficients a,; and a,; are both non-
negative. In this case, setting the variable x; to its upper bound maximizes the value
of ymax and also contributes most to satisfying the constraint A;yxy + Agwxw > by.
Analogously, a variable with non-positive coefficients a,; and ay; should be set to its
lower bound. Hence, the value ymax of the optimal solution coincides with sup(A,yxy)
such that (16) yields the same bounds as (5) and (7) on constraint r. O

The lemma above shows that in order to improve the bounds over what can be
achieved using FBBT on a single constraint, it is of crucial importance to find pairs of
inequalities that contain variables such that their respective coefficients have opposite
sign.

Remark 3.2 By rewriting the objective function for ynj, as max —A,yxy we can,
by the same arguments as in Lemma 3.1, reason that equal signs are advantageous
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for detecting redundant constraints. Since we focus on bound tightening, we did not
continue this line of thought in this work, but it certainly is an interesting experiment
for future research.

Next we give an example to further illustrate the basic idea as well as the statements
made in Lemma 3.1 and Remark 3.2.

Example 3.3 Consider the following two constraints

X1 4+ 2x2 + 3x3 + 2x4 > 4,
x2+ x3+4+ x4>2,

with x1,...,x4 € [0,1], U ={2,3,4}, V = {1}, and W = (. Then we get ymax = 7
and ymin = 4 and applying (16) and (17) yields

x1>4-7=-3

0>4-4=0.

Therefore, the lower bound of x| could not be tightened over simple FBBT on the
first constraint, but we have detected that the first constraint can be removed from the
problem as it is redundant with the second constraint.

If we keep the variable bounds and change the problem to

x1 + 2x2 + 3x3 + 2x4

Z 47
—X2 — X3 — X42=

-1,
we obtain ymax = 3 and ymin = 0. Again, we apply (16) as well as (17) and get

x1>4-3=1
0>4—0=4.

In this case, due to opposite signs for coefficients appearing in both constraints, we
were able to tighten the lower bound on x1, but the first constraint is no longer redundant
with the second one. Note that FBBT on the first constraint would still yield —3 as
lower bound on x;.

In certain cases, presolve methods interact with each other. This is one reason why
different presolve methods are often grouped by their runtime behavior and executed
in repeated rounds (Gamrath et al. 2016). Of particular interest are cases where one
method generates a structure that helps another method to perform further useful
reductions. As an example, we will look at an interaction between the method of
Sect. 3.1 and the method described here.
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Example 3.4 Consider the following problem:

min  xj; + x2 + x3 + x4 + x5 + X6 + X7

s.t.  x1 +x3 4+ x3 + x4 + x5 > 10
—X1 — X2 +x6 —x7> 6
— X4 — X5 =—4

X1, X2, X6, x7 € [0, 10]
X3, X4, x5 > 0.

With U = {1,2}, V = {3,4, 5} and W = {6, 7} we perform LP-based bound tighten-
ing for the first and second constraints as follows:

Ymax = Max xj + x2
st. —x1 —x2+x6—x7>6
X1, X2, X6, x7 € [0, 10]

to obtain yma,x = 4. Now we would like to determine a tighter lower bound on x3, but
this is not possible as sup(x3 4+ x4) = 0o. However, if we first use the presolve method
of Sect. 3.1 and add the equality to the first constraint, then the variables x4 and x5
disappear. As a results, we obtain x3 > (6 — ymax)/1 = 2.

3.4 Bound tightening on convex combinations of two constraints

Belotti (2013) presented an algorithm to efficiently derive bounds for all variables
from the LP relaxation of the problem

A, x > b,
Ag.x > by
L<x<u

xj €ZNjeICN,

(18)

where r, s € M. Note again that for any constraint i with o; € {<, =} the correspond-
ing constraint can be normalized to be of the same form as constraints r and s above.
We will first summarize the original method and then discuss an extension onto two
rows together with disjoint set packing constraints.

3.4.1 Basic bound tightening on convex combinations of two constraints

The basic idea is to reformulate the problem using convex combinations of the two
constraints in (18). Let A € [0, 1], for the convex combination of the coefficient
vectors we write @’ (1) := AA,. + (1 — M) Ay. and b5 () := Ab, 4+ (1 — A)by for the
convex combination of the right-hand side. For single indices j € N or index subsets
V C N we write Ez;s (1) and ay; (1), respectively, to address the corresponding entries

of @”* (1). One may now perform FBBT on the combined constraint a"* (\)x > b"* (1).
Note that for A € {0, 1} this cannot improve the bounds over FBBT on the original
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constraints, and we therefore restrict ourselves to A € (0, 1). In short, possibly stronger
variable bounds [£, i ;] on a variable x; can be derived by solving the following one-
dimensional optimization problems:

Z,-:max{Lf(” e 1)Aarf(x)>o} (19)

@ () I

ii; = min { Lit oy ra o) < 0} (20)
J &;S()\) ’ ] ’

where
Lj() = D" () = sup(@"” Q)N (12X (j))-

Belotti (2013) has then shown that these problems can be solved by evaluating
the piecewise linear L ;(A) for a small finite set of values for A, namely the set of all
breakpoints of L (). The next proposition summarizes the result.

Proposition 3.5 The set
A={Le0,1)]3jeN: &?S(A) = OAEL?S(A*) #O0O VA" #£ A, A" € (0, 1)}

contains all optimal solutions to the problems (19) and (20).

Note that problems (19) and (20) may not have optimal solutions or are unbounded.
However, these edge cases, which are discussed in more detail in the original paper
(Belotti 2013), do not affect the overall viability of this approach.

Computing L ; (1) for all variables and each A € A individually would result in an
algorithm with running time in O(|N|?). However, it is possible to simultaneously
solve the optimization problems for all variables in time in O (|]A/|?) by using constant-
time update operations foreach . € A instead of recomputing each L ; (1) individually.
We will outline the basic idea as well as the core operations; for full details of the
algorithm, see Belotti (2013).

Denote A = {Ay,... Az} suchthat0 < A; < --- < Az < I and let A € (0, A1).
We define

L= br— Z arjuj — Z aijj

a;S(X)>0 a;fd)<0
Lf = bs— Z asjuj — Z asjﬂj,
&;S(i)>0 a;é‘(i)<0

which, not using 5», can be rewritten as

L = b, — > arju; — > aril; Q1)

asj>0V(asj=0Aa,;>0) asj <0V (agj=0na,;<0)
jesupp(A,.) Jjesupp(A;.)
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L* = by — Z asjuj — Z asjl;. (22)

axj >0 axj <0
Jesupp(As.) Jesupp(As.)

Since the signs of @’* (1), j € N do not change between 0 and 1, we can compute
L) forall j € N, i € [0, ] via

Lj() =AL" 4+ (1 =)L + a7’ (Wd;
. ifa () >0
T e, if @t (1) <0.

In other words, if L” and L* are given and A € [0, A;], we can compute bounds for a
variable x; in constant time using (23) if Zz;s (A) > 0 and (24) if Ez;s 1) < 0.

AL 4 (1= WL + @

P> 23
Xjz R (23)
AL" + (1 —M)LS + c_l;s(k)ﬁj
X = 24
a; A)

In order to derive bounds for A € [A, A2] we need to first update L™ and L*. More
precisely, for each variable x;, j € N with c"z;s (A1) = 0, i.e. each variable whose
combined coefficient switches sign in 11, we need update L" and L* via (25) and
(26) respectively. If a combined coefficient changes sign from positive to negative,
we need to set the corresponding variable from its upper bound to its lower bound.
Analogously, a variable needs to be set from its lower bound to its upper bound if its
combined coefficient changes sign from negative to positive.

L" <L"+a,;é (25)
L' <L* +ays (26)

5— uj—4L;, ifa; <0 <ay,
Li—uj, ifas; <0 <ay

Iteratively repeating the bound calculations and updates for all A € A solves the
problems (19) and (20). To summarize, we state the resulting procedure in Algorithm 1.
For more details, especially on implementation, see Algorithm 1 in Belotti (2013).
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Algorithm 1: Combinelneqs(A,., Ay., by, by, £, u)

1A <~ {20, 1)]|@3FjeN: &;S(A) =0/\Zz;‘v()\*) #0VA* £ A, A% € (0, 1)}
2 denote A = {Ay, .. AA} s 2.0 <A <. <Ajp <1

3 initialize L" and L® via (21) and (22)

4 foreach j € N do

5 E/ < —00

6 uj <~— o0

7 foreach k € {1, ..., |A|} do

8 | foreach j € N do

9 if ZJ;S (M%) > 0 then

ML H(1=2) LS+ (Mu,j

10 ‘ £; < max {{;, 70 }
11 if d;s (M%) < O then

N . ALTH(=n)Lf+a’t (M
12 uj < min{u;, 7 J }
13

14 | update L", LS via (25) and (26)

5 return [Z_ ,ul

—

3.4.2 Further improvement via disjoint set packing constraints

In this section, we show that Belotti’s approach can be extended to derive bounds from
Problem (18) together with an arbitrary number of disjoint set packing constraints of

the form
doxj<l VS, eS
J€Sp (27)
xj€f{0,1} VS, eSVjesS,,
where S = {S1, ..., |5} is a partitioning of a subset of the integer variable index set

Z. More precisely, for A € (0, 1) we want to derive bounds from the problem

asx = b" )
<x<u
(27
xj€ZVNjeICN.

(28)

To further simplify notation, we write § := (Jg .5 Sp and T := N\ S.

In the following two examples, we illustrate the effect of the addition of set packing
constraints and then proceed to analyze how Belotti’s algorithm needs to be adjusted
in order to achieve these results with minimal additional computational effort.
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(a) Lower bound on z3 depending on A computed (b) Lower bound on x4 depending on A computed
via (29) (G J— via (31) (32) mmmm-

Fig. 1 Bounds on variables x3 in Example 3.6 (left) and x4 in Example 3.7 (right)

Example 3.6 Consider the following mixed-integer problem

2x1 — xp +x3>1
—Xx1 + 2x3 +x3>1
X1+ x <1

X1, X2 € {09 1}5 X3 € [_27 3]
with one set packing constraint. Figure 1a shows a comparison between

—1+43x,  ifre(0,4]
= L3(3) = {0, if 2 € (3, 31 (29)
2-3,  ifrae3 1),

L3z(2)
az ()

which results from applying the original method presented in 3.4.1, and solving the
following optimization problem for A € (0, 1).

min x3
sit. Br—Dx; + 2—=30)x2 + x3 >
X1+ X2 <1
x1,x2 € {0, 1}, x3 € [—2, 3]

(30)

Whereas the original method cannot tighten the bound at all, when considering
the set packing constraint we get a positive lower bound on x3 for A € (%, %). First,
this illustrates one case for which adding a set packing constraint indeed yields a
better bound on x3. Second, the example shows that the set A needs to be extended
as it no longer contains all optimal solutions to (30). In this example, there is the
new breakpoint A = % where we have a; (%) = % = Ezz(%). This new breakpoint is
clearly visible in Fig. 1a. We will see later, that at all new breakpoints A* the index
argmax ;g {a;(1)} changes between A < A* and A > A*.
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Example 3.7 Consider the following mixed-integer program

X1 4+ 3x2 — x3 4+ 2x4 > 4,
2x1 — 2x2 4+ 3x3 + 3x4 > 3,
X1+ x2 4+ x3 <1,
X1, X2, X3 € {0, 1},)64 € [0,4].

Again, Fig. 1b shows for A € (0, 1) the comparison between the results obtained by
the method presented in 3.4.1, i.e.,

La(h —
La) _ 2, ifre 3] 31)
as(x) 3-32 3
3500 if L e (4, 1]
and solving
min x4
st CQ=Mx1 +GA=x+ B —4M)x3 + B —Mxg =3+ 2 32)
X1 + X2 + X3 <1

X1, x2,x3 € {0, 1}, x4 € [0, 4].

Similar to the previous example, the set packing constraint allows us to derive stronger
bounds. Whereas the original method yields a lower bound of % for A = %, the set
packing constraint allows us to tighten that bound to 1 for A = % and we get new
breakpoints again, namely A1 = % and Ar = % Note that for these breakpoints we
also have a; (%) = % = ﬁ3(%) and &1(%) = % = Ezz(%) respectively. As a final note,
while L ;(A) and c'zr ¥(A) are always (piecewise) linear, this does not necessarily hold

( )
AN

for the quotient x5

Note that in both examples we have strengthened the bounds of a variable that did not
appear in any set packing constraint. In the following, we assume j € T, i.e. the vari-
able x; is not present in any set packing constraint. For a variable x;, j € S,, S, € S,
we can still derive bounds by simply relaxing the corresponding set packing constraint
10 ) res A kS < 1. At the end of the section we present derivations that are stronger
than what is achievable by relaxing the set packing constraint.

Let j e T. Since for each subset S, € S we can choose at most one variable
Xk € §) to be set to one, we obtain, for any given A € (0, 1) with Ez;s (A) > 0, valid
bounds by

(b”()») sup(aT\{]}(A)xT\ ) — Z max 0 max{a (k)}}), (33)

Xj =z —rS()\')
SpeS
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and analogously for A € (0, 1) with d;s (L) < 0 we have

e 5 (" (r) — sup(@z j ()xr\(j)) — Z max {0, ?é%’;{élis()‘)}})' (34)
J SpesS
Note that (33) and (34) solve, in their respective cases, the problems min x;, s.t.
(28), as well as max x;, s.t. (28) to optimality. This also shows that for any given
A € (0, 1) the set packing constraint corresponding to a subset S, € S is redundant
if and only if Ez;s (A) > 0 holds for at most one index j € S,. To simplify notation,
define

@, (1) := max {0, max{a;’ (V)}}, VS, € S,
keSp

L) = b (A) = sup(@y ;;(Wxrjp) — Y @p().
Spes

Transferring bounds (33) and (34) to the problems (19) and (20) then yields

E_j =max{_/s( ) | X e (0, 1)/\&”()»)>0} (35)
aj()

w

itj = min _rs()|)\e(0 1)/\a i) <0 (36)

Similar to problems (19) and (20), the problems (35) and (36) may not have optimal
solutions or are unbounded and again, these edge cases do not affect the overall viability
of this approach, and hence we restrict ourself to cases where these problems are
bounded and have an optimal solution.

In order to show Belotti’s algorithm can be extended to the problems above we
prove that for solving these problems a linear number of evaluations of I'j (1) suffices.
As a first step to prove the analogue of Proposition 3.5 for the problems (35) and (36),
we show that I'; (A) is, just like L j (1) in the original case, a piecewise linear function
and determine all its breakpoints.

Lemma3.8 Forany j € T, the functionT"j () is piecewise linear on its domain (0, 1)
and the set

A:=AU{e©.1)]3S,eS:3k eS8, k#1: @M =a’h)=2o,0%)
ANGEL) £ ar W)V £ x A € (0, 1))

contains all its breakpoints.

Proof Each ®,(1), S, € S,isdefined as the maximum over the constant zero function
and the set of the linear terms Ez,ﬁs (A), k € S, and is hence piecewise linear. Conse-
quently, we have that I";(A) is piecewise linear as the sum of linear and piecewise
linear functions.
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By the same arguments as in the original case the set A contains all breakpoints
of b (A) — sup(c_l;s\“}(k)xr\{j}). Let A* € (0, 1) be a breakpoint of ®,(1). We
distinguish two cases:

(i) ®,(1*) = 0: In this case some @, (1) intersects the constant zero function in 1*.
More precisely, there exists some k € S, with @;* (A*) = 0 A a;* (L) # 0 VA #
A*, & € (0, 1), and hence, A* is, by definition of A already contained in A.

(ii) ®,(A*) > 0: Here we have an intersection between two a;*(1), i.e. there exist
distinct indices k,/ € S, with @;*(A*) = a;*(A*) = ®,(1*) and a;* (1) #
a;®(A) YA # 1%, A € (0, 1). Therefore the breakpoint A* is also contained in A
which completes the proof.

m}

Note that |A| is linear in the number of variables since the set packing constraints
are disjoint. Further, the set A can be computed in time in O (|| log |N]). A simple
well known algorithm for this would be the following. For each S, € S we first sort
the linear functions @;° (), k € S, by their gradients a,; — as. For the a;* (1) with
the smallest gradient we then have a;° () = ®,(A) for small enough values of A.
From there, go through the remaining a;* (1) in ascending order of their gradients and
iteratively compute the next breakpoint. Since each a;* (1) needs to be considered at
most once, the total running time is in O (|N|log| ).

Theorem 3.9 If an optimal solution to Problem (35) exists, then at least one optimal
solution is also contained in A. The same statement holds for Problem (36).

Proof By Lemma 3.8 the set A contains all breakpoints of the piecewise linear I ).
Together with a"¥ (1) being linear, we established the same conditions as in the proof
of Proposition 3.5. The remaining proof of this theorem is then identical and can be
found in full detail as proof of Proposition 1 in Belotti (2013). O

To extend the original algorithm for computing bounds one now proceeds as follows.
First, the extended algorithm must compute L” and L* in a slightly different way. For
easier notation, let k, € S, be the index of a variable Xic, with s, = MaXjes, {as;)
and Ari, — Asi, = max{(a,; —asj) | j € Sp,a5; = aSKp}. In other words, of
the variables x;, j € S,, with maximum coefficient &;5 (A) we choose the one with
maximal gradient of &;S ).

ir = br — Z a,juj — Z arjﬁj — Z (I);]

agj >0V (agj=0Aa,;>0) agj <0V (agj=0Aa,; <0) S,eS
jeT jeT
L= b= D asjuj— D asitj— ) @,
as;>0 asj<0 Spes
JjeT jeT

where

3

& = {O, if Asic, < 0v (askp =0A Ari, <0)

Aric, s else
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o — 0, if ase, <0V (asc, =0 Aape, <0)
P dsi,, else

Second, the extended algorithm must compute the new set of breakpoints A which, as
mentioned above, can be done in time in O (|| log|\/|) and therefore does not increase
the total time complexity. Note that in the extension it is required to track which variable
coefficient currently determines the value of ®,(A) for each S, € S. However, this
only leads to linear computational overhead if the breakpoints and variables are labeled
accordingly while computing A. The bound calculations corresponding to (23) and
(24) as well as the updates corresponding to (25) and (26) essentially work the same
but consist of larger case distinctions due to the set packing constraints.

Before closing this section we will discuss what can be done for variables appearing
in the set packing constraints. Let j € S, for some fixed S, € Sand A € A. We
distinguish four cases.

6)) &;s X)) >0A &;X (A) < ®,(1): In this case we directly apply (33) since the right-
hand side does not involve x ;. Due to checking for a lower bound and x; € {0, 1}
we assume x; = 0 and with Zz;s (A) > 0 the expression reduces to

0>T;0). (37)

Together with the set packing constraint corresponding to S, the original problem
is infeasible if above condition does not hold.

(ii) d;s A > 0A 5;S (L) = ®,(1): Here we use a relaxation of (33) to detect
infeasibility. More precisely, we assume there exists some k € S,, k # j with
Zz;s (M) = a;*(A). Then, as in the previous case, we check for infeasibility via
(37).
A proper lower bound for the given A could be derived by strengthening the
summand @, (%) of I'; (%) to maxges,\(;}{0, max{a;* (1)} and considering the
additional breakpoints of this strengthening that may not already be contained in
A. However, we are aware of no efficient way to incorporate these calculations
without creating additional computational overhead.

(iii) Ez;s (A) < 0A P@,(A) = 0: Now the set packing constraint corresponding to S,
has no effect and we get an upper bound on x; via (34).

@iv) a’’(x) < 0 A @,(1) > 0: Any solution with x; = 1 immediately forces x; =
0,k € Sy, k # j. We can therefore adjust (34) to this case and set x; = 0 if

i)+ ®,0R) -

1
-rs
a; »)

holds. Note that a negative left-hand side does not necessarily imply infeasibility.
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Example 3.10 This example illustrates the second case of above distinction. Consider
the following mixed-integer problem.

3x1 +x2 +4x3 >3

3x1+4xp+x3>3

X1+ xp4+x3<1
X1, X2, X3 € {O, l}

By Lemma 3.8 we have A= {%, %}, and for A = % we get

3x1 4+ 3x2 +2x3 > 3
xX1+x+x3 =<1

X1, x2, x3 € {0, 1}.

Due to a; (%) =3= @(%) we can, by the second case of above distinction, check
for feasibility via

0>T (%) =0. (38)

Because of 511(%) = Zzz(%) = 3 it is not even possible to strengthen & 1(%) and
similar considerations hold for A = % However, max{0, maxy¢2 3} ax(1)}} has an
additional breakpoint at A = % for which it would be possible to tighten the lower
bound of x; to

5 1
6 (3 2)/3_6. (39)
Remark 3.11 This presolve method is very similar to the one presented in the previous
section, so we want to highlight some of the differences between them. Most impor-
tantly, the method in Sect. 3.3 can be implemented in a straightforward manner and it
is possible to punctually apply the method to single variables. However, there are two
major points that speak in favor of the method of this section.

First, the previous method is restricted to tightening bounds of variables that do
not have nonzero coefficients in both constraints, whereas this section’s method is
able to tighten bounds of all variables involved. Second, it does not seem the case
that the set packing extension translates to the presolve method from Sect. 3.3 in
a canonical way. Consider the case that all variables are binary and present in one
of the disjoint set packing constraints. Adding all the set packing constraints to the
optimization problems shown in (16) results in solving so-called Multiple-Choice
Knapsack Problems, see Sinha and Zoltners (1979), which would exceed the scope of
this paper.

3.5 Exploiting complementary slackness on two columns of continuous variables

By propagating the dual problem of the linear programming relaxation of problem (1)
appropriately, we are able to derive bounds on the dual variables. These bounds can
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be used to detect implied equalities and to fix variables in (1). This presolve method
was first published by Achterberg et al. (2019). We will first describe the basic idea
behind this method. Then we will discuss the extension to two columns. Finally, we
will go into some details of the implementation.

3.5.1 Description of the basic method

Here we want to outline the basic idea of this presolve method as it was published in
Achterberg et al. (2019). Consider the primal LP

min{c x | Ax > b, x > 0,x € RV (40)

and its dual LP
max{b'y | ATy <c,y>0,yeRMl 1)

Suppose x* is feasible for (40) and y* is feasible for (41). A sufficient condition for x*
and y™* to be optimal for (40) and (41), respectively, is complementary slackness (see
Schrijver (1986)).

It is possible to exploit certain cases of complementary slackness for mixed-integer
programs as well. Let problem (1) with o; =">" for all i € M and lower bounds
£ = 0 for the x variables be given. While considering only the continuous variable
indices S := N '\ Z and applying bound propagation on the polyhedron

P(S)={y e RM | (A5)Ty <cs.y >0}
to get valid bounds < y < u, we can make the following statements:

(i) € >0, i € Mimplies A; x* —b; =0, and
(i) ¢j — sup((A.j)Ty | ¢ <y<iu)>0,jeNimplies x; = 0.

The problem max{b " y |y € P(S)}is arelaxation of the dual LP (41), since only the
constraints that belong to continuous variables in the primal problem are considered.

Note that even if x; is an integer variable in case (i) we can fix it to its lower
bound. The statements (i) and (ii) are thus a bit of a generalization for complementary
slackness in the context of mixed-integer programming.

3.5.2 Extension to two columns of continuous variables

In order to obtain tight bounds for the dual variables we can solve for each variable
Vi, I € M two LPs min{y; | y € P(S)} and max{y; | y € P(S)}. However, in most
cases this is too costly for presolve. On the other side only considering single rows, as
shown in Sect. 2, sometimes delivers only weak bounds. A reasonable compromise is
to consider two rows of P (S) simultaneously. For this case we apply a hashing-based
approach for finding promising pairs of columns as described in Sect. 4 and reuse the
method of Sect. 3.4 for determining bounds on the dual variables y;. We illustrate the
approach by an example.
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Example 3.12 Consider the following mixed-integer program:

min 2x; + 6x2 + 8x3 — 1.8x4

S.t. — xp — 2x3 + X4

x2+2x3 — x4

X1 + 2xp +  2x4 >

X2+ x3 —0.1x4 > 0.5
X1,X2,x3,%x4 >0,x1 € Z,x2 € 7.

VIV IV

W = W

(42)

With § = {3, 4} we obtain from (42) the following polyhedron P (S):

8
—1.8 (43)

—2y1 4+ 2y; + V4
yi— y2+2y3 — 0.1y
Y1, Y2, 3, y4 > 0.

=
=<

The sign pattern of the first two columns in (43) prevents us from getting tighter bounds
while considering only single rows. Such sign patterns or jammed substructures can
only be resolved by a more global view or specifically in this case by a two-row
approach. Now using a two-row approach as in Sect. 3.4 gives us improved bounds
of y1 € [0,00], y2 € [1.25, <], y3 € [0, 1.1], and y4 € [0, 5.5]. The lower bound
lh=125>0 implies that constraint x +2x3 — x4 > 1 becomes an equality. Finally,
c1 — sup((A.l)Ty) =2—1.1 > 0implies x; = 0.

It should be noted that it would also be possible to use the presolve method described
in Sect. 3.3 to determine tighter bounds for the dual variables. However, this was not
done, because the presolve method shown in Sect. 3.4 always delivers bounds that
are at least as strong as the bounds determined by LP-based bound tightening on two
constraints.

3.5.3 Implementation details

In order to further improve runtime behavior for this method it is advantageous to
consider only a subset of the continuous variables to tighten the bounds of the dual
variables y. Consider a continuous variable x;, j € N \ Z, with an explicit upper
bound. We can imagine this as an additional constraint, i.e., —x; > —u; > —o0. The
corresponding dual variable, say y;, is a singleton column in the dual formulation or
in other words | supp((A').;)| = 1. That is the bounds of y; can only be improved
in the dual constraint (A.;) Ty < ¢;. Unfortunately, y; has an upper bound of co and
thus the minimal activity (2) needed for propagating bounds for the dual variables yg,
k € supp(A.;) \ {i} is always —oo as y; has a coefficient of —1. Consequently, no new
bounds can be identified from this row for the dual variables yi, k € supp(A.;) \ {i}.
In addition, the coefficient of —1 only allows the determination of a new lower bound
for y;.

At the beginning of our implementation, it is verified which continuous variable has
bounds that are implied by constraints and other variable bounds. Careful attention
must be paid to interdependencies between bounds. That is, if the redundancy of
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two bounds depends on each other, only one bound is redundant. Redundant variable
bounds are subsequently removed, which usually gives us more implied free variables
or variables with only one bound. As free variables are assigned to dual equalities and
variables with only a lower bound to dual inequalities, this results mostly in a stronger
dual formulation and therefore to tighter bounds on the dual variables. As described
above, variables with a finite upper bound are excluded from further consideration.

Let S be the set of continuous variables without unimplied upper bounds. Our
current implementation always performs FBBT (see Sect. 2) on P(S), for determin-
ing bounds on the dual variables y, which is essentially the approach published in
Achterberg et al. (2019). In addition, the current implementation in SCIP uses the
previously described two-row approach directly before FBBT. In order to exclude
unfavorable situations as shown in (43) the pairing mechanism explicitly searches for
jammed substructures to find matching pairs of rows. This makes it possible that the
bounds calculated in the two-row approach can be exploited and further tightened in
a subsequent FBBT realization.

4 Pairing methods

A straightforward exhaustive search for suitable pairs of rows or columns to which the
presolve methods presented in the previous section can be applied may be expected
to be impractical due to the quadratic complexity in the number of constraints or
variables. Preliminary tests during development of the methods have confirmed that
running the presolvers on all possible pairs is prohibitively expensive in terms of
runtime and memory requirement. As a result, many problems would run into time or
memory limits during presolving. Therefore it is important to avoid excessive usage
of computational resources by setting working limits and to restrict the search to pairs
of rows or columns that are worthwhile to consider, see also Sect. 5.6. In this section,
we want to outline the hashing-based pairing mechanisms that we have developed in
order to filter out pairs that are likely or even guaranteed to not lead to reductions for
the respective presolvers.

A detailed introduction to hashing can be found in Knuth (1998). The basic idea
of our pairing mechanisms is to scan through the problem and punctually remember
promising constraints or variables in a hashlist or hashtable. We then go through the
problem for a second time and check whether the hashlist or hashtable contains a
fitting counterpart for the constraint or variable we are currently looking at.

4.1 Pair-search based on a hashtable

The presolve methods presented in Sects. 3.1 and 3.2 require a high number of matching
coefficients. To achieve a favorable trade-off between search time and effectiveness,
we use a pairing mechanism on variable pairs and constraint pairs, respectively. In the
following we explain the mechanism as used for the presolve method from Sect. 3.1
and highlight the differences to the pairing mechanism required for the other presolve
method at the end of this section.
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For each pair of variable indices j, k in each equality i, the triple (j, k, %), con-
sisting of the variable indices and their coefficients’ ratio, is used as a key to store the
quintuple (i, a;;, j, ajk, k). Efficiently storing and querying these tuples is very impor-
tant for the overall runtime behavior of the algorithm. Therefore, we use the hashtable
and collision resolution scheme described in Maher et al. (2017, Sec. 2.1.8), which
allows for constant time access under practical assumptions. If the key (J, k, %) is
already contained in the hashtable, then the entry corresponding to the sparser row
is kept. Afterwards, for each pair of variable indices j, k in each inequality r, the
hashtable is queried for (J, &, %). If the conditions a;; = a,j,aijx = ark, W =0
hold for the corresponding entry (i, a; i+ J» ik, k), then reformulation (11) is applied.
To further decrease search time, we use the following set of limits to heuristically
prevent unrewarding investigations.

First, we consider at most 4900 variable pairs per row to be hashed and added to
the hashtable. The same limit is used when searching through the inequality rows
after the hashtable is built. Further, we keep track of the number of failed hashtable
queries of the current row. If no reduction is found on the current row, we add the
number of failed hashtable queries to a global counter. If a reduction is successfully
applied to the current row, we instead decrease the global counter by the number
of failed hashtable queries of this row. The presolve method stops when the global
counter exceeds 100 -|M|. The rationale is that we want to keep going if, after many
useless calls that almost exceeded the budget, we finally reach a useful section of rows.
However, for the case that the useful section is all at the beginning and we quickly
want to quit afterwards, we do not allow a negative build-up, i.e. the global counter
remains at zero if it were to become negative.

In addition, note that a target matrix with as few nonzeros as possible does not nec-
essarily give the best results. In fact, it seems important to preserve special structures
by not applying cancellation if it would destroy one of the following properties in the
row r above: integrality of the coefficients; more specifically coefficients +1 and —1;
set packing, set covering, set partitioning, or logicor constraint types; variables with
no or only one up-/downlock (Achterberg 2007).

Also, it should be mentioned that adding scaled equations to other constraints needs
to be done with care. In particular, too large or too small scaling factors A can lead to
numerical problems. Currently, as in Achterberg et al. (2019), a limit of |A] < 1000 is
used.

For the presolve method from Sect. 3.2, we consider pairs of constraint indices
and their coefficients. The pairing mechanism itself is then identical with the role of
rows and columns being reversed. However, we only apply the reduction if we have
|U| — |W] = 100 as the reduction induces a larger computational overhead.

Finally, it is important to note that this hashing mechanism can miss possible reduc-
tions in two cases. First, a pair might not be evaluated as one of the imposed limits is
hit before it was processed. Second, the hashing mechanism disregards pairs with an
overlap of size one. This follows the intuition that the methods presented in Sect. 3.1
and becomes more powerful with increasing overlap.
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4.2 Pair-search based on multiple hashlists

The following pairing mechanism is used for the presolve methods presented in
Sects. 3.3 and 3.4. It is also used indirectly by the presolve method from Sect. 3.5
as it uses the method from Sect. 3.4 without its extension in order to derive stronger
bounds from the dual problem than could be achieved by using regular FBBT. In all
three cases, as highlighted by Lemma 3.1, it is important to find pairs of constraints
such that variables shared by the constraints have coefficients with opposite sign. In
order to do this, we devised a pairing mechanism that uses an open surjective hash
function H (j, k) for variable indices j, k € A/ and works as follows.

Step 1: Create the four sets

Loy :={(H(., k), |G jkeMxNxN:aj>0Aaj >0}
L__:={(H(,k),) |G jkeMxNxN:aj<0Aaj <0}
Li_:={(H(,k),i) |G jk)eMxNxN:aj>0Aaj <0}
L_y:={H(,k),i) |G jkeMxNxN:aj;<0Aay >0}

Step 2: Separate L., and analogously the other three sets L__, Ly_, L_, into
subsets

L%, =i | (hi) e L)

for each key value & appearing in L. In other words, Lﬁ . contains all
indices i of rows such that some variables x ;, x; had positive coefficients in
rowiand h = H(j, k).

Step 3: Foreachkey value / for which L}j_ L and L" _ have both been created, perform
the two-row bound tightening on all row pairs (r, s) € Lf‘|r L X L" . r+#s,
as this guarantees that for this row pair there exist at least two variables x ;, xj
whose coefficients a,;, asj and a,, asx have opposite sign in the constraints
r and s. This is done analogously for key values / for which L" _ and L" L
have both been created. While doing so, add each processed pair’s hash to a
hashtable. To prevent unnecessarily processing the same pairs multiple times
we query the hashtable before applying the two-row bound tightening.

In order to make this approach more efficient, several working limits are used in our
implementation. First, creating the four sets Ly, L__, L, L__ for all rows and
variable pairs is too computationally expensive. Therefore, for each row we consider
at most 10000 variable pairs and also limit the total number of variable pairs to be
considered over all rows by 10-| M |. Second, for each processed pair we check whether
new bounds have been found and stop searching if 1000 consecutively processed pairs
have not yielded tighter bounds. Third, before applying two-row bound tightening on a
row pair we check if its hash is already contained in the hashtable tracking the already
processed pairs. If 1000 consecutive pairs have been found to already be contained
in the hashtable, the method also stops. Finally, the method stops after successfully
processing at most | M| row pairs. Even if the method finds many reductions, it is
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important to prevent the method from taking up too much time. To do this, we chose
a limit which is linear in the problem size because the number of constraints in real-
world problems as well as our testset can easily range from a few hundred to multiple
millions and future instance sizes will increase even further.

Like the hashing mechanism presented in Sect. 4.1, this hashing mechanism can
miss possible reductions if one of the limits is hit or a pair has overlap of size one.

5 Computational results

In this section we will present our computational results. First, we discuss a comparison
of each individual presolve method with a baseline run where all five methods are
disabled (see Sects. 5.1-5.5). Second, we provide an evaluation of the combined
impact of all five presolve methods and confirm the importance of working limits
(see Sect. 5.6).

The methods have been implemented in SCIP 6.0.2 with SoPlex 4.0.2 as LP solver
and the computations were performed on machines running on a Xeon E3-1240 v5
CPU (“Skylake”, 4 cores, HT disabled, 3.5 GHz base frequency) and 32 GB RAM.
Aside from en- or disabling the five presolve methods and setting a time limit of
7200 s we ran SCIP on its default settings. The run with all five presolve methods
being disabled is referred to as Baseline. (Out of the five methods described in this
paper, Two-Row Nonzero Cancellation is the only one that was already included in
SCIP 6.0.2.)

Our testset is the second version of the MIPLIB2017 benchmark set (Gleixner
etal. 2019; miplib2017 2018) released in June 2019. It consists of 240 instances from
varying optimization backgrounds. To further increase the accuracy of our results we
run each instance and each setting on four different random seed initializations as well
as seed zero, which is used in the release version of SCIP. SCIP uses the random seed
initializations to affect numerical perturbations in the LP solver, for tie breakings as
well as heuristic decision rules that necessarily occur in many parts of the solving
process. Each combination of instance and seed is considered its own data point to
tackle the problem of performance variability (Danna 2008; Lodi and Tramontani
2013) where small changes which are neutral from a purely mathematical point of
view have a large impact on the performance of a MIP solver. Finally, we discard all
combinations of instance and seed where computations ran into numerical difficulties
or, as happened in rare cases, the new code revealed bugs in the existing framework.

The result tables in this section each present the comparison between two different
runs and are structured as follows. Each row presents the aggregate results on a set of
problem instances. The row all contains the entire testset. The subsets corresponding
to the brackets [#, T'] contain instances that were solved by at least one run and for
which the maximum solving time (among both runs) lies between ¢ and T seconds.
If a configuration did not solve the problem within the time limit, it is recorded as
T seconds. In this work, we set T to the time limit of 7200 s and with increasing z,
this provides a hierarchy of subsets by difficulty. In particular, the bracket [0, 7200]
contains all instances that have been solved within the time limit and deserves special
attention as it is the largest subset where computation times can be compared in a
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Table 1 Performance comparison for two-row nonzero cancellation

Subset Instances  Baseline TwoRowNonzeroCancel Relative
Solved Time Nodes Solved Time Nodes Time Nodes

All 1196 562 1368.7 7023 559 1385.1 7023 1.0l  1.00
[0,7200] 570 562 220.3 3325 559 2259 3313 1.03  1.00
[1,7200] 556 548 249.7 3601 545 256.2 3586 1.03  1.00
[10,7200] 516 508 345.0 4667 505 353.8 4645 1.03  1.00
[100,7200] 379 371 844.9 10543 368 857.6 10522 1.02  1.00
[1000,7200] 195 187 22199 36162 184 2213.7 36162 1.00  1.00

meaningful way. We then compare the number of instances that had been solved, as
well as the shifted geometric mean of solving times and branch-and-bound nodes in
the columns solved, time and nodes respectively. The shifted geometric mean of values
X1y .nn,Xpls

n

l_[(xi +s5)| —s,

i=1

where the shift s is set to 1 s and 100 nodes respectively.

5.1 Two-row nonzero cancellation

For a detailed description of this method we refer to Sect. 3.1. The method found
reductions on 390 instances. Despite the method being applied to a large number of
instances its performance impact, as presented in Table 1, is slightly negative in terms
of runtime and also causes three fewer instances to be solved within the time limit.
Although the impact is still only neutral on the subset [100,7200], the results show a
tendency toward a positive impact on difficult instances.

If a presolve method does not perform well, this is usually due to one or both of
the following two reasons. First, the method itself takes too much time and therefore
causes a degradation on models where it does not find enough reductions. Second, the
reductions create a new substructure that is unfavorable for subsequent solves. In our
case both reasons appear to play a role. From all of the presented presolve techniques,
this method creates the largest runtime overhead. However, this does not suffice to
fully explain the degradation observed in Table 1.

5.2 Two-column nonzero cancellation

This presolve method was described in detail in Sect. 3.2. Since the rules for applying
a reduction in this method are more restrictive than in the row version, we observe
reductions on only 115 instances. The performance results for this presolve method
are presented in Table 2. In total, its impact can be considered neutral with two more
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Table 2 Performance comparison for two-column nonzero cancellation

Subset Instances  Baseline TwoColNonzeroCancel Relative
Solved Time Nodes  Solved Time Nodes Time Nodes

All 1186 562 1354.6 7202 564 1353.2 7244 1.00  1.01
[0,7200] 567 562 218.0 3343 564 217.5 3346 1.00  1.00
[1,7200] 552 547 249.3 3647 549 248.8 3650 1.00  1.00
[10,7200] 507 502 358.6 4945 503 357.7 4947 1.00  1.00
[100,7200] 375 370 844.0 11159 372 846.8 11200 1.00  1.00
[1000,7200] 183 178 2304.5 41801 180 2316.7 40902 1.01  0.98

Table 3 Performance comparison for two-column nonzero cancellation on the TSCCP testset

Subset Instances  Baseline TwoColNonzeroCancel Relative
Solved Time Nodes Solved Time Nodes Time Nodes

All 150 98 1205.1 75480 147 318.7 2956 026  0.04
[0,7200] 147 98 1161.9 72720 147 299.0 2646 0.26  0.04
[1,7200] 147 98 11619 72720 147 299.0 2646 0.26  0.04
[10,7200] 147 98 11619 72720 147 299.0 2646 026 0.04
[100,7200] 133 84 1577.7 110550 133 399.5 3317 025 0.03
[1000,7200] 84 35 4619.3 357378 84 448.4 5030 0.10 0.01

instances being solved at the cost of a slightly prolonged runtime for instances in the
subset [1000,7200].

In contrast to the neutral performance impact on the MIPLIB 2017 benchmark set,
it has a tremendous impact on the testset studied in Liu et al. (2019). These instances
are constructed by Liu et al. (2019) based on a deterministic equivalent mixed-integer
programming formulation of the two-sided chance constrained program (TSCCP).
In total, 30 instances are publicly available at Kiigiikyavuz (2019). Additional tests
were performed on these instances using the same settings as above. Similar to other
tests, each instance was solved five times with different random seed initializations,
resulting in a testset consisting of 150 MIPs.

The computational results presented in Table 3 show that the proposed method found
reductions on all instances. Overall, the proposed method improves performance by
74% on the TSCCP testset. In addition, with this method, the solver was able to solve
147 instances within the time limit of 7200 s. In comparison, without this method the
solver was able to solve only 98 instances within the same time limit.

5.3 LP-based bound tightening on two constraints
For a detailed description of this presolve method we refer to Sect. 3.3. The method

applied reductions to 119 instances and the performance results are presented in
Table 4. On the entire testset, the method has neutral impact. However, with increas-
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Table 4 Performance comparison for LP-based bound tightening on two constraints

Subset Instances  Baseline LPBound Relative
Solved  Time Nodes  Solved Time Nodes  Time Nodes

All 1192 563 1361.0 7154 563 1356.8 7123 1.00  1.00
[0,7200] 567 563 216.3 3410 563 214.8 3393 0.99 1.00
[1,7200] 552 548 247.4 3722 548 245.7 3702 0.99 1.00
[10,7200] 504 500 363.3 5142 500 360.6 5111 099  0.99
[100,7200] 367 363 882.1 12430 363 8729 12323 099 099
[1000,7200] 181 177 2345.0 48251 177 22454 45365 096 094

ing difficulty we can see a positive impact of up to 4% for the instances in the subset
[1000,7200].

5.4 Bound tightening on convex combinations of two constraints

The extension of this presolve method presented in Sect. 3.4 is incorporated using
SCIPs so-called clique table which represents the solvers current knowledge of binary
variables that may not be set to one at the same time. The clique table is generated from
set packing constraints explicitly stated in the model as well as information extracted
during earlier presolve and is also used for cutting plane separation, linear constraint
propagation, and primal heuristics (see Gleixner et al. 2017). From this clique table
we generate the set packing constraints used in the extension. It is important to keep
in mind that, although this allows the method to find better bounds than the method
presented in Sect. 3.3, it also increases the cost in terms of running time. In our
implementations, this amounts to an average of 0.11 s being spent per instance for
the method from Sect. 3.3, which increases to an average of 0.31 s being spent per
instance for this method. Note, however, that this is in part due to this method running
longer as it finds more reductions.

As mentioned in Remark 3.11 this method works on a superset of the variables
for which LP-based bound tightening on two constraints from Sect. 3.3 can tighten
bounds on. As a result this method applies reductions in 142 instances, i.e. 23 more
instances than for LP-based bound tightening. The results presented in Table 5 show
that the additional bound tightenings found by this method indeed yield a positive
impact on solving times. As for LP-based bound tightening the impact of this presolve
method scales with instance difficulty. As a result its impact changes from neutral on
the overall testset toward a considerable 6% improvement on the subset [1000,7200].

The results presented in Table 6 illustrate the benefit of the clique extension over
the standard procedure developed by Belotti (2013). It can be seen that it has an
overall positive impact in terms of runtime. However, we have observed that the overall
number of nodes increases slightly when using the extension. In particular, there are
ten instances where the node count increases by more than half and six instances
where the node count more than doubles. On those ten instances we also observed that
significantly more time is spent on branching and the branching tree depth increases as
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Table 5 Performance comparison for ConvComb

Subset Instances  Baseline ConvComb Relative
Solved  Time Nodes  Solved Time Nodes  Time Nodes

All 1196 563 1368.6 7026 563 1359.7 7026 0.99 1.00
[0,7200] 566 563 214.9 3382 563 212.0 3385  0.99 1.00
[1,7200] 551 548 245.9 3691 548 242.4 3694 0.99 1.00
[10,7200] 503 500 361.1 5099 500 355.3 5101 0.98 1.00
[100,7200] 368 365 866.1 12074 365 8453 12035 0.98 1.00
[1000,7200] 180 177 2326.3 47019 177 2194.8 44973 094  0.96

Table 6 Performance comparison for ConvComb without clique extension

Subset Instances  ConvCombNoClique ConvComb Relative
Solved  Time Nodes Solved  Time Nodes Time Nodes

All 1199 563 1375.2 6966 563 1365.3 7030 099 1.01
[0,7200] 566 563 215.2 3390 563 212.0 3421 099 1.01
[1,7200] 551 548 246.2 3700 548 242.4 3735 098  1.01
[10,7200] 500 497 369.1 5235 497 362.9 5288 098  1.01
[100,7200] 368 365 863.4 12021 365 845.4 12186 098  1.01
[1000,7200] 177 174 2318.6 43270 174 2258.5 44599 097 1.03

well. Finally, we want to note that when deactivating the clique extension the number
of instances where reductions are found drops from 142 to 119.

5.5 Exploiting complementary slackness on two columns of continuous variables

For a detailed description of this presolve method we refer to Sect. 3.5. As can be seen
in Table 7, the impact of the method is almost neutral on the overall testset as well
as all subsets. The method performs reductions on only 11 instances. However, the
neutral impact is not necessarily due to the inefficiency of the reductions themselves,
but rather a consequence of the very low number of instances where this method can
be applied because of missing continuous variables.

On amore specialized testset of real-world supply chain instances, however, we have
observed this presolve method to consistently produce more reductions. In Schewe
et al. (2020), a testset of 40 real-world supply chain instances was studied. The
instances contain 330108 variables and 145450 constraints in arithmetic mean. The
proportion of discrete variables is about 3.9%. We performed additional tests on these
instances with the same settings as above. These instances are extremely challenging
and cannot be solved to optimality with or without this presolve method, but the appli-
cability of the method and the computational efficiency of the hashing-based pairing
mechanism becomes clear.

The method found reductions on 35 of the 40 instances, i.€., on 87.5% of the testset.
On 6 instances more than 1% of the variables were fixed, and in one instance we were
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Table 7 Performance comparison for CompSlack

Subset Instances  Baseline CompSlack Relative
Solved  Time Nodes  Solved Time Nodes  Time Nodes

All 1197 563 1370.5 7025 563 1366.4 7023 1.00  1.00
[0,7200] 563 563 210.9 3250 563 209.6 3250 099  1.00
[1,7200] 549 549 239.2 3521 549 237.6 3521 099  1.00
[10,7200] 503 503 347.4 4774 503 345.0 4775 099  1.00
[100,7200] 362 362 867.2 11835 362 858.6 11836  0.99  1.00
[1000,7200] 176 176 2299.7 44241 176 2270.6 44294 099  1.00

Table 8 Performance comparison using all presolve methods

Subset Instances  Baseline All Relative
Solved  Time Nodes  Solved Time Nodes  Time Nodes

All 1181 563 1340.0 7309 568 1349.7 7293 1.01 1.00
[0,7200] 576 563 228.5 3549 563 231.9 3547 1.02 1.00
[1,7200] 561 548 261.1 3872 548 265.2 3867  1.02 1.00
[10,7200] 523 510 354.6 4986 510 359.3 4978 1.01 1.00
[100,7200] 390 371 8429 10969 377 847.7 11024  1.01 1.01
[1000,7200] 204 191 2219.5 37948 191 2158.0 36013 097 0.95

able to fix 14% of all variables. Additionally, on 3 instances more than 2% percent
of the inequality constraints were changed to equalities. The runtime of this presolve
method was below 1 s for 29 instances, between 1 and 6 s on nine instances and close
to 12 s on two instances. As already mentioned, these supply chain instances contain
a very high percentage of continuous variables, which is one of the reasons why this
presolve method is able to find a reasonable amount of reductions.

5.6 All presolve methods

In order to evaluate whether and how the methods interact, we ran all presolvers
presented in this work in the following order: LPBound, CompSlack, ConvComb,
TwoRowNonzeroCancel, TwoColNonzeroCancel. As previously illustrated in Exam-
ple 3.4, different presolve methods can positively interact with each other, even if
each method itself is neutral or even slightly negative. However, the results presented
in Table 8 show that enabling all five presolve methods presented in this work has a
slightly negative impact on solving times.

Table 9 shows the number of instances each of the presolvers applied reductions to
when run individually (left) and with all five methods enabled (right). We can make two
noteworthy observations. First, we have an additional confirmation that the presolve
methods presented in this work do not enable each other to find additional reductions,
i.e. each presolve method finds more reductions when run with the other four being
disabled. Second, bound tightening based on convex combinations applies reductions
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Table 9 Number of instances with reductions of each presolve method

Presolve method Single All

TwoRowNonzeroCancel 390 384
TwoColNonzeroCancel 115 113
LPBound 119 117
ConvComb 142 99
CompSlack 11 10

on 99 instances even when run after LP-based bound tightening. This shows that it is
indeed the more powerful method.

Finally, we would like to demonstrate empirically how important working limits are
for controlling the computational effort. While a comparison with exhaustive search on
all pairs of variables and constraints is computationally out-of-scope, we conducted a
small experiment where we removed only the working limits described in Sect. 4. Due
to limited computational resources we only ran this test on the original 240 instances
of the MIPLIB 2017 benchmark set. However, these results already demonstrate the
performance deterioration quite clearly.

The removal of working limits changed the number of variables or constraints after
presolve only on 36 out of 240 instances; most changes were negligible, only on 14
instances the presolved models became at least 1% smaller when disabling working
limits. By contrast, the average presolving time increased by a factor of five, where
on 41 instances, the presolving time increased by a factor of ten and on the worst
instances we observed a factor of more than 100. Further, without working limits an
additional 31 instances ran into memory issues.

Before closing our presentation of computational results, we want to add that for
practical development of a fast and stable MIP solver, there are three reasons to
include presolve methods that show only neutral or even slightly negative impact
on the MIPLIB 2017 benchmark set. First, there may be positive interactions between
new and existing presolve methods. However, this was not the case for among the five
methods presented in this work. Second, presolve methods with neutral or slightly neg-
ative performance impact in the benchmark set may have significant impact on other
instances, as we have seen on the two-sided chance-constrained program instances
for the technique described in Sect. 3.2 and for real-world supply chain instances for
the technique described in Sect. 3.5. Finally, it is also important to actively involve
new presolve methods in the development process of a solver to avoid overtuning of
established methods. It could be, for example, that a new presolve method, which is
not performing well at the moment, will reveal its potential in combination with a
newly developed heuristic in the future. If this method had not been included in the
development process, this would not have been apparent.
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6 Conclusions

In this paper, we considered five two-row and two-column methods for mixed-integer
presolve that are generally effective, but suffer from the limitation that simply testing
all methods on all pairs of rows or columns is computationally not appropriate. We
resolved this bottleneck by introducing two hashing-based pairing mechanisms that
identify promising pairs of rows and columns quickly. During discussion of the five
two-row and two-column presolve methods we focused on the required properties of
promising pairs of rows or columns. Additionally we discussed an extension based on
set packing constraints to further strengthen the results of the bound tightening method
applied to convex combinations of two rows. We then introduced two hashing-based
pairing mechanisms, implemented the ideas in the mixed-integer programming solver
SCIP and conducted a performance evaluation on the MIPLIB 2017 benchmark set
(miplib2017 2018).

The first pairing mechanism, based on a hashtable, aimed at pairs of rows (or
columns) such that there exist at least two coefficients that can be cancelled simul-
taneously by linearly combining the rows (or columns). This is required by the two
nonzero cancellation methods, which turned out to have neutral or slightly negative
effect on the performance.

The second pairing mechanism uses four hashlists to find pairs of rows such that
there exist at least two variables with opposite sign. This increases the chance of
finding stronger variable bounds when applying the two-row bound strengthening
methods presented in Sects. 3.3 and 3.4 . Using bound tightening based on convex
combinations, we were able to improve solving times by 1% on the entire testset and
by up to a considerable 6% for instances with longer solving times.

Finally, we experimented with applying the method presented in Sect. 3.4 to
improve the bound strengthening required during the dual presolve method presented
in Sect. 3.5, but observed that this leads to only few reductions and no performance
impact. This is largely due to the fact that many of the MIPLIB 2017 instances do not
contain any continuous variables at all.

To conclude, the results of this paper demonstrate that two-row and two-column
presolve methods hold potential for practically solving challenging mixed-integer
programming problems when they are combined with a sophisticated selection mech-
anism. For the methods discussed in this paper, more extensive parameter tuning or
extensions of the methods themselves may even lead to larger performance gains.

Other compelling directions for further investigation are finding new combinations
of pairing mechanisms and two-row or two-column presolve methods as well as mov-
ing on to reductions based on three or even more rows or columns.
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