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Abstract
Purpose of Review Our goal is to provide an overview ofmachine learningmethods and artificial intelligence in digital pathology
image analysis. We also highlight novel visualization tools to interpret quantitative image-based pathomics data that is extracted
from whole slide images to describe diverse phenotypic characteristics of cancer in a spectrum of tissues.
Recent Findings Image analysis of tissues is based on the identification and classification of tissue, architectural elements, cells,
nuclei, and other histologic features. We report emerging digital pathology image analysis applications to study several types and
subtypes of cancer to complement traditional histopathologic evaluation.
Summary WSIs typically contain hundreds of thousands to millions of objects within a heterogeneous histologic landscape.
Therefore, Pathomics represents an incredibly powerful emerging approach to classify cellular interactions and signaling by
identifying relevant spatial relationships. The quantification of the intrinsic variability of different phenotypes and behavior in
cancer is useful in analyzing and predicting clinical outcomes and treatment response.

Keywords Pathomics . Deep learning image analysis .Whole slide imaging . Histopathology analytics

Introduction

In this report, we survey the history and role of machine learn-
ing and artificial intelligence in anatomic pathology along
with the tools and methods that are to visualize and manage
data generated by algorithms. Digital pathology utilizes com-
putational deep learning-based image analysis methods to ex-
tract embedded information in high-resolution whole-slide
images (WSIs) of tissue sections to obtain quantitative data.
We use the term Pathomics to embody the wide variety of data

that is captured from image analyses to generate quantitative
features to characterize the describe diverse phenotypic fea-
tures of tissue samples in WSIs. Image analysis of tissues is
based on the ability to (1) detect, (2) segment, (3) label, and (4)
classify regions of tissue in terms of architectural elements,
cells, nuclei, and other histologic features. Digital pathology
image analyses methods are being developed to study several
types and subtypes of cancer in order to correlate quantified
features with various phenotypic characteristics in order to
complement traditional histopathologic evaluation per-
formed by pathologists. The ultimate goal of these
higher order analyses is to combine pathomics with pa-
tient management, radiologic, laboratory testing, and ge-
nomic data to analyze and predict clinical outcomes and
treatment response.

Even though the digital pathology is gaining momentum
and becoming more widely adopted in clinical research, it is
currently still limited to single hospital deployments in the
USA due to the availability of one FDA-approved digital slide
scanner. Current clinical applications that utilize, WSIs in-
clude intradepartmental and outside consultation, improving
workflow by electronically transferring WSIs from the histol-
ogy laboratory to pathologists, displaying images for interdis-
ciplinary tumor boards, performing pathologic review for clin-
ical trials, archiving glass tissue slides, and teaching. As the
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technology becomes more available, the demand for readily
available digital pathology image analysis tools appears inev-
itable. Thus, there is a lot of active research and development
of image analysis tools combined with machine learning al-
gorithms that extract, calculate, and analyze a wide variety of
histopathologic features in an effort to improve diagnostic
evaluation of tissue samples and quantitatively characterize
the biological behavior of many different types of cancer.
Currently, there are large collections of digitized glass slides
that contain tissue sections that are stained with hematoxylin
and eosin (H&E) since pathologists routinely utilize H&E for
diagnostic examination.

WSIs typically contain hundreds of thousands to millions
of objects within a heterogeneous histologic landscape that
includes different types of structures, various types of cells,
cell morphologies, and spatial relationships that underlie cel-
lular interactions and signaling. Considerable research efforts
are being devoted to identify and quantify these histologic
features in tissue samples in order to further explore the intrin-
sic variability of the biological behavior of different pheno-
types across the spectrum of cancer in various anatomic sites.
Digital pathology can empower pathologists with the ability to
observe and quantitatively assess diagnostic features of cancer
during histopathologic examination by providing quantitative
data about different types of cells and tissue structures within
the context of enhanced measurements of the tumor and im-
proved delineation of the invasive border, calculated percent-
ages of the glandular or solid patterns of growth, counts and
distributions of different types of cells, calculated features of
nuclei like size, area, color, chromatin density, and mitotic
activity, and calculated percentage of necrosis across the en-
tirety of a WSI. Common examples of pathomics applications
include spatial characterization of tumor and stromal regions,
shapes and textures of nuclei, classifications of cell types,
quantitative characterization of lymphocytic infiltration, and
efforts to quantitatively estimate the number of cells that are
labeled with different kinds of biomarkers in immunohisto-
chemistry (IHC) testing.

Tissue-level, cellular-level, and nuclei-level histologic fea-
tures are evaluated and documented by pathologists in diag-
nostic reports for every case, after which, the slides are typi-
cally filed away in storage. With the advent of digital pathol-
ogy, these slides are immediately available for further exami-
nation and image analyses to quantify these kinds of features
in large-scale collections of WSIs to identify various types of
relationships and interactions between malignant and non-
tumor cells. In this scenario, pathomics can improve the ability
of pathologists to better predict biological behavior, clinical
outcomes, and guide treatment by comparing the features of a
particular WSI to their own collections of WSIs or to those
from other studies and clinical trials. Over the past 20 years,
the field of digital pathology has developed several types of
applications to provide valuable quantitative data in a variety

of correlative and prognostic studies. Thus, the ultimate goal
is to develop and implement deep learning pathomics tools to
provide real-time clinical decision support (CDS) that also
supports quality assurance and control (QA/QC) and actively
integrates various types of other data alongside routine histo-
pathologic examination of tissue sections on glass slides.

In addition, digital pathology image analysis methods are
being developed to utilize pathomics to explore tumor hetero-
geneity since varying degrees of disease progression, clinical
outcomes, and treatment response correspond to the range of
histologic features and genomic variability in different popu-
lations of tumor cells. Pathomics applications are also being
designed to teach trainees and help reduce pathologic inter-
pretation bias to improve diagnostic accuracy and reduce
intra- and inter-observer variability. Digital pathology,
pathomics, and machine-learning methods are positioned to
revolutionize our current level of knowledge about the various
types and subtypes of cancer by allowing pathologists to ex-
tract and incorporate tremendous amounts of data per WSI
compounded by the scale of the studies that can be performed
through the analyses of archived WSIs within and across in-
stitutions to discover features that have not been readily ap-
parent without these kinds of tools in smaller studies.

This report will focus on a description of traditional histo-
pathologic evaluation by pathologists, image analysis tasks
and machine learning, segmentation and classification, WSI
analytic systems, and data and metadata management.

The Role of Pathomics in Traditional
Histopathology

Surgical pathologists evaluate patterns of tumor growth and
tumor cell morphology in tissues from biopsies and surgical
resections in conjunction with ancillary laboratory testing and
radiology to classify tumor types and subtypes. Pathologists
comprehensively report diagnoses that identify tumor type
and subtype, size, location, invasive growth pattern, mitotic
rate, presence of tumor at surgical margins, and metastases to
provide insight into the biological behavior of different tumors
in order to guide patient management and select treatment.
However, there are countless nuances, semantics, and obser-
vation biases that are intrinsic to microscopic examination and
formulating diagnoses.

Traditional histopathologic evaluation of cancer is per-
formed at multiple scales of magnification and resolution in
order to categorically examine various kinds of complex phe-
notypic features, as shown in Fig. 1. These phenotypic fea-
tures are based on a wide variety of molecular events that lead
to the presence and progression of disease. Even though pa-
thologists examine the entirety of tissue samples, diagnosis,
prognosis, and patient management are based on the pheno-
typic features of the foci of cancer that appear the most
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aggressive. Pathologists examine (1) tumor cellularity, (2) ar-
chitectural distortion, (3) tumor growth pattern, (4) tumor-
associated stromal characteristics, (5) inflammatory re-
sponses, (6) presence or absence of necrosis, and (7) the inva-
sive border with respect to adjacent surrounding normal tis-
sues at low magnification (typically 20× to 40×).
Intermediate and high magnification (typically 100× to
400×) is used to examine (8) distribution of cell types; (9) cell
shapes; (10) relative cell sizes (compared with lymphocytes or
endothelial cells); (11) cytoplasmic appearance and features;
(12) distribution of the size of malignant nuclei; (13) nuclear
color; (14) shapes of malignant nuclei; (15) irregularity and
contour of the nuclear membrane; (16) chromatin texture, den-
sity, and color; (17) presence of nucleoli; and (18) mitotic
activity.

Pathologists typically calibrate histologic examination at
multiple scales of magnification by evaluating the aforemen-
tioned features in cells and nuclei in non-tumor tissues (nor-
mal epithelial tissues, connective tissues, immune cells, etc.)
in order to identify irregular or abnormal features of tumor
cells. For example, large and hyperchromatic (dark purple-
blue) nuclei with abnormal shapes and irregular nuclear bor-
ders in a focal area of cancer can indicate high-grade malig-
nancy. In contrast, large and euchromatic (grayish-purple) nu-
clei are most commonly seen in benign reactive cells in asso-
ciation with inflammatory, regenerative, infectious, and de-
generative processes. However, pathologists do not and can-
not routinely count or characterize every single cell out of
hundreds of thousands of cells in every tissue section. This
basic type of information remains unknown and could be
valuable in terms of the number of tumor cells in a given
cancer type and what proportion of the tumor cells are at the
leading invasive border of the tumor that should be coupled to
the distribution of the size of tumor cells in different areas of
the tumor. Evaluating mitoses is another common example of
limited numerical assessment, where pathologists typically
look at 10 high-power fields (hpf) (typically 400×) and

provide an estimated mitotic rate based on the focus of tumor
with the highest number of mitoses instead of counting the
total number of mitoses that are present in the tumor.

A typical WSI of almost any tissue section that contains
cancer also contains variable amounts of high-grade tumor
cells, low-grade tumor cells, normal epithelial structures and
cells, stromal connective tissues, adipose tissue,
lymphovascular structures, immune infiltrates, and necrosis.
Pathomics can be very useful to provide a quantitative assess-
ment of many of these structures and aforementioned features
at multiple magnifications to complement traditional histo-
pathologic evaluation by pathologists. Deep learning image-
analysis tools have been developed that have the capacity to
automatically detect regions of cancer inWSIs to complement
low-magnification assessment of tumor growth pattern, tissue
architecture distortion, and increased cellularity. Since pathol-
ogists also rely on using the dark blue-purple color associated
with high cellularity and increased density of chromatin in
large malignant nuclei, cancer detection algorithms can be
further combined with pathomics analyses that detect and
count the number of nuclei and provide quantitative informa-
tion about the size, shape, texture, colors, etc. of the objects in
that region. Additional analyses can be applied to identify and
extract quantitative data to describe the features of glands and
vessels, lymphoplasmacytic infiltrates, and regions of necrosis
in order to parallel and complement the histologic features that
are used by pathologists for diagnosis and grading cancer.

Since these various tasks are computationally intensive and
may take several hours per algorithm to analyze hundreds of
thousands of objects in WSIs, image analysis methods typi-
cally divide WSIs into tiles that can be as small as 50 by 50
pixels or as large as 2000 by 2000 pixels to circumnavigate
constraints in computer memory and decrease processing
time. Therefore, pathomics tools are usually based on the abil-
ity to detect, segment, label, and classify regions of tissue,
tissue structures, cell types, and nuclei in tiles, which are then
combined to represent the analyses for entire WSIs. This, too,

Fig. 1 Common appearances of histologic samples at low magnification
and intermediate-high magnification. Left: Low magnification features
include architectural distortion, increased tumor cellularity, solid tumor
growth pattern, no overt areas containing dense inflammatory infiltrates,
no overt areas of necrosis, and an irregular border with adjacent

surrounding normal tissues. Right: Intermediate-high magnification
features include predominantly medium-sized and round to ovoid nuclei
with abundant eosinophilic cytoplasm. Nuclei contain irregular nuclear
contours with open chromatin and variable numbers of small nucleoli. No
mitoses are present in this microscopic field
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is very similar to how pathologists evaluate numerous regions
of interest (ROIs) by physically moving the slide through the
field of view under microscope objectives to evaluate the en-
tirety of a tissue section at various scales of magnification and
resolution. Digital pathology image analysis methods are ei-
ther global and attempt to simultaneously identify all the struc-
tures in a specific ROI or localized to detect and segment
physiologic structures based on the number of objects, cells,
and nuclei.

The addition of quantitative deep learning image analysis
and pathomics to descriptive traditional histopathologic eval-
uation by experienced pathologists is a very exciting frontier
that can be immediately useful in routine surgical pathology
workflow in many subspecialties of pathology. Pathomics is
also well positioned to quantitatively define known salient
features across the scale of thousands to hundreds of thou-
sands of WSIs of cancer and discover unknown features and
relationships that can provide insight into many different types
of cancer in an unprecedented manner by improving our abil-
ity to better characterize disease through improved diagnostic
accuracy and decreased inter-observer variability. For exam-
ple, if there is an unusually aggressive clinical course with
treatment failure or tumor metastasis, digital pathology can
be utilized to explore and capture quantitative information
about the phenotypic features of specific cells, cellular struc-
tures, and focal areas of tumor features that are beyond the
scope of traditional histopathologic diagnosis in order to pos-
sibly provide an explanation for this kind of biological
behavior.

Thus, there is considerable excitement about digital pathol-
ogy image analyses and pathomics due to the opportunities to
integrate the classification of histopathologic features of many
different types of cancer with applicable diagnostic endpoints.

Image Analysis Tasks and Machine Learning

In this section, we outline whole slide image analysis tasks.
Analysis tasks include the following: (1) assignment of a clas-
sification to a collection of WSIs arising from a given biopsy
or resection (e.g., a set of WSIs might be classified using
established classification guidelines such as Gleason grade
for prostate cancer); (2) classification of a region of a whole
slide image (e.g., ROI classified as cancer, infiltrated by lym-
phocytes, or having a particular tissue morphology, such as a
local Gleason pattern assigned to a tissue tile); (3) detection
and/or segmentation of specific microanatomic structures
such as specific types of cells or nuclei with subsequent clas-
sification (e.g., mitotic figures, lymphocytes, or cancer cells).
Accomplishing these tasks encompasses segmentation and
classification. As shown in Fig. 2, segmentation extracts the
locations and boundaries of objects (nuclei, cells, or regions)

in an image, whereas classification groups objects and assigns
class labels.

Earlier approaches in WSI analysis often employed statis-
tical techniques to detect and delineate object boundaries
based on the statistics of intensity and texture variations, clus-
tering methods, binary classifiers, and probabilistic/non-
probabilistic machine learning methods to classify regions
and images [1–5]. In recent years, deep machine learning
has significantly grown in popularity in the computer vision
and image analysis communities, driven by the increased up-
take of deep learning methods in Big Data and Internet com-
panies and increased computing capacity through specialized
computing devices (GPUs) and cloud-based computing [1, 5,
6]. Since there are many research and engineering projects that
target the development of efficient and reliable image analysis
techniques, software tools, and infrastructure, we describe re-
cent work in segmentation and classification in selected cur-
rent projects with the goal of providing an overview of the
evolving digital pathology landscape.

Changes in subcellular tissue structure can function as
valuable biomarkers that can be used to assess onset and pro-
gression of disease. The use of digital pathology data in clin-
ical and research settings have been studied and validated by
several studies [7–13]. Availability of tissue images can facil-
itate multi-institutional and national level studies with large
cohorts of patients. There are approximately 31,000 WSIs in
the TCGA from diagnostic and frozen tissue samples from
over 30 different cancer types that were collected from
11,000 patients. This resource has led to numerous digital
pathology studies both in terms of novel methodology devel-
opment and scientific inquiry [10, 12•, 14–17].

Another national consortium, the Surveillance,
Epidemiology, and End Results (SEER) Program, collects tis-
sue specimens from large cohorts of patients (about 500,000
patients per year) and is investing in digitizing glass tissue
slides as WSIs. Imaging studies at this scale can reveal novel
biomarkers and phenotypes that are common within cohorts
of these patients that can eventually lead to more effective
diagnoses and treatment strategies. Even in smaller studies,
data fromWSIs enables quantitative, objective, and reproduc-
ible characterizations of tissue data that are not possible by
histopathologic evaluation of glass slides. These kinds of ca-
pabilities have great potential for improving the prediction of
clinical outcomes and treatment response as we continue to
evaluate and refine workflows and systems that can play cru-
cial roles in precision medicine.

Qaiser et al. [18, 19] designed a tumor segmentation meth-
od that uses persistent homology profiles (PHPs) and deep
convolutional networks, where PHPs map a given image
patch into one-dimensional statistical distributions that repre-
sent the degree of nuclear connectivity based on a combina-
tion of features learned from a convolutional neural network
(CNN) and PHPs. A fast histopathology image inference
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network was proposed by Lin et al. [20] for cancer metastasis
detection in whole slide tissue images by taking advantage of
fully convolutional architectures for speed through the utiliza-
tion of deep convolutional and pooling layers to improve pre-
diction accuracy. Cruz-Roa et al. [21•, 22] proposed a set of
CNNs for detection of invasive cancer regions by using an
adaptive samplingmethod that selects the most relevant image
patches instead of densely scanning the entire whole slide
image to predict regions of tissue with invasive cancer.

Hou et al. [23•] developed a sparse convolutional
autoencoder that enables the detection and encoding of nuclei
in an image patch into a sparse feature map, which is then
processed to segment the boundaries of nuclei. Zheng et al.
[24] devised a CNN method to extract and characterize distri-
butions of nuclei in tissue images, whereas Janowczyk et al.
[25] devised an adaptive deep hierarchical approach to nuclear
segmentation that leverages deep learning models at lower
image resolutions to increase the speed of computations while
preserving accuracy. Al-Milaji et al. [26] developed a CNN-
based pipeline to classify regions of tissue in H&E WSIs into
stromal and epithelial regions. A related approach was pro-
posed by Yu et al. [27] with a machine-learning model that
learned class dictionaries to classify tissue images.

Mobadersany et al. [12•] implemented a method that com-
bines image analysis by CNNs with genomic markers into a
unified machine learning model to predict the survival of pa-
tients with glioma, where the deep learning architecture con-
sists of convolutional layers that are trained to predict image
patterns associated with survival, fully connected layers that
further transform image features from the convolutional
layers, and a Cox proportional hazard layer that models sur-
vival data. Peikari and Martel [28] proposed a color transfor-
mation step that maps the red-green-blue (RGB) color space
by computing eigenvectors of the RGB space to perform cell
segmentation by utilizing the color-mapped image. A deep
learning method is employed by Sirinukunwattana et al. [29]
to detect and classify nuclei in H&E stained color cancer tis-
sue images by implementing a spatially constrained CNN for
nucleus detection followed by a predictor that is coupled with
a CNN for classification. Deep learning-based analysis frame-
work have also been used for analyses of prostate cancer cases
with Gleason scores [29]. The framework implements
methods that combine data from whole slide tissue images

and genomic data to identify computational biomarkers for
recurrence and survival analysis.

Ensembles of support vector machines (SVMs) were used
by Manivannan et al. [30] to detect and classify cellular pat-
terns. Peikari et al. [28, 31] designed an analysis pipeline
where a clustering operation is executed on input data to detect
the structure of the data space, where a semi-supervised learn-
ing method is then executed to carry out classification using
clustering information. Chen et al. [32] developed a deep
learning framework for segmentation that implemented a
multi-task learning approach by the use of multi-level
CNNs. A pipeline of clustering, segmentation and classifica-
tion operations for identification and categorization of breast
regions is described by Dundar et al. [33]. The analysis pipe-
line segments and extracts imaging features from cells and use
them in a binary classifier. Beck et al. [34•] use a binary clas-
sifier for epithelial vs. stromal classification in breast cancer
cases. The binary classifier is trained with morphological im-
aging features extracted from H&E images.

Saltz et al. [10] developed a deep learning–based patch
classification workflow to characterize patterns of lympho-
cytes in whole slide tissue images that utilizes a CNN for
classification of image patches as lymphocyte-positive (i.e.,
containing lymphocytes) or lymphocyte-negative in combina-
tion with a CNN to segment necrotic regions in order to elim-
inate false lymphocyte-positive classifications. The
lymphocyte-detection pipeline was applied to 5200 images
from 13 cancer types in the Cancer Genome Atlas (TCGA)
repository to quantitatively characterize tumor infiltrating
lymphocytes (TILs), since TILs have become increasingly
important in precision medicine with the growth of cancer
immunotherapy. These kinds of characterizations ofWSIs will
become increasingly significant to understanding the immune
response associated with cancer in each patient in various
clinical scenarios. High densities of TILs correlate with favor-
able clinical outcomes including longer disease-free survival
and/or improved overall survival (OS) in multiple cancer
types, where recent studies further suggest that the spatial
context and the nature of cellular heterogeneity within the
tumor microenvironment in the main bulk of the tumor and
the invasive margin are important in cancer prognosis.

One of the challenges in machine learning analysis ofWSIs
is the lack of large training datasets that contain ground truth

Fig. 2 Examples of nuclear
segmentation. The boundaries of
the nuclei are highlighted in
yellow based on differences in
color, contrast, and texture
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due to the amount of intense labor and time that is necessary
for manual segmentations and classifications of tissue regions
and micro-anatomic structures such as nuclei and cells.
Several research projects have investigated the generation of
synthetic datasets to overcome this limitation. Mahmood et al.
[35] proposed a conditional generative adversarial network
(GAN) for nucleus segmentation that is trained by synthetic
and real data to address limited real training data and the
ongoing challenge of separating overlapping and clumped nu-
clei by utilizing a cycle GAN method to generate synthetic
image patches and segmentation masks. Hou et al. [36] pro-
posed an unsupervised (GAN) architecture for generation of
synthetic tissue images and segmentation masks to generate
training data for deep learning segmentation methods
consisting of multiple CNNs that generate initial synthetic
images and then refined them to reference styles in order to
train a segmentation model. Senaras et al. [37] developed a
GAN method that generates synthetic image datasets with
known amounts of positive and negative nuclei in images
from IHC-stained tissue specimens for tumor grading.

Machine learning and deep learning methods have also
been used for quality assessment in whole slide images.
Senaras et al. [38] applied deep learning methods to detect
out-of-focus regions in whole slide tissue images that can be
avoided in segmentation and classification operations. Wen
et al. [39, 40] utilized machine learning classifiers (SVM,
random forest, and CNN) that operate on texture and intensity
features extracted from image patches to evaluate the quality
of nuclear segmentation results.

Several research groups have also developed methods for
3D reconstruction of morphological structures and image vol-
umes from histopathology images [41, 42]. Kather et al. [43•]
employed image analysis pipelines to generate topographic
mappings of multiple immune cells in immunohistochemistry
stained images. These various methodologic approaches from
nuclear segmentation and characterization to 3D reconstruc-
tion are continuing to be refined and developed for a wide
variety of clinical applications that can be very useful for
pathologists in the near future.

WSI Visual Analytics Systems

There are currently several virtual microscope applications
that facilitate the visualization ofWSIs for pathomics analyses
that include open-source and commercial software tools for
WSIs, where a few examples include caMicroscope (Emory
University, Atlanta, Georgia, USA), QuPath (University of
Edinburgh, Edinburgh, UK), HALO (Indica Labs, Corrales,
NewMexico, USA), Aperio GENIE (Vista, California, USA),
HistoRx AQUA Analysis (Branford, Connecticut, USA), and
Visiopharm (Hoersholm, Denmark). These viewers are de-
signed to give users the ability to freely explore any part of

the image by scrolling and zooming in and out of WSIs to
function as a virtual microscope. These software applications
also provide interfaces that (1) permit the ability to gather,
store, and interact with large collections of WSIs; (2) annotate
and measure specific histologic features at multiple scales
(0.0001 cm for tumor size and distance to the surgical resec-
tion margin to 0.1 μm for nuclear and cell size to calculate
nuclear to cytoplasmic (N/C) ratio); and (3) view results from
image analysis and deep learning methods, such as nuclear
segmentation, tumor identification, and lymphocyte detection.

Even though there has been a lot of progress and development
in software and infrastructure to perform WSI analyses to pro-
duce and store pathomics data with various methods and ap-
proaches, there is a need for visual analytic systems that can
ultimately integrate and represent the various forms of large
amounts of data in a biologically interpretable manner. This is
even more important when we consider integrating pathomics
with correlative data frommolecular studies, radiomics, and clin-
ical data. For example, Fig. 3 shows an example of the wide
spectrum of features that can be calculated from nuclear segmen-
tation to provide heat maps, which depicts the relationships be-
tween salient image-based features that can be further correlated
with relevant histopathologic features.

Even though Featurescape provides a powerful and inter-
active view into the WSI from an image analysis data point of
view, the relationships between these numerous and different
kinds of extracted image features from segmented objects are
still not readily interpretable by pathologists. Therefore,
pathomics analyses can also be displayed as an image-based
representation to show how features can be readily interpret-
able within a histologic context as a multilayer Featuremap.
The combination of these views into the data can be utilized to
address the challenging problem of identifying which of these
features are relevant and how they are related to the histopath-
ologic features of disease.

Therefore, significant efforts have been dedicated to develop
interfaces that permit easy navigation of large collections of
WSIs combined with Featuremaps that permit interactive assess-
ment of how image analysis-based features can be used to quan-
titatively identify heterogeneous structural and textural tissue
characteristics in different types of tissues and tumors. As shown
in Fig. 4, H&E WSIs can be analyzed with tumor and lympho-
cyte detection deep learning methods and then combined to pro-
vide a view into the quantitative spatial assessment of TILs in
terms of TIL%, location, and overall pattern of the immune in-
filtrate with respect to intra- and peritumoral TILs. These maps
can also display the calculations in a similar manner to help
interpret the image-based features in the context of histology at
multiple scales of magnification. In the near future, these tools
will be used to correlate specific image-based features with var-
ious histologic features to predict the expression of various pro-
teins on the cell surface and subcellular structures in conjunction
with immunohistochemistry (IHC) for applications ranging from
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biomarker discovery, pharmaceutical research, systems biology,
and treatment planning.

Data and Metadata Management

Pathology images are captured from glass tissue slides by
digital microscopy scanners. Currently, there are no standard

or widely accepted community formats for pathology image
files, whereas radiology images are stored and shared in
DICOM format [44]. Each digital pathology imaging vendor
has their own file format which stores metadata about images
at varying levels of detail in vendor-specific metadata fields
that limits the types and amount of metadata that can be di-
rectly extracted from a pathology image. There are open
source libraries, such as OpenSlide [45] and Bio-formats

Fig. 3 Featurescape example showing the relationship between calculated features in a WSI based on nuclear segmentation
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[46] that can parse some vendor pathology image formats and
read image metadata, but are limited by whether they can
recognize specific vendor metadata fields. Similarly, there
are no community-accepted models or standard data models
to represent metadata about the results from analyses of digital
pathology image data.

The lack of imaging standards in digital pathology has led
to the development of a wide variety of data models and da-
tabases. There are a number of commercial software systems
developed by digital microscopy vendors and pathology im-
age analysis companies and a growing number of open source
and freely available software systems. The OME (Open
Microscopy Environment) project has developed a data model

for representation of image acquisition parameters, image ex-
periment metadata, and image analysis results [46]. The OME
model is supported by a relational database for storage,
indexing, and querying that is realized in XML file format
for exchange of image metadata between software systems
and research teams. The OMERO (OME Remote Objects)
extension of the OME platform is designed to serve as a cen-
tral repository of pathology image data [47]. Wang et al. [2,
48] developed PIDB (Pathology Image Database System) and
PAIS (Pathology Analytical Imaging Standards) models to
represent pathology image metadata and image analysis re-
sults and metadata that draw from the AIM (Annotation and
Image Markup) model [49] and extend it with data elements

Fig. 4 Deep learning image analysis pipeline to generate a Featuremap. a
Low magnification H&E image. b Automated tumor detection displayed
as a probability distribution from 0 to 1. Non-tumor tissue in solid blue. c
Automated lymphocyte detection displayed as a probability distribution
from 0 to 1. Non-lymphocyte tissue in solid blue. d Combined tumor and
lymphocyte detection with tumor depicted in yellow, lymphocytes in red,

and non-tumor tissue in gray. This permits the ability to see lymphocyte
detection in the context of cancer to identify TILs and calculate TIL% in
intra- and peri-tumoral areas. The parameters shown in Featurescape (Fig.
3) can also be depicted in this manner to permit the visual interpretation of
features within a histologic context in combination with tumor and
lymphocyte detection
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for pathology image experiments, acquisition parameters, and
analysis results, which are then implemented on top of a rela-
tional database management system.

Gutman et al. [50] implemented a software system for
management and analysis of pathology images by using
Girder [51] as the backend database management system.
Martel et al. [52] developed a desktop application, PIIP
(Pathology Image Informatics Platform), which extends a
freely available tool, Sedeen, for the management, annota-
tion, and viewing of pathology image data. Bisque [53] is
a web-based platform that provides support for organiza-
tion and analysis of image data and uses metadata repre-
sentation based on tag documents (i.e., nested sets of (key,
value) tags). Williams et al. [54] developed a prototype
system, IDR (Image Data Resource), to integrate and share
image data from multiple modalities, including digital pa-
thology and multi-dimensional microscopy data. Image
and annotation metadata are represented in tabular forms,
drawing from the MAGE-TAB and ISA-TAB models. The
QuIP platform [55] implements a fully containerized soft-
ware system for the management, analysis, viewing, and
sharing of digital pathology imaging data and image anal-
ysis results by supporting a GeoJSON compliant [56] data
model to represent image analysis results in the FeatureDB
database, which is built on top of a NoSQL document
store. Cytomine [57] is a web-based software platform
designed to support sharing of histology and molecular
imaging data for proteomics preprocessing. The
ImageMiner system [58] provides support for management
and analysis of tissue microarray datasets by using a rela-
tional database backend for management of image data
and annotations. A prototype system for content-based im-
age retrieval to search and retrieve pathology images was
developed by Zheng et al. [59]. The caTIES project led
by Crowley et al. [60] developed methods and software
infrastructure to support analysis and coding of surgical
pathology reports. The coded results could then be used
to search and retrieve specific cancer cases and tissue
specimens.

In addition to these commercial and open source soft-
ware systems, there are ongoing efforts for the standardi-
zation of the representation and storage of pathology im-
age data and analysis results. Even though there are pres-
ently very few digital microscopy vendors who have
adopted DICOM, there is an increasing push for use of
the DICOM WSI format [61, 62]. The DICOM standards
body is also working on additional supplements for the
capture and representation of digital pathology image and
analysis metadata [63] and DICOM Structured Reporting
[64–66]. As these standards are refined and implemented,
we expect that open source and commercial software prod-
ucts will adopt these formats as their default data models
for image analysis results to enable interoperability across

different imaging and software systems in order to facili-
tate easier development and integration of new data man-
agement capabilities.

Conclusions

Artificial intelligence has arrived in anatomic pathology.
While the technology is still primarily in the hands of re-
searchers, emerging methods will transform the landscape
and workflow of surgical pathology by allowing identifica-
tion, analysis, and classification of every cell and
microanatomic structure found in tissue sections. In our opin-
ion, the deluge of data will increase our collective insight into
cancer and provide pathologists with tools that will allow
them to interpret their visual inspection in unprecedented
ways. Since we have already begun to see how the relation-
ships and patterns that are present in these new types of data
can be utilized to steer patient treatment and predict outcome,
we believe that it is the right time to introduce the wider
audience of pathologists and cancer researchers to established
and emerging pathomics.
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