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Abstract

Background: Pediatric asthma affects 7.1 million American children incurring an annual total direct healthcare cost
around 9.3 billion dollars. Asthma control in children is suboptimal, leading to frequent asthma exacerbations, excess
costs, and decreased quality of life. Successful prediction of risk for asthma control deterioration at the individual patient
level would enhance self-management and enable early interventions to reduce asthma exacerbations. We developed
and tested the first set of models for predicting a child’s asthma control deterioration one week prior to occurrence.

Methods: We previously reported validation of the Asthma Symptom Tracker, a weekly asthma self-monitoring tool.
Over a period of two years, we used this tool to collect a total of 2912 weekly assessments of asthma control on 210
children. We combined the asthma control data set with patient attributes and environmental variables to develop
machine learning models to predict a child’s asthma control deterioration one week ahead.

Results: Our best model achieved an accuracy of 71.8 %, a sensitivity of 73.8 %, a specificity of 71.4 %, and an area
under the receiver operating characteristic curve of 0.757. We also identified potential improvements to our models to
stimulate future research on this topic.

Conclusions: Our best model successfully predicted a child’s asthma control level one week ahead. With adequate
accuracy, the model could be integrated into electronic asthma self-monitoring systems to provide real-time decision
support and personalized early warnings of potential asthma control deteriorations.
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Background
Asthma is the most common pediatric chronic disease
[1, 2] and the most frequent reason for preventable
pediatric hospitalization [3]. Asthma affects 7.1 million
American children [4, 5], accounts for one third of
pediatric emergency department (ED) visits [6], and in-
curs an annual total direct healthcare cost around 9.3
billion dollars [1]. In 2009, 640,000 ED visits, 157,000
hospitalizations, and 185 deaths [4] were due to
pediatric asthma. Poor asthma control in children is
associated with decreased quality of life [7], increased
school absenteeism with work loss for parents [8], and a
high hospital readmission rate [9]. Despite its impact,
asthma remains a poorly controlled disease [10].

Effective interventions to improve and maintain asthma
control are needed.
Asthma control on a patient fluctuates frequently over

time due to multiple factors [11–13]. An asthma exacer-
bation is often preceded by a critical period of decreased
asthma control [14]. The critical period often goes
unrecognized by patients, caregivers, and physicians [10,
15–18], resulting in missed opportunities for taking pre-
ventive interventions such as education and medication
prescription and adjustment [15, 17].
Using predictive models can facilitate recognition of

impending loss of asthma control before significant
symptoms emerge. While many predictive models for
diagnosing and treating asthma exist [19], little has been
done for predicting asthma control deterioration. Existing
models focus on predicting asthma exacerbations, which
often represent a late manifestation of persisting loss of* Correspondence: gang.luo@utah.edu
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asthma control, and have low sensitivities and low positive
predictive values [20–24].
In the past, our group developed and validated an

asthma control monitoring tool, the Asthma Symptom
Tracker (AST) [25]. This self-monitoring tool was de-
signed to assess a child’s asthma control level on a
weekly basis. The objective of this study was to develop
a model for predicting asthma control deterioration one
week ahead, by using scores from previously completed
AST assessments [25] in conjunction with patient
attributes and environmental variables.

Methods
Study setting
The data collected in our AST validation study [25]
included demographics and clinical status for patients
living primarily in Utah as well as several patients living
in Idaho, Nevada, and Wyoming. The patients were
recruited during hospitalization for asthma exacerbation.
Written informed consent was obtained from each study
participant before data were collected on the participant.
Environmental exposure data matched by time and loca-
tion were obtained from multiple regional monitoring
stations (federal data sources) [26, 27]. The Germ Watch
program [28] of Intermountain Healthcare (Salt Lake
City, Utah) provided data for time-matched prevalent
viral activity in the Intermountain Region. Intermoun-
tain Allergy & Asthma (Salt Lake City, Utah) [29] pro-
vided time-matched pollen count and mold level data.
Analysis took place at the School of Medicine, University
of Utah. The study was reviewed and approved by the
Institutional Review Boards of the University of Utah
and Intermountain Healthcare.

Data collection
As shown in Fig. 1, the AST score is derived from
responses to the five questions of a modified Asthma
Control Test [18, 25] adapted for weekly assessment of

asthma control status. The AST score is the total score
of the responses to the five questions, ranges from 5 to
25, and reflects the patient’s asthma control level over
the past week. Each patient’s AST assessments were col-
lected for six months. For the current study, a patient
was excluded if he/she did not have at least two con-
secutive AST assessments one week apart. The first
AST assessment was completed in the hospital, was
almost always categorized as “uncontrolled asthma”
reflecting the patient’s status in the pre-hospitalization
week, and was excluded from analysis.
Patient demographics included age, race, sex, home

address, and health insurance provider. Clinical status
included chronic asthma severity level, secondhand
smoke exposure, comorbidities, and healthcare use in-
cluding ED visits and hospital admissions within the six
months prior to the index hospital admission. Demo-
graphics and clinical status were obtained through
extraction from Intermountain Healthcare’s Enterprise
Data Warehouse [30] and manual chart review. Median
household income and percentage of the population
with a college degree based on zip code and health
insurance category were obtained as surrogates for
socioeconomic status. Low socioeconomic status and
Medicaid insurance are known to be associated with
poor asthma control in children [31, 32]. Patient home
address was used in computing the patient’s environmen-
tal exposure via location matching.
Environmental variable data included particulate mat-

ter with a diameter of 2.5 micrometers or less (PM2.5),
PM10, carbon monoxide, nitrogen dioxide, sulfur diox-
ide, ozone, temperature, relative humidity, wind speed,
precipitation, dew point, tree pollen count, grass pollen
count, weed pollen count, mold level, and activities of
each of the following viruses: adenovirus, enterovirus,
influenza A virus, influenza B virus, human metapneu-
movirus, parainfluenza virus types 1, 2, and 3, respira-
tory syncytial virus, and rhinovirus.

Fig. 1 The five questions used in the Asthma Symptom Tracker
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Data analysis
Data preparation
Our primary goal was to predict asthma control deteri-
oration one week ahead. The dependent variable was the
patient’s AST score one week following the prediction
date, dichotomized to “controlled asthma” or “uncon-
trolled asthma” based on a cutoff score of >19 = “con-
trolled asthma” [18, 33]. Uncontrolled asthma occurred
much less frequently than controlled asthma. This could
degrade a predictive model’s performance. To address
this issue for the imbalanced dependent variable ([34],
Chapter 16), we applied the standard Synthetic Minority
Over-sampling TEchnique (SMOTE) [35] to the training
set used for estimating a model’s parameters, but not to
the test set used for evaluating the model’s performance.
Basically, SMOTE over samples the rarer class “uncon-
trolled asthma” to make the numbers of instances more
balanced for the two classes “controlled asthma” and
“uncontrolled asthma.” To remove distributional skew-
edness ([34], Section 3.2), the standard Box-Cox trans-
formation [36] was used to transform each numerical
independent variable, which was then normalized by first
subtracting its mean and then dividing by its standard
deviation ([34], Section 3.2). This makes the data more
normal distribution-like.
Evaluation was performed using two approaches. The

first approach used standard, stratified 10-fold cross val-
idation ([37], Section 5.3). The data were split into 10
partitions of roughly the same size. In each partition, the
proportion of uncontrolled asthma was about the same
as that in the full data set. Ten iterations were com-
pleted rotating through all partitions, using one for test-
ing and the other nine for training. The 10 performance
estimates were averaged to yield an overall performance
estimate of the model. In the second approach, the data
for each patient’s last AST assessment was used for test-
ing, with the remaining data used as the training set. The
performance estimate reflected a model’s performance in
making predictions when a patient was in his/her typical
clinical asthma status.

Performance metrics
As shown in Table 1 and the formulas below, six standard
metrics were used to measure a model’s performance:
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and Area Under
the receiver operating characteristic Curve (AUC). For

instance, false negative (FN) is the number of instances of
uncontrolled asthma that the model incorrectly identifies
as controlled asthma. Sensitivity measures the proportion
of all instances of uncontrolled asthma that the model
identifies. Specificity measures the proportion of all
instances of controlled asthma that the model identifies.

accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ;
sensitivity ¼ TP= TP þ FNð Þ;
specificity ¼ TN= TN þ FPð Þ;
positive predictive value ¼ TP= TP þ FPð Þ;
negative predictive value ¼ TN= TN þ FNð Þ:

Classification algorithms
Our basic predictive model was built using the decision
stump classifier, which makes a prediction based on a
single independent variable. Advanced predictive models
were built using the top six classification algorithms rec-
ognized in the machine learning and data mining litera-
ture [38, 39]: support vector machine, random forest,
multiboost with decision stumps, naive Bayes, k-nearest
neighbor, and deep learning. Briefly, a support vector
machine constructs a hyperplane in a high-dimensional
space to separate instances of the two classes. A random
forest is an ensemble of decision tree classifiers. Multi-
boost with decision stumps is an ensemble of decision
stump classifiers trained through combining boosting
with a variant of bagging. A naive Bayes classifier com-
putes conditional probability by assuming that given the
class variable, all independent variables are independent
of each other. A k-nearest neighbor classifier classifies a
new instance based on the classes of the k training in-
stances closest to it. An example deep learning classifier
is an artificial neural network with multiple hidden
layers, i.e., a deep neural network.
Weka [37], the most widely used open-source machine

learning and data mining toolkit, was used to build the
models. Weka integrates a large set of commonly used
machine learning algorithms and methods for handling
the imbalanced class problem (i.e., the categories of the
dependent variable are imbalanced). For deep learning
that is not part of the Weka toolkit, we used the deepnet
package in R [40] that implements deep neural network
with weights initialized by deep belief network [39, 41, 42].
The classification algorithms and SMOTE require

parameter entry. For instance, SMOTE has a parameter
controlling the amount of up-sampling [35]. For each
predictive model, we chose the parameter values of the
corresponding classification algorithm and SMOTE to
maximize sensitivity without overly degrading accuracy.
Among the six performance measures, sensitivity and

Table 1 The error matrix

Actual level of asthma control

Uncontrolled Controlled

Predicted level
of asthma control

uncontrolled true positive (TP) false positive (FP)

controlled false negative (FN) true negative (TN)
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accuracy are the primary targets because our main goal
is to identify uncontrolled asthma beforehand.

Results
The original study [25] provided 2912 weekly assess-
ments of asthma control on 210 asthmatic children 2 to
18 years old. After excluding baseline assessments and
30 patients with only one AST assessment, 2617 AST as-
sessments from 180 patients were available for predictive
modeling. Table 2 shows patient demographics and base-
line clinical characteristics. The percentage of uncon-
trolled asthma in the AST assessments was 23.5 %
overall. As shown in Fig. 2, this percentage was signifi-
cantly higher in the first week after hospitalization

(50 %), then stabilized near 19 % during the remaining
follow-up assessments.
Our basic predictive model used the decision stump

classifier with one independent variable, the patient’s
AST score on the prediction date. As shown in Table 3,
the model achieved an accuracy of 73.4-73.9 %, with a
low sensitivity of 51.1 % when measured by the method
of testing on each patient’s last assessment. Table 3 also
lists the performance of the six advanced machine learn-
ing classifiers measured by the two evaluation approaches.
To improve performance, each of the six advanced
classifiers used the five individual component scores
of the patient’s AST assessment on the prediction
date as independent variables.
The multiboost with decision stumps classifier had the

best performance, with a sensitivity of 73.8 % vs. 74.5 %,
an accuracy of 71.8 % vs. 74.4 %, a specificity of 71.4 %
vs. 74.4 %, an AUC of 0.761 vs. 0.757, a PPV of 37.1 %
vs. 50.7 %, and a NPV of 92.4 % vs. 89.2 %, when mea-
sured by the two evaluation approaches, respectively.
The support vector machine and deep learning classifiers
performed similarly. The naive Bayes, random forest,
and k-nearest neighbor classifiers performed less well,
particularly with respect to sensitivity.
We also used additional independent variables, beyond

the component scores of the patient’s AST assessment,
collected for this study to improve the advanced predict-
ive models’ performance. These variables included the
AST assessment one week prior to the prediction date,
the patient attributes, and the environmental variables
described above. None of these variables improved the
models’ performance (detailed results are not shown).
Thus, our best models used only the five individual com-
ponent scores of the patient’s AST assessment on the
prediction date as independent variables, making these
models easy to use in practice.

Table 2 Distribution of the patient attributes

Variable Category N

Sex male 110

female 70

Age (in years) 2–5 112

6–10 46

11–14 19

15–18 3

Race Native American 3

Asian 5

black 4

Hispanic 26

Pacific islander 6

white 118

other 14

unknown 4

State of residence Idaho 1

Nevada 4

Utah 172

Wyoming 3

Chronic asthma severity level intermittent 35

persistent 144

unknown 1

Insurance category Medicaid 71

private 101

self-paid 8

Exposure to secondhand smoke yes 35

no 116

unknown 29

Presence of any comorbidity yes 2

no 178

Previous asthma admission yes 35

no 145

Fig. 2 Across all patients, the percentage of instances of uncontrolled
asthma over time. Week 0 is the time when the first assessment was
obtained on a patient during hospitalization
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Discussion
The objective of our study was to develop and test new
predictive models for asthma control deterioration using
a combination of patient demographic information, clin-
ical information, and environmental variables. Using the
multiboost with decision stumps classifier, we were able
to successfully predict asthma control deterioration one
week ahead with reasonable accuracy, demonstrating the
feasibility of predictive modeling. However, performance
needs to achieve a higher level of accuracy (e.g., >80 %)
and PPV, while maintaining high sensitivity and specifi-
city, before such models can be used to support real-
time clinical decision making. If accuracy goals can be
met, such a model could be integrated into electronic
asthma self-monitoring systems, such as the electronic-
Asthma Tracker (e-AT) [43], to provide prediction-based
decision support and personalized early warnings of
potential asthma control deterioration for asthmatic
children. In this case, all independent variables used in
the model need to be collected by the electronic asthma
self-monitoring system. After the user enters his/her
current AST assessment into the system, the system will
use the model to predict the user’s asthma control level
one week later. If the user is predicted to experience
asthma control deterioration, the system will display a
personalized warning message to the user.

Although not perfect, our results are encouraging, par-
ticularly as the first work on predicting a child’s asthma
control deterioration one week ahead. In comparison,
despite years of work, existing models on predicting asthma
exacerbations have low sensitivities (typically <60 %) and
low PPVs (typically <27 %) [20–24], much below those
achieved by our best model.
Despite bringing significant burden to patients and the

healthcare system, asthma continues to be a poorly con-
trolled disease [10]. Poor asthma control is associated
with frequent asthma exacerbations [44]. However, an
asthma exacerbation is usually preceded by a critical
period of asthma control deterioration [14]. This pro-
vides opportunity for interventions if early evidence of
deterioration can be identified. Physicians, caregivers,
and patients all tend to overestimate the level of asthma
control, particularly in children [10, 15–18], resulting in
poor recognition of deterioration until an acute exacer-
bation occurs. One way to identify risk of asthma con-
trol deterioration is to develop predictive models. To
date, predictive models for deteriorating asthma control
have focused on asthma exacerbation, often a late mani-
festation of loss of asthma control [44].
Using environmental variables, patient attributes, and

the patient’s daily peak expiratory flow rate (PEFR) in
the previous few days, Lee et al. [45] built a model to

Table 3 Performance of the different classifiers

Performance of the decision stump classifier

Evaluation method Sensitivity Accuracy Specificity AUC PPVa NPVa

10-fold cross validation 67.2 % 73.4 % 74.9 % 0.710 38.1 % 91.0 %

testing on each patient’s last assessment 51.1 % 73.9 % 82.0 % 0.665 50.0 % 82.6 %

Performance of the six advanced classifiers measured by the 10-fold cross validation method

Classifier Sensitivity Accuracy Specificity AUC PPVa NPVa

Multiboost with decision stumps 73.8 % 71.8 % 71.4 % 0.761 37.1 % 92.4 %

Support vector machine 71.5 % 72.0 % 72.0 % 0.718 37.0 % 91.8 %

Deep learning 71.6 % 72.3 % 72.5 % 0.744 37.2 % 91.8 %

Naive Bayes 59.8 % 78.1 % 82.3 % 0.777 43.7 % 90.0 %

k-nearest neighbor 56.9 % 73.3 % 77.0 % 0.704 36.0 % 88.7 %

Random forest 48.3 % 75.8 % 82.0 % 0.662 37.9 % 87.5 %

Performance of the six advanced classifiers measured by the method of testing on each patient’s last assessment

Classifier Sensitivity Accuracy Specificity AUC PPVa NPVa

Multiboost with decision stumps 74.5 % 74.4 % 74.4 % 0.757 50.7 % 89.2 %

Support vector machine 70.2 % 73.3 % 74.4 % 0.723 49.3 % 87.6 %

Deep learning 68.1 % 72.2 % 73.7 % 0.738 47.8 % 86.7 %

Naive Bayes 44.7 % 73.9 % 84.2 % 0.783 50.0 % 81.2 %

k-nearest neighbor 48.9 % 73.9 % 82.7 % 0.773 50.0 % 82.1 %

Random forest 38.3 % 75.6 % 88.7 % 0.678 54.5 % 80.3 %
aPPV positive predictive value; NPV negative predictive value
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predict an asthma exacerbation. Lee’s model, however,
did not predict asthma control deteriorations preceding
an exacerbation, and thus cannot be used to support
early intervention to prevent clinical deterioration. In
addition, although monitoring PEFR is commonly used
to identify early signs of asthma control deterioration, it
has several limitations including: (1) the measurement is
labor intensive, impacting compliance [43]; (2) PEFR is
effort dependent [46] with low reproducibility [47–49];
(3) PEFR primarily assesses large airway airflow and
underestimates airflow limitations in medium and small
airways [49, 50]; (4) PEFR goals are usually based on the
patient’s best PEFR [49], which may differ from the pre-
dicted or desired goals [43]; and (5) PEFR goals increase
with age and height [51] and must be re-calculated peri-
odically, which is often overlooked [43].
In our AST, asthma control assessments are based on

the Asthma Control Test questionnaire adapted for
weekly assessment of asthma control status. Thus, we
avoid using the more difficult and less accessible forced
expiratory volume in 1 second (FEV), forced vital capacity
(FVC), and PEFR, and their limitations for use in children.
In our study, the multiboost with decision stumps,

support vector machine, and deep learning classifiers
performed similarly and achieved reasonable accuracy,
sensitivity, specificity, AUC, and NPV. All of these three
classifiers could predict a child’s asthma control deteri-
oration one week ahead with reasonable accuracy. The
naive Bayes, random forest, and k-nearest neighbor
classifiers performed less well, particularly with respect to
sensitivity.
The AST assessment reflects the patient’s asthma

control level over the past week. Successive patient AST
assessments are highly correlated with each other. Also,
adding the AST assessment one week prior to the pre-
diction date does not improve the models’ performance.
We would expect that obtaining AST assessments on a
patient more than once per week will not increase pre-
diction accuracy, as information contained in additional
AST assessments has already been included in the AST
assessments on the prediction date and one week prior
to the prediction date.
Our study has several limitations. First, the patients

were recruited during hospitalization for asthma exacer-
bation. Each year, only ~1.6 % of asthmatic children are
hospitalized [4]. As is typical with predictive modeling,
our models’ performance is affected by the percentage of
uncontrolled asthma in AST assessments. The percent-
age may be lower in patients not hospitalized than in
patients hospitalized. A model’s performance usually de-
grades as the percentage of uncontrolled asthma in AST
assessments decreases. It remains to be seen how our
models will perform on patients not hospitalized. Sec-
ond, we had a small sample size and were limited by the

number of patient attributes and environmental vari-
ables. Collecting additional AST assessments and patient
attributes can potentially improve the models’ perform-
ance. Such attributes might include information on aller-
gies, parental asthma [20], healthcare access, the number
of prescribing providers [21], viral infection severity [52],
compliance with asthma controller medications, and other
known predictors of asthma control such as pet exposure
[53]. Third, our sample is relatively homogenous. For in-
stance, 66 % of the patients are white. The small sample
size limits our capability to (a) detect the association be-
tween a variable that is relatively homogenous and the
asthma control level, and (b) conduct subgroup analysis to
determine whether prediction accuracy differs among
various patient subgroups (e.g., by race or by chronic
asthma severity level). Fourth, our environmental variable
data came from regional monitoring stations and may not
reflect a patient’s actual exposures [45, 54, 55]. Accurate
measurement of environmental exposures would benefit
from using a personal exposure monitor [46, 55–57] and
may help increase the models’ performance. We did
find environmental variables correlated with an asthmatic
child’s level of asthma control, but the correlation was
relatively weak [58, 59]. By including the environmental
variables, but not the patient’s AST score, in the predictive
models, our best model achieved a low sensitivity of
41.7 % and a low AUC of 0.593.
To better understand our predictive models’ perform-

ance, we used two evaluation methods simultaneously.
These two methods address different situations. When a
choice among multiple predictive models needs to be
made, these two evaluation methods can provide insights
into which model is most suitable for the clinical situ-
ation and desired outcome. The patient’s AST score on
the prediction date reflects the patient’s asthma control
level, and hence can be an approximate surrogate for the
environmental variables in the previous seven days as-
suming they have a non-trivial influence on asthma con-
trol. We felt that this, and the high correlation between
successive patient AST assessments, rendered our mod-
eling attempts less successful than desired. It is likely
that AST assessments have an overpowering influence
on the prediction in comparison to environmental vari-
ables and other patient attributes, making their relative
contributions insignificant. This effect was compounded
by our small sample size.
As with any intervention relying on patient-reported

data, our technology’s utility hinges on patient adherence
to continuous reporting of their data. If patients cannot
obtain benefits from efforts expended on reporting their
data, adherence is likely to wane. The functionality of pre-
dicting asthma control deterioration, once done accurately
and incorporated into the e-AT, will provide direct bene-
fits to patients and may help improve patient adherence.
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We have several goals in mind for future work. First,
we would like to improve the models’ performance. This
will be accomplished by: (1) increasing the sample size
to improve the capability to detect the association between
a variable and the asthma control level, (2) obtaining
additional patient attributes among the known predictors
of asthma control, (3) collecting additional environmental
variables, such as pet exposure at the patient’s home,
(4) collecting patient-specific environmental variables
with portable monitors rather than estimating from
regional monitoring stations, and (5) integrating pa-
tient pharmacogenomics information relating to medi-
cation metabolism.
Second, we would like to investigate how our models will

perform in the ambulatory setting with non-hospitalized
patients.
Third, we would like to probe the possibility of making

an earlier prediction. In general, the earlier and the more
accurate the prediction, the more useful the prediction
will be for clinical decision making.
Fourth, we would like to extend our predictive models

to incorporate intervention information, in a way similar
to that in interrupted time series models or intervention
models [60]. Our current models consider no inter-
vention information. However, once prediction-based
warnings start to be provided to an asthmatic child,
the child may be given a preventive intervention. The
intervention will impact the child’s asthma control
level in the future and thus needs to be considered in
the predictive model.

Conclusions
Our best models predicted with reasonable accuracy a
child’s asthma control level one week ahead. With im-
provements in accuracy, the models can be integrated
into electronic asthma self-monitoring systems to pro-
vide real-time decision support and personalized early
warnings on potential asthma control deterioration for
asthmatic children. This will allow implementing pre-
ventive actions to reduce asthma exacerbations, improve
clinical outcomes, increase quality of life, and reduce
healthcare cost.
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