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Abstract

Determining the compositional structure and dimensionality of psychological constructs lies at the heart of many research
questions in developmental science. Structural equation modeling (SEM) provides a versatile framework for formalizing and
estimating the relationships among multiple latent constructs. While the flexibility of SEM can accommodate many complex
assumptions on the underlying structure of psychological constructs, it makes a priori estimation of statistical power and
required sample size challenging. This difficulty is magnified when comparing non-nested SEMs, which prevents the use
of traditional likelihood-ratio tests. Sample size estimates for SEM model fit comparisons typically rely on generic rules of
thumb. Such heuristics can be misleading because statistical power in SEM depends on a variety of model properties. Here, we
demonstrate a Monte Carlo simulation approach for estimating a priori statistical power for model selection when comparing
non-nested models in an SEM framework. We provide a step-by-step guide to this approach based on an example from our
memory development research in children.
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Introduction Yoon, 2006; Miyake et al., 2000), attention (Mirsky, Anthony,
Duncan, Ahearn, & Kellam, 1991) or memory (McClelland,
McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003;

Schapiro, Turk-Browne, Botvinick, & Norman, 2017) are

Over the past decades, many psychological constructs that
had originally been conceptualized as unitary entities have

been shown to be multifactorial phenomena. A prominent
example are the early debates about component factors of
intelligence (Cattell, 1971; Horn, 1970, 1978) or personality
(McCrae & Costa, 1985). However, also more specialized
cognitive abilities such as executive functions (Hedden &
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increasingly considered multi-process functions.

Understanding the underlying compositional structure of
such multifaceted psychological constructs is challenging.
The task becomes even more demanding when the develop-
ment of component structures over time or the identification
of (time-varying) differences between groups is the target
of scientific investigations (Baltes, Reese, & Nesselroade,
1988). Structural equation modeling (SEM, Bollen, 1989;
Joreskog & Goldberger, 1975) provides a flexible framework
that can accommodate a number of assumptions on the struc-
ture of key factors underlying a given construct and their
inter-dependence. Indeed, SEM has become an increasingly
popular tool in psychological science over the past decades
(for a review, see MacCallum & Austin, 2000).

Since Cohen’s classic study on statistical power (Cohen,
1962), numerous researchers from psychological and neu-
rocognitive science have stressed the issue of insufficient
statistical power and its consequences on the interpreta-
tion of scientific findings in the face in inadequate sample
sizes (Anderson & Maxwell, 2017; Button et al., 2013;
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Sedlmeier & Gigerenzer, 1989; Vankov, Bowers, & Munafd,
2014). However, determining required sample size in an SEM
approach is far from trivial. While the investigation of target
effects in SEM can be achieved via analytical computations
(Satorra & Saris, 1985), tackling more complex research
questions that rely on the comparison of non-nested mod-
els poses a challenge in determining sufficient sample sizes.
In this study, we implemented a Monte Carlo-based
simulation approach and provide a step-by-step guide for
conducting randomization-based analyses for a priori sample
size estimations for non-nested model comparison. Specif-
ically, we exemplify this approach with a specific research
question, focusing on the componential structure of mem-
ory processes in early childhood (for theoretical background
see Buchberger, Brandmaier, Lindenberger, Werkle-Bergner,
& Ngo, in press). Memory developmental research repre-
sents an excellent example for this methodological approach,
as researchers from different fields have put forth com-
peting ideas on the underlying structure of memory in
childhood: While a rich body of empirical work from many
decades has focused on the dichotomy between episodic
and semantic memory (Tulving, 1972), more recent neuro-
computational theories have introduced a process-focused
approach to memory development. Tenets from contempo-
rary memory models invite the hypothesis that three kinds of
neurocomputations may complementarily support adaptive
memory functioning, thereby assuming a tri-partite structure
of memory (McClelland et al., 1995; Norman & O’Reilly,
2003; Schapiro et al., 2017). Such competing theories on
the underlying structure of memory can be addressed via
model comparisons in an SEM framework. In this tutorial,
we address two overarching issues that affect estimates of
statistical power for such comparisons: (i) the separability of
the theoretical constructs and (ii) the reliability with which
the constructs are being measured. We employ this example
to demonstrate the procedure and the utility of such methods,
with the aim of illustrating a transferable approach to other
research questions in different domains and disciplines.

SEM in developmental cognitive neuroscience

SEM uses information about the relationship between multi-
ple measured variables to uncover the structure of unobserv-
able constructs, rendering this methodological framework a
powerful tool in the field of developmental cognitive neuro-
science (e.g., Baltes et al., 1988; Kievit et al., 2018). Most
notably, it enables the translation from theories to testable
mathematical models that can simultaneously include numer-
ous observable indicators and multiple latent constructs of
interest (such as behavioral constructs and neural correlates).
Thus, it allows simultaneous modeling of the relation-

ships among theoretical constructs and their co-development
across different developmental windows.

In an SEM framework, theoretical constructs of inter-
est are operationalized as latent variables that capture the
underlying commonalities across a set of (measured) man-
ifest variables. Manifest variables can directly be observed
(such as items in a questionnaire or indices derived from
a behavioral task) and are commonly illustrated as squares
in graphical depictions of SEM. Latent variables represent
hypothetical constructs that are not directly observable (such
as a latent factor of intelligence or memory), but are inferred
from a selection of manifest variables. In graphical depictions
of SEM, latent variables are commonly shown as circles. The
strength of a loading, that is, a path from a latent variable
to an observed variable, represents the extent to which the
observed variance is accounted for by the latent factor. In
other words, the loading indicates how well a given manifest
variable captures the latent construct.

The relationship among manifest and latent variables can
be described in a mathematical model, which specifies all
assumed parameters. Two models M1 and M2 are referred to
as nested, if the parameter space in a more restrictive model
M2 represents a subspace of the parameter space of the more
general model M1 (Bentler & Bonett, 1980). This means that
the two models only differ with regards to the specification
of one or multiple parameters. Nesting of models is usually
achieved via constraining free parameters from M1 to equal-
ity or to known constants. The concept of nesting represents
aconvenient characteristic when comparing competing mod-
els, as it allows the use of a likelihood-ratio test to evaluate
their relative model fits (Satorra & Saris, 1985). When com-
paring non-nested models, researchers usually revert to the
comparison of model fit indices that indicate how well a given
model describes the data, such as the Bayesian information
criterion (BIC, Raftery, 1986; Schwarz, 1978), the Akaike
information criterion (AIC, Akaike, 1974), the root mean
square error of approximation (RMSEA, Steiger, 2016), and
the Comparative Fit Index (CFI, Bentler, 1990, but see “Dis-
cussion and conclusion” for a discussion of recently pro-
posed non-nested likelihood-ratio tests). Such indices can
guide heuristic model selection, but do not allow for any sta-
tistical guarantees (e.g., a pre-specified type I error level).

Statistical power in SEM

Over the past decades, the issue of low statistical power and
its consequences for the interpretation of scientific findings
has gained awareness in neurocognitive and psychologi-
cal research (Cohen, 1988; MacCallum & Austin, 2000;
Maxwell, 2004; Rossi, 1990). Statistical power refers to the
probability of rejecting a null hypothesis, when it is indeed
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false (i.e., the probability of not committing a type II error)
and is directly linked to the sample size of a study, the magni-
tude of the targeted effect, and the reliability of measurement
(Brandmaier, Oertzen, Ghisletta, Lindenberger, & Hertzog,
2018; Cohen, 1988). While low statistical power decreases
the scientific utility of any given study, it also decreases the
likelihood that a given significant result actually reflects a true
effect (Button et al., 2013). To allow well-designed empirical
research to detect effects in the sample under investigation,
a priori estimates of statistical power (that is computation
of power estimates before conducting the study) and thus
informed decisions on required sample size are crucial to
prevent underpowered research (Button et al., 2013). While
the desired level of statistical power can depend on specific
aspects of the research question at hand, a typical convention
for adequate power in the behavioral sciences is 0.8 (Cohen,
1988). However, others have argued that there is no reason
to prefer type I errors over type II errors and thus one should
better aim for a statistical power of 0.95, if the level of sig-
nificance is kept at the conventional 5%. Note that, of course,
considerations on statistical power and thus sample size esti-
mates need to be balanced with the probability of committing
type L errors, that is the probability to reject a null hypothesis
if it is indeed true.

Various rules of thumb on required sample size in SEM
have been recommended, including setting an absolute min-
imum of observations across the board (Boomsma, 1985)
and adjusting to the model complexity (i.e., setting a number
of observations per estimated parameter, Bentler & Chou,
1987). Unfortunately, such heuristics can be misleading, as
statistical power in SEM is heavily influenced by parame-
ters beyond the number of indicators per latent construct,
e.g., the magnitude of factor loadings (Wolf, Harrington,
Clark, & Miller, 2013). Further, determining the required
sample size for a given study depends on the research ques-
tion. One common utility of SEM is to test whether a given
effect in a model exceeds a specific threshold, such as test-
ing whether the correlation of latent factors exceeds zero,
or whether a specific parameter estimate differs between
groups (i.e., target effect). Another common utility is to
determine how well a given model describes the data, and/or
whether one model describes the data better than a compet-
ing model (i.e., model comparison). These different research
questions require different types of power: the power to
detect a target effect vs. the power to detect model mis-
specification (Wang & Rhemtulla, 2021). Further, theoretical
assumptions on competing models can lead to the necessity
to compare non-nested models, which prevents the use of
traditional x2-based power estimates and therefore requires
alternative approaches to determining statistical power for
SEM (see “Discussion and conclusion” for a more detailed
discussion of recently proposed non-nested likelihood-ratio
tests).
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Statistical power to detect a specific effect of interest

Central to many studies that employ SEM is the question of
whether a specific parameter in a model (e.g., strength of a
specific correlation or the slope parameter in a latent regres-
sion model) is different from a given value (e.g., Canada,
Hancock, & Riggins, 2021). Imagine that a researcher aims
to test whether the correlation between two latent constructs
significantly differs from zero. To this end, they would com-
pare the model fit between one model in which the correlation
parameter is freely estimated and another model in which it
is fixed to zero (Satorra & Saris, 1985). The corresponding
null hypothesis in this case states that the parameter restric-
tions hold in the population. The difference in model fit will
follow a x 2-distribution with degrees-of-freedom (df) equal
to the difference of freely estimated parameters between the
two models, if the null hypothesis is true (Neale, 2000, in this
example df = 1, because only the correlation between the two
latent factors is fixed in the restricted model). If restricting the
parameter of interest results in a significantly poorer model
fit, this would suggest that the respective parameter indeed
significantly differs from zero.

Following the logic outlined above, researchers can deter-
mine the statistical power for detecting a target effect in an
SEM framework before conducting the study. A key aspect
for this a priori power calculation hinges on translating the
differences in a specific parameter estimate into an effect size.
Such translation can be achieved by investigating the dis-
crepancy between the model-implied variance—covariance
matrices associated with (1) the population model including
the “true” parameter values and (2) the hypothesized model.
The discrepancy between both matrices is quantified based on
a specific fit function (for details on fit functions, see Bollen,
1989). As the investigation of a target effect practically trans-
lates into the comparison of nested models, researchers can
in these cases analytically determine the statistical power
and use this information for decisions on required sample
size (Satorra & Saris, 1985). Recently, several user-friendly
tools have emerged that can guide modelers in deriving esti-
mates for statistical power to estimate statistical power in
SEM in such cases (e.g., the R packages semPower Jobst,
Bader, & Moshagen, 2021; or powerdSEM Jak, Jorgensen,
Verdam, Oort, & Elffers, 2020 for analytical approaches; and
the Shiny app pwrSEM Wang & Rhemtulla, 2021; the inter-
active study planner tool LIFESPAN Brandmaier, Oertzen,
Ghisletta, Hertzog, & Lindenberger, 2015; or the R package
simsem Pornprasertmanit, Miller, Schoemann, & Jorgensen,
2021 for simulation-based approaches).

Statistical power for model comparison

A second question that is of interest for many researchers
— especially in developmental cognitive neuroscience —
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pertains to identifying the one theoretical model (from a
set of competing models) that best explains the given data
(Henson et al., 2016; Miller, Giesbrecht, Miiller, McInerney,
& Kerns, 2012; Nyberg, 1994). In the case of competing
models that are nested, the analytical approach to this ques-
tion (and therefore also considerations on statistical power)
can be addressed analogously to the procedure outlined
above (see Jobst et al., 2021 for a step-by step tutorial).
However, comparing non-nested models prohibits the use
of traditional x2-based statistics and therefore poses addi-
tional methodological challenges in determining the ‘best’
model. Nevertheless, researchers should strive for a method-
ological approach that matches the theoretical assumptions,
rather than vice versa, that is, moving away from well-
grounded theoretical considerations to meet methodological
constraints. In cases where researchers aim to derive esti-
mates of statistical power for non-nested model comparisons,
randomization-based techniques offer an excellent alterna-
tive (Efron & Tibshirani, 1994). In particular, Monte Carlo
simulations have proven useful to bridging this gap (Muthén
& Muthén, 2002, see “How does a simulation work: Pow-
er-estimations for the comparison of non-nested SEMs” for
more details on Monte Carlo simulations).

Example: Competing models on the compositional
structure of memory

For many decades, the compositional nature of memory in
adults as well as its maturation across development has been
of great interest in psychology, cognitive science, neuro-
science, and artificial intelligence research. Different models
on the compositional structure of memory have been heavily
debated (McClelland et al., 1995; Norman & O’Reilly, 2003;
Schapiro et al., 2017; Tulving, 1972).

The most simplistic characterization of memory structure
is to assume a unitary ability underlying different memory
demands, akin to a g-factor of memory (Spearman, 1904).
Such a unitary model of memory suggests no differentia-
tion of component processes within declarative memory, but
rather claims that the performance on various types of mem-
ory demands is grounded in a single ability factor.

An alternative prominent view is the classic dichotomy
between episodic and semantic memory systems (Squire,
1987; Tulving, 1972). Such a bi-partite architecture of mem-
ory postulates a division between one component responsible
for learning specific events embedded in their temporal and
spatial context (episodic memory) and a second component
responsible for learning regularities and extracting gener-
alized knowledge (semantic memory). Previous research
comparing a unitary vs. a bi-partite account of memory in
an SEM framework has supported the idea of separable

memory factors underlying declarative memory, at least in
adults (Nyberg, 1994).

Adopting a process-oriented view, recent computational
models of memory have argued for a functionalist distinc-
tion between memory specificity and generalization through
a labor division between the hippocampus and the cor-
tex (McClelland et al., 1995; Norman & O’Reilly, 2003).
Here, a set of neurocomputations support different mem-
ory demands. Important to learning specific episodes are
pattern separation that discriminates between similar memo-
ries through the reduction of representational similarity, and
pattern completion that retrieves linked associations among
co-occurring elements (Marr, 1971; Norman & O’Reilly,
2003; Rolls, 2016). Both of these computations are thought
to be specialties of the hippocampus. In contrast, the cor-
tex is well suited to slowly learn statistical regularities that
enables generalization (McClelland et al., 1995; Norman
& O’Reilly, 2003). Interestingly, rapid generalization also
relies on the hippocampus, either via retrieval mechanisms
of related episodes (Kumaran & McClelland, 2012) or via
a distributed coding scheme carried by a specific subset
of the hippocampal circuitry (Schapiro et al., 2017). From
this vantage point, memory abilities take shape of a tri-
partite structure, encompassing pattern separation, pattern
completion, and generalization as three separable mnemonic
processes.

Which of these views best explains memory abilities
across early development? This question requires adequate
statistical methods that can adjudicate among multiple com-
peting ideas on the underlying structure of memory. The
simulation in the following section of this paper will address
methodological challenges in study planning when aim-
ing to compare three hypothetical models: a unitary model
(Model 1), a bi-partite model (Model 2), and a tri-partite
model (Model 3) on the compositional structure of memory
(Fig. 1). Specifically, we will focus on the issue of esti-
mating statistical power for this model comparison. Here,
we address the impact of two main aspects in particular:
(i) the separability of the theoretical constructs, i.e., inter-
relatedness of the latent factors in the competing models
and (ii) the reliability of the measures, i.e., the loadings of
the manifest variables. Details on the theoretical basis and
the selection of methodological indicators for each model
can be found in Buchberger et al. (in press). Important for
this context is the fact that our specification of Models 2
and 3 results in a non-nested model comparison (due to the
cross-loadings for the latent factors pattern separation and
pattern completion and different allocation of the indicator
Task 10). Therefore a priori estimations of statistical power
for selecting the correct model call for a simulation-based
approach.
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Model 1: Unitary Model
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arrows indicate regressions and double-headed arrows indicate covari-
ances. See Buchberger et al., (in press) for an in-depth description of

Fig. 1 Path diagrams of three competing SEMs on the structure of
memory. Squares represent observed performance measures on the
behavioral tasks. Circles represent latent constructs (PS = Pattern Sepa- the models
ration, PC =Pattern Completion, GEN = Generalization). Single-headed
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Methods

In the following, we demonstrate how to conduct a simulation-
based power analysis for non-nested model comparisons.
Here, we refer to statistical power as the probability of
correctly selecting a model given a selection of candidate
models. In a hypothesis testing framework, the alternative
hypothesis corresponds to a given model being the true
model. Statistical power then reflects the correct selection
rate of a model and the type I error corresponds to the prob-
ability of incorrectly selecting that model when one of the
other candidates is the true model. For the sake of illustration,
we will refer to the example on the compositional struc-
ture of memory outlined in “Example: Competing models
on the compositional structure of memory” throughout. For
this example, we aim to derive estimates of required sample
size to identify the tri-partite model as the best-fitting model
among the three competing models, if it indeed generated
the data. In a step-by-step guide, we therefore show how to
specify the competing models in R, how to set up different
design conditions for the simulation, how to define the func-
tions to generate, analyze, and summarize synthetic data and
how to execute the simulation. Based on two separate simula-
tions, we show how the separability of theoretical constructs
(“What is the impact of the separability of theoretical mod-
els on estimates of statistical power?””) and the reliability of
the manifest variables (“What is the impact of the reliabil-
ity of manifest variables on estimates of statistical power?”)
impacts estimates of statistical power for model comparisons
by varying inter-factor correlations and factor loadings across
different conditions of the simulation. Finally, we employ the
same simulation-based approach to investigate type I error
rates, that is erroneously identifying the tri-partite model as
the best-fitting model if the bi-partite or unitary model gen-
erated the data (“How can simulations inform us about type
I error rates?”).

How does a simulation work: Power-estimations for
the comparison of non-nested SEMs

To investigate statistical power for deciding between compet-
ing theoretical non-nested models, we suggest a Monte Carlo
simulation-based approach (Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953). Monte Carlo studies represent
a computer-intensive simulation, which allows to approx-
imate statistical power for a given study design (Muthén
& Muthén, 2002). While Monte Carlo simulations can be
implemented for a variety of research questions, the flexi-
bility of the approach makes them especially well suited for

obtaining a priori power estimates for the comparison of non-
nested SEMs. Furthermore, analytical approaches are tied
to assumptions (e.g., no missing data, multivariate normal-
ity), whereas simulation-based approaches allow for arbitrary
data generating processes. In Monte Carlo studies, synthetic
data are repeatedly generated with a set of different hypoth-
esized parameter values and analyzed across all samples.
Summary statistics from the entirety of the simulated datasets
are then used to draw conclusions (Muthén & Muthén, 2002;
Paxton, Curran, Bollen, Kirby, & Chen, 2001). The general
procedure of Monte Carlo simulations follows a common
core structure: (i) generate — in which multiple synthetic
datasets are generated based on the hypothesized models,
(ii) analyze — in which the synthetic data are analyzed for
every iteration of the simulation, (iii) summarize — in which
the results are pooled over all simulation iterations. This gen-
eral procedure is applicable to a variety of scenarios. When
comparing competing SEMs, it is necessary to specify the
competing theoretical models, and decide on the simulation
design, that is which model parameters of interest should
be modified across the simulations. Finally, researchers need
to evaluate the results from the simulation in order to derive
practical implications from the simulation (see Fig. 2). While
these steps can be manually coded in a statistical research
software, such as R, the implementation of a simulation can
become increasingly complex and error-prone with increas-
ing number of conditions that are being simulated. A useful
tool that can guide novice simulators in setting up a Monte
Carlo simulation is the R package simDesign (Chalmers
& Adkins, 2020), which facilitates the implementation of
the internal logic of generate — analyze — simulate and can
accommodate various research designs. All simulation steps
in this study were therefore implemented within the simDe-
sign package.

Step 1: Specifying competing SEMs

The first step of the simulation is translating the theoretical
assumptions about latent constructs of interest and the man-
ifest variables into an SEM. This step entails (a) specifying
the number of latent factors (how many theoretical constructs
are thought to influence the observed behavior in the manifest
variables?), and (b) the allocation of each manifest variable to
(at least one) latent variable (which of the manifest variables
captures the respective latent construct?). In R, the structure
of a SEM can be easily implemented using lavaan syntax
(Rosseel, 2012). Typically, useful operators for specifying a
model entail factor loadings (=~), (co-)variances (~~), and
means or intercepts (~1). The tri-partite model (Fig. 1, Model
3) could be specified in lavaan syntax as the following:
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Simulation
Design

Specify
models

Generate and
Analyze

—  Summarize Evaluate

Fig.2 Schematic overview of the simulation process

model3 <-
'ps =~ taskl + task2 + task3 + task4d
+ task5 + task6
pc =~ task5 + task6 + task7 + task8
+ task9
gen =~ taskl0+ taskll + taskl2
+ taskl3'

The model is defined by a model string, which speci-
fies three latent factors of memory (Pattern Separation [ps];
Pattern Completion, [pc]; Generalization, [gen]) which are
measured through the manifest variables (tasks 1 to 13). Note
that lavaan entails several user-friendly functions for fitting
models that automatically include default settings for model
components that are not explicitly specified (e.g., adding
residual variances, covariances of exogenous latent vari-
ables). Thus, the model syntax can be kept very concise
(check documentation of the respective function for full
information on default settings).

Estimating statistical power for model comparisons requires
that researchers specify each of the competing models and
all aspects in which they differ from one another (e.g., in
number of latent factors, allocations of manifest variables;
For specifications of Models 1 and 2, see supplementary R
code on GitHub, Buchberger, Ngo, Peikert, Brandmaier, &
Werkle-Bergner, 2024).

Step 2: Simulation design

When defining the structure of the theoretical model for
data generation, it is crucial to specify all parameters in the
model, particularly the loading strength of the manifest vari-
ables, along with the means and (co-)variances of the latent
factors. This step also requires the specification of which
parameter values should be kept constant or which should
be modified across different simulation iterations. Parame-
ters for which there are strong assumptions (e.g., derived
from previous work) can be entered in the models and
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kept constant. Parameters for which the impact on statisti-
cal power is of interest should be included as a condition
in the simulation design. For example, if the question per-
tains to how the reliability of the measures may impact the
estimates of required sample size, different levels of load-
ing strength can be included in the conditions for which
data is being simulated. The createDesign() function of the
simDesign package can be used to create a full list of condi-
tions for the simulation. All parameters that should be varied
in the simulation are included as arguments in the creat-
eDesign() function. Full crossings of all possible values for
the different parameters are then generated as conditions for
the simulation. Note, however, that the number of simula-
tion conditions and therefore the required computation time
increases exponentially for full combinations of all simula-
tion conditions. Researchers should thus be mindful about the
number of conditions in a given simulation to avoid overly
computationally intensive simulations, which can further be
increasingly difficult to interpret. If only specific combina-
tions of the parameters in the simulation are of interest for a
given research question, the resulting design data frame can
be adjusted accordingly, e.g., by deleting specific rows from
the data frame. Below is our design data frame that includes
different simulation conditions for (i) the loading strength of
the manifest variables and (ii) the sample sizes:

design_load_model3 <- createDesign(
loading strength = seq(0.5, 0.9, 0.1),
sample_size = seq(50, 200, 5),

# [..]

)

Here, the design for the Monte Carlo simulations consists
of five loading strength conditions (i.e., 0.5 to 0.9 in incre-
ments of 0.1). The sample size is varied from 50 to 200 in
increments of 5. In total, data for 155 conditions (5 x 31) are
generated.
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Step 3: Generate

Next, we define the mechanism to generate the synthetic data.
An easy way to generate synthetic data within an SEM frame-
work in R is the simulateData() function available in the
lavaan package (Rosseel, 2012). In the example on memory
composition, we simulate multivariate normal data, as the
indicators represent continuous values of task performance
from the memory tasks. However, the simulation approach
presented here can of course be extended to dichotomous
or polytomous data for other use cases. Within the gener-
ate function, all parameters that are predetermined across
iterations can be directly entered into the generating model
syntax. However, all parameters that are supposed to be var-
ied between different iterations of the simulation need to
be accessed through the condition argument that is returned
through the createDesign() function in step 2. It can be useful
to examine the resulting datasets prior to running the simula-
tion to assess whether the data generating mechanism returns
realistic datasets (e.g., regarding the variability of the data,
extreme values), to allow for refining the generate function
accordingly (similar to prior predictive checks as often sug-
gested in the context of Bayesian approaches, Gelman et al.,
2020). Given our interests in the effect of loading strength and
strength of covariance between the latent factors, we define
these parameters in step 2 (Design) such that they can now be
called via the condition argument in the generate function:

generate_data <- function(condition,
fixed_objects = fixed_objects) {
parameters <- list(a = condition$
loading_strength,
# [..]
b = condition$loading_strength/
sgrt (2+2*condition$covl))
tasks <- str _c("task", 1:13)
error_vars <- glue::glue_collapse (
glue: :glue_data (parameters, "{tasks}
~~ {1 - a”2} * {tasks}"),"\n")
pop_model <- glue::glue_data(
parameters,
"ps =~ {a}*taskl + {a}*task2 +
{a}*task3 + {a}*task4d +
{b}*task5 + {b}*task6\n

pc =~ {b}*task5 + {b}*task6 +
{a}*task7 + {a}*task8 +
{a}*task9\n

gen =~ {a}*taskl0+ {a}*taskll +

{a}*taskl2+ {a}*taskl3\n
{error_vars}
ps ~~ {conditionS$Scovl}*pc\n
ps ~~ {conditionS$Scov2}*gen\n

pc ~~ {conditionScov3}*gen")
dat <- data.frame (simulateData (pop_model
sample.nobs =
condition$sample_size))

Here, we define the generate function for the tripartite
model. The factor loadings specified in step 2 (Design) are
called from the condition argument such that they are varied
across different iterations of the simulation, and are defined
as “a” for syntax readability. For standardization purposes
(that is, the total variance of each manifest variable summing
up to 1), the loadings of indicators Task5 and Task6 are set
0 m to account for cross-loadings on multiple fac-
tors and are defined as “b” to ease syntax readability (covl =
covariance between the latent factors pattern separation and
pattern completion). Both loading parameters a and b are
stored in the list “parameters” such that they can be called
via the glue_data function from the glue package (Hester &
Bryan, 2022) to concatenate the model string. The residual
variances of the manifest variables are set to 1 — a? for stan-
dardization purposes. The population model is defined by a
model string, which specifies three latent factors (ps, pc, gen)
measured by the 13 manifest indicators (ps: tasks 1 to 6, pc:
tasks 5 to 9, gen: tasks 10 to 13), the residual variances as
defined above and the covariance between the latent factors
as defined in the condition argument. The data are simulated
from the model syntax via the simulateData() function from
the lavaan package (Rosseel, 2012) and stored as “dat”.

Note that the Monte Carlo simulation method does not
limit researchers to the simulation of normally distributed
data, but can be used with any form of data-generating
mechanism. Further, the simulation-based approach allows
researchers to anticipate and investigate the effects of
(planned) missingness in the data on estimates for statistical
power (Brandmaier, 2020; Schoemann, Miller, Pornprasert-
manit, & Wu, 2014). Here, different amounts and patterns
of missingness can be entered into the simulation by remov-
ing data from the generated datasets. The resulting data can
then be analyzed and summarized to investigate the effects of
attrition, planned or random missingness on the estimates for
statistical power. The implementation of these characteris-
tics of the data is beyond the scope of this tutorial. However,
in research scenarios in which violations of the normality
assumption or missing data can be expected, researchers
should consider a simulation-based approach to estimate sta-
tistical power, as the approach presented here is free from any
assumptions on the data distribution.

Step 4: Analyze

In this step, we define the analyze function, which specifies
how the data generated in step 3 should be analyzed. For the
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comparison of non-nested models, we rely on a combination
of relative and absolute model fit parameters (for discussion
of an alternative model selection approach, see “Discussion
and conclusion”). We fit each of the competing models to
each of the simulated data sets using the sem() function
from the lavaan package (Rosseel, 2012) with a maximum
likelihood estimator and extract different measures of model
fit using the helper function get_fitmeasures() (see funs.R
in the supplementary material on GitHub, Buchberger et
al., 2024), namely the Comparative Fit Index (CFI, Bentler,
1990), root mean square error of approximation (RMSEA,
Steiger, 2016) and the Bayesian information criterion (BIC,
Raftery, 1986). The function returns the fit measures, the
simulation model that was used in the respective iteration
and information on model convergence. The analyze func-
tion for the example on memory composition could thus look
like this:

analyze_results <-
function(condition,
fixed _objects) {
fits <- map(fixed_objects,
., dat, std.lv = TRUE))
ms <- map(fits, get_fitmeasures)
ret <- list(
fitmeasures = ms,
sim_model = condition$sim_model,

dat, fixed_objects =

~ sem(

sample_size = condition$sample_size,
loadingstrength = condition$
loading_strength,

covariance = condition$covl,
converged = map_1lgl (

fits, is_converged)

Step 5: Summarize

In step 5, we define how the results from the analyze step
should be summarized. To this end, we extract how often the
model used to generate the data (step 2) was actually recov-
ered as the best-fitting model. We implemented the following
decision rules for identifying the best-fitting model: (i) We
define cut-off criteria for an adequate model fit according to
established rules as CFI > .95 and RMSEA < 0.06 (Hu &
Bentler, 1999). (ii) Among the models that meet the cut-off
criteria, we select the best- fitting model for each data set
based on the relative model fit (lowest BIC value). The goal
of (i) and (ii) is to check whether the ground truth model that
generated the data can be identified as the best-fitting model
in a given simulation run. For cases in which a given dataset
does not converge for one of the models, we consider the
outcome of these iterations as failing to recover the correct
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model. We summarize the proportion of successful model
recovery for each combination of model parameters in the
simulation separately. The summarize function that concate-
nates the results across simulation iterations for the example
on the structure of memory in childhood could thus look like
this:

summarize_results <-
function(condition, results,
fixed_objects = NULL) {
rmsea_cut = 0.06
cfi _cut = 0.95
tidied <- results %>%
bind rows(.id = "rep") %>%
mutate (model = names (fitmeasures) )%>%
unnest_wider (fitmeasures) %>%
mutate (admissible = (rmsea <
rmsea_cut) & (cfi > cfi_cut))
ret <-
tidied %>%
group_by (r
summarise (
sim_model
best = if
FALSE)) {
0
} else if (is_empty(
bicl[admissible])) {
0
} else {
parse_number (model [bic == min
(bic[admissiblel) 1)
}
) %>%
mutate (
model3_chosen = best ==
sim_model_chosen = best =
sim_model
) %>%
with (c(
best_3 = mean (model3_chosen),
best_sim = mean (sim_model_chosen)
))

return(ret)

ep) %>%

= unigue (sim_model),
(any (converged ==

w

First, the function restructures the results from the ana-
lyze function to obtain a tidy data frame with the fit measures
for each model in a separate row. This data is then summa-
rized for each iteration. The function identifies (a) the ground
truth model that generated the data in this simulation itera-
tion (sim_model) and (b) the model which produced the best
model fit (best). Here, the best model is defined as “0” if one
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of the three theoretical models did not converge, or if none of
the models met the cut-off criteria as defined above. Other-
wise, the best model is selected among the ones that met the
cut-off criteria based on the relative model fit. The function
returns the argument best_3, indicating how often across all
iterations Model 3 was identified as the best-fitting model,
and best_sim, indicating how often the model that simulated
the data was identified as the best-fitting model (note that in
the current analysis, both values are identical. best_sim can
however be useful to investigate type I error, see “How can
simulations inform us about type I error rates?”).

Step 6: Running and evaluating the simulation

In a final step, we call the runSimulation() function from the
simDesign package to execute the consecutive steps outlined
above. Running the simulation for our example could look
like this:

results_cov_model3 <-
runSimulation (
design = design_cov_model3,
replications = nreplications,
generate = generate_data,
analyse = analyze_results,
summarise = summarize results,
store_results = TRUE,
parallel = TRUE,
ncores = ncores,

packages = c¢('SimDesign', 'lavaan',
'tidyverse'),
fixed_objects = fixed_objects

)

In this function, the pre-defined functions generate_data(),
analyze_results() and summarise_results() are called. The
number of replications is specified in the replications argu-
ment. To ensure reasonable stability of the results, a sufficient
number of replications is recommended. In our example, we
simulated 1000 datasets per condition. This leads to a stan-
dard error of the simulated power of less than 0.5%. The
store_results argument can be used to store the individual
results generated by the summarize function, allowing users
to investigate the outcome on every iteration (in this example,
the data frame containing all fit measures and convergence
information for each iteration). Note, however, that storing
the individual results increases computation time and size
of the resulting outcome arguments. The argument paral-
lel can be used for parallel processing across multiple cores
(e.g., when running the analysis on a computer cluster) to
reduce computation time. If not specified otherwise, all avail-
able cores will be used per default when parallel = TRUE.

The output can then be used to examine power curves (see
Fig. 3) for each of the parameters of interest in the simula-
tion. Power curves are line plots that depict how changing
one variable (e.g., sample size) would affect the power of the
test. In the example, we can plot power curves demonstrat-
ing the impact of the separability of the theoretical constructs,
implemented as the strength of the covariance between the
latent factors, or the impact of the reliability of the measures,
implemented as the strength of the loadings, on power estima-
tion. Importantly, these data reveal the relative importance of
different model parameters on sample size requirements. To
obtain easily readable outputs, we plot the sample size from
the simulation (x-axis) against the frequency with which the
data-generating model was correctly recovered as the best-
fitting model (y-axis). To derive estimates on the required
sample size in the example presented here, we aimed for a
power of 95% in recovering the ground truth model as the
best-fitting model.

Results: Statistical power estimates for
investigating the compositional structure
of memory

What is the impact of the separability of theoretical
models on estimates of statistical power?

In the example of comparing competing models of memory
structure, we first examined the separability of the theoretical
models by investigating the influence of the latent factors’
correlations on statistical power estimates. In our example
simulation, we investigated the statistical power to retrieve
Model 3 as the best-fitting model, when it indeed gener-
ated the data, while varying sample sizes from 50 to 200
and factor inter-correlations from 0.1 to 0.9. In this case,
we restricted the simulated correlations between the latent
factors to positive values, as there is no indication in the lit-
erature to suspect a negative relation among these memory
capacities (e.g., Tucker-Drob, Brandmaier, & Lindenberger,
2019). Figure 3A displays the obtained power curves illus-
trating the estimated statistical power dependent on the total
sample size and the factor inter-correlation. For this estimate,
the loading of the manifest variables was fixed at 0.7 and the
inter-correlation between all latent factors were varied simul-
taneously.

As expected, statistical power increased with increasing
sample size. However, the separability of the latent factors
mattered: The higher the correlations between factors, the
less able we were to distinguish multi-factor models from a
one-factor model. That is, the smaller the difference between
competing models, the greater the sample size that would be
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Fig. 3 Simulation results: Estimated statistical power for correctly
selecting the data-generating model, i.e., Model 3 (y-axis) as a func-
tion of sample size (x-axis) with varying the factor inter-correlations
when the loading strength was fixed to 0.7 (A) ; and with varying the
loading strength when the factor inter-correlation was fixed to 0.3 (B).

required to dissociate between them with adequate power.
For very high levels of inter-correlation (0.8 and higher) the
increase of statistical power with increasing sample size was
remarkably lower than for lower levels of inter-correlation
(0.7 and below). When the inter-factor correlation was 0.9,
not even a larger sample size (N =200) achieved an adequate
level of power of 80%. These results are not surprising given
that increasing the inter-correlations between the latent fac-
tors renders the models more similar to each other or — in
the case of correlations approaching 1 — identical, making
their distinction impossible. For moderate levels of inter-
correlation (<= 0.7) a statistical power of 95% was reached
for N = 125.

What is the impact of the reliability of manifest
variables on estimates of statistical power?

In a second step, we further examined the effect of the con-
struct reliability on statistical power by investigating the
loading strength of the manifest variables. To this end, we
conducted a second simulation following the steps outlined
above while varying the sample size from 50 to 200 and the
loadings of the manifest variables from 0.5 to 0.9. Figure 3B
displays the obtained power curves, illustrating statistical
power dependent on total sample size and loading strength
of the manifest variables. For this estimate, the factor inter-
correlation was set to 0.3. Again, increasing sample size led
to higher statistical power. However, the loading strength
impacted estimates of statistical power: the higher the load-
ings of the manifest variables, the higher the statistical power
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For each combination of parameters, 1000 datasets were simulated. The
red dashed horizontal line positioned at 95% discovery rate reflects the
cut-off for identifying the appropriate sample size. The syntax to gener-
ate these plots with ggplot() can be found in the supplementary R Code
on GitHub

achieved by a given sample size. For reasonably high levels
of factor loadings (>= 0.7), a statistical power of 95% was
reached for N = 125.

How can simulations inform us about type | error
rates?

The main part of this tutorial has focused on estimating sta-
tistical power that is required to reject a null hypothesis when
itis indeed false. However, it is necessary to also consider the
reverse — rejecting a null hypothesis that is in fact true (type
I error). In our example, type I error would be committed
by misidentifying Model 3 as the best-fitting model when in
reality, the data were generated from either Models 1 or 2. We
can leverage the simulation approach to quantify type I error
rates dependent on the different simulation conditions (e.g.,
inter-factor correlations, factor loadings). We conducted an
analogous analysis to the one outlined above (“Step 1: Spec-
ifying competing SEMs” — “Step 6: Running and evaluat-
ing the simulation”), with the difference that Models 1 and
2 are defined as the generating population models (step 3,
“Step 3: Generate”). The outcomes of this analysis show
the probability of erroneously identifying an overly complex
model, when the more simplistic models generated the data
(see Fig. 4).

The results of this analysis reveal that even for low levels
of loadings strength (< 0.7), the probability of erroneously
picking Model 3 as the best-fitting model is reasonably low
(< 8%). Likewise, this probability remains reasonably low
for different levels of inter-factor correlations for all sample
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Fig. 4 Simulation results: Probability to erroneously pick Model 3 as
the best-fitting model when indeed Model 1 (A1) or Model 2 (A2/B2)
generated the data, as a function of total sample size (x-axis) and the

sizes (< 5%). Thus, in this specific model comparison type I
error probability does not appear to be the main aspect driving
sample size requirements for an informative research design.

Deriving a sample estimate from the simulation
results

To derive a joint sample size estimate from the different
parameters in the simulation, it is crucial to reiterate the
theoretical assumptions on the strength of all parameters
investigated in the simulation. In our illustration, it is reason-
able to assume that the latent factors in the tri-partite model
(Model 3, Fig. 1) are only moderately correlated (below 0.7).
Therefore, our model comparison requires a sample size of N
= 125 toreach statistical power of 95% to adjudicate between
the theoretical models, if the hypothesized model (Model 3)
generates the data. We further assume that the manifest vari-
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loadings strength of the manifest variables (A1/A2) or the strength of
the covariance of the latent factors (B2). Note that the y-axis reaches
from O to 20% for the sake of visibility

ables capture the latent constructs reasonably well — that is,
exerting a loading strength of 0.7 or above. The results of
the simulation suggest that, again, N = 125 would suffice to
achieve 95% with regard to the reliability of the manifest fac-
tors. In our example, the results of both analyses align, such
that a sample size of N = 125 suffices to achieve a power of
95% regarding both the separability of the theoretical con-
structs and the reliability of the indicators. In cases where the
derived sample estimate differs between the two analyses we
suggest deriving the more conservative estimate of required
sample size from the two simulations. The results from the
type I error analysis further indicate that the probability of
erroneously choosing an overly complex model is generally
low. Therefore, the probability of committing a type I error
for the sample size derived from the simulations on model
separability and measurement reliability (N = 125) is negli-
gible.
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Discussion and conclusion

SEM offers a powerful tool for modeling multivariate rela-
tionships between psychological constructs. Maximizing
its utility in psychological sciences hinges on the integra-
tion of its complex characteristics with power estimation
— another key tenet of scientific rigor. Our work exem-
plifies a roadmap for navigating some of the challenges
in harmonizing these two efforts by implementing a pri-
ori power estimation within an SEM framework. In the
case of information-theoretic model comparisons for non-
nested models, statistical power cannot be determined based
on traditional x2-based statistics. Monte Carlo simulations
provide a useful tool to circumvent this methodological chal-
lenge (Muthén & Muthén, 2002), allowing researchers to
derive informed decisions on sample size planning to ensure
sufficient statistical power and prevent uninformative or mis-
leading research (Button et al., 2013). In this study, we
illustrate a step-by-step approach to implementing a Monte
Carlo simulation in the statistical programming language R
to estimate the required sample size for model comparisons
of non-nested models. The complete code is available on
GitHub (Buchberger et al., 2024) to yield a starting point for
researchers who want to implement their own Monte Carlo
power simulations.

The results from our illustration highlight the importance
of two model parameters: the separability of the theoretical
models on the basis of factor inter-correlation, and the relia-
bility with which the construct can be measured on the basis
of the loading strength of the manifest variables. These results
align with theoretical knowledge on SEM (Wolf et al., 2013),
but they provide additional insights on the tangible impact of
these parameters on statistical power estimation in the spe-
cific research design discussed here and in other SEMs more
broadly.

First, we showed that detecting differences in model fit
requires increasingly many participants the higher the inter-
correlation of the factors turns out practically. Therefore, it
is warranted to consider the actual separability of the con-
structs in question to avoid underpowered sampling plans. We
acknowledge that committing to specific parameter values,
such as factor inter-correlations, can be difficult when setting
up the population models for the simulations. Thus, we rec-
ommend researchers to consult existing literature in order to
make informed assumptions on the relationship among dif-
ferent latent factors. For cases in which no or little evidence
exists on the relationship between the constructs under inves-
tigation, we recommend to enter these inter-correlations into
the simulation as parameter of interest (as demonstrated in
the example of this paper) and to then carefully evaluate what
level of resolution is required when separating inter-related
factors depending on practical relevance.
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Second, the results on the loadings of manifest variables
stresses the importance of employing indicators that capture
the latent construct with high reliability (Zuo, Xu, & Milham,
2019). Considering the issue of reliability is a crucial step in
experimental design, as the reliability of the indicators heav-
ily influences the practical ability to identify the targeted
latent construct with sufficient precision and differentiate
between competing models. Again, committing to popula-
tion values can be difficult, especially if there is no prior
work from which to draw values. In this case, we still advise
to estimate plausible values from related scientific areas. For
instance, selecting factor loading strength in the tri-partite
model is not straightforward. However, we can do a literature
search on similar models and take the reported test reliabil-
ity (e.g., atest—retest) or construct reliability (e.g., coefficient
alpha) and translate this back into factor loadings strength and
residual loadings (see Brandmaier et al., 2018 for examples
on how to parametrize longitudinal models from minimal
available information). If information about test reliability
is available, we set the loadings to the square-root of the
reliability to take this prior information into account. Then,
this yields the following construct reliability for our design
(assuming identical loadings across k items):

YAt

B e W

o

If instead, prior knowledge about construct reliability
exists and this reliability estimate « was based on k items,
we solve Eq. 1 for A and obtain an estimate that may serve
to inform our factor loadings:

o
Gl vy @

For example, taking from a literature search that the con-
struct reliability of the construct of interest (reported as
Cronbach’s alpha) was 0.7 and the estimate was based on
k=4 tests, we set our loadings to A = 0.61 (using Eq. 2). If a
study reported a test—retest correlation of a single test to be
r=0.8, then we set the factor loading to A = /0.8 = 0.64.
If in doubt, we suggest using conservative values rather than
too liberal values to avoid underpowered studies.

Note that in this tutorial, we limited our analyses to inves-
tigating the impact of either the separability of the theoretical
constructs or the impact of the reliability of the estimates by
keeping the other parameter constant throughout the simula-
tion. The interaction of these parameters may differentially
impact the resultant sample size estimates. However, a thor-
ough investigation of the interaction of the two influencing
factors would exponentially increase the number of condi-
tions in a simulation. In our example on memory component
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processes, we therefore confined our simulation to separate
analyses in the interest of conciseness. For interested readers,
two additional analyses on (a) the effect of loading strength
on estimates of power for higher levels of inter-factor cor-
relation (0.7 as opposed to 0.3 in the original simulation)
and (b) the effect of inter-factor correlation on estimates of
power for lower levels of factor-loadings (0.5 as opposed to
0.7 in the original simulation) can be found in the appendix
of this manuscript. Given that previous work on memory
development supports the assumption of reasonably high
factor loadings and moderate inter-factor correlation in the
present example, these additional analyses leave our conclu-
sions unchanged.

Further, we have presented an approach that leverages
a combination of absolute and relative model fit parame-
ters to adjudicate between competing models. While such
parameter-based decisions are well established in the field,
they may result in choosing one model over the other, even in
cases when differences in model fit parameters are very small,
as one can never conclude that two models fit equally well or
that there is too little data to make a decision with enough con-
fidence. An alternative approach to this criterion for model
selection originates from a theory by Vuong (1989), who sug-
gested likelihood-ratio tests for non-nested models. Recent
advances that build on this idea have postulated a framework
that allows to test hypotheses of model distinguishability and
difference in fit (Levy & Hancock, 2007, 2011), which can be
applied to non-nested SEMs and easily implemented via new
software packages in R (nonnest2, Merkle, You, & Preacher,
2016). The resulting recommendations for the comparison of
non-nested SEMs posit a stepwise procedure to test whether
competing non-nested models are distinguishable in a given
population and, if yes, whether one fits the data significantly
better than the other. Importantly, this method derives interval
estimates for differences in non-nested information criteria
(Merkle et al., 2016). Thus, this approach not only allows
concluding that one or the other model fits the data better
but also allows for the possibility to conclude that there is
insufficient evidence to determine which of two models fits
a given dataset better. This stepwise procedure can be imple-
mented as a model selection criterion in a power simulation
like the one presented above. To integrate model selection
via a likelihood-ratio test for non-nested models into the
current simulation, one would need to adapt the summarize
function accordingly, such that it identifies model 3 as the
best-fitting model only if (a) the competing models are dis-
tinguishable on the simulated data set of a given iteration,
(b) the likelihood-ratio test for non-nested models indicates
a significantly better fit for Model 3 compared to Models 1
and 2 and (c) Model 3 reaches the cutoffs for absolute model
fit, as defined in the previous simulation. The vuongtest()
function from the nonnest2 package (Merkle & You, 2014)
can be a helpful tool for integrating these tests into the sim-

ulation. While a systematic investigation of the interplay of
indicator reliability, separability of latent factors and statisti-
cal power for model selection via model fit parameters versus
the likelihood-ratio test for non-nested models is beyond the
scope of this tutorial, it is worth noting that such an alter-
native approach may yield better model recovery in certain
cases. The conditions under which model selection via the
likelihood-ratio test for non-nested models provides better
estimates of statistical power are thus an interesting avenue
for future research.

While we demonstrate in this tutorial that simulation-
based techniques help overcome methodological shortcom-
ings from traditional analytical approaches, the randomness
that is inherent to such approaches may seem at odds
with efforts in results reproducibility and replicability. Here,
a clear-cut solution is through transparent and accessible
documentation of the simulation code and adequate soft-
ware management. That is, researchers should make use
of repositories on platforms such as GitHub or the Open
Science Framework to make code scripts available to other
researchers, and clearly specify the versions of software pro-
grams and packages that were used (e.g., via containerization
or at least in written form). We thus urge researchers to seri-
ously consider the issue of reproducibility for their simulation
analyses to make outcomes of such a priori power estimates
easily accessible to other researchers and reviewers (for a
more detailed guideline on a reproducible workflow in R
see Peikert, Lissa, & Brandmaier, 2021 and the implemen-
tation of this manuscript on GitHub as an example). Note,
however, that — specifically in cases when simulations are
parallelized on computing clusters — the exact reproducibil-
ity of simulations as demonstrated in this tutorial might be
compromised, even when a seed is specified in the analysis
script. Nevertheless, a sufficiently high number of iterations
ensures replicability, i.e., comparable estimates of statistical
power. Derived conclusions about required sample size will
therefore remain unaffected.

In sum, we argue that sample size planning in the case
of non-nested SEM comparisons can be achieved via a
simulation-based approach. In particular, we highlighted that
the separability of theoretical constructs, as well as the reli-
ability of the measures, have a major impact on estimates
of statistical power. To this end, we hope that this tutorial
advances the use of simulation-based approaches to estimat-
ing statistical power for model selection when comparing
non-nested models in an SEM framework.

Open Practices Statement
The supplementary materials for this article (including the
data and R scripts) are publicly available on GitHub (Buch-

berger et al., 2024). The analyses reported in this manuscript
were not preregistered.
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Appendix

1. Interaction effects of inter-factor correla-
tion and factor loadings
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Fig. 5 Estimated statistical power for correctly selecting the data-
generating model (y-axis) as a function of sample size (x-axis)
depending on (A) loading strength for lower versus higher inter-factor
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