
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

School of Electronic Information and
Electrical Engineering

Design and Cryptanalysis of
Symmetric Key Primitives

Qingju Wang

Dissertation presented in partial

fulfillment of the requirements for the

degree of Doctor in Engineering

January 2016

Design and Cryptanalysis of
Symmetric Key Primitives

Qingju WANG

Supervisory Committee:
Prof. dr. ir. Jean Berlamont, chair
Prof. dr. ir. Bart Preneel, supervisor
Prof. dr. ir. Vincent Rijmen, co-supervisor
Prof. dr. Dawu Gu, co-supervisor
(Shanghai Jiao Tong University)

Prof. dr. ir. Joos Vandewalle
Prof. dr. ir. Luc Van Eycken
Prof. dr. ir. Xuejia Lai
(Shanghai Jiao Tong University)

Prof. dr. ir. Christian Rechberger
(DTU and TUGraz)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

January 2016

© KU Leuven – Faculty of Engineering Science
Kasteelpark Arenberg 10, Bus 2452, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/XXXX/XXXX/XX
ISBN XXX-XX-XXXX-XXX-X

上海交通大学
学位论文原创性声明

本人郑重声明：所呈交的学位论文，是本人在导师的指导下，独立进行研究工作所

取得的成果。除文中已经注明引用的内容外，本论文不包含任何其他个人或集体已经发

表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体，均已在文中以明确

方式标明。本人完全意识到本声明的法律结果由本人承担。

学位论文作者签名：

日 期： 年 月 日

上海交通大学
学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定，同意学校保留并向

国家有关部门或机构送交论文的复印件和电子版，允许论文被查阅和借阅。本人授权上

海交通大学可以将本学位论文的全部或部分内容编入有关数据库进行检索，可以采用影

印、缩印或扫描等复制手段保存和汇编本学位论文。

本学位论文属于

保 密 □，在 年解密后适用本授权书。

不保密 □。
（请在以上方框内打 �）

学位论文作者签名： 指导教师签名：

日 期： 年 月 日 日 期： 年 月 日

Preface

Now it is time to write the most important part of this thesis. It is really my
pleasure to thank all the people who help me realizing this PhD.

First of all, I would give my utterly gratitude to my promotor prof. Bart
Preneel and prof. Vincent Rijmen, for giving me an opportunity to start a PhD
in COSIC. Before moving to Belgium from China as an exchange student, I
did not have any topic in my mind, not even knowledge about symmetric-key
cryptography. However, with the help and encouragement from you, I became
more and more interested in the area of symmetric-key cryptanalysis. Though
during the last 5 years, there were many challenges, I could always get guide
and advice from you before I gave up. Especially during the final writing, your
insightful comments and corrections greatly helped to improve the quality of
this thesis. I am indebted to Vincent’s patience with my questions and tolerance
towards my stupid mistakes.

I am very grateful to my promotor prof. Dawu Gu who was supporting me all
the time, and encouraged me to pursuit a PhD in COSIC. Without your help, I
could not finish my PhD. I am especially grateful for your traveling to Belgium
attending my preliminary defence.

I would like to express thanks to other jury members: prof. Xuejia Lai, prof.
Christian Rechberger, prof. Joos Vandewalle, prof. Luc Van Eycken, for their
valuable feedback to this thesis. I am thankful to prof. Jean Berlamont for
chairing the jury. Special thanks go to Christian, for your next travel to China
for my public defence.

It is my pleasure to have the chance to collaborate with many brilliant researchers
during my PhD: Hoda AlKhzaimi, Elena Andreeva, Begül Bilgin, Andrey
Bogdanov, Lei Cheng, Itai Dinur, Miroslav Knežević, Chao Li, Ruilin Li, Wei
Li, Yunwen Liu, Zhiqiang Liu, Atul Luykx, Bart Mennink, Willi Meier, Florian
Mendel, Nicky Mouha, Yu Sasaki, Bing Sun, Yosuke Todo, Deniz Toz, Kerem
Varıcı and Kan Yasuda. Many thanks go to Andrey who guided and taught me

i

PREFACE ii

at the very beginning of my research, I am very grateful for the enlightening
discussions with you. Thanks to Nicky and Meiqin for your help in all aspects.
Thanks to Kerem, Deniz and Elmar for fruitful discussions and lunch time
companion. Thanks to Willi and Itai, I really learned a lot from working with
you. Thanks to Begül, Bohan, Chaoyun, Tomer and Yunwen, for your precious
discussions. Thanks to Atul, not only for sharing the office and translating the
abstract to Dutch, also for listening to my research and giving valuable advice
from another side of symmetric-key cryptography. I also thank András, Bin
Zhang, Bing, Hua, Junfeng, Li, Long, Mina, Ren, Wei, Wentao and Wenyu, for
your friendship and generous help.

I thank the dearest Péla for not only helping me in administrative works, but
also for your time listening to me about all stuffs. I am thankful to Elsy and
Wim for handling the financial issues. Because of all of you in COSIC, I had a
really unforgettable life in Leuven.

I also give thanks to XDJM at Loccs, Zhiqiang, Ya, Juanru, Ning, Haihua,
Yuanyuan, Junrong, Haining, Zheng, Shifeng, Chen, Bo and Bailan.

To my non-academic friends Na, Jiàn, Jiān, Huimin, Zejing, Yinghe, Zhijun,
though they might never read my thesis, but I still would like to thank you.

I am deeply grateful to my families, for your forever trust and support though
you do not understand what I was really doing. Finally, to Zhe, my husband,
thank you so much for everything!

Qingju Wang
Leuven, March 2016

Abstract

This thesis deals with symmetric-key algorithms and more specifically block
ciphers and stream ciphers. It is divided into three parts.

In the first part, we introduce the mixed integer linear programming (MILP)
technique and discuss its applications in symmetric-key primitives. Differential
and linear cryptanalysis are two of the most powerful statistical techniques
to analyse symmetric-key primitives. For modern ciphers, resistance against
these attacks is therefore a mandatory design criterion. We propose a MILP-
based technique to prove security bounds against both differential and linear
cryptanalysis. Our technique significantly reduces the workload of designers and
cryptanalysts. MILP finds applications in this thesis in the following cases: We
prove differential and linear upper bounds for the stream cipher Enocoro-128v2.
For CLEFIA-type generalized Feistel networks (GFNs) with diffusion switching
mechanism (DSM), we prove tighter lower bounds on the number of linearly
active S-boxes, and deliver the first evidence that DSM provides an advantage
by guaranteeing more active S-boxes in GFNs. Moreover, in the design of
the underlying permutation of the CAESAR (Competition for Authenticated
Encryption: Security, Applicability, and Robustness) candidate PRIMATEs,
MILP helps to determine the offsets of the ShiftRows operations, and provides
the upper bounds of the permutation against differential/linear and collision.
In addition, by using MILP we construct related-key rectangle distinguishers
of Rijndael-160/160 and Rijndael-192/192, based on which we can achieve the
best attacks in terms of attacked rounds.

Secondly, we contribute to the cryptanalysis of block ciphers: To the best of
our knowledge, our impossible-differential cryptanalysis results of Rijndael-224
and Rijndael-256 are the best in terms of round. We also analyse NSA’s recent
lightweight design SIMON by applying integral and zero-correlation linear
cryptanalysis. As a final contribution of this part, we successfully analyse a
design for MPC and FHE, which is presented at Eurocrypt 2015, and refute
the designers’ security claim.

iii

ABSTRACT iv

Thirdly, we contribute to the research of links among statistic cryptanalysis
methods by deriving the link between the impossible-differential, zero-correlation
linear and integral cryptanalysis.

Abstract

In deze thesis beschouwen we symmetrische-sleutel algoritmes, meer bepaald
blokcijfers en stroomcijfers. De thesis bestaat uit drie delen. In een eerste
deel introduceren we de mixed integer linear programming (MILP) methode,
en bespreken we toepassingen daarvan op symmetrische-sleutel primitieven.
Differentieel en lineaire cryptanalyze zijn twee van de krachtigste statistische
technieken om symmetrische-sleutel primitieven mee aan te vallen. Weerstand
tegen deze aanvallen is een noodzakelijke criterium voor moderne cijfers.
Een MILP-gebaseerde techniek wordt voorgesteld om beveiligings-grenzen
te bewijzen voor differentieel en lineaire cryptanalyze. Door gebruik van
onze techniek kan werklast voor ontwerpers en cryptanalysten sterk worden
verminderd. MILP wordt in de volgende toepassingen in deze thesis gebruikt:
We bewijzen differentiële en lineaire bovengrenzen voor het stroomcijfer
Enocoro-128v2. Voor CLEFIA-type gegeneraliseerde Feistel netwerken (GFNs)
met diffusie-wisselings mechanismen (DSM) bewijzen we scherpere ondergrenzen
op het aantal lineair-actieve S-boxen, en leveren we het eerste bewijs dat DSM
meer actieve S-boxen garandeert in GFNs. Verder nog, in het ontwerp van de
onderliggende permutaties van de CAESAR (Competition for Authenticated
Encryption: Security, Applicability, and Robustness) kandidaat PRIMATEs,
helpt MILP om de offsets van de ShiftRows operaties te bepalen, en geeft
bovengrenzen op weerstand tegen differentieel/lineair analyze en botsingen
voor de permutatie. Daarnaast wordt een gerelateerde-sleutel, rechthoekige
onderscheider van Rijndael-160/160 en Rijndael-192/192 geconstrueerd via het
gebruik van MILP, waardoor de beste aanvallen in termen van aantal rondes
bereikt worden.

In een tweede deel bekijken we de cryptanalyze van blokcijfers: voor zover wij
weten zijn onze onmogelijke-differentieel cryptanalyze resultaten van Rijndael-
224 en Rijndael-256 de beste in termen van rondes. SIMON, een recent
lichtgewicht ontwerp van de NSA, wordt ook geanalyseerd via een toepassing
van integraal en nul-correlatie lineaire cryptanalyze. Als laatste contributie van
dit deel wordt een beveiligings-stelling van een ontwerp voor MPC en FHE van

v

ABSTRACT vi

Eurocrypt 2015 weergelegd.

Ten laatste worden verbanden tussen twee statistische cryptanalytische methodes
onderzocht, namelijk onmogelijke-differentieel -en integraal-cryptanalyze.

摘要

 分组密码作为密码学中重要的组成部分，在许多密码算法的构造中起到了重要作

用。本论文主要阐述了对称密码算法，尤其是分组密码和流密码算法的设计与安全性

分析方法。论文共分为三个部分。

 首先，我们介绍了混合整数线性规划（MILP），并讨论了其在对称密码安全性分

析中的应用。众所周知，差分分析和线性分析方法是对称密码算法分析最有效的两种

统计分析方法。所以抵抗差分分析和线性分析是现代密码算法设计的最重要原则。我

们提出一种基于 MILP 的方法，可以给出算法针对差分分析和线性分析的安全界。我们

的方法应用范围广泛，能够大大减少算法设计者和分析人员的工作量，进而提高其工

作效率。本论文将 MILP 成功地应用在对称密码算法的几个方面：首先我们成功证明了

流密码 Enocoro-128v2 的差分和线性分析的安全上界。其次，对于具有扩散转换机制

（DSM）的类 CLEFIA 的一般 Feistel 结构（GFN），我们证明了更好的线性活性 S 盒的

下界，并首次证明了 GFN 采用 DSM 的扩散方法，可以获得更多的活性 S 盒，进而提高

算法抵抗线性分析的能力。再次，在认证加密算法 CAESAR 竞赛候选算法 PRIMATEs 的

设计中，基于抵抗差分分析和线性分析的理论，我们利用 MILP 的方法搜索选定底层置

换 PRIMATE 的行变换（ShiftRows）的值，并且给出 PRIMATE 抵抗差分分析、线性分析

和碰撞攻击的安全上界。最后，利用 MILP的方法，我们首先构造了 Rijndael-160/160

和 Rijndael-192/192 的相关密钥矩形区分器，并在此基础上对其分别给出了到论文写

作时最多轮数的攻击。

 其次，本论文也研究了分组密码的安全性分析: 首先我们对 Rijndael-224 和

Rijndael-256 进行不可能差分分析，据我们所知，我们的不可能差分攻击仍是最好的

攻击结果。其次我们也对 NSA 设计的轻量级分组密码 SIMON 进行了分析，并首次尝试

了积分攻击和零相关线性攻击。最后我们研究了 Eurocrypt2015 上提出的针对多方计

算（MPC）和同态加密（FHE）设计的分组密码 LowMC，基于高阶差分区分器，我们对

全轮 LowMC做的优化插值攻击成功驳斥了设计者的安全性声明。

最后，我们研究了统计分析方法之间的联系，并建立了不可能差分分析、零相关

线性分析和积分攻击之间的关联。

Abbreviations

AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
AK AddRoundKey
ARX Addition Rotation and XOR

CAESAR Competition for Authenticated Encryption:
Security, Applicability, and Robustness

CBC Cipher Block Chaining
CC Chosen-Ciphertext
CFB Ciphertext Feed Back
CO Ciphertext-Only
CP Chosen-Plaintext
CTR Counter

DP Differential Probability
DSM Diffusion Switching Mechanism

ECB Electronic Code Book
EDP Expected Differential Probability
ELP Expected Linear Probability

FHE Fully Homomorphic Encryption
FIPS U.S. Federal Information Processing Standard

GCM Galois/Counter Mode
GFN Generalised Feistel Network

ID Impossible-Differential Cryptanalysis

KP Known-Plaintext

ix

ABBREVIATIONS x

LP Linear Probability

MAC Message Authentication Code
MC MixColumns
MDP Maximum Differential Probability
MDS Maximum Distance Separable
MEDP Maximum Expected Differential Probability
MELP Maximum Expected Linear Probability
MitM Meet-in-the-Middle
MLP Maximum Linear Probability
MPC Multi-Party Computation

NIST National Institute of Standards and Technology
NSA National Security Agency

RAM Random Access Memory
RK Related-Key

SAT Boolean Satisfiability Problem
SB SubBytes
SD Substitution-diffusion
SPN Substitution-Permutation Network
SR ShiftRows

WLANs Wireless Local Area Networks

XOR Exclusive OR

ZC Zero-Correlation Linear Cryptanalysis

Contents

Abstract iii

Abstract v

Contents xi

List of Figures xv

List of Tables xvii

I Symmetric Key Primitives 1

1 Introduction 3

1.1 Cryptography model . 3

1.2 Symmetric key primitives . 5

1.2.1 Block ciphers . 5

1.2.2 Stream ciphers . 6

1.2.3 Hash functions . 7

1.2.4 Message authentication codes 8

1.2.5 Authenticated encryption 9

1.3 About this dissertation . 10

xi

CONTENTS xii

2 Block Ciphers 11

2.1 Definitions . 11

2.2 Design methods . 12

2.2.1 Iterated design method 13

2.2.2 Substitution-Permutation networks 14

2.2.3 Feistel networks . 16

2.2.4 Lai-Massey schemes . 20

2.3 Modes of operation . 21

2.4 Conclusions . 22

3 Cryptanalysis Methods 23

3.1 Attack models . 23

3.1.1 Attack data types . 23

3.1.2 Attack key settings . 24

3.1.3 Attack goals . 25

3.1.4 Attack complexity metrics 26

3.2 Differential cryptanalysis and extensions 27

3.2.1 Differential cryptanalysis 27

3.2.2 Impossible-differential cryptanalysis 29

3.2.3 Boomerang attack . 29

3.2.4 Rectangle attack . 31

3.2.5 Higher-order differential attack 32

3.2.6 Integral attack . 34

3.2.7 Local collision . 34

3.3 Linear cryptanalysis and extensions 35

3.3.1 Linear cryptanalysis . 35

3.3.2 Zero-correlation linear cryptanalysis 37

CONTENTS xiii

3.4 Algebraic cryptanalysis . 38

3.4.1 Interpolation attack . 38

3.5 Conclusions . 39

4 Contributions of this thesis 41

4.1 MILP and its applications to symmetric-key primitives 41

4.1.1 Backgrounds . 42

4.1.2 Applications to stream cipher Enocoro-128v2 42

4.1.3 Applications to AES . 43

4.1.4 Applications to GFNd-II 43

4.1.5 Design PRIMATEs permutation 43

4.1.6 Applications to Rijndael in the related-key model 44

4.2 ID, ZC, integral cryptanalysis and their links 44

4.2.1 Impossible-differential attacks on Rijndael 44

4.2.2 Integral and zero-correlation attack on SIMON 44

4.2.3 The links among ID, ZC and integral cryptanalysis . . 46

4.3 Interpolation attack of LowMC 46

4.4 Conclusions . 47

5 Conclusion and future work 49

5.1 MILP and its applications . 49

5.2 Cryptanalysis of block ciphers 50

5.3 Links among cryptanalysis methods 51

5.4 Directions for future work . 51

Bibliography 53

CONTENTS xiv

II Publications 71

6 Differential and Linear Cryptanalysis Using Mixed-Integer Linear
Programming 75

7 The provable constructive effect of diffusion switching mechanism
in CLEFIA-type block ciphers 97

8 Related-Key Rectangle Cryptanalysis of Rijndael-160 and Rijndael-
192 111

9 PRIMATEs 139

10 Improved Impossible Differential Attacks on Large-Block Rijndael 165

11 Cryptanalysis of Reduced-Round SIMON32 and SIMON48 183

12 Links Among Impossible Differential, Integral and Zero Correlation
Linear Cryptanalysis 203

13 Optimized Interpolation Attacks on LowMC 225

A 253

Curriculum Vitae 255

List of Figures

1.1 Model of a two-party communication using encryption 4

2.1 Key alternating block cipher construction 13

2.2 One round of a Substitution-Permutation network 15

2.3 One round of a Feistel network 17

2.4 Generalised and unbalanced Feistel networks 18

2.5 One round of Feistel networks with Substitution-Permutation . 18

2.6 SPECK round function . 19

2.7 One round Lai-Massey scheme 21

3.1 Impossible-differential cryptanalysis 30

3.2 A right quartet of the boomerang distinguisher 31

3.3 A local collision in AES-256 . 35

xv

LIST OF FIGURES xvi

List of Tables

2.1 Specific examples of Feistel structures 19

xvii

LIST OF TABLES xviii

Part I

Symmetric Key Primitives

1

2

Chapter 1

Introduction

Cryptography can be dated back to over 4000 years ago, but widespread use
began with the transmission of data via radio channels in the early 1900s.
For most cryptographers, modern cryptographic theory starts with Shannon
in the 1940s [147, 148]. Hence, cryptology can also be considered as a very
young research field. Nowadays, cryptography is a well established area of
computer science. A wide range of applications of cryptography allow us to
transfer confidential data over insecure communication channels, execute bank
transactions online, and sign contracts over the internet, etc. These applications
are based on cryptographic primitives that provide valuable services such as
encrypting messages and authenticating entities.

1.1 Cryptography model

The primary goal cryptography aims at is to keep messages confidential. We
start describing cryptography with simple two-party model. The two parties,
the message sender and receiver of the communication, are typically named Alice
and Bob. They first choose a key pair (e, d) which is only shared by themselves.
When Alice wants to send a plaintext m to Bob, she uses the secret key e to
compute the ciphertext c = Ee(m) (this operation is called encryption), and
transmits it to Bob over an insecured channel. After receiving c, Bob uses the
secret key d he shared with Alice to compute Ed(c) = m (this operation is called
decryption), and recovers the original message m. The malicious adversary Eve
tries to defeat the secure communication goal of Alice and Bob. Even if she is
capable of eavesdropping, disrupting and modifying the data on the channel,

3

CRYPTOGRAPHY MODEL 4

she does not know the secret key d, and she cannot decrypt the ciphertext and
read the original message. The model of a two-party communication is depicted
in Figure 1.1.

Encryption

Ee(m) = c

m

Plaintext

Decryption

Dd(c) = m

m

Destination

Alice Bob

Adversary

c

Insecured
channel

Figure 1.1: Model of a two-party communication using encryption

Most people believe that cryptography is merely keeping communications secret.
However, cryptography attains the following four main goals:

Confidentiality: Being the original purpose of cryptography, confiden-
tiality ensures that the message sent by Alice can only be understood by
the authorized receiver Bob. Though Eve can eavesdrop the ciphertext
from the channel, she cannot infer the message exchanged between the
communication parties.

Data Authentication: When Eve can modify the data being transferred
over the insecure channel, the communicating parties must be able to
verify the integrity of the data. Hash functions and message authentication
codes are typically used to achieve this goal.

Entity/Sender Authentication: This property assures the user
communicate with the intended parties. In particular, it is not allowed
for Eve to send a message to Bob, appearing as if it originates from Alice,
or vice versa. Entity authentication is usually achieved by using identity
cards, biometric data, login passwords, etc.

Non-Repudiation (of origin or receipt): It means that the
communicating parties will not be able to deny that they have sent
or received a message. It is mostly achieved by verifying digital signatures.

SYMMETRIC KEY PRIMITIVES 5

Not all four goals are required in a single real-world application. Their
importance can vary depending on the application. For example, while
confidentiality is more important for communication, authenticity is crucial for
financial transactions.

The cryptography constructions that are trying to achieve one or more of the
above properties, can be classified into three categories according to the manner
the key pairs (e, d) are using: symmetric, asymmetric and unkeyed primitives.

In an symmetric-key system, as the name suggested, the encryption key e and
the decryption key d are the same. This exact secret key must be agreed by
both the communication parties preceding a communication. These primitives
are also referred to as secret-key primitives.

Unlike in symmetric key systems, in an asymmetric-key encryption two different
keys are used. One key e is publicly distributed to everyone who wishes to
communicate with Bob, while the other key d is only held by Bob. This is
where the other name public-key encryption comes from.

Symmetric-key systems and public-key encryption schemes have a number of
complementary advantages. In particular it is commonly accepted (though
there is no proof showing that this must be the case) that the computational
performance of public-key encryption is inferior to that of symmetric-key system.
Modern cryptographic systems take advantage of the strengths of each by
applying public-key encryption to establish a key for a symmetric-key system.
This obliges the communication parties to simultaneously enjoy the long term
nature of the key pairs (e, d) and the performance efficiency of the symmetric-key
system.

Finally, the category of unkeyed primitives are constructions, as the name
indicates, require neither a shared secret key nor a public key to serve their
purpose. One of the examples for unkeyed primitives is cryptographic hash
functions.

In this thesis, we focus on the cryptanalysis and design of symmetric-key
primitives, especially block ciphers.

1.2 Symmetric key primitives

1.2.1 Block ciphers

Block ciphers form a subset of symmetric-key ciphers; their main goal is to
provide confidentiality. Block ciphers play an important role as building block

SYMMETRIC KEY PRIMITIVES 6

in the design of many other cryptographic primitives, including stream ciphers,
hash functions, MAC algorithms and Authenticated Encryption.

Important examples of block ciphers are DES (Data Encryption Standard) and
3DES. DES was proposed in the 1970s, and became one of the most widely used
symmetric-key ciphers. Since its introduction, DES has drawn a substantial
amount of analysis [29, 115]. Because of the 56-bit key size, the increasing
computational power made brute-force attacks feasible. 3DES, which applies
DES three times, is still used since it can provide more security than DES and
for legacy reasons (3DES can be implemented on a DES hardware platform).
However, 3DES is slow and the 64-bit block length limits the security level it
can achieve. Therefore, since the end of 1980s, alternative block cipher designs
were introduced. Some examples of such designs are FEAL [123], IDEA [103],
LOKI [49], Blowfish [143], SAFER [113], RC5 [137] and CAST [7].

AES competition

In 1998, the National Institute of Standards and Technology (NIST) announced a
competition to select the Advanced Encryption Standard (AES) to replace DES.
After three years, five finalist MARS [50], RC6 [138], Rijndael [58], Serpent [23]
and Twofish [145] remained from the 15 candidates. A subset of Rijndael with
a block size of 128 bits and three different key sizes (128, 192 and 256 bits), was
chosen as the AES algorithm in 2001. Up to now, there have been no practical
attacks to AES except side channel attacks which actually are implementation
attacks rather than attacks on the algorithm itself.

1.2.2 Stream ciphers

Stream ciphers form a subset of symmetric-key primitives. Compared to block
ciphers, stream ciphers operate on smaller units - typically bits or bytes. Inspired
by the one-time pad, stream ciphers act as pseudo-random bit generators. They
generate a pseudo-random sequence called the key stream from the secret key and
an initial value IV , which is mixed with the plaintext to obtain the ciphertext;
the typical mixing operation is XOR. The same key stream is used for the
decryption.

Stream ciphers are often used for their speed and simplicity of implementation
in hardware, in particular where the length of plaintext is variable or unknown
in advance. If block cipher were used in this case, either efficiency or
implementation complexity would have to be chosen, since block ciphers cannot
directly work on blocks shorter than their block sizes and a padding algorithm

SYMMETRIC KEY PRIMITIVES 7

might have to be deployed. On the contrary, stream ciphers can avoid this
problem by operating on the much smaller units (usually bytes) that can be
transmitted.

We can classify stream ciphers into two types: synchronous and self-
synchronizing. In a self-synchronizing stream cipher, the key stream is generated
using the secret key, the IV and some of previous ciphertext bits. By contrast,
in a synchronous stream cipher, the key stream is generated only using the
secret key and the IV of the cipher, and thus is independent of the plaintext.
Synchronous stream ciphers are widely used, examples include RC4 [135] –
the most widely used stream cipher in software, and the eSTREAM finalists,
e.g. Trivium [64]. Enocoro-128v2 [169] designed by Hitachi in 2010 is another
example.

eSTREAM competition

Realising the need for better stream ciphers, community made an attempt in
2004 to resuscitate stream ciphers through an open contest called eSTREAM [86].
The original call for proposals generated considerable interest with 34 proposals
submitted. The project ended in April 2008 with an announcement of two
profiles containing eight stream ciphers, where four stream ciphers more suitable
for software applications with high throughput requirements belong to software-
oriented profile and the other four stream ciphers particularly suitable for
hardware applications with restricted resources belong to the hardware-oriented
profile. An update contains three stream ciphers in hardware profile was
published in September 2008 [73].

1.2.3 Hash functions

A cryptographic hash function is a function that maps arbitrary length bit
strings to fixed length outputs. Cryptographic hash functions were first proposed
by Diffie and Hellman [66] who used them to construct more efficient digital
signatures. Ever since, the use of hash functions was extended to various
applications, including password protection, key generation, entropy extraction
and message authentication, each of which demands different security properties.

Following Merkle’s security model [121], the main properties a hash function
should satisfy are collision resistance, second preimage resistance, and preimage
resistance. The traditional way of designing a hash function is by starting with
a compression function that only allows fixed length inputs, next a mode of
operations are designed to obtain a hash function that accommodates arbitrarily

SYMMETRIC KEY PRIMITIVES 8

long inputs. Therefore, designing a secure hash function was shifted to designing
a secure compression function f . Two main approaches to do this are: to build
f from one or more block ciphers or permutations.

The block cipher approach can be dated back to Rabin’s compression function
in 1978. This approach was generalized by Matyas, Meyer and Oseas in
[117], Davies and Meyer in [61], and Miyaguchi and Preneel in [132] and [122]
independently. Prominent examples that use this approach include MD4 [136]
and its strengthened version MD5 [134], SHA-0/1/2, Whirlpool [14], and many
others. In 1996, Dobbertin found collisions for MD4 by using differential
cryptanalysis [70]. Later, Wang et al. improved this result and presented
collisions on MD4 [167], MD5 [168] and SHA-0 [168] by applying message
modification techniques. By further exploiting these techniques, hash functions
deploying the similar design ideas such as SHA-1 [63], SHA-2 [119], SM3 [120],
HAS-160 [118] were analysed.

The second design approach is based on permutations; it has obtained more
attention recently with the introduction of the sponge methodology by Bertoni
et al. [19], with Keccak/SHA-3 [20] as its most prominent example. Note that
the compression function itself is not secure.

SHA-3 competition

In response to the reduction of confidence in MD4, MD5 and SHA-2, NIST
announced in 2007 a competition to choose a new hash function standard: Secure
Hash Algorithm 3 (SHA-3) [126]. The competition received 64 submissions from
all over the world in 2008. NIST selected 51 of them to round one, and fourteen
of them to round two. In December 2010, five candidates were announced to the
final round of the competition: BLAKE [13], Grøstl [77], JH [171], Keccak [20]
and Skein [75]. Among these five algorithms, Keccak [20] was chosen as the
new hash standard in October 2012.

1.2.4 Message authentication codes

A Message Authentication Code (MAC) algorithm can be considered as a keyed
fingerprint computed on a plaintext of any length. The purpose of the MAC
is to provide both integrity and authenticity. A MAC algorithm consists of
three steps: Key generation, MAC generation and MAC verification. In a
MAC algorithm, Alice and Bob agree on a secret key K in advance as in a
symmetric-key system. In the MAC generation algorithm, Alice computes from
the message m and the secret key K a MAC value MACK(m), and appends

SYMMETRIC KEY PRIMITIVES 9

it to the plaintext when sending to Bob. In MAC verification algorithm, Bob
uses the shared secret key K to compute the MAC value MACK(m) himself,
and verifies whether it matches the one he received. If so, he believes that
the message indeed came from Alice. Otherwise, a modification might have
happened to the plaintext or the MAC value.

The informal security state of a MAC is that it should be computationally
unfeasible to generate a modified plaintext together with a modified MAC that
appears valid to Bob. Widely used MACs include CBC-MAC, hash-based MAC
(HMAC) and parallelizable MAC (PMAC).

1.2.5 Authenticated encryption

If one wants to achieve confidentiality and integrity simultaneously from one
primitive, authenticated encryption (AE) is exactly what we need. There are
requirements from the application setting where we wish to not only encrypt
and authenticate messages, but to include auxiliary data which should be
authenticated, but left unencrypted. Hence the associated data should be
included as input to the AE schemes, we call them as authenticated encryption
with associated data (AEAD). There are two approaches to construct AE:
generic composition and dedicated scheme.

In a generic composition approach, authentication encryption can be obtained by
combining two separate primitives with two independent keys, one for encryption
(typically provided by block ciphers), the other one for authentication (typically
provided by a MAC algorithm). There are three obvious choices: MAC-then-
Encrypt (MtE), Encrypt-then-MAC (EtM), and Encrypt-and-MAC (E&M).
Among these, EtM with a secure encryption scheme and a secure MAC each
with independent keys is the best approach for achieving AE. The cost of such
an algorithm is much higher than any one of the primitives it originated from
because of the two independent keys required.

The dedicated AE schemes are mainly constructed based on block ciphers and
permutations. Because only one key is used to achieve both the encryption
and the authentication, they have more advantages in efficy than the generic
composition approach. Important block cipher based examples include IAPM
[90], OCB [100,139,140], XECB [79], CCM [72], GCM [71], SIV [141], BTM [85]
and McOE-G [76]. Permutation based approach, such as SpongeWrap [21] are
obtaining attention recently.

The two main designs of AEAD recommended by NIST are Galois/Counter
Mode (GCM) [71] and Counter with CBC-MAC (CCM) [72], both are block
cipher modes of operations. GCM adopting AES as the underlying primitives

ABOUT THIS DISSERTATION 10

(denoted as GCM-AES), is part of the TLS 1.2 cipher suite [65]. However, due
to the weak key problem that has been pointed out by Furguson [74] in 2005,
Joux [89] in 2006, Handschuh and Preneel [82] in 2008, Saarinen [142] in 2012
and Procter and Cid [133] in 2013, the trustworthiness of GCM-AES is reduced.

CAESAR competition

In response to the current status of GCM-AES, and the increasing requirements
in various applications from the cryptographic community, a competition for
authenticated encryption: security, applicability, and robustness (CAESAR) [18]
was initiated by Bernstein in 2012 to identify a new portfolio of AEAD schemes.
57 submissions in total were received in the first round of the competition;
29 of them went to the second round, our design PRIMATEs [11] based on
permutation is one of them. The tentative announcement of the final portfolio
was set to the end of 2017.

1.3 About this dissertation

This dissertation is based on publications, and consists of two parts. The first
part gives an introduction to symmetric-key cryptography, more precisely to
the relevant background information about block ciphers. It also provides a
brief outline of our contributions to the design and analysis of block ciphers.
The second part consist of our publications.

This first part consists of five chapters. Chapter 1 (this chapter), introduces
the field of symmetric-key cryptography. Chapter 2 focuses on block ciphers; it
discusses the definitions, the design methodologies and the modes of operation.
Chapter 3 explains the important cryptanalysis methods we will apply in this
thesis, and Chapter 4 gives a summary of our contributions to the analysis
and design of block ciphers. The main purpose of these chapters is to show
our publications fit together. Finally, Chapter 5 concludes and discusses some
possible directions for future work.

Chapter 2

Block Ciphers

Among the symmetric primitives, block ciphers are the most widely used
building blocks in the construction of many other cryptographic primitives, for
instance stream ciphers, hash functions, pseudo-random generators, message
authentication codes and authenticated encryption. In terms of the main
goals of cryptography described in Chapter 1, block ciphers aim at providing
confidentiality. In Section 2.2 the design methodologies followed by modern block
cipher design are described. In Section 2.3 we briefly explain the applications
of block cipher modes of operations.

2.1 Definitions

A block cipher maps an input of fixed-length, called a block, together with a
key, to an output block of identical length. For a fixed key, the mapping is
bijective. The formal definition of block ciphers is given below.

Definition 1. A mapping E : Fn2 × Fk2 → Fn2 is called a block cipher with the
block size n and the key size k, if the mapping E(·, k) is bijective for each fixed
k ∈ Fk2, that is, if the inverse mapping E−1 exists and E−1(E(m, k), k) = m
for any m ∈ Fn2 .

The input m and output c of E are called the plaintext and the ciphertext
respectively, k is called the key. E(, k) is called the encryption function, and its
inverse denoted by D = E−1 is called the decryption function. Hence, for any
fixed key k ∈ Fk2 the encryption and the decryption functions can be written as
E(m, k) = c and E−1(c, k) = m, respectively.

11

DESIGN METHODS 12

One should know that no block cipher can serve all the cryptographic goals. The
design choices made for a block cipher influence not only the security, but also
efficiency and other platform-dependent characteristics. One important flavour
of block ciphers is lightweight block ciphers that are designed to be efficient
for limited resource environments. During recent years, many lightweight
ciphers have been designed. Prominent examples include: ICEBERG [154],
mCrypton [108], HIGHT [84], PRESENT [42], KATAN [62], LED [81], Piccolo
[152], KLEIN [80], EPCBC [174], PRINCE [45] and TWINE [157]. In 2013,
NSA also proposed two families of highly-optimized block ciphers, SIMON and
SPECK [15], which can provide excellent performance in hardware respectively
software implementation. In the end, the design goal of a block cipher is to
offer a reasonable trade-off between security and performance.

2.2 Design methods

In 1949, Shannon introduced the twin principles of confusion and diffusion
for the block cipher design in his landmark paper Communication Theory of
Secrecy Systems [148]. They are still the most widely used principles in modern
block ciphers design. They can be summarised as follows:

Confusion aims to change the output bit value when the input bit value
is changed in such a way that it is too complicated to determine the
relation. To accomplish confusion, one can translate the input through a
non-linear table created from the secret key.

Diffusion is used to mix the input values and its goal is that changing
one bit of the input will influence many bits of the ciphertext. Diffusion
can be achieved in several ways. One is to divide the input into small
blocks (called words) and then transform them. Another way is to treat
the input as an array and shuffle the positions of the bits.

Confusion itself may let some potential patterns go through to the output,
as a result the adversary may obtain more knowledge about the cipher than
being expected. However, a good diffusion can help to scatter the patterns
widely throughout the output of the cipher. This makes the potential patterns
scramble each other and there will be no useful information for the adversary,
or increases the mount of data required by an attack to such a large number
that it is infeasible to achieve.

We proceed with the construction methods of block ciphers. Since modern block
ciphers follow the iterated design strategy, we limit the thesis to this approach.

DESIGN METHODS 13

2.2.1 Iterated design method

Block ciphers are often constructed as iterated mappings based on a bijective
round function. Let r denote the number of rounds, and the key scheduling
algorithm expands the encryption key k into r round keys (k1, . . . , kr). Given
the plaintext m = m0, the ciphertext c is then obtained as c = mr with

mi = F (mi−1, ki) (1 ≤ i ≤ r) ,

where F (·, ki) is the round function and ki is the round key in the ith round
respectively. One type of iterated block ciphers is referred to as key-alternating
block ciphers. In such designs, the round keys are added (typically use the
XOR operation) to the intermediate states in between the round functions. An
r-round key-alternating block cipher is depicted in Figure 2.1. In most cases,

F F · · · Fm = m0

m1 m2

c = mr

mr−1

k1 k2 kr

Key schedule

Master key

· · ·

Figure 2.1: Key alternating block cipher construction

one extra round key is added before the first round or after the last round,
which we do not indicate in Figure 2.1. Such a key is called a whitening key. It
helps to frustrate an adversary’s attempt to control the input to the first and/or
the output from last round, based on which a meet-in-the middle (MitM) attack
might be mounted.

The iterated designs strategy for block cipher has two advantages. First,
as the round functions are identical (except the round keys are added in
reverse order), only a slight implementation for a round is necessary in both
software and hardware implementations; this greatly benefits the efficiency of
the implementations.

Second, it is much easier to understand a slightly core component rather
than a composition of several components. This yields obvious benefits to
the designer because if the designer can understand how the block cipher
behaves after iterating several times of the round function, he can choose an
appropriate number of rounds for the cipher. On the other hand, the systematic
design approach also enables the adversary to obtain some property of the core

DESIGN METHODS 14

component. Then she/he may extend it to a larger number of rounds, based on
which she/he may break the whole block cipher.

In iterated block cipher designs, there are three main constructions: Substitution-
Permutation networks (SPNs), Feistel networks and Lai-Massey schemes. In
the following we first describe them; then we will describe examples that are
investigated in later chapters of this thesis.

2.2.2 Substitution-Permutation networks

Substitution-Permutation Networks (SPNs) use a round function that is a
combination of substitution and permutation operations. These operations are
often used to confuse and diffuse the data, respectively.

For SPNs, the plaintext m = X0 is processed for r rounds to obtain the
corresponding ciphertext c = Xr. The round function F : Fn2 × Fk2 → Fn2 uses
the n-bit intermediate state value Xi−1 and the k-bit round-key value ki as
inputs to obtain the next intermediate state value Xi. The encryption operation
can be described as:

Xi = F (Xi−1, ki) ,

where 1 ≤ i ≤ r. The round function F usually consists of three steps:

1. Substitution (S): The current state (or parts of it) values are substituted
with new values in a nonlinear way. This layer is usually accomplished by
using substitution boxes (S-boxes) in parallel. If each S-box operates on s
out of n bits (s� n), there are n/s s-bit S-boxes working in parallel.

2. Permutation (P): The permutation is typically accomplished by using
one of the two steps or both. First, all the state bits are permuted by
mapping to new positions, or by dividing the state into small words and
mapping them to new positions. Second, a linear mixing is applied to the
state: this is typically accomplished by multiplying with a binary matrix,
or with a matrix over a finite field of size 2w, where w is the word size.

3. Key addition: In the ith round, the round key ki is mixed with the current
state. The most widely used operation is XOR.

One round of the SPN structures is illustrated in Figure 2.2. For decryption,
the inverse of the F function is applied to the ciphertext with round keys in
the reverse order.

DESIGN METHODS 15

Xi−1 Xi

kiF

S P

Figure 2.2: One round of a Substitution-Permutation network

AES/Rijndael The most prominent example of an SPN is the AES [60]. The
design of the AES is of particular interest, as it proposed a new design approach
of obtaining confusion and diffusion for a block cipher, called the wide-trail
strategy [59]. Today many block ciphers follow this design strategy and we
call them AES-like structures, examples include PRESENT [42], Threefish [75],
LED [81] and LBlock [173].

In AES/Rijndael, each data block (plaintext, ciphertext, subkey or intermediate
value) is represented by a 4×Nb state matrix of bytes, where Nb is the block
size divided by 32. The state is then transformed by iterating a round function
composed of the following four steps:

• SubBytes (SB): a non-linear substitution (8-bit S-box) that acts on every
byte of the state independently.

• ShiftRows (SR): a cyclic shift of bytes in a row that acts individually on
each of the rows of the state. The shift offset of each row depends on the
block length Nb.

• MixColumns (MC): a linear transformation (based on an MDS code over
GF (28)) that acts independently on every column of the state.

• AddRoundKey (AK): the xor of the round key with the intermediate state.

The steps SubBytes and AddRoundKey serve the goal of confusion, and
ShiftRows and MixColumns serve the goal of diffusion.

Rijndael-b/k that have identical block size b and key size k are also denoted as
Rijndael-b. We discuss the security of Rijndael-160 and Rijndael-192 against
the related-key rectangle attack in Section 4.1.6 and Chapter 8. The impossible-
differential attacks on Rijndael-224 and Rijndael-256 are explored in Section 4.2.1
and Chapter 11.

DESIGN METHODS 16

Other specific SPNs in this thesis

Except Rijndael, we discuss the following SPN structures in this thesis:
PRIMATEs [11] is one of the second round candidates in the CAESAR
competition. The underlying permutation of PRIMATEs which is called
PRIMATE is inspired by Rijndael and the dedicated lightweight AE design
Fides [30]. It has two different sizes, denoted as PRIMATE-80 for the 200-bit
permutation and PRIMATE-120 for the 280-bit permutation, which operate on
a 5× 8 and a 7× 8 state of 5-bit elements, respectively. PRIMATE updates the
internal state by means of the sequence of transformations

CA ◦MC ◦ SR ◦ SE .

SubElements, the only non-linear operation of PRIMATE is a permutation
consisting of a 5-bit S-box applied to each element of the state, where the S-box
is an almost bent permutation (see Appendix A) and the maximum differential
and linear probability is 2−4. ShiftRows is an element transposition that cyclically
shifts left the rows of the state over different offsets si = {0, 1, 2, 4, 7} positions
for PRIMATE-80 and si = {0, 1, 2, 3, 4, 5, 7} positions for PRIMATE-120 in row i.
The MixColumns step is a left multiplication by a 5×5 (resp. 7×7) matrix. We use
a recursive approach to generate a Maximum Distance Separable (MDS) matrix
that has a maximum branch number (6 and 8 respectively). ConstantAdditionstep
XORs a predefined constant to the second element of the second row with by
a bitwise XOR operation. For detailed design we refer to Section 4.1.5 and
Chapter 9.

LowMC [10] is a block cipher published at Eurocrypt 2015 for Multi-party
Computation (MPC) and Fully Homomorphic Encryption (FHE). The round
function first employs a partial S-box layer having fewer calls to a 3-bit S-box
during each round. Following the S-box layer is the permutation layer, where
the state is multiplied with a binary n× n (n is the block size) matrix that is
chosen independently and uniformly at random from all invertible binary n× n
matrices. We explore the security of LowMC in Section 4.3 and Chapter 13.

2.2.3 Feistel networks

Feistel networks are defined as follows: Let n (even) be the block size, and r the
number of rounds. Assume that the input of the round function F is divided
into two branches L0 and R0, each of n/2 bits. The round function F processes

DESIGN METHODS 17

data in the ith round as

Ri = Li−1 ,

Li = Ri−1 ⊕ f(Li−1, ki) ,

where 1 ≤ i ≤ r. Here the feistel function f can be any function (not necessarily
bijective) taking an n/2-bit input and a round key ki and producing an n/2-bit
output. Figure 2.3 illustrates one round of a Feistel network. Note that there is

f

Li−1 Ri−1

Li Ri

ki

Figure 2.3: One round of a Feistel network

no swap operation in the last round, and the ciphertext is the concatenation
of Rr and Lr, i.e. (Rr||Lr). The reason behind this choice is to make the
encryption and the decryption function exactly the same except for the order
of the subkeys. This property reduces the size of implementations and makes
Feistel networks very appealing for hardware implementation.

Variants of Feistel structures

Two variants are suggested to Feistel networks: one divides the input value
into more than two (even) equal branches [129]. This variant is called Type-i
generalised Feistel network GFNj-i, where i denotes the number of f functions
used in each round and j denotes the number of splitting branches of the input.
The second variant divides the input into two branches with unequal sizes which
is studied in [144]. One of the examples for unbalanced Feistel networks is
Skipjack [127] developed by NSA. Figure 2.4 depicts the details of GFN4-I,
GFN4-II and unbalanced GFN2 in sequence.

Feistel networks with Substitution-Permutation round function

Another way to classify the Feistel variants is the design of the round functions.
There are many ways to design a round function that is iterated for Feistel

DESIGN METHODS 18

f f

Unbalanced FeistelType-II FeistelType-I Feistel

f1 f2

Figure 2.4: Generalised and unbalanced Feistel networks

networks. The most widely used approach is to adopt Substitution-Permutation
structure as the feistel function. Figure 2.5 gives one round of the Feistel
networks having Substitution-Permutation as the feistel function.

Li−1 Ri−1

Li Ri

ki
SS P

Figure 2.5: One round of Feistel networks with Substitution-Permutation

There are a large number of ciphers fitting this category. The most important
example is the Data Encryption Standard (DES) [29], developed by IBM and
NSA in 1976. In this thesis we discuss the security of other Feistel networks with
Substitution-Permutation as the feistel function: CAST-256 [7], CLEFIA [153],
Camellia [12], and SMS4 [2,67].

Feistel-like structures with ARX

Another approach to design block ciphers is to follow the (generalised) Feistel
structures partially. The round function does not strictly follow the Feistel
structure; it contains three operations Addition, Rotation and XOR (ARX),
where the non-linear Addition operation is very efficient on software. We call this
structure the Feistel-like structure with ARX. This approach is used to design
many algorithms such as RC4 [135], TEA [170], HIGHT [84] and SPECK [15].
Among these, SPECK designed by NSA is a prominent example. We give the

DESIGN METHODS 19

round function of SPECK in Figure 2.6, where � is mod 2n/2 with n the block
size,≪ and≫ are the left and right circular shifts with the offset values of a
and b determined by the block size.

≫ a

≪ b

Li−1 Ri−1

Li Ri

ki

Figure 2.6: SPECK round function

Specific Feistel structures in this thesis

In this part we give a brief description of the Feistel ciphers that will be
investigated in this thesis, they are listed in Table 2.1.

Table 2.1: Specific examples of Feistel structures

Cipher # branches and f Type of f
CLEFIA GFN4-II Substitution-Permutation
Camellia GFN2 Substitution-Permutation
SMS4 GFN4-I Substitution-Permutation

CAST-256 GFN4-I Substitution-Permutation
SIMON GFN2 AND,Rotation,XOR

CLEFIA is an important block cipher designed by Sony Corporation. It has
been accepted as a lightweight encryption algorithm of the ISO/IEC 29192-2
standard [5]. CLEFIA is a 4-line type-II GFN (GFN4-II) with DSM and single
SD-function, here DSM (diffusion switching mechanism) means that it employs
two distinct diffusion matrices in each two rounds, and single SD-function means
that the round function consists of a single Substitution-Diffusion (SD) layer.
We discuss the security of CLEFIA-type GFNs in Section 4.1.4.

DESIGN METHODS 20

CAST-256 is a first-round AES candidate. The design of CAST-256 is a
generalized Feistel network with 4 lines (GFN4). The round function adopts
SP structure. The security is discussed in Section 4.2.3.

Camellia was jointly proposed by NTT and Mitsubishi in 2000. It has been
selected as one of the CRYPTREC e-government recommended ciphers [55], and
included in the NESSIE block cipher portfolio [131]. In 2005, it was adopted as
international standard by ISO/IEC 18033-3 [4]. Camellia follows two-line Feistel
network. Substitution-Permutation structure is used in the round function. We
study it in Section 4.2.3.

SMS4 is the Chinese national standard for Wireless Local Area Networks
(WLANs). The structure of SMS4 is GFN4-I, and the round function is an
Substitution-Permutation function. We analyse the security of SMS4 in Section
4.2.3.

SIMON [15], a lightweight design by NSA, follows two-branch Feistel structure.
The round function only uses three operations AND, Rotation and XOR.
The member of SIMON with block size n ∈ {32, 48, 64, 96, 128} is denoted
as SIMONn in this thesis. We discuss our cryptanalytic results for SIMON in
Section 4.2.2.

2.2.4 Lai-Massey schemes

Other than Feistel networks or SPNs, one can also follow the third design
strategy in which incompatible group operations such as modular addition and
modular multiplication are used in the round function. A prominent example
is the block cipher IDEA [101] designed by Lai and Massey. Here we call it
Lai-Massey schemes. As in Feistel networks, Lai-Massey schemes also divide
the input into two equal pieces of n/2 bits. For iterated r rounds, two functions
(H is invertible, but f is not necessarily) are used in each round:

H : Fn2 → Fn2 ,

f : Fn/22 → Fn/22 .

The function H is called the half-round function. In the ith round, the input
state (Li−1, Ri−1) is updated as

(L′i−1, R
′
i−1) =H(Li−1, Ri−1) ,

Ti−1 =f(L′i−1 �R′i−1, ki) ,

(Li, Ri) =(L′i−1 � Ti−1, R
′
i−1 � Ti−1) ,

MODES OF OPERATION 21

where 1 ≤ i ≤ r. One round of the Lai-Massey scheme is shown in Figure 2.7.

H

−

f

Li−1 Ri−1

Li Ri

ki

Figure 2.7: One round Lai-Massey scheme

2.3 Modes of operation

So far the encryption functions we have described are always mapping from
Fn2 to Fn2 , i.e. permutations operate on an n-bit block size input. However, bit
string to be encrypted might have a size larger than the block size n. We need
to find a way to extend the application of block ciphers. The solution is to use
a block cipher mode of operation. If the given message is a string of size larger
than n, then we split it into n-bit blocks. If the length of the last part of the
string is smaller than n, a padding scheme may be applied to make the input
length exact multiple of n.

The most popular block cipher mode of operation is cipher block chaining
(CBC) with the AES block cipher. It was one of the most widely used modes of
operations for the TLS protocol, however it is no longer recommended because
of the padding oracle attack by Vaudenay [160]. Other prominent modes are
electronic code book (ECB) which is insecure and never recommended for use,
ciphertext feed back (CFB) mode and counter (CTR) mode which make a block
cipher into a stream cipher.

The block cipher modes mentioned here can provide confidentiality, but they
do not offer data integrity, as described in Chapter 1. A separate message
authentication code such as CBC-MAC [72], or a digital signature can achieve
these two purpose by itself. The cryptographic community is designing modes
that combine confidentiality and data integrity into a single cryptographic
primitive. One example is the ongoing CAESAR competition in Section 1.2.5.

CONCLUSIONS 22

2.4 Conclusions

This chapter introduced the background of block ciphers: the definitions,
the design methods and the mode of operations. The most widely used
design methods: the generalised Feistel networks and Substitution-Permutation
networks of iterated design strategy are explained. The block ciphers that we
analyse in this thesis all belong to these two categories, are briefly described in
this chapter.

Chapter 3

Cryptanalysis Methods

This chapter provides a brief introduction to the cryptanalytic methods
developed for block ciphers. Even if we explain all the cryptanalysis methods
focusing on block ciphers, we note that they can be applied to other symmetric-
key primitives. This chapter is organized as follows. First the attack models
are explained in Section 3.1. Then some known cryptanalysis methods of
block ciphers are briefly described, especially the ones we are applying in this
thesis. We start with differential cryptanalysis and its extensions: impossible-
differential cryptanalysis, the boomerang attack, the rectangle attack, higher-
order differential attack and integral attack, in Sections 3.2. Then we describe
linear cryptanalysis and its extension zero-correlation linear cryptanalysis in
Section 3.3. Finally we explain algebraic cryptanalysis and interpolation attack
in Section 3.4.

3.1 Attack models

3.1.1 Attack data types

In the cryptanalysis of block ciphers, the objective of the attacker is to perform
operations that should only be possible with knowledge of the secret key,
for example to determine the encryptions/decryptions of messages previously
unknown to the attacker. Depending on the increasing power of the information
available to the adversary, the attack models can be defined as follows:

Ciphertext-Only (CO) attack: The attacker can only get access to

23

ATTACK MODELS 24

the ciphertexts, and some statistical information on the plaintext, such as
the fact that the plaintext is written in English. Encryption vulnerable to
this type of attack is considered to be completely insecure.

Known-Plaintext (KP) attack: The attacker has a quantity of
plaintexts and the corresponding ciphertexts. This type of attack is
a passive attack since the attacker cannot influence the content of the
plaintext.

Chosen-Plaintext (CP) attack: The attacker can choose the plaintext
and get the corresponding ciphertext.
An adaptive Chosen-Plaintext attack is a Chosen-Plaintext attack wherein
the choice of the next plaintext in a series may depend on the ciphertexts
received from the previous requests.

Chosen-Ciphertext (CC) attack: The attacker can choose the
ciphertext and get the corresponding plaintext.
An adaptive Chosen-Ciphertext attack is a Chosen-Ciphertext attack
wherein the choice of the next ciphertext in a series may depend on the
plaintexts received from the previous requests.

Chosen-Plaintext and Chosen-Ciphertext attack: The attacker is
able to not just receive the encryption of chosen plaintexts, but can also
obtain the decryption of chosen ciphertexts.
Similarly, in an adaptive Chosen-Plaintext and Chosen-Ciphertext attack,
the attacker chooses plaintext and ciphertext based on the outcome of
earlier requests.

The attack models described here are not limited to block ciphers, but can be
applied to other cryptographic primitives and protocols.

3.1.2 Attack key settings

Besides the attack data types described above, models of the attacker’s
knowledge about the secret key is also considered for crytanalysis. When
explaining an attack, we use one of the models described above under one of
the following key settings:

Secret-key/single-key model: The adversary does not know any
information about the secret key K.

ATTACK MODELS 25

Related-key model: In the related-key model, the adversary can
decrypt/encrypt not only under the secret key K, but also under the keys
f1(K), f2(K) . . . fm(K), which are called related-keys. The relations fi
are chosen by the adversary in advance. The first related-key attacks
consider simple mappings, for example, rotations [22] and bit flips [95].
The later attack on AES [32] exploits the difference not between the secret
keys but between the subkeys. Note that no cipher can reach full secure
against related-key attacks. The extra control might make the attack
harder to mount in practice. However, great efforts are still being made
to obtain a related-key attack since it is the primary step to evaluate the
security of a cipher, based one which, at some time, an improved attack
might be achieved.

Known-key model: In the known-key model, the secret key is revealed
to the adversary. Block ciphers are indeed used in a setting where the
secret key is known to the public. Hash functions which build on block
ciphers, including the Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO)
and Miyaguchi-Preneel (MP) modes are such examples [13, 14, 75]. In the
known-key model, the adversary aims to show non-ideal property of the
design, which is not provided by the randomness of particular secret keys.

Chosen-key model: Similar to the known-key model, the adversary has
knowledge of the secret key, and has the same goal to find the non-ideal
property of the cipher. Unlike the known-key model, the adversary is not
only given the secret key, but can also freely choose the key herself to
serve her goal.

3.1.3 Attack goals

The most severe attack for a symmetric-key primitive is that the adversary can
recover the secret key; in this case the symmetric-key primitive is totally broken.
In some cases, the adversary might be less ambitious, and she/he might just
gain more information than expected. A hierarchy of the adversary’s goals is
follows [98]:

Key recovery: The adversary is able to determine the secret key of the
symmetric primitive, therefore she can decrypt any ciphertext encrypted
with this secret key.

Global deduction: The attacker is able to determine a function which
is functionally equivalent to the encryption/decryption of the algorithm,
without knowing the secret key.

ATTACK MODELS 26

Local deduction: The adversary can generate the message (or
ciphertext) corresponding to a previously unseen ciphertext (or message).

Distinguisher: Intuitively, a well-designed symmetric-key primitive
behaves like a random permutation. If the primitive is distinguishable, it
means that the adversary can efficiently distinguish between two black
boxes; one contains the symmetric-key primitive with a randomly chosen
encryption key while the other contains a randomly chosen permutation.

We need to point out that based on a distinguisher of the cipher, the adversary
might mount an advanced attack. This can be done by first collecting sufficiently
many pairs of plaintexts and ciphertexts as required by the distinguisher, then
guessing a part of the secret key to do partial decryption and applying the
distinguisher to a set of the pairs (encrypted plaintext, and the corresponding
partially decrypted ciphertext). If the distinguisher holds, the guess is correct,
otherwise it is wrong. Thus, when evaluating the resistance of the new design
against the existing attack methodologies, this provides a strong basis to the
designers to make security claims, as long as constructing such distinguishers is
impossible. If it is not possible to construct distinguishers, obviously it is even
harder to achieve the rest of the attack goals.

3.1.4 Attack complexity metrics

To estimate the complexity of a cryptanalytic attack, one must take into account
at least three metrics: the time it takes, the amount of data it needs (when
the type of data is fixed as described in subsection 3.1.1), and the storage it
requires.

Data Complexity: The amount of data needed as input to an attack.
The data can be measured in terms of the block size. Also the data
complexity should be referred to the attack data types: CO, KP, CP, CC,
etc. When the data complexity covers all pairs of plaintext and ciphertext,
we call the attack the full code book attack.

Time Complexity: The time needed to perform an attack. The
time complexity can be measured by several units, for example, CPU
instructions, or number of encryptions. When analysing time complexity,
we consider both the offline and online phase of an attack. In the offline
phase, the complexity is the time required for the attack before obtaining
any plaintext/ciphertext pair (which is also called precomputation), while
in the online phase, the complexity is the time to obtain the data required
by the attacker.

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 27

Memory Complexity: The amount of memory needed for the attack.
It can be measured by various units, for example, the block size (bytes),
the hash table size, etc. Sometimes the memory complexity is so large
that it makes the attack completely impractical.

The complexity of an attack is often evaluated as the maximum of the three
complexities above; however, in most cases the amount of data the adversary
can obtain with the same secret key is limited (confined by the designers); on
the other hand for most attackers the available storage is small (< 1 PB).

Before we start to describe the crytanalysis methods of block ciphers, we note
that throughout this chapter, E (defined in Section 2.1) can be treated as a
cascade of two sub-ciphers E = E1 ◦ E0 if necessary. When appending some
rounds before and/or after E in order to mount an r′-round attack, we denote
the new targeted cipher as E′.

3.2 Differential cryptanalysis and extensions

3.2.1 Differential cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir [28] in 1991.
It is one of the most powerful methods for the cryptanalysis of symmetric-
key primitives; it resulted in the first attack on full DES [29], and the first
related-key attack on full AES-192 and AES-256 [32, 33]. The main idea of
differential cryptanalysis is to study the difference propagations through the
rounds of the cipher E. For common cases the difference is an XOR difference,
sometimes a modular subtraction [104] is used. Differential cryptanalysis is a
Chosen-Plaintext attack that is performed in two phases: data collection and
key recovery phase.

Data collection Let P and P ′ be a pair of plaintexts of E with input difference
∆P , and let C and C ′ be the corresponding ciphertexts satisfying the output
difference ∆C. The pair (∆P,∆C) is called an r-round differential (denoted as
(∆P → ∆C) as well) where the input difference ∆P propagates to the output
difference ∆C. The fraction of pairs (P, P ′) satisfying (∆P,∆C) after r rounds
is called the differential probability (DP) of the r-round differential, denoted as
DP = Pr(∆P,∆C), i.e.

DP(∆P,∆C) = 1
2n#{P ∈ Fn2 |E(P ⊕∆P) = E(P)⊕∆C} .

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 28

If E is keyed by a key k, we write DP(∆P,∆C; k), and the expected differential
probability EDP(∆P,∆C) is defined as

EDP(∆P,∆C) = EK [DP(∆P,∆C;K)] ,

where K is uniformly distributed over the key space Fk2 .

A differential characteristic, trail, or path is a vector (α0, α1, . . . , αr) with
αi specifying the difference after the ith round. A differential characteristic
T = (α0, α1, . . . , αr) is said to be part of differential (∆P,∆C), denoted as
T ∈ (∆P,∆C), if α0 = ∆P and αr = ∆C. Therefore, a differential is the
collection of all the differential characteristics with the same input and output
difference. DP(∆P,∆C) is the sum over the probabilities of all the differential
characteristics belonging to (∆P,∆C):

DP(∆P,∆C) =
∑

T∈(∆P,∆C)

DP(T) =
∑

α1,...,αr

r∏
i=1

DP(αi−1, αi; ki) ,

where ki is the subkey for the ith round of E. Similarly,

EDP(∆P,∆C) =
∑

T∈(∆P,∆C)

EDP(T) =
∑

α1,...,αr

r∏
i=1

EDP(αi−1, αi) ,

The maximum differential probability (MDP) is the maximum value of the
differential probabilities over all pairs of non-zero input difference:

MDP = max
∆P 6=0,∆C

DP(∆P,∆C) .

Similarly, the maximum expected differential probability (MEDP) is defined as

MEDP = max
∆P 6=0,∆C

EDP(∆P,∆C) .

The goal of this phase is to find an r-round differential with high DP. If DP is
relatively high, it can be used to recover the secret key.

Key recovery Based on an r-round differential with high DP, one might attack
at least r+ 1 rounds depending on the structure of the cipher. For instance one
extra round at the end is considered: after guessing some subkey bits of the
last round, the adversary partially decrypts one round to check whether the
expected differential is observed or not after the rth round. If yes, a counter
for the guessed key is increased by one. The guessed key with the highest
occurrence is selected as a correct key.

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 29

Many variants have developed from differential cryptanalysis; the applications
of these methods are not only limited to analysing block ciphers, but are crucial
in the analysis of almost all symmetric-key components, for example hash
functions. We will briefly describe the ones related to this thesis in sequence.

3.2.2 Impossible-differential cryptanalysis

Impossible-differential cryptanalysis was independently proposed by Borst et al.
to attack IDEA [46] and by Biham et al. to attack Skipjack [24]. The technique
was applied later in the analysis of other block ciphers including AES [130],
Camellia [48,109] and CLEFIA [159].

In differential cryptanalysis the attacker tries to find a differential that occurs
with high probability, whereas in impossible-differential cryptanalysis the
attacker aims to construct a differential that does not occur (i.e. with probability
0). The approach to construct such a differential is based on the idea of miss-
in-the-middle. For cipher E, assume there exist a differential (α → β) of E0
and (γ → δ) of E−1

1 , both with probability one. However, β 6= δ contradicts
the differential (α→ γ), thus an r-round impossible-differential of E, denoted
as (α 6→ γ), is obtained.

During the key recovery phase, by guessing some subkey bits of the appended
rounds in E′, the attacker performs partial encryption and/or decryption to
collect a sufficient number of pairs with specific input and output differences
of E. If there exists a pair with input difference α and output difference γ of
the impossible-differential under some subkey bits, the attacker is assured that
the key guess must be wrong. In this way, many wrong keys are discarded.
Depending on the cipher and the key schedule, the number of remaining
candidates of the right key might be one, while in some case this might be a
large number; subsequently the attacker performs an exhaustive search of the
remaining key(s). The construction of an impossible-differential and the key
recovery procedure are depicted in Figure 3.1. We apply impossible-differential
cryptanalysis method to analyse block ciphers Rijndael-224, Rijndael-256 and
SIMON (refer to Section 2.2.2 and 2.2.3) in Section 4.2.

3.2.3 Boomerang attack

The boomerang attack proposed by Wagner [161], aims to reduce the complexity
of differential cryptanalysis. The main idea of the attacks is to use two short
differentials with high probabilities instead of one differential of more rounds
with low probability. The motivation for such an attack is that for many ciphers

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 30

Impossible
r-round

Plaintext P

Ciphertext C

Partial
Decryption

α

γ

Partial
Encryption

⇓

⇑

α

γ

β

δ
6=

Differential

E0

E1

E

Figure 3.1: Impossible-differential cryptanalysis

it is easier to find short differentials with high probabilities than finding a longer
one with a relatively high probability. This attack is a Chosen-Plaintext and
Chosen-Ciphertext attack.

The attack is based on a quartet of encryptions and decryptions. A right quartet
of E is defined as the plaintext (P1, P2, P3, P4) and ciphertext (C1, C2, C3, C4)
satisfying the following conditions:

P1 ⊕ P2 = P3 ⊕ P4 = α , E0(P1)⊕ E0(P2) = E0(P3)⊕ E0(P4) = β ,

C1 ⊕ C3 = C2 ⊕ C4 = γ , E0(P1)⊕ E0(P3) = E0(P2)⊕ E0(P4) = δ ,

where E = E1 ◦ E0 and E0(Pi) = E−1
1 (Ci) for 1 ≤ i ≤ 4. A right quartet is

depicted in Figure 3.2.

In order to build a right quartet for the block cipher E such that there exists a
differential (α→ β) with probability p for E0, and a differential (γ → δ) with
probability q for E−1

1 , the attacker performs the following steps:

1. Ask for the encryption of a plaintext pair (P1, P2) where P1 ⊕ P2 = α,
and denote the corresponding ciphertexts by (C1, C2).

2. Compute the ciphertext pair (C3, C4) that satisfies C3 = C1⊕γ and C4 =
C2 ⊕ γ. Ask for the decryption of (C3, C4) and denote the corresponding
plaintexts by (P3, P4).

3. Check whether P3 ⊕ P4 = α.

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 31

E0

E0 E0

E0

E1

E1

E1

E1

P1

P2 P4

P3

C2

C1

C3

C4

α

β

γ

γ

δ

δ
β

α

Figure 3.2: A right quartet of the boomerang distinguisher

For a random permutation, the condition P3⊕P4 = α is satisfied with probability
2−n. For E, the probability that the pair (P1, P2) is a right pair of the differential
(α → β) is p, the probability that both pairs (C1, C3) and (C2, C4) are right
pairs of the differential (γ → δ) is q2. If all these pairs are right pairs, and they
satisfy E−1

1 (C3) ⊕ E−1
1 (C4) = β = E0(P3) ⊕ E0(P4), then P3 ⊕ P4 = α holds

with probability p. Therefore, the probability that the quartet (P1, P2, P3, P4) of
plaintexts and (C1, C2, C3, C4) of ciphertexts make up a boomerang distinguisher
is (pq)2. If pq > 2−n/2 holds, the boomerang distinguisher and the key recovery
attacks can work.

Moreover, the attack can be mounted for all possible β’s and δ’s simultaneously
(as long as β 6= δ), therefore a right quartet for E can be constructed with
probability (p̂q̂)2 where

p̂ =
√∑

β

Pr2[α→ β] and q̂ =
√∑

δ

Pr2[γ → δ] .

In addition, it is also possible to combine the boomerang attack with related-key
attacks; examples can be found in [27,32,33].

3.2.4 Rectangle attack

As the boomerang attack is a Chosen-Plaintext and Chosen-Ciphertext attack,
many techniques that developed for using boomerang distinguishers in key

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 32

recovery attacks cannot be applied. This leads to the development of a
Chosen-Plaintext variant of the boomerang attack: the amplified boomerang
attack [94] and the rectangle attack [26]. Because the rectangle attack achieves
a larger improvement than the amplified boomerang attack, we only describe
the rectangle attack in this thesis, and use the same notation as in Section 3.2.3.
The rectangle attack works in a Chosen-Plaintext setting.

A right rectangle quartet of E is defined to be a quartet of plaintexts
(P1, P2, P3, P4) and the corresponding ciphertexts (C1, C2, C3, C4) such that
P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ P4 = γ, where α is the input
difference of E0 and γ is the output difference of E−1

1 . These conditions are
referred to as the rectangle conditions. For clarity, we denote the partial
encryption of Pi by Xi, i.e., Xi = E0(Pi) = E−1

1 (Ci).

The first improvement the rectangle distinguisher makes is in E1. Instead of
using only one value of δ, one can use any δ′ that satisfies γ → δ′ for E−1

1 , as
long as both pairs (X1, X3) and (X2, X4) have the same difference δ′. In this
case (where X1 ⊕X3 = X2 ⊕X4 = δ′ and X1 ⊕X2 = β), the probability that
the rectangle conditions are satisfied is

2−np2
∑

γ
E
−1
1−−−→δ′

Pr2[γ
E−1

1−−−→ δ′] = p2q̂2/2n .

The second improvement similar to the previous one but in E0, is to use all
possible β′ values. As long as X1 ⊕ X2 = X3 ⊕ X4 and X1 ⊕ X3 = δ′, the
probability that a quartet becomes a right quartet is Pr2[δ′ → γ]. In all, the
probability that a given quartet is a right quartet is

2−n
∑

α
E0−−→β′

Pr2[α E0−−→ β′] ·
∑

γ
E
−1
1−−−→δ′

Pr2[γ
E−1

1−−−→ δ′] = (p̂q̂)2/2n .

Based on the above improvements, we conclude that given N plaintext pairs we
expect to have N2(p̂q̂)2/2n right rectangle quartets. Similarly to the boomerang
attack, rectangle attack can also be combined with related-key attacks [96, 111].

We discuss the related-key rectangle attack on Rijndael-160/160 and Rijndael-
192/192 (see Section 2.2.2 for the description) in Section 4.1.6.

3.2.5 Higher-order differential attack

The concept of higher-order derivatives has been first introduced in cryptography
by Lai [102] and applied to differential cryptanalysis by Knudsen [97]. Whereas

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 33

standard differential cryptanalysis studies the propagation of the differences
between one pair of plaintexts, higher-order differential cryptanalysis was
generalised to exploit the propagation of differences between pairs in a larger
set having 2i pairs of element (the (i+ 1)th-order differential).

Definition 2. ([102]) Let (S,+) and (T,+) be Abelian groups. For a function
f : S → T , the derivative at a point a ∈ S is defined as

∆af(x) = f(x+ a)− f(x) .

The ith derivative of f at the point (a1, a2, · · · , ai) is then defined as

∆(i)
a1,...,ai

f(x) = ∆ai
(∆a1,...,ai−1f(x)) .

From the definition, the standard differential corresponds to the first order
derivatives. It is natural to extend the notation of first-order differential to
higher-order differential as follows:

Definition 3. ([97]) A one-round differential of order i for a function f :
S → T is an (i+ 1)-tuple (α1, α2, . . . , αi, β) such that ∆(i)

(α1,...,αi)f(x) = β .

Proposition 1. ([102]) Let L[a1, a2, . . . , ai] be the list of all 2i possible linear
combinations of a1, a2, . . . , ai, then

∆(i)
a1,...,ai

f(x) =
∑

∆P∈L[a1,...,ai]

f(P + ∆P) .

If a1, . . . , ai are linearly dependent, then

∆(i)
a1,...,ai

f(x) = 0 .

For the block cipher E, assume the algebraic degree (see Appendix A) of E0 is
d− 1, and E0 has r − 1 rounds (from our definition, E1 has one round). Then

∆(d)
a1,··· ,adE0(P, k1, . . . , kr−1) = 0 , (3.1)

where a1, · · · , ad ∈ Fd−1
2 . Let E−1

1 be the inverse of sub-cipher E1, then

E−1
1 (C, kr) = E−1

1 (E(P), kr) = E0(P, k1, . . . , kr−1) . (3.2)

From Equation (3.1) and (3.2), one can get the attack equation

∆(d)
a1,··· ,adE

−1
1 (C, kr) = 0 . (3.3)

By checking the attack equation (3.3), the subkeys involved in the final round
E1 can be obtained.

DIFFERENTIAL CRYPTANALYSIS AND EXTENSIONS 34

3.2.6 Integral attack

The integral attack, also known as the square attack [99], was first proposed
by Knudsen to analyse SQUARE [57] block cipher. There are several variants
of the integral attack with different names: multiset attack [35], saturation
attack [112], and collision attack [78]. The integral attack can be seen as the
dual of a differential attack; it can be very effective to attack ciphers that are
secure against differential attack. For instance, the integral attack is the best
known attack on AES.

Let Λ be a collection of state vectors X = (x0, . . . , xn−1), where xi ∈ F2 is the
ith word of X. The following notations are defined:

A: if all ith words xi in Λ are distinct, xi is called active.

B: if the sum of all ith words xi in Λ can be predicted, xi is called balanced.

C: if the values of all ith words xi in Λ are equal, xi is called passive/constant.

*: if the sum of all ith words xi in Λ cannot be predicted.

The integral attack first constructs an integral distinguisher by choosing
plaintexts with some active (A) words, and the rest as constant (C). Then ask
for the encryption of the plaintexts and check whether the summation (usually
XOR) at some word is 0, if yes, we call this word balanced (B), and an r-round
integral distinguisher is found. During the key recovery phase, firstly several
final rounds are appended to the distinguisher, next some subkeys involved
are guessed in order to do partial decryptions up to the output of the integral
distinguisher. If the guess is correct, the XOR sum of the states is always 0,
thus the key space can be reduced.

The integral attack is applied to analyse Feistel structures Camellia, CAST-256,
SMS4 and SIMON (see Section 2.2.3) in Section 4.2.

3.2.7 Local collision

A local collision is a differential that starts and ends with a zero difference in
the internal state, but is non-zero in the intermediate state. The idea of local
collisions has been first introduced by Joux and Chabaud [52] to attack hash
functions. It aims to inject a difference (called disturbance, in red) into an
intermediate step and then to correct the resulting differences with injections
in the next steps (called correction, in grey) to obtain a collision. The goal
is to reduce the complexity of the attack by having as few disturbances as

LINEAR CRYPTANALYSIS AND EXTENSIONS 35

possible. This idea has been later applied by Biryukov and Khovratovich [32]
to attack AES-192 and AES-256 under the related-key model. A local collision
of AES-256 is shown in Figure 3.3.

SB

SR MC

Disturbance

Correction

AK

AK

Figure 3.3: A local collision in AES-256

We use this idea to construct related-key rectangle distinguishers for Rijndael-
160/160 and Rijndael-192/192 (refer to Section 2.2.2) in Section 4.1.6.

3.3 Linear cryptanalysis and extensions

3.3.1 Linear cryptanalysis

Linear cryptanalysis, along with differential cryptanalysis, is one of the most
powerful cryptanalysis techniques for symmetric-key primitives. The idea was
used to attack the block cipher FEAL [123] by Tardy-Corfdir and Gilbert [158]
in 1991, and Matsui and Yamagishi [116] in 1992; later it has been successfully
applied to DES [114].

The linear attack is a Known-Plaintext attack in which the adversary tries
to find a linear relation between plaintext and ciphertext that holds with a
sufficiently large linear probability. Let ΓP and ΓC denote the masks of P and
C respectively. Assume that ΓP · P ⊕ ΓC · C = 0 holds with linear probability

LINEAR CRYPTANALYSIS AND EXTENSIONS 36

LP(ΓP ,ΓC) as

LP(ΓP ,ΓC) =
(

1
2n−1 #{P ∈ Fn2 |ΓP · P ⊕ ΓC · C = 0} − 1

)2
,

we call (ΓP → ΓC) (also denoted as (ΓP ,ΓC)) a linear approximation/hull
of E with linear probability LP(ΓP ,ΓC). If E is keyed by a key k, we write
LP(ΓP ,ΓC ; k), and the expected linear probability ELP(ΓP ,ΓC) is defined as

ELP(ΓP ,ΓC) = EK [LP(ΓP ,ΓC ;K)] ,

where K is uniformly distributed over the key space Fk2 .

We define the linear correlation c of (ΓP → ΓC) as

c = 1
2n (#{P ∈ Fn2 |ΓP · P ⊕ ΓC · C = 0} −#{P ∈ Fn2 |ΓP · P ⊕ ΓC · C = 1}) .

As can be seen, LP= c2.

Lemma 1 (Piling-up Lemma [114]). Let Xi (1 ≤ i ≤ n) be independent binary
random variables whose values are 0 with correlation ci. Then the correlation
of X1 ⊕X2 ⊕ · · · ⊕Xn = 0 is

c =
n∏
i=1

ci .

Let X0, X1, . . . , Xr denote the intermediate values of E where Xi = E(Xi−1),
P = X0 and C = Xr. Let ΓXi−1 and ΓXi

denote the input and output masks
respectively for the ith round (1 ≤ i ≤ r). A pair of masks (ΓXi−1 ,ΓXi) is
called a one-round linear characteristic for the ith round, and the (r + 1)-
tuple Ω = (ΓX0 ,ΓX1 , . . . ,ΓXr

) is called an r-round linear characteristic. A
linear characteristic Ω is called to be part of linear approximation (ΓP ,ΓC),
denoted as Ω ∈ (ΓP ,ΓC), if ΓX0 = ΓP and ΓXr

= ΓC . Therefore, a linear
approximation is the collection of all the linear characteristics with the same
input and output mask. Assume that these one-round linear characteristics are
statistically independent, then LP(ΓP ,ΓC) and ELP(ΓP ,ΓC) can be calculated
by Piling-up lemma as:

LP(ΓP ,ΓC) =
∑

Ω∈(ΓP ,ΓC)

LP(Ω) =
∑

ΓX1 ,...,ΓXr

r∏
i=1

LP(ΓXi−1 ,ΓXi
; ki) ,

where ki is the subkeys being used for the ith round of E, and

ELP(ΓP ,ΓC) =
∑

Ω∈(ΓP ,ΓC)

ELP(Ω) =
∑

ΓX1 ,...,ΓXr

r∏
i=1

ELP(ΓXi−1 ,ΓXi) .

LINEAR CRYPTANALYSIS AND EXTENSIONS 37

The maximum linear probability (MLP) is the maximum value of the linear
probabilities over all pairs of non-zero input and output mask:

MLP = max
ΓP ,ΓC 6=0

LP(ΓP ,ΓC) .

Similarly, the maximum expected linear probability (MELP) is the maximum
value of the expected linear probabilities over all non-zero input and output
mask:

MELP = max
ΓP ,ΓC 6=0

ELP(ΓP ,ΓC) .

After obtaining a linear approximation with sufficiently large LP, an adversary
can mount a key recovery attack on E′ by guessing some subkey bits used in the
appended rounds. Matsui [114] showed that the number of plaintext-ciphertext
pairs required in the key recovery attack can be estimated as 4cN × c−2, where
cN is related to the number of guessed subkey bits. The success rate can be
calculated by the formula proposed by Selçuk [146].

Several extensions of linear cryptanalysis have been proposed: one approach is
to combine differential and linear cryptanalysis [25, 37, 105, 110]; multiple linear
cryptanalysis combines more than one linear approximations [31,83,91,128].

3.3.2 Zero-correlation linear cryptanalysis

The zero-correlation attack can be treated as the counterpart of impossible-
differential attack in linear cryptanalysis. While impossible-differential
cryptanalysis has been known for about 20 years, zero-correlation attack was
only proposed by Bogdanov and Rijmen [43] in 2011; it has been shown to be a
promising attack technique for block ciphers [44].

The first step for the zero-correlation attack is to construct a linear distinguisher
with correlation zero by adopting the miss-in-the-middle techniques as that is
used in impossible-differential cryptanalysis. Assume for the block cipher E, we
obtain a linear approximation (Γα → Γβ) with correlation zero. Based on this
r-round zero correlation linear approximation (Γα → Γβ), one can distinguish
E from an ideal n-bit block cipher since for the latter, the probability that
(Γα → Γγ) has correlation zero is about 1√

2π2 4−n
2 ≈ 0 (if n ≥ 32), while for the

former, the probability that (Γα → Γβ) has correlation zero is 1. Moreover,
during the key recovery phase, based on the above zero correlation linear
approximation, an adversary can mount a key recovery attack on E′ by means
of guessing part of subkeys adopted in the appended rounds of E.

ALGEBRAIC CRYPTANALYSIS 38

Zero-correlation linear cryptanalysis is used to analyse SIMON in Section 4.2.
The links between impossible-differential, zero-correlation and integral attack
are discussed there as well.

3.4 Algebraic cryptanalysis

Compared to differential and linear cryptanalysis, algebraic cryptanalysis [54]
is a relatively new technique for the analysis of cryptographic primitives; it was
applied more successfully to analyse stream ciphers [54, 69]. The main idea
of algebraic cryptanalysis is to first express a cipher as a system of algebraic
nonlinear equations in terms of the secret key, and then to solve the equations
in order to recover the secret key.

A standard method to solve a system of linear equations is Gaussian elimination.
However, the equations describing the cryptographic primitives are highly non-
linear. An efficient approach to this problem is called linearization, where all
monomials of degree larger than one are replaced by a new independent variable
of degree one. In this way the system of nonlinear equations is transformed into
a system of linear equations which can then be solved by Gaussian elimination.

Another direction to solve the nonlinear system is to use either a SAT solver or
Gröbner bases. For a SAT solver, the system of equations is represented as a
Boolean Satisfiability problem; a number of heuristic off-the-shelf solvers [3], for
instance Cryptominisat [124], are available to solve the system. The Gröbner
bases [8] technique enables to significantly reduce the degree of the nonlinear
polynomials by multiplying them with well-chosen multivariate polynomials.
Then, it may be able to recover the key by solving the system of equations.
However, in many cases the time and memory of this algorithm is prohibitively
large.

3.4.1 Interpolation attack

The interpolation attack was introduced by Jakobsen and Knudsen [87,88] as
an algebraic attack on block ciphers that are built from low degree algebraic
functions. Given an unknown polynomial y = f(x), if the degree of f(x) does
not exceed n− 1, then its coefficients can efficiently be recovered by taking n
distinct samples (xi, yi) with yi = f(xi). By using the Lagrange interpolation
formula, the polynomial can be reconstructed as

f(x) =
∑
i

yi
∏
j 6=i

x− xj
xi − xj

.

CONCLUSIONS 39

When applying the interpolation attack to a block cipher, we represent the
ciphertext (or the intermediate target) as a polynomial of the plaintexts and
the key as

f(P,K) = fK(P1, . . . , Pn) =
∑
u∈F2n

αuMu ,

where αu ∈ {0, 1} and Mu =
n∏
i=1

Pi
ui . The coefficient αu depends on the key

and are unknown. The goal of the interpolation attack is to interpolate the
unknown coefficients of f(P,K) and then eventually recover the secret key.

The interpolation attack is successfully applied to analyse LowMC in Section
4.3.

3.5 Conclusions

In this chapter, we first introduced attack models of block ciphers, by which we
can describe an attack in aspects of the key setting, the attack goal, the data
type and the complexity. We mainly focused on the most common cryptanalysis
methods that are necessary to understand our results in the next chapters.

CONCLUSIONS 40

Chapter 4

Contributions of this thesis

This chapter presents a survey of our contributions on the cryptanalysis
and design of symmetric-key primitives. In Section 4.1, mixed integer
linear programming (MILP) and its applications to symmetric-key primitives
are introduced. In Section 4.2, we first present our impossible-differential
cryptanalysis results of Rijndael-224 and Rijndael-256, and then we describe
the integral and zero-correlation linear attacks on SIMON. Subsequently, the
links among impossible-differential, zero-correlation and integral cryptanalysis
are discussed. Finally Section 4.3 introduces our attack on the new block cipher
LowMC.

4.1 MILP and its applications to symmetric-key
primitives

In this thesis, we apply the MILP technique to evaluate the security of symmetric-
key primitives against differential/linear cryptanalysis in the single-key and/or
related-key models. Applications include the analysis of stream cipher Enocoro-
128v2, generalized Feistel networks GFN4-II, Rijndael-160 and Rijndael-192 in
the related-key model, and the design of the underlying permutation for the
second round CAESAR candidate PRIMATEs.

41

MILP AND ITS APPLICATIONS TO SYMMETRIC-KEY PRIMITIVES 42

4.1.1 Backgrounds

Linear programming (LP) is the study of optimizing (minimizing or maximizing)
a linear objective function f(x1, x2, . . . , xn), subject to linear inequalities
involving decision variables xi, 1 ≤ i ≤ n. For many such optimization problems,
it is necessary to restrict certain decision variables to integer values, i.e. for
some values of i, we require xi ∈ Z. Methods of formulating and solving such
programs are called mixed-integer linear programming (MILP). If all decision
variables xi must be integers, the term (pure) integer linear programming (ILP)
is to be used. MILP techniques have found many applications in the fields of
economy and business, but their application in cryptography has been limited.
We proposed our MILP-based technique [125] in 2011. Similar techniques were
applied to search the differentials and linear hulls of a large number of block
ciphers with SPN and GFN structures, e.g. PRESENT, SIMON, LBlock and
DES(L) [156], and to the design of the permutation of the AE scheme such as
Prøst [93].

Resistance against linear and differential cryptanalysis is a standard design
criterion for new ciphers. For the AES [60], provable security against linear
and differential cryptanalysis follows from the wide trail design strategy. We
apply a similar proof strategy: After proving a lower bound on the number
of active S-boxes for both differential and linear cryptanalysis, we use the
maximum differential/linear probability of the S-boxes to derive an upper
bound for the probability of the best characteristic. As is commonly done, the
probability of the differential/linear hull is estimated by the probability of the
best characteristic. Therefore the main task goes to calculate the minimum
number of active S-boxes.

Several works focus on calculating the minimum number of active S-boxes for
both SPNs [59] and GFNs [40, 41, 47, 92, 151, 172]. Unfortunately, it seems
that a large amount of time and programming effort is required to apply those
techniques, because they require solving several ILP problems. We show how
this can be avoided by introducing extra dummy variables into the MILP
to generate one single ILP problem, achieving the fully automatic search for
differential and linear characteristics.

4.1.2 Applications to stream cipher Enocoro-128v2

Enocoro-128v2 [169] is a lightweight stream cipher inspired by the Panama
construction [56]. It has been adopted as ISO standard [6] in 2012. There are
96 initialization rounds in Enocoro-128v2. The internal state of Enocoro-128v2
is composed of a buffer consisting of 32 bytes and a state consisting of two

MILP AND ITS APPLICATIONS TO SYMMETRIC-KEY PRIMITIVES 43

bytes; it is initialized with a 128-bit key and a 64-bit IV . The update function
deploys an 8-bit S-box and a linear transformation with branch number 3. We
apply our technique to Enocoro-128v2 to obtain bounds against differential and
linear cryptanalysis [125]. All MILP problems are solved using the CPLEX
solver [1]. We prove that 38 rounds are sufficient for security against differential
cryptanalysis, and 61 rounds against linear cryptanalysis. These security bounds
are obtained after about 53 and 229 seconds respectively on a 24-core Intel
Xeon X5670 Processor with 16 GB of RAM.

4.1.3 Applications to AES

We also calculate the minimum number of active S-boxes for up to 14 rounds
of AES, which takes at most 0.40 seconds for each optimization program [125].
Our experiments are performed on a 24-core Intel Xeon X5670 Processor, with
16 GB of RAM. Our technique can be applied to evaluate all the AES-like
symmetric-key primitives against differential and linear cryptanalysis directly.
In fact, we apply this technique in deriving the differential and linear bounds of
the underlying permutation of PRIMATEs in Section 4.1.5.

4.1.4 Applications to GFNd-II

In [163], we first prove tighter lower bounds on the number of linearly active
S-boxes in CLEFIA-type GFNs with DSM and single-SD function. We show
that every 6 rounds of such GFNs provide 50% more linearly active S-boxes
than proven previously. Moreover, with the help of MILP, we experimentally
demonstrate for the first time that the new bound is tight for up to at least
12 rounds. Thus, our new result suggests that the efficiency of GFNd with
single SD function is equally improved both by moving from single to double
SD functions and by going from single-round diffusion to DSM over multiple
rounds.

4.1.5 Design PRIMATEs permutation

The contributions of MILP to PRIMATE are threefold: First, we use it to
search the optimal offsets for ShiftRows, which results in optimal bounds against
differential and linear cryptanalysis. Second, we show that the differential/linear
probability of PRIMATE-80 and PRIMATE-120 is upper-bounded by 2−100 and
2−196, therefore the standard differential or linear approach will not lead to

ID, ZC, INTEGRAL CRYPTANALYSIS AND THEIR LINKS 44

a successful attack. Moreover, we also provide bounds for collision producing
trails against differential cryptanalysis.

4.1.6 Applications to Rijndael in the related-key model

In [165] we study Rijndael-160/160 and Rijndael-192/192. We first apply
MILP technique to search for the best differential trails of the key schedule
which have the minimum number of active S-boxes. Using the idea of local
collisions we construct 6-round and 8-round related-key rectangle distinguishers
for Rijndael-160/160 and Rijndael-192/192 respectively. Based on the rectangle
distinguishers, we give the best attacks on Rijndael-160/160 and Rijndael-
192/192 in terms of the attacked rounds.

4.2 ID, ZC, integral cryptanalysis and their links

We describe our impossible-differential cryptanalysis of Rijndael-224 and
Rijndael-256 in Section 4.2.1. The integral attack and zero-correlation linear
attack are applied to SIMON in Section 4.2.2. We discuss the links among
impossible-differential, zero-correlation linear and integral cryptanalysis in
Section 4.2.3.

4.2.1 Impossible-differential attacks on Rijndael

Our impossible-differential cryptanalysis of Rijndael-224 and Rijndael-256 is
published in [164]. First we find new impossible-differentials which have more
active bytes at the end (the previous distinguishers have only one byte while
ours have three); with the help of these new differentials the cost of the subkey
guesses during the key recovery phase can be reduced. For 9-round Rijndael-224
and Rijndael-256, we substantially reduce the complexities. Moreover, we even
cryptanalyse 10 out of 14 rounds for Rijndael-256. Up until the time of writing,
our results are the best known attack on both Rijndael-224 and Rijndael-256.

4.2.2 Integral and zero-correlation attack on SIMON

In 2013, NSA proposed two families of highly-optimized block ciphers SIMON
and SPECK [15] which provide excellent performance in hardware and software
respectively. Moreover both families offer a large number of block sizes and key

ID, ZC, INTEGRAL CRYPTANALYSIS AND THEIR LINKS 45

sizes such that the users can easily match the security requirements of their
application without sacrificing the performance. However, no cryptanalysis
results are included in the specification of these algorithms.

There are three lines of cryptanalysis of SIMON. One is dedicating great efforts
to the search of the best differentials or linear hulls, based on which the attacker
might mount the best differential or linear cryptanalysis of SIMON. For instance,
Biryukov et al. propose the threshold search technique [34] and find the best
12-round differential for SIMON32, based on which they give the best differential
attack on 19 out of 32 rounds for SIMON32 (in 2014). The other line is focusing
on key recovery techniques, based on the known best differentials or linear hulls.
One example is [162], where the dynamic key-guessing technique is applied,
based on the same differential as in [34]. Impossible-differential cryptanalysis
has also been applied to all the versions of SIMON family. Since it is easy to
construct an impossible-differential by using the idea of miss-in-the-middle for
SIMON family, we treat the work [48] as belonging to the second line, however
the impossible-differential cryptanalysis cannot surpass differential or linear
cryptanalysis in terms of the attacked rounds, even if some dedicated tricks are
used to optimize the complexity of the attacks. Another direction is the cube
attack [9]. We don’t discuss fault attacks or side channel attack in this thesis.

Integral attack on SIMON

In [166], we apply the integral attack to SIMON. We firstly apply integral
cryptanalysis on SIMON32. Because the block size is only 32 bits, a 15-
round integral distinguisher with 31 active bits in the input can be found
experimentally, based on which we present a key recovery attack on 21 out
of 32 rounds for SIMON32, while the previous best results only achieved 19
rounds. Our experiments also show that the number of distinguished rounds
rapidly increases when the number of active bits becomes close to the block
size. As exploiting integral distinguishers with a large number of active bits
in the plaintext is hard in general, our approach is not effective for the larger
version including SIMON48. However, according to the experimental results for
SIMON32, we may expect that there exist good integral distinguishers of larger
versions when the number of active bits is near the block size.

Zero-correlation attacks on SIMON

Zero-correlation attacks are promising approaches to attack more rounds of
some block ciphers. The results can be improved by applying the techniques
proposed by Bogdanov and Wang [44] to reduce the data complexity. In [166] we

INTERPOLATION ATTACK OF LOWMC 46

apply the zero-correlation attack to SIMON. Even if our results for SIMON32
and SIMON48 are not better than the best differential or integral attack, with
the help of divide-and-conquer technique, they are still better than the best
impossible-differential attacks published at Asiacrypt 2014 [48].

4.2.3 The links among ID, ZC and integral cryptanalysis

Although relations between cryptanalytic approaches including differential
and linear cryptanalysis, statistical saturation and multidimensional linear
cryptanalysis, integral and zero-correlation linear cryptanalysis, impossible-
differential and zero-correlation linear cryptanalysis have been investigated [36–
39,44,53,106], the link between impossible-differential and integral cryptanalysis
has been missing. The motivation of our paper [155] is to bridge this gap
and establish links between impossible-differential cryptanalysis and integral
cryptanalysis.

Firstly, by introducing the concept of structure and dual structure, we prove
that a → b is an impossible-differential of a structure E if and only if it is a
zero-correlation linear hull of the dual structure E⊥. Secondly, by establishing
some Boolean equations, we show that a zero-correlation linear hull always
indicates the existence of an integral distinguisher. With this observation, we
improve the integral cryptanalysis of several Feistel structures: For CAST-256,
we find a 24-round integral distinguisher and give a 28 out of 48 rounds attack
which reduce the complexities of the attack in [44]; for SMS4, we improve the
integral distinguisher from 10 to 12 rounds; and for Camellia, by constructing
an 8-round zero-correlation linear hull, we find a 8-round integral distinguisher.
Finally, we conclude that an r-round impossible-differential of E always leads
to an r-round integral distinguisher of the dual structure E⊥. If E and E⊥ are
linearly equivalent, we derive a direct link between impossible-differentials and
integral distinguishers of E .

Our results may help to classify different cryptanalytic tools and may facilitate
the task of evaluating the security of block ciphers against several attacks.

4.3 Interpolation attack of LowMC

LowMC is a collection of block cipher families introduced at Eurocrypt 2015 by
Albrecht et al. [10]. The design is optimized for instantiations of multi-party
computation, fully homomorphic encryption, and zero-knowledge proofs where
the linear operation is essentially free, while the non-linear operation is expensive.

CONCLUSIONS 47

With respect to three metrics: ANDs/bit, ANDdepth and number of ANDs,
LowMC beats all the existing block ciphers. In terms of implementations, when
encrypting larger amounts of data in the MPC setting, LowMC can achieve
improvements in computation and communication complexity by up to a factor
of 5 compared to AES-128.

A unique feature of LowMC is that its internal affine layers are chosen at
random, and thus each block cipher family contains a huge number of instances.
However for every instance, the only nonlinear operation in the round function
of LowMC is the partial S-box layer, in particular the algebraic degree of each
3-bit S-box is 2, this results in a slow diffusion and motivated us to analyse the
security of LowMC.

The design proposes two specific block cipher families of LowMC, having 80-bit
and 128-bit keys. In our work [68], we mount interpolation attacks (cf. Section
3.4.1) on LowMC, and show that a practically significant fraction of 2−38 of
its 80-bit key instances can be broken 223 times faster than exhaustive search.
Moreover, essentially all instances that are claimed to provide 128-bit security
can be broken about 1000 times faster. In order to obtain these results we
optimize the interpolation attack using several new techniques. In particular,
we present an algorithm that combines two main variants of the interpolation
attack, which results in an attack that is more efficient than each of them.

4.4 Conclusions

This chapter presented the main contributions of this thesis. They can be
divided into three parts: First, we applied mixed integer linear programming
technique to several cases of symmetric-key primitives including block ciphers,
stream ciphers and authenticated encryption. Second, we contributed to the
cryptanalysis of several block ciphers with Feistel and Substitution-Permutation
structures. Finally, we studied the links among impossible-differential, zero-
correlation and integral cryptanalysis approaches.

CONCLUSIONS 48

Chapter 5

Conclusion and future work

Block ciphers are fundamental components of symmetric-key cryptography.
Therefore this dissertation focuses on the analysis of block ciphers to improve
the knowledge on block ciphers and authenticated encryption.

5.1 MILP and its applications

Mixed integer linear programming (MILP) is a frequently used method in
business and economics to solve optimization problems. This thesis shows how
the MILP technique can be applied in symmetric cryptology for both analysis
and design. Differential and linear cryptanalysis are two of the most powerful
techniques to analyse symmetric-key primitives. For modern ciphers, resistance
against these attacks is therefore a mandatory design criterion. We use MILP
to prove security bounds against both differential and linear cryptanalysis. The
objective function of the MILP problem is the number of linearly or differentially
active S-boxes that we want to minimize. Therefore the only requirement
for our technique is that the cipher is composed of a combination of S-box
operations, linear permutation layers and/or XOR operations. Consequently,
our technique can be applied to a wide variety of ciphers, including block ciphers
with generalised Feistel network (GFN) and Substitution-Permutation network
(SPN) structures, stream ciphers, the underlying primitives of authenticated
encryption (AE) and hash functions which have GFN and SPN structures, as
long as they are following the above design criteria. We would like to point
out that only little programming is required to obtain this result. A minimally
experienced programmer can modify the reference implementation of a cipher,

49

CRYPTANALYSIS OF BLOCK CIPHERS 50

in order to generate the required MILP problem. In the case of stream cipher
Enocoro-128v2, it takes CPLEX less than one minute on a 24-core Intel Xeon
X5670 processor to prove security against differential cryptanalysis, and less
than four minutes to prove security against linear cryptanalysis. Our technique
significantly reduces the workload of designers and cryptanalysts.

Also we note that our technique can be applied to search for the differentials and
linear hulls for ciphers as described above. Some of our ongoing works and [156]
are such examples. Based on our technique, designers can provide more accurate
security margins, and the cryptanalysts might mount more powerful attacks.

The Addition Rotation and XOR (ARX) structures, which have been very
popular recently, are used for designing stream ciphers such as Salsa20 [17] and
ChaCha [16], and block ciphers such as TEA, XTEA or HIGHT. In particular,
two of the five SHA-3 finalists, BLAKE and Skein, follow this design strategy.
When applying our technique to ARX structures, the nonlinear operation
addition will significantly increase the number of variables of MILP, which
might be a challenge to the memory of the off-the-shelf optimization package,
especially when we aim at the differentials or linear hulls rather than security
bounds.

5.2 Cryptanalysis of block ciphers

We contribute to the cryptanalysis of block ciphers: Our impossible-differential
cryptanalysis results of Rijndael-224 and Rijndael-256 are the best results till
now. When constructing impossible-differentials for ciphers, usually fewer active
words are preferred at the end to avoid a large number of subkey guesses during
the key recovery. However, due to the property of the Maximum Distance
Separable (MDS) matrix of AES/Rijndael, multiple active bytes can help to
reduce the number of subkey guesses and the time complexity of the attack.

Moreover, we analyse National Security Agency’s (NSA) recent lightweight
block cipher design SIMON by applying impossible-differential, integral and
zero-correlation linear cryptanalysis. Among these, we point out that the
integral attack is usually powerful on word-oriented structures: for example, it
achieves the best attack on AES. However, when moving to bit-oriented ciphers
the situation changes: even if the integral attack requires much less chosen
plaintexts than differential cryptanalysis, it is harder to extend it to more rounds
beyond a certain point. Therefore it might be limited in the number of rounds
it can attack. However for SIMON32, the integral distinguisher we find achieves
two more rounds than the best known differential, which gives us new insight
on the power of integral attacks.

LINKS AMONG CRYPTANALYSIS METHODS 51

Finally, we successfully analyse a very recent block cipher LowMC [10], which
is designed for Multi-Party Computation (MPC) and Fully Homomorphic
Encryption (FHE) and has been published at Eurocrypt 2015. We refute the
designers’ security claim. Our optimized interpolation attack can be applied to
additional ciphers with lower algebraic degree.

5.3 Links among cryptanalysis methods

We contribute to the research of links among statistic cryptanalysis methods by
deriving the link between impossible-differential and integral cryptanalysis. Our
results not only allow to achieve a better understanding of impossible-differential,
integral and zero-correlation linear cryptanalysis, but also provide some new
insights with respect to these cryptanalytic approaches. Our results help to
prove the security of block ciphers against impossible-differential cryptanalysis.
Moreover we prove that the zero-correlation linear hull always implies the
existence of an integral distinguisher. This proof also provides a novel way
for constructing integral distinguisher of block ciphers, by which we construct
better integral distinguishers for several Feistel structures.

5.4 Directions for future work

In this section, we conclude with some directions for future research in the
cryptanalysis of symmetric-key primitives:

• In [166] we have already shown that for SIMON32 the integral distinguisher
is much better than the known differentials/linear hulls in terms of number
of rounds it can cover. According to the experimental results for SIMON32,
we expect that there exist good integral distinguishers for larger versions
when the number of active bits is near the block size. Perhaps it is possible
to represent the output as a polynomial of the input, and analyse the
algebraic degree of it, to determine the number of active bits in the input
of the integral distinguisher.

• The search for differentials of ARX structure has been solved by Leurent
[107]. We aim to build an automatical tool for searching for the linear
hulls for ARX structures, and apply it to analyse the typical ARX ciphers,
for instance, the lightweight block cipher SPECK designed by the NSA.

• When calculating the linear correlation of a linear hull, the effects of the
dependent S-boxes need to be carefully considered. Some results [149,150]

DIRECTIONS FOR FUTURE WORK 52

on the ePrint discuss this issue for SIMON and KATAN; we notice that
they counted some of the linear trails twice, hence the correlation they
give might be not correct. We will revise these results.

• There are 29 candidates in the second round of Competition for
Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR). Cryptanalysis of these algorithms is a natural task.

• The combination of classical cryptanalysis methods is a promising research
topic, for example differential-linear cryptanalysis [25, 105] has been
widely applied to block ciphers, Message Authentication Code (MAC)
algorithms and stream ciphers. It might be interesting to connect two
other cryptanalysis methods under some conditions, and apply it to ciphers
to obtain better results.

Bibliography

[1] IBM ILOG CPLEX optimizer. http://www.ibm.com/software/
integration/optimization/cplex-optimizer/.

[2] Specification of SMS4, block cipher for WLAN products – SMS4
(in Chinese). http://www.oscca.gov.cn/UpFile/200621016423197990.
pdf.

[3] The International SAT Competitions. http://www.satcompetition.
org/.

[4] ISO/IEC 18033-3:2005. Information technology - Security techniques -
Encryption algorithms - Part 3: Block ciphers, 2005.

[5] ISO/IEC 29192-2:2012. Information technology - Security techniques -
Lightweight cryptography - Part 2: Block ciphers, 2012.

[6] ISO/IEC 29192-3:2012. Information technology - Security techniques -
Lightweight cryptography - Part 3: Stream ciphers, 2012.

[7] C. M. Adams. Constructing symmetric ciphers using the CAST design
procedure. Des. Codes Cryptography, 12(3):283–316, 1997.

[8] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases.
Graduate Studies in Mathematics. American Mathematical Society,
Volume 3, 1994.

[9] Z. Ahmadian, S. Rasoolzadeh, M. Salmasizadeh, and M. R. Aref.
Automated dynamic cube attack on block ciphers: Cryptanalysis of
SIMON and KATAN. Cryptology ePrint Archive, Report 2015/040, 2015.
http://eprint.iacr.org/.

[10] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner.
Ciphers for MPC and FHE. In E. Oswald and M. Fischlin, editors,

53

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://www.satcompetition.org/
http://www.satcompetition.org/
http://eprint.iacr.org/

BIBLIOGRAPHY 54

Advances in Cryptology - EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 430–454. Springer, 2015.

[11] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel, B. Mennink,
N. Mouha, Q. Wang, and K. Yasuda. PRIMATEs v1. CAESAR submission
(2014). http://primates.ae/.

[12] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima,
and T. Tokita. Camellia: A 128-bit block cipher suitable for multiple
platforms - design and analysis. In D. R. Stinson and S. E. Tavares, editors,
Selected Areas in Cryptography - SAC 2000, volume 2012 of Lecture Notes
in Computer Science, pages 39–56. Springer, 2000.

[13] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3
proposal BLAKE. Submission to NIST (Round 3), 2010. http://131002.
net/blake/blake.pdf.

[14] P. S. L. M. Barreto and V. Rijmen. The Whirlpool hashing function, 2003.
http://www.larc.usp.br/~pbarreto/whirlpool.zip.

[15] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013.

[16] D. J. Bernstein. ChaCha, a variant of Salsa20. In: SASC 2008 – The
State of the Art of Stream Ciphers. ECRYPT (2008). http://cr.yp.to/
rumba20.html.

[17] D. J. Bernstein. The Salsa20 family of stream ciphers. In M. J. B. Robshaw
and O. Billet, editors, New Stream Cipher Designs - The eSTREAM
Finalists, volume 4986 of Lecture Notes in Computer Science, pages 84–97.
Springer, 2008.

[18] D. J. Bernstein. CAESAR, 2012. http://competitions.cr.yp.to/
caesar.html.

[19] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
ECRYPT Hash Function Workshop, 2007.

[20] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge
function family main document (version 2.1). Submission to NIST (Round
2), 2010. http://keccak.noekeon.org/Keccak-main-2.1.pdf.

[21] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the
sponge: Single-pass authenticated encryption and other applications. In
A. Miri and S. Vaudenay, editors, Selected Areas in Cryptography - SAC

http://primates.ae/
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf
http://www.larc.usp.br/~pbarreto/whirlpool.zip
http://cr.yp.to/rumba20.html
http://cr.yp.to/rumba20.html
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://keccak.noekeon.org/Keccak-main-2.1.pdf

BIBLIOGRAPHY 55

2011, volume 7118 of Lecture Notes in Computer Science, pages 320–337.
Springer, 2011.

[22] E. Biham. New types of cryptanalytic attacks using related keys. J.
Cryptology, 7(4):229–246, 1994.

[23] E. Biham, R. J. Anderson, and L. R. Knudsen. Serpent: A new block
cipher proposal. In S. Vaudenay, editor, Fast Software Encryption, FSE
1998, volume 1372 of Lecture Notes in Computer Science, pages 222–238.
Springer, 1998.

[24] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials. J. Cryptology, 18(4):291–311,
2005.

[25] E. Biham, O. Dunkelman, and N. Keller. Enhancing differential-linear
cryptanalysis. In Y. Zheng, editor, Advances in Cryptology - ASIACRYPT
2002, volume 2501 of Lecture Notes in Computer Science, pages 254–266.
Springer, 2002.

[26] E. Biham, O. Dunkelman, and N. Keller. New results on boomerang and
rectangle attacks. In J. Daemen and V. Rijmen, editors, Fast Software
Encryption - FSE 2002, volume 2365 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2002.

[27] E. Biham, O. Dunkelman, and N. Keller. Related-key boomerang
and rectangle attacks. In R. Cramer, editor, Advances in Cryptology
- EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 507–525. Springer, 2005.

[28] E. Biham and A. Shamir. Differential cryptanalysis of DES-like
cryptosystems. In A. Menezes and S. A. Vanstone, editors, Advances in
Cryptology - CRYPTO 1990, volume 537 of Lecture Notes in Computer
Science, pages 2–21. Springer, 1990.

[29] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round
DES. In E. F. Brickell, editor, Advances in Cryptology - CRYPTO 1992,
volume 740 of Lecture Notes in Computer Science, pages 487–496. Springer,
1992.

[30] B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, and Q. Wang.
Fides: Lightweight authenticated cipher with side-channel resistance for
constrained hardware. In G. Bertoni and J. Coron, editors, Cryptographic
Hardware and Embedded Systems - CHES 2013, volume 8086 of Lecture
Notes in Computer Science, pages 142–158. Springer, 2013.

BIBLIOGRAPHY 56

[31] A. Biryukov, C. De Cannière, and M. Quisquater. On multiple linear
approximations. In M. K. Franklin, editor, Advances in Cryptology -
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
1–22. Springer, 2004.

[32] A. Biryukov and D. Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In M. Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2009.

[33] A. Biryukov, D. Khovratovich, and I. Nikolic. Distinguisher and related-
key attack on the full AES-256. In S. Halevi, editor, Advances in Cryptology
- CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science,
pages 231–249. Springer, 2009.

[34] A. Biryukov, A. Roy, and V. Velichkov. Differential analysis of block
ciphers SIMON and SPECK. In C. Cid and C. Rechberger, editors,
Fast Software Encryption - FSE 2014, volume 8540 of Lecture Notes in
Computer Science, pages 546–570. Springer, 2014.

[35] A. Biryukov and A. Shamir. Structural cryptanalysis of SASAS. In
B. Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 394–405.
Springer, 2001.

[36] C. Blondeau, A. Bogdanov, and M. Wang. On the (in)equivalence of
impossible differential and zero-correlation distinguishers for Feistel- and
Skipjack-type ciphers. In I. Boureanu, P. Owesarski, and S. Vaudenay,
editors, Applied Cryptography and Network Security - ACNS 2014, volume
8479 of Lecture Notes in Computer Science, pages 271–288. Springer,
2014.

[37] C. Blondeau, G. Leander, and K. Nyberg. Differential-linear cryptanalysis
revisited. In C. Cid and C. Rechberger, editors, Fast Software Encryption
- FSE 2014, volume 8540 of Lecture Notes in Computer Science, pages
411–430. Springer, 2014.

[38] C. Blondeau and K. Nyberg. New links between differential and linear
cryptanalysis. In T. Johansson and P. Q. Nguyen, editors, Advances
in Cryptology - EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 388–404. Springer, 2013.

[39] C. Blondeau and K. Nyberg. Links between truncated differential and
multidimensional linear properties of block ciphers and underlying attack
complexities. In P. Q. Nguyen and E. Oswald, editors, Advances in

BIBLIOGRAPHY 57

Cryptology - EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 165–182. Springer, 2014.

[40] A. Bogdanov. Analysis and Design of Block Cipher Constructions. PhD
thesis, Ruhr University Bochum, 2009.

[41] A. Bogdanov. On unbalanced Feistel networks with contracting MDS
diffusion. Des. Codes Cryptography, 59(1-3):35–58, 2011.

[42] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight
block cipher. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, volume 4727 of Lecture
Notes in Computer Science, pages 450–466. Springer, 2007.

[43] A. Bogdanov and V. Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Cryptology ePrint Archive, Report
2011/123, 2011. http://eprint.iacr.org/.

[44] A. Bogdanov and M. Wang. Zero correlation linear cryptanalysis with
reduced data complexity. In A. Canteaut, editor, Fast Software Encryption
- FSE 2012, volume 7549 of Lecture Notes in Computer Science, pages
29–48. Springer, 2012.

[45] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin. PRINCE - A low-latency block cipher for
pervasive computing applications - Extended abstract. In X. Wang and
K. Sako, editors, Advances in Cryptology - ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 208–225. Springer,
2012.

[46] J. Borst, L. R. Knudsen, and V. Rijmen. Two attacks on reduced IDEA. In
W. Fumy, editor, Advances in Cryptology - EUROCRYPT 1997, volume
1233 of Lecture Notes in Computer Science, pages 1–13. Springer, 1997.

[47] C. Bouillaguet, P.-A. Fouque, and G. Leurent. Security analysis of SIMD.
In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas in
Cryptography - SAC 2010, volume 6544 of Lecture Notes in Computer
Science, pages 351–368. Springer, 2010.

[48] C. Boura, M. Naya-Plasencia, and V. Suder. Scrutinizing and improving
impossible differential attacks: Applications to CLEFIA, Camellia, LBlock
and Simon. In P. Sarkar and T. Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014, volume 8873 of Lecture Notes in Computer Science,
pages 179–199. Springer, 2014.

http://eprint.iacr.org/

BIBLIOGRAPHY 58

[49] L. Brown, J. Pieprzyk, and J. Seberry. LOKI - A cryptographic primitive
for authentication and secrecy applications. In J. Seberry and J. Pieprzyk,
editors, Advances in Cryptology - AUSCRYPT 1990, volume 453 of Lecture
Notes in Computer Science, pages 229–236. Springer, 1990.

[50] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. M. M. Jr, L. O’Connor, M. Peyravian, J. Luke, O. M.
Peyravian, D. Stafford, and N. Zunic. MARS - A candidate cipher for
AES. In First Advanced Encryption Standard (AES) Conference, 1998.

[51] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and
permutations suitable for des-like cryptosystems. Des. Codes Cryptography,
15(2):125–156, 1998.

[52] F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk,
editor, Advances in Cryptology - CRYPTO 1998, volume 1462 of Lecture
Notes in Computer Science, pages 56–71. Springer, 1998.

[53] F. Chabaud and S. Vaudenay. Links between differential and linear
cryptanalysis. In A. D. Santis, editor, Advances in Cryptology -
EUROCRYPT 1994, volume 950 of Lecture Notes in Computer Science,
pages 356–365. Springer, 1994.

[54] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear
feedback. In E. Biham, editor, Advances in Cryptology - EUROCRYPT
2003, volume 2656 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2003.

[55] CRYPTREC. Cryptography Research and Evaluation Committees: report.
Archive, 2002. http://www.ipa.go.jp/security/enc/CRYPTREC/
index-e.html.

[56] J. Daemen and C. S. K. Clapp. Fast hashing and stream encryption with
PANAMA. In S. Vaudenay, editor, Fast Software Encryption - FSE 1998,
volume 1372 of Lecture Notes in Computer Science, pages 60–74. Springer,
1998.

[57] J. Daemen, L. R. Knudsen, and V. Rijmen. The block cipher Square. In
E. Biham, editor, Fast Software Encryption - FSE 1997, volume 1267 of
Lecture Notes in Computer Science, pages 149–165. Springer, 1997.

[58] J. Daemen and V. Rijmen. AES proposal: Rijndael. In First Advanced
Encryption Standard (AES) Conference, 1998.

[59] J. Daemen and V. Rijmen. AES and the wide trail design strategy. In L. R.
Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, volume

http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

BIBLIOGRAPHY 59

2332 of Lecture Notes in Computer Science, pages 108–109. Springer,
2002.

[60] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
2002.

[61] D. Davies and W. Price. The application of digital signatures based on
public key cryptosystems. NPL Report, DNACS 39/80, December 1980.

[62] C. De Cannière, O. Dunkelman, and M. Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block
ciphers. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and
Embedded Systems - CHES 2009, volume 5747 of LNCS, pages 272–288.
Springer, 2009.

[63] C. De Cannière, F. Mendel, and C. Rechberger. Collisions for 70-step
SHA-1: On the full cost of collision search. In C. M. Adams, A. Miri, and
M. J. Wiener, editors, Selected Areas in Cryptography - SAC 2007, volume
4876 of Lecture Notes in Computer Science, pages 56–73. Springer, 2007.

[64] C. De Cannière and B. Preneel. Trivium. In M. J. B. Robshaw and
O. Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists,
volume 4986 of Lecture Notes in Computer Science, pages 244–266.
Springer, 2008.

[65] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol
version 1.2. RFC 5246 (Proposed Standard), 2008.

[66] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[67] W. Diffie and G. Ledin (translators). SMS4 encryption algorithm for
wireless networks. Cryptology ePrint Archive, Report 2008/329, 2008.
http://eprint.iacr.org/.

[68] I. Dinur, Y. Liu, W. Meier, and Q. Wang. Optimized interpolation attacks
on LowMC. In T. Iwata and J. H. Cheon, editors, Advances in Cryptology
- ASIACRYPT 2015, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 535–560. Springer, 2015.

[69] I. Dinur and A. Shamir. Cube attacks on tweakable black box polynomials.
Cryptology ePrint Archive, Report 2008/385, 2008. http://eprint.iacr.
org/.

[70] H. Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY 60

[71] M. J. Dworkin. SP 800-38C. Recommendation for Block Cipher Modes
of Operation: The CCM Mode for Authentication and Confidentiality.
Technical report. National Institute of Standards and Technology,
Gaithersburg, MD, United States, 2004.

[72] M. J. Dworkin. SP 800-38D. Recommendation for Block Cipher Modes
of Operation: Galois/Counter Mode (GCM) and GMAC. Technical
report, National Institute of Standards and Technology, Gaithersburg,
MD, United States, 2007.

[73] ECRYPT. The eSTREAM project. http://www.ecrypt.eu.org/
stream/.

[74] N. Ferguson. Authentication weaknesses in GCM (May 20,
2005). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
comments/CWC-GCM/Ferguson2.pdf.

[75] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker. The Skein hash function family. Submission to
NIST (Round 3), 2010. http://www.skein-hash.info/sites/default/
files/skein1.3.pdf.

[76] E. Fleischmann, C. Forler, and S. Lucks. McOE: A family of almost
foolproof on-line authenticated encryption schemes. In A. Canteaut,
editor, Fast Software Encryption - FSE 2012, volume 7549 of Lecture
Notes in Computer Science, pages 196–215. Springer, 2012.

[77] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl – A SHA-3 candidate. Submission
to NIST (Round 3), 2011. http://www.groestl.info/Groestl.pdf.

[78] H. Gilbert and M. Minier. A collision attack on 7 rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

[79] V. D. Gligor and P. Donescu. Fast encryption and authentication: XCBC
encryption and XECB authentication modes. In M. Matsui, editor,
Fast Software Encryption - FSE 2001, volume 2355 of Lecture Notes in
Computer Science, pages 92–108. Springer, 2001.

[80] Z. Gong, S. Nikova, and Y. W. Law. KLEIN: A new family of lightweight
block ciphers. In A. Juels and C. Paar, editors, RFID. Security and
Privacy - RFIDSec 2011, volume 7055 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2011.

[81] J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED block
cipher. In B. Preneel and T. Takagi, editors, Cryptographic Hardware

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.groestl.info/Groestl.pdf

BIBLIOGRAPHY 61

and Embedded Systems - CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pages 326–341. Springer, 2011.

[82] H. Handschuh and B. Preneel. Key-recovery attacks on universal hash
function based MAC algorithms. In D. Wagner, editor, Advances in
Cryptology - CRYPTO 2008, volume 5157 of Lecture Notes in Computer
Science, pages 144–161. Springer, 2008.

[83] M. Hermelin, J. Y. Cho, and K. Nyberg. Multidimensional extension
of Matsui’s algorithm 2. In Fast Software Encryption, pages 209–227.
Springer, 2009.

[84] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A new block
cipher suitable for low-resource device. In L. Goubin and M. Matsui,
editors, Cryptographic Hardware and Embedded Systems - CHES 2006,
volume 4249 of Lecture Notes in Computer Science, pages 46–59. Springer,
2006.

[85] T. Iwata and K. Yasuda. BTM: A single-key, inverse-cipher-free mode for
deterministic authenticated encryption. In M. J. Jacobson Jr., V. Rijmen,
and R. Safavi-Naini, editors, Selected Areas in Cryptography - SAC
2009, volume 5867 of Lecture Notes in Computer Science, pages 313–
330. Springer, 2009.

[86] M. J. B. Robshaw and O. Billet, editors. New Stream Cipher Designs
- The eSTREAM Finalists, volume 4986 of Lecture Notes in Computer
Science. Springer, 2008.

[87] T. Jakobsen and L. R. Knudsen. The interpolation attack on block
ciphers. In E. Biham, editor, Fast Software Encryption, 4th International
Workshop - FSE 1997, volume 1267 of Lecture Notes in Computer Science,
pages 28–40. Springer, 1997.

[88] T. Jakobsen and L. R. Knudsen. Attacks on block ciphers of low algebraic
degree. J. Cryptology, 14(3):197–210, 2001.

[89] A. Joux. Authentication failures in NIST version of GCM
(2006). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
comments/800-38_Series-Drafts/GCM/Joux_comments.pdf.

[90] C. S. Jutla. Encryption modes with almost free message integrity. J.
Cryptology, 21(4):547–578, 2008.

[91] B. S. Kaliski Jr. and M. J. B. Robshaw. Linear cryptanalysis using
multiple approximations. In Y. Desmedt, editor, Advances in Cryptology -

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf

BIBLIOGRAPHY 62

CRYPTO 1994, volume 839 of Lecture Notes in Computer Science, pages
26–39. Springer, 1994.

[92] M. Kanda. Practical security evaluation against differential and linear
cryptanalyses for Feistel ciphers with SPN round function. In D. R.
Stinson and S. E. Tavares, editors, Selected Areas in Cryptography - SAC
2000, volume 2012 of Lecture Notes in Computer Science, pages 324–338.
Springer, 2000.

[93] E. Kavun, M. Lauridsen, G. Leander, C. Rechberger, P. Schwabe, and
T. Yalçın. Prøst v1.1. Submission to the CAESAR competition. http:
//proest.compute.dtu.dk/proestv11.pdf.

[94] J. Kelsey, T. Kohno, and B. Schneier. Amplified boomerang attacks against
reduced-round MARS and Serpent. In B. Schneier, editor, Fast Software
Encryption - FSE 2000, volume 1978 of Lecture Notes in Computer Science,
pages 75–93. Springer, 2000.

[95] J. Kelsey, B. Schneier, and D. Wagner. Related-key cryptanalysis of 3-
WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Y. Han,
T. Okamoto, and S. Qing, editors, Information and Communication
Security - ICICS 1997, volume 1334 of Lecture Notes in Computer Science,
pages 233–246. Springer, 1997.

[96] J. Kim, S. Hong, and B. Preneel. Related-key rectangle attacks on reduced
AES-192 and AES-256. In A. Biryukov, editor, Fast Software Encryption
- FSE 2007, volume 4593 of Lecture Notes in Computer Science, pages
225–241. Springer, 2007.

[97] L. R. Knudsen. Truncated and higher order differentials. In B. Preneel,
editor, Fast Software Encryption - FSE 1994, volume 1008 of Lecture
Notes in Computer Science, pages 196–211. Springer, 1994.

[98] L. R. Knudsen and M. J. B. Robshaw. The Block Cipher Companion.
Information Security and Cryptography. Springer, 2011.

[99] L. R. Knudsen and D. Wagner. Integral cryptanalysis. In J. Daemen and
V. Rijmen, editors, Fast Software Encryption - FSE 2002, volume 2365 of
Lecture Notes in Computer Science, pages 112–127. Springer, 2002.

[100] T. Krovetz and P. Rogaway. The software performance of authenticated-
encryption modes. In A. Joux, editor, Fast Software Encryption - FSE
2011, volume 6733 of Lecture Notes in Computer Science, pages 306–327.
Springer, 2011.

[101] X. Lai. On the design and security of block ciphers. PhD thesis, Swiss
Federal Institute of Technology, 1992.

http://proest.compute.dtu.dk/proestv11.pdf
http://proest.compute.dtu.dk/proestv11.pdf

BIBLIOGRAPHY 63

[102] X. Lai. Higher order derivatives and differential cryptanalysis. In Proc.
Symposium on Communication, Coding and Cryptography in honor of
J. L. Massey on the occasion of his 60’th birthday. Kluwer Academic
Publisher, 1994.

[103] X. Lai and J. L. Massey. A Proposal for a New Block Encryption Standard.
In I. Damgård, editor, Advances in Cryptology - EUROCRYPT 1990,
volume 473 of Lecture Notes in Computer Science, pages 389–404. Springer,
1990.

[104] X. Lai and J. L. Massey. Markov ciphers and differential cryptanalysis.
In D. W. Davies, editor, Advances in Cryptology - EUROCRYPT 1991,
volume 547 of Lecture Notes in Computer Science, pages 17–38. Springer,
1991.

[105] S. K. Langford and M. E. Hellman. Differential-linear cryptanalysis. In
Y. Desmedt, editor, Advances in Cryptology - CRYPTO 1994, volume 839
of Lecture Notes in Computer Science, pages 17–25. Springer, 1994.

[106] G. Leander. On linear hulls, statistical saturation attacks, PRESENT
and a cryptanalysis of PUFFIN. In K. G. Paterson, editor, Advances
in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 303–322. Springer, 2011.

[107] G. Leurent. Construction of differential characteristics in ARX designs
application to Skein. In R. Canetti and J. A. Garay, editors, Advances
in Cryptology - CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 241–258. Springer, 2013.

[108] C. H. Lim and T. Korkishko. mCrypton - A lightweight block cipher for
security of low-cost RFID tags and sensors. In J. Song, T. Kwon, and
M. Yung, editors, Information Security Applications - WISA 2005, volume
3786 of Lecture Notes in Computer Science, pages 243–258. Springer, 2005.

[109] Y. Liu, L. Li, D. Gu, X. Wang, Z. Liu, J. Chen, and W. Li. New
observations on impossible differential cryptanalysis of reduced-round
Camellia. In A. Canteaut, editor, Fast Software Encryption - FSE 2012,
volume 7549 of Lecture Notes in Computer Science, pages 90–109. Springer,
2012.

[110] J. Lu. A methodology for differential-linear cryptanalysis and its
applications - (extended abstract). In A. Canteaut, editor, Fast Software
Encryption - FSE 2012, volume 7549 of Lecture Notes in Computer Science,
pages 69–89. Springer, 2012.

BIBLIOGRAPHY 64

[111] J. Lu and J. Kim. Attacking 44 rounds of the SHACAL-2 block cipher using
related-key rectangle cryptanalysis. IEICE Transactions, 91-A(9):2588–
2596, 2008.

[112] S. Lucks. Attacking seven rounds of Rijndael under 192-bit and 256-bit
keys. In AES Candidate Conference, pages 215–229, 2000.

[113] J. L. Massey. SAFER K-64: A byte-oriented block-ciphering algorithm.
In R. J. Anderson, editor, Fast Software Encryption - FSE 1993, volume
809 of Lecture Notes in Computer Science, pages 1–17. Springer, 1993.

[114] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth,
editor, Advances in Cryptology - EUROCRYPT 1993, volume 765 of
Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[115] M. Matsui. The first experimental cryptanalysis of the Data Encryption
Standard. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO
1994, volume 839 of Lecture Notes in Computer Science, pages 1–11.
Springer, 1994.

[116] M. Matsui and A. Yamagishi. A new method for known plaintext attack
of FEAL cipher. In R. A. Rueppel, editor, Advances in Cryptology -
EUROCRYPT 1992, volume 658 of Lecture Notes in Computer Science,
pages 81–91. Springer, 1992.

[117] C. M. Matyas, S.M. and J. Oseas. Generating strong one-way functions
with cryptographic algorithm. IBM Technology Disclosure Bulletein,
27(10A):5658–5659, 1985.

[118] F. Mendel, T. Nad, and M. Schläffer. Cryptanalysis of round-reduced
HAS-160. In H. Kim, editor, Information Security and Cryptology - ICISC
2011, volume 7259 of Lecture Notes in Computer Science, pages 33–47.
Springer, 2011.

[119] F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 characteristics:
Searching through a minefield of contradictions. In D. H. Lee and X. Wang,
editors, Advances in Cryptology - ASIACRYPT 2011, volume 7073 of
Lecture Notes in Computer Science, pages 288–307. Springer, 2011.

[120] F. Mendel, T. Nad, and M. Schläffer. Finding collisions for round-reduced
SM3. In E. Dawson, editor, The Cryptographers’ Track at the RSA
Conference - CT-RSA 2013, volume 7779 of Lecture Notes in Computer
Science, pages 174–188. Springer, 2013.

[121] R. Merkle. Secrecy, authentication and public key systems. Ph.D. thesis,
UMI Research Press, 1979.

BIBLIOGRAPHY 65

[122] M. I. Miyaguchi, S. and K. Ohta. New 128-bit hash function. Proceeding of
4th International Joint Workshop on Computer Communications, Tokyo,
Japan, July 13-15, 1989.

[123] S. Miyaguchi. The FEAL cipher family. In A. Menezes and S. A. Vanstone,
editors, Advances in Cryptology - CRYPTO 1990, volume 537 of Lecture
Notes in Computer Science, pages 627–638. Springer, 1990.

[124] M. Moos. Cryptominisat. https://github.com/msoos/cryptominisat.

[125] N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In C. Wu, M. Yung,
and D. Lin, editors, Information Security and Cryptology - Inscrypt 2011,
volume 7537 of Lecture Notes in Computer Science, pages 57–76. Springer,
2011.

[126] National Institute of Standards and Technology. Cryptographic Hash
Algorithm Competition. http://www.nist.gov/hash-competition.

[127] National Security Agency. Skipjacjk and KEA Algorithm Specifica-
tions, 1998. http://csrc.nist.gov/groups/ST/toolkit/documents/
skipjack/skipjack.pdf.

[128] K. Nyberg. Linear approximation of block ciphers. In A. D. Santis, editor,
Advances in Cryptology - EUROCRYPT 1994, volume 950 of Lecture
Notes in Computer Science, pages 439–444. Springer, 1994.

[129] K. Nyberg. Generalized Feistel Networks. In K. Kim and T. Matsumoto,
editors, Advances in Cryptology - ASIACRYPT 1996, volume 1163 of
Lecture Notes in Computer Science, pages 91–104. Springer, 1996.

[130] R. C.-W. Phan. Impossible differential cryptanalysis of 7-round Advanced
Encryption Standard (AES). Inf. Process. Lett., 91(1):33–38, 2004.

[131] B. Preneel. NESSIE Project. In Encyclopedia of Cryptography and Security
(2nd Ed.), pages 831–836, 2011.

[132] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In D. R. Stinson, editor, Advances
in Cryptology - CRYPTO 1993, volume 773 of Lecture Notes in Computer
Science, pages 368–378. Springer, 1993.

[133] G. Procter and C. Cid. On weak keys and forgery attacks against
polynomial-based MAC schemes. In S. Moriai, editor, Fast Software
Encryption - FSE 2013, volume 8424 of Lecture Notes in Computer
Science, pages 287–304. Springer, 2013.

https://github.com/msoos/cryptominisat
http://www.nist.gov/hash-competition
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf

BIBLIOGRAPHY 66

[134] R. Rivest. The MD5 message-digest algorithm. Internet Engineering Task
Force (IETF) Request for Comments (RFC) 1321, April 1992.

[135] R. Rivest. The RC4 encryption algorithm. RSA Data Security, Inc.,
March 12, 1992.

[136] R. L. Rivest. The MD4 message digest algorithm. In A. Menezes and
S. A. Vanstone, editors, Advances in Cryptology - CRYPTO 1990, volume
537 of Lecture Notes in Computer Science, pages 303–311. Springer, 1990.

[137] R. L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor,
Fast Software Encryption - FSE 1994, volume 1008 of Lecture Notes in
Computer Science, pages 86–96. Springer, 1994.

[138] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 block
cipher. In First Advanced Encryption Standard (AES) Conference, 1998.

[139] P. Rogaway. Efficient instantiations of tweakable blockciphers and
refinements to modes OCB and PMAC. In P. J. Lee, editor, Advances
in Cryptology - ASIACRYPT 2004, volume 3329 of Lecture Notes in
Computer Science, pages 16–31. Springer, 2004.

[140] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In M. K.
Reiter and P. Samarati, editors, ACM Conference on Computer and
Communications Security, CCS 2001, pages 196–205. ACM, 2001.

[141] P. Rogaway and T. Shrimpton. A provable-security treatment of the
key-wrap problem. In S. Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 373–390. Springer, 2006.

[142] M. O. Saarinen. Cycling attacks on GCM, GHASH and other polynomial
MACs and hashes. In A. Canteaut, editor, Fast Software Encryption
- FSE 2012, volume 7549 of Lecture Notes in Computer Science, pages
216–225. Springer, 2012.

[143] B. Schneier. Description of a new variable-length key, 64-bit block cipher
(Blowfish). In R. J. Anderson, editor, Fast Software Encryption - FSE
1993, Proceedings, volume 809 of Lecture Notes in Computer Science,
pages 191–204. Springer, 1993.

[144] B. Schneier and J. Kelsey. Unbalanced Feistel Networks and block
cipher design. In D. Gollmann, editor, Fast Software Encryption - FSE
1996, volume 1039 of Lecture Notes in Computer Science, pages 121–144.
Springer, 1996.

BIBLIOGRAPHY 67

[145] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson.
Twofish: A 128-bit block cipher. In First Advanced Encryption Standard
(AES) Conference, 1998.

[146] A. A. Selçuk. On probability of success in linear and differential
cryptanalysis. J. Cryptology, 21(1):131–147, 2008.

[147] C. E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:379–423, 1948.

[148] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28:656–715, 1949.

[149] D. Shi, L. Hu, S. Sun, and L. Song. Improved linear (hull) cryptanalysis
of round-reduced versions of KATAN. Cryptology ePrint Archive, Report
2015/964, 2015. http://eprint.iacr.org/.

[150] D. Shi, L. Hu, S. Sun, L. Song, K. Qiao, and X. Ma. Improved linear
(hull) cryptanalysis of round-reduced versions of SIMON. Cryptology
ePrint Archive, Report 2014/973, 2014. http://eprint.iacr.org/.

[151] K. Shibutani. On the diffusion of Generalized Feistel structures regarding
differential and linear cryptanalysis. In A. Biryukov, G. Gong, and D. R.
Stinson, editors, Selected Areas in Cryptography - SAC 2010, volume 6544
of Lecture Notes in Computer Science, pages 211–228. Springer, 2010.

[152] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and
T. Shirai. Piccolo: An ultra-lightweight blockcipher. In B. Preneel
and T. Takagi, editors, Cryptographic Hardware and Embedded Systems -
CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages
342–357. Springer, 2011.

[153] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata. The 128-
bit blockcipher CLEFIA (extended abstract). In A. Biryukov, editor,
Fast Software Encryption - FSE 2007, volume 4593 of Lecture Notes in
Computer Science, pages 181–195. Springer, 2007.

[154] F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D.
Legat. ICEBERG: An involutional cipher efficient for block encryption in
reconfigurable hardware. In B. K. Roy andW. Meier, editors, Fast Software
Encryption - FSE 2004, volume 3017 of Lecture Notes in Computer Science,
pages 279–299. Springer, 2004.

[155] B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. AlKhzaimi, and
C. Li. Links among impossible differential, integral and zero correlation
linear cryptanalysis. In R. Gennaro and M. J. B. Robshaw, editors,

http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY 68

Advances in Cryptology - CRYPTO 2015, Part I, volume 9215 of Lecture
Notes in Computer Science, pages 95–115. Springer, 2015.

[156] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security
evaluation and (related-key) differential characteristic search: Application
to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block
ciphers. In P. Sarkar and T. Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014, Part I, volume 8873 of Lecture Notes in Computer
Science, pages 158–178. Springer, 2014.

[157] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. TWINE: A
lightweight block cipher for multiple platforms. In L. R. Knudsen and
H. Wu, editors, Selected Areas in Cryptography - SAC 2012, volume 7707
of Lecture Notes in Computer Science, pages 339–354. Springer, 2012.

[158] A. Tardy-Corfdir and H. Gilbert. A known plaintext attack of FEAL-4 and
FEAL-6. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO
1991, volume 576 of Lecture Notes in Computer Science, pages 172–181.
Springer, 1991.

[159] Y. Tsunoo, E. Tsujihara, M. Shigeri, T. Saito, T. Suzaki, and H. Kubo.
Impossible differential cryptanalysis of CLEFIA. In K. Nyberg, editor,
Fast Software Encryption - FSE 2008, volume 5086 of Lecture Notes in
Computer Science, pages 398–411. Springer, 2008.

[160] S. Vaudenay. Security flaws induced by CBC padding - applications to
SSL, IPSEC, WTLS ... In L. R. Knudsen, editor, Advances in Cryptology
- EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 534–546. Springer, 2002.

[161] D. Wagner. The boomerang attack. In L. R. Knudsen, editor, Fast
Software Encryption - FSE 1999, volume 1636 of LNCS, pages 156–170.
Springer, 1999.

[162] N. Wang, X. Wang, K. Jia, and J. Zhao. Differential attacks on reduced
SIMON versions with dynamic key-guessing techniques. Cryptology ePrint
Archive, Report 2014/448, 2014. http://eprint.iacr.org/.

[163] Q. Wang and A. Bogdanov. The provable constructive effect of diffusion
switching mechanism in CLEFIA-type block ciphers. Inf. Process. Lett.,
112(11):427–432, 2012.

[164] Q. Wang, D. Gu, V. Rijmen, Y. Liu, J. Chen, and A. Bogdanov. Improved
impossible differential attacks on large-block Rijndael. In T. Kwon,
M. Lee, and D. Kwon, editors, Information Security and Cryptology -
ICISC 2012, volume 7839 of Lecture Notes in Computer Science, pages
126–140. Springer, 2012.

http://eprint.iacr.org/

BIBLIOGRAPHY 69

[165] Q. Wang, Z. Liu, D. Toz, K. Varici, and D. Gu. Related-key rectangle
cryptanalysis of Rijndael-160 and Rijndael-192. IET Information Security,
9(5):266–276, 2015.

[166] Q. Wang, Z. Liu, K. Varici, Y. Sasaki, V. Rijmen, and Y. Todo.
Cryptanalysis of reduced-round SIMON32 and SIMON48. In W. Meier
and D. Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT
2014, volume 8885 of Lecture Notes in Computer Science, pages 143–160.
Springer, 2014.

[167] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the
hash functions MD4 and RIPEMD. In R. Cramer, editor, Advances
in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2005.

[168] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

[169] D. Watanabe, K. Okamoto, and T. Kaneko. A hardware-oriented
light weight pseudo-random number generator Enocoro-128v2. In The
Symposium on Cryptography and Information Security, pages 3D1–3, 2010.
(in Japanese).

[170] D. J. Wheeler and R. M. Needham. TEA, A tiny encryption algorithm.
In B. Preneel, editor, Fast Software Encryption - FSE 1994, volume 1008
of Lecture Notes in Computer Science, pages 363–366. Springer, 1994.

[171] H. Wu. The hash function JH. Submission to NIST, 2008. http://icsd.
i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf.

[172] S. Wu and M. Wang. Security evaluation against differential cryptanalysis
for block cipher structures. Cryptology ePrint Archive, Report 2011/551,
2011. http://eprint.iacr.org/.

[173] W. Wu and L. Zhang. LBlock: A lightweight block cipher. In J. Lopez
and G. Tsudik, editors, Applied Cryptography and Network Security -
ACNS 2011, volume 6715 of Lecture Notes in Computer Science, pages
327–344, 2011.

[174] H. Yap, K. Khoo, A. Poschmann, and M. Henricksen. EPCBC - A
block cipher suitable for Electronic Product Code encryption. In D. Lin,
G. Tsudik, and X. Wang, editors, Cryptology and Network Security -
CANS 2011, volume 7092 of Lecture Notes in Computer Science, pages
76–97. Springer, 2011.

http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf
http://eprint.iacr.org/

BIBLIOGRAPHY 70

Part II

Publications

71

72

List of publications

International Journals

1. Y. Liu, A. Yang, Z. Liu, W. Li, Q. Wang, L. Song, D. Gu: Improved
Impossible Differential Attack on Reduced Version of Camellia with
FL/FL−1 Functions. IET Information Security 2016. (accepted)

2. Z. Liu, B. Sun, Q. Wang, K. Varıcı, D.Gu: Improved Zero-Correlation
Linear Cryptanalysis of Reduced-round Camellia under Weak Keys. IET
Information Security 10(2): 95-103, 2016.

3. Q. Wang, Z. Liu, D. Toz, K. Varıcı, D. Gu: Related-Key Rectangle
Cryptanalysis of Rijndael-160 and Rijndael-192. IET Information Security
9(5): 266–276, 2015.

4. Z. Liu, Y. Liu, Q. Wang, D. Gu, W. Li: Meet-in-the-middle fault analysis
on word-oriented substitution-permutation network block ciphers. Security
and Communication Networks 8(4): 672-681, 2015.

5. W. Li, D. Gu, X. Xia, C. Zhao, Z. Liu, Y. Liu, Q. Wang: Single Byte
Differential Fault Analysis on the LED Lightweight Cipher in the Wireless
Sensor Network. International Journal of Computational Intelligence
Systems 5(5): 896-904, 2012.

6. Q. Wang, A. Bogdanov: The provable constructive effect of diffusion
switching mechanism in CLEFIA-type block ciphers. Information
Processing Letters 112(11): 427-432, 2012.

International Conferences

73

LIST OF PUBLICATIONS 74

1. Y. Liu, Q. Wang, V. Rijmen: Automatic Search of Linear Trails in ARX
with Applications to SPECK and Chaskey. In M. Manulis, A-R Sadeghi
and S. Schneider, Eds.: Applied Cryptography and Network Security -
ACNS 2016, volumn 9696 of Lecture Notes in Computer Science, pages 485-
499, Springer 2016,

2. I. Dinur, Y. Liu, W. Meier, Q. Wang: Optimized Interpolation Attacks
on LowMC. In T. Iwata and J-H Cheon Eds.: Advances in Cryptology -
ASIACRYPT 2015, Part II, volumn 9453 of Lecture Notes in Computer
Science, pages 535-560, Springer 2015.

3. B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. Alkhzaimi, C. Li:
Links Among Impossible Differential, Integral and Zero Correlation Linear
Cryptanalysis. In R. Gennaro and M.J.B. Robshaw Eds.: Advances in
Cryptology - CRYPTO 2015, Part I, volumn 9215 of Lecture Notes in
Computer Science, pages 95–115, Springer 2015.

4. Q. Wang, Z. Liu, K. Varıcı, Y. Sasaki, V. Rijmen, Y. Todo: Cryptanalysis
of Reduced-Round SIMON32 and SIMON48. In W. Meier and D.
Mukhopadhyay Eds.: Progress in Cryptology - INDOCRYPT 2014, volume
8885 of Lecture Notes in Computer Science, pages 143–160, Springer 2014.

5. B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, Q. Wang: Fides:
Lightweight Authenticated Cipher with Side-Channel Resistance for
Constrained Hardware. In G. Bertoni and J.-S. Coron Eds.: Cryptographic
Hardware and Embedded Systems - CHES 2013, volume 8086 of Lecture
Notes in Computer Science, pages 142–158, Springer 2013.

6. Q. Wang, D. Gu, V. Rijmen, Y. Liu, J. Chen, A. Bogdanov: Improved
Impossible Differential Attacks on Large-Block Rijndael. In. Kwon, M.-K.
Lee, and D. Kwon Eds.: Information Security and Cryptology - ICISC
2012, volume 7839 of Lecture Notes in Computer Science, pages 126–140,
Springer 2013.

7. N. Mouha, Q. Wang, D. Gu, B. Preneel: Differential and Linear
Cryptanalysis Using Mixed-Integer Linear Programming. In C.-K. Wu, M.
Yung, and D. Lin Eds.: Information Security and Cryptology - Inscrypt
2011, volumn 7537 of Lecture Notes in Computer Science, pages 57-76,
Springer 2012.

Other Conferences and Workshops

1. E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel, B. Mennink,
N. Mouha, Q. Wang, K. Yasuda: PRIMATEs v1.02. Round 2 of CAESAR
Competition, 2015.

Chapter 6

Differential and Linear
Cryptanalysis Using
Mixed-Integer Linear
Programming

Publication Data

N. Mouha, Q. Wang, D. Gu, B. Preneel: Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In C.-K. Wu, M. Yung, and D.
Lin (Eds.): Inscrypt 2011, volumn 7537 of Lecture Notes in Computer Science,
pages 57-76, 2012.

Contributions

Major contributor, except for the C code in the Appendix. The workload is
50%.

75

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 76

Differential and Linear Cryptanalysis using
Mixed-Integer Linear Programming⋆

Nicky Mouha1,3,⋆⋆, Qingju Wang1,2,3, Dawu Gu2, and Bart Preneel1,3

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China.
3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

{Nicky.Mouha,Qingju.Wang}@esat.kuleuven.be

Abstract. Differential and linear cryptanalysis are two of the most pow-
erful techniques to analyze symmetric-key primitives. For modern ci-
phers, resistance against these attacks is therefore a mandatory design
criterion. In this paper, we propose a novel technique to prove security
bounds against both differential and linear cryptanalysis. We use mixed-
integer linear programming (MILP), a method that is frequently used in
business and economics to solve optimization problems. Our technique
significantly reduces the workload of designers and cryptanalysts, be-
cause it only involves writing out simple equations that are input into
an MILP solver. As very little programming is required, both the time
spent on cryptanalysis and the possibility of human errors are greatly
reduced. Our method is used to analyze Enocoro-128v2, a stream cipher
that consists of 96 rounds. We prove that 38 rounds are sufficient for secu-
rity against differential cryptanalysis, and 61 rounds for security against
linear cryptanalysis. We also illustrate our technique by calculating the
number of active S-boxes for AES.

Keywords:Differential cryptanalysis, Linear Cryptanalysis, Mixed-Integer
Linear Programming, MILP, Enocoro, AES, CPLEX

1 Introduction

Differential cryptanalysis [1] and linear cryptanalysis [19] have shown to be two
of the most important techniques in the analysis of symmetric-key cryptographic
primitives. For block ciphers, differential cryptanalysis analyzes how input differ-
ences in the plaintext lead to output differences in the ciphertext. Linear crypt-
analysis studies probabilistic linear relations between plaintext, ciphertext and

⋆ This work was supported in part by the Research Council K.U.Leuven: GOA
TENSE, the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science
Policy), and in part by the European Commission through the ICT program un-
der contract ICT-2007-216676 ECRYPT II, and is funded by the National Natural
Science Foundation of China (No. 61073150).

⋆⋆ This author is funded by a research grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

77

key. If a cipher behaves differently from a random cipher for differential or linear
cryptanalysis, this can be used to build a distinguisher or even a key-recovery
attack.

For stream ciphers, differential cryptanalysis can be used in the context of a
resynchronization attack [11]. In one possible setting, the same data is encrypted
several times with the same key, but using a different initial value (IV). This
is referred to as the standard (non-related-key) model, where the IV value is
assumed to be under control of the attacker. An even stronger attack model
is the related-key setting, where the same data is encrypted with different IVs
and different keys. Not only the IV values, but also the differences between the
keys are assumed to be under control of the attacker. Similar to differential
cryptanalysis, linear cryptanalysis can also be used to attack stream ciphers in
both the standard and related-key model. In the case of stream ciphers, linear
cryptanalysis amounts to a known-IV attack instead of a chosen-IV attack.

Resistance against linear and differential cryptanalysis is a standard design
criterion for new ciphers. For the block cipher AES [13], provable security against
linear and differential cryptanalysis follows from the wide trail design strat-
egy [12]. In this work, we apply a similar strategy. After proving a lower bound
on the number of active S-boxes for both differential and linear cryptanalysis,
we use the maximum differential probability (MDP) of the S-boxes to derive an
upper bound for the probability of the best characteristic. We assume (as is com-
monly done) that the probability of the differential can accurately be estimated
by the probability of the best characteristic. Several works focus on calculat-
ing the minimum number of active S-boxes for both Substitution-Permutation
Networks (SPNs) [12] and (Generalized) Feistel Structures (GFSs) [5, 6, 16, 24].
Unfortunately, it seems that a lot of time and effort in programming is required to
apply those techniques. This may explain why many related constructions have
not yet been thoroughly analyzed. In this paper, we introduce a novel technique
using mixed-integer linear programming in order to overcome these problems.

Linear programming (LP) is the study of optimizing (minimizing or maximiz-
ing) a linear objective function f(x1, x2, . . . , xn), subject to linear inequalities
involving decision variables xi, 1 ≤ i ≤ n. For many such optimization problems,
it is necessary to restrict certain decision variables to integer values, i.e. for some
values of i, we require xi ∈ Z. Methods to formulate and solve such programs
are called mixed-integer linear programming (MILP). If all decision variables xi

must be integer, the term (pure) integer linear programming (ILP) is used. MILP
techniques have found many practical applications in the fields of economy and
business, but their application in cryptography has so far been limited. For a
good introductory level text on LP and (M)ILP, we refer to Schrage [23].

In [7], Borghoff et al. transformed the quadratic equations describing the
stream cipher Bivium into a MILP problem. The IBM ILOG CPLEX Opti-
mizer4 was then used to solve the resulting MILP problem, which corresponds
to recovering the internal state of Bivium. In the case of Bivium A, solving this

4 http://www.ibm.com/software/integration/optimization/cplex-optimizer/

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 78

MILP problem takes less than 4.5 hours, which is faster than Raddum’s approach
(about a day) [22], but much slower than using MiniSAT (21 seconds) [9].

For the hash function SIMD, Bouillaguet et al. [8] used an ILP solver to find
a differential characteristic based on local collisions. Using the SYMPHONY
solver5, they could not find the optimal solution, but found lower bounds for
both SIMD-256 and SIMD-512. The computation for SIMD-512 took one month
on a dual quad-core computer.

In [5, 6], Bogdanov calculated the minimum number of linearly and differ-
entially active S-boxes of unbalanced Feistel networks with contracting MDS
diffusion. He proved that some truncated difference weight distributions are im-
possible or equivalent to others. For the remaining truncated difference weight
distributions, he constructed an ILP program which he then solved using the
MAGMA6 Computational Algebra System [4]. Compared to Bogdanov’s tech-
nique, the fully automated method in this paper is much simpler to apply: Bog-
danov’s approach requires a significant amount of manual work, and the con-
struction of not one but several ILP programs. We will show how this can be
avoided by introducing extra dummy variables into the MILP program.

While this paper was under submission, Wu and Wang released a paper on
ePrint [28] that also uses integer linear programming to count the number of ac-
tive S-boxes for both linear and differential cryptanalysis. Just as in Bogdanov’s
approach, their algorithms require a large number of ILP programs to be solved,
instead of only one as in the technique of this paper.

We apply our technique to the stream cipher Enocoro-128v2 [26, 27], in or-
der to obtain bounds against differential and linear cryptanalysis. We consider
both the standard and related-key model. All MILP programs are solved using
CPLEX. There are 96 initialization rounds in Enocoro-128v2. We prove that 38
rounds are sufficient for security against differential cryptanalysis, and 61 rounds
against linear cryptanalysis. These security bounds are obtained after 52.68 and
228.94 seconds respectively. We also calculate the minimum number of active
S-boxes for up to 14 rounds of AES, which takes at most 0.40 seconds for each
optimization program. Our experiments are performed on a 24-core Intel Xeon
X5670 Processor, with 16 GB of RAM.

This paper is organized as follows. Sect. 2 explains how to find the minimum
number of active S-boxes for a cryptographic primitive by solving an MILP
program. A brief description of Enocoro-128v2 is given in Sect. 3. In Sect. 4
and Sect. 5, we construct an MILP program to prove that Enocoro-128v2 is
secure against differential cryptanalysis and linear cryptanalysis respectively.
We provide some ideas for future work in Sect. 6, and conclude the paper in
Sect. 7. In App. A, we calculate the minimum number of active S-boxes for AES
using our technique, and provide the full source code of our program.

5 http://projects.coin-or.org/SYMPHONY
6 http://magma.maths.usyd.edu.au/

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 79

2 Constructing an MILP Program to Calculate the
Minimum Number of Active S-boxes

We now explain a technique to easily prove the security of many ciphers against
differential and linear cryptanalysis. Our method is based on counting the mini-
mum number of active S-boxes. To illustrate our technique, we use Enocoro-128v2
and AES as test cases in this paper. The equations we describe are not specific
to these ciphers, but can easily be applied to any cipher constructed using S-
box operations, linear permutation layers, three-forked branches and/or XOR
operations.

2.1 Differential Cryptanalysis

We consider truncated differences, that is, every byte in our analysis can have
either a zero or a non-zero difference. More formally, we define the following
difference vector:

Definition 1 Consider a string ∆ consisting of n bytes ∆ = (∆0,∆1, . . . ,∆n−1).
Then, the difference vector x = (x0, x1, . . . , xn−1) corresponding to ∆ is defined
as

xi =

{
0 if ∆i = 0 ,

1 otherwise .

Equations Describing the XOR Operation. Let the input difference vector
for the XOR operation be (x⊕

in1
, x⊕

in2
) and the corresponding output difference

vector be x⊕
out. The differential branch number is defined as the minimum number

of input and output bytes that contain differences, excluding the case where there
are no differences in inputs nor outputs. For XOR, the differential branch number
is 2. In order to express this branch number in equations, we need to introduce a
new binary dummy variable d⊕.7 If and only if all of the three variables x⊕

in1
,x⊕

in2

and x⊕
out are zero, d

⊕ is zero, otherwise it should be one. Therefore we obtain the
following linear equations (in binary variables) to describe the relation between
the input and output difference vectors:

x⊕
in1

+ x⊕
in2

+ x⊕
out ≥ 2d⊕ ,

d⊕ ≥ x⊕
in1

,

d⊕ ≥ x⊕
in2

,

d⊕ ≥ x⊕
out .

7 Note that this extra variable was not added in [5,6], which is why Bogdanov had to
solve several ILP programs instead of only one.

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 80

Equations Describing the Linear Transformation. The equations for a
linear transformation L can be described as follows. Assume L transforms the
input difference vector (xL

in1
, xL

in2
, · · · , xL

inM) to the output difference vector

(xL
out1 , x

L
out2 , · · · , xL

outM). Given the differential branch number BD, a binary
dummy variable dL is again needed to describe the relation between the in-
put and output difference vectors. The variable dL is equal to 0 if all variables
xL
in1

, xL
in2

, · · · , xL
inM , xL

out1 , x
L
out2 , · · · , xL

outM are 0, and 1 otherwise. Therefore
the linear transformation L can be constrained by the following linear equa-
tions:

xL
in1

+ xL
in2

+ · · ·+ xL
inM + xL

out1 + xL
out2 + · · ·+ xL

outM ≥ BDdL ,

dL ≥ xL
in1

,

dL ≥ xL
in2

,

· · · · · ·
dL ≥ xL

inM ,

dL ≥ xL
out1 ,

dL ≥ xL
out2 ,

· · · · · ·
dL ≥ xL

outM .

The Objective Function. The objective function that has to be minimized, is
the number of active S-boxes. This function is equal to the sum of all variables
that correspond to the S-box inputs.

Additional Constraints. An extra linear equation is added to ensure that
at least one S-box is active: this avoids the trivial solution where the mini-
mum active S-boxes is zero. If all d-variables and all x-variables are restricted
to be binary, the resulting program is a pure ILP (Integer Linear Programming)
problem. If all d-variables are restricted to be binary, but only the x-variables
corresponding to the input (plaintext), the equations ensure that the optimal so-
lution for all other x-variables will be binary as well. This is similar to Borghoff’s
suggestion in [7], and results in an MILP (Mixed-Integer Linear Programming)
problem that may be solved faster.

2.2 Linear Cryptanalysis

For linear cryptanalysis, we define a linear mask vector as follows:

Definition 2 Given a set of linear masks Γ = (Γ0, Γ1, . . . , Γn−1), the linear
mask vector y = (y0, y1, . . . , yn−1) corresponding to Γ is defined as

yi =

{
0 if Γi = 0 ,

1 otherwise .

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 81

The duality between differential and linear cryptanalysis was already pointed
out by Matsui [20]. The equations describing a linear function are the same as
in the case for differential cryptanalysis, however the differential branch number
BD is replaced by the linear branch number BL. The linear branch number is
the minimum number of non-zero linear masks for the input and output of a
function, excluding the all-zero case. No extra equations are introduced for the
XOR operations, because the input and output linear masks are the same.

For a three-forked branch, we proceed as follows. Let the input linear mask
vector for the three-forked branch be y⊢in, and the corresponding output lin-
ear mask vector be (y⊢out1 , y

⊢
out2). We introduce a binary dummy variable l⊢ to

generate the following linear equations for the three-forked branch:

y⊢in + y⊢out1 + y⊢out2 ≥ 2l⊢ ,

l⊢ ≥ y⊢in ,

l⊢ ≥ y⊢out1 ,

l⊢ ≥ y⊢out2 .

3 Description of Enocoro-128v2

The first Enocoro specification was given in [25]. Enocoro is a stream cipher,
inspired by the Panama construction [10]. Two versions of Enocoro were speci-
fied: Enocoro-80v1 with a key size of 80 bits, and Enocoro-128v1 with a key size
of 128 bits. Later, a new version for the 128-bit key size appeared in [15]. It is re-
ferred to as Enocoro-128v1.1. We now give a short description of Enocoro-128v2.
For more details, we refer to the design document [26,27].

Internal state. The internal state of Enocoro-128v2 is composed of a buffer
b consisting of 32 bytes (b0, b1, . . . , b31) and a state a consisting of two bytes
(a0, a1). The initial state is loaded with a 128-bit key K and a 64-bit IV I as
follows:

b
(−96)
i = Ki, 0 ≤ i < 16 ,

b
(−96)
i+16 = Ii, 0 ≤ i < 8 .

All other internal state bytes are loaded with predefined constants.

Update Function. The update function Next uses functions ρ and λ to update
the internal state as follows:

(a(t+1), b(t+1)) = Next(S(t)) = (ρ(a(t), b(t)), λ(a(t), b(t))) .

An schematic overview of this function is given in Fig. 1.

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 82

0 2 0 1

L

S

6 7

0 3 7 0 18 17 29 30

S

S

S

15 16 28 29 31

3116

Fig. 1. State Update during the Initialization of Enocoro-128v2. Indices of buffer (on
the left) refer to b-variables, indices of the state (on the right) refer to a-variables.

Function ρ. The function ρ updates the state a. It consists of an 8-bit S-box
operation, a linear transformation L and XORs. The transformation L is defined
as a linear transformation with a 2-by-2 matrix over GF(28):

(
v0
v1

)
= L(u0, u1) =

(
1 1
1 d

)(
u0

u1

)
, d ∈ GF(28) ,

where d = 0x02, u0 = a
(t)
0 ⊕ S[b

(t)
2] and u1 = a

(t)
1 ⊕ S[b

(t)
7]. The updated state

(a
(t+1)
0 , a

(t+1)
1) is then calculated as follows:

a
(t+1)
0 = v0 ⊕ S[b

(t)
16] ,

a
(t+1)
1 = v1 ⊕ S[b

(t)
29] .

Function λ. The λ function of Enocoro-128v2 consists of XOR operations and
a byte-wise rotation of the buffer b. It is defined as follows:

b
(t+1)
i =





b
(t)
31 ⊕ a

(t)
0 , if i = 0 ,

b
(t)
2 ⊕ b

(t)
6 , if i = 3 ,

b
(t)
7 ⊕ b

(t)
15 , if i = 8 ,

b
(t)
16 ⊕ b

(t)
28 , if i = 17 ,

b
(t)
i−1 otherwise .

Output function Out. After 96 initialization rounds, the Enocoro-128v2 out-
put function outputs the lower byte of the state.

Out(S(t)) = a
(t)
1 .

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 83

Several results [14,17,18,21,27] on differential and linear cryptanalysis have
already been published for different versions of Enocoro. In this paper, we con-
sider the most recent version Enocoro-128v2 [26,27] as an example to illustrate
our technique. Watanabe et al. already showed that at least 2177.8 chosen IVs
are required for a differential attack on Enocoro-128v2 [27]. For a linear attack,
Konosu et al. [18] showed that 2216 known IVs are required for an attack on the
64-round variant Enocoro-128v1.1. Although these results are already sufficient
to prove the security of Enocoro-128v2 against linear and differential cryptanal-
ysis, we explain in this paper how to prove the security against these attacks in
a much easier way.

4 Differential Cryptanalysis of Enocoro-128v2

Our technique is now used to find the minimum number of active S-boxes
for the stream cipher Enocoro-128v2. We will consider an idealized variant of
Enocoro-128v2, for which the minimum number of active S-boxes is a lower
bound for the real Enocoro-128v2. In this idealized variant of Enocoro-128v2,
the S-boxes can map any non-zero input difference to any non-zero output dif-
ference. The same holds for the L-function, with the restriction that the branch
number is 3.

For this idealized variant of Enocoro-128v2, we have written a program to
calculate the minimum number of active S-boxes. We present our problem as
a mixed-integer linear programming (MILP) problem, and use CPLEX to solve
it. The solution corresponds to the minimum number of differentially active S-
boxes for Enocoro-128v2. It is used to prove the security of the cipher against
differential cryptanalysis, using a similar proof as for the block cipher AES [12,
13]. Note that an actual characteristic with the given number of active S-boxes
may or may not exist, depending on the specific S-box and L-function that is
used. This is not a concern for us, as our goal is to prove a security bound against
differential cryptanalysis.

4.1 Constructing the MILP Program

Enocoro-128v2 has eight XOR operations and one linear transformation L in
each round. We represent the differential behavior of each of these operations
by a set of linear equations, as described in Sect. 2. Let us take the first round
of Enocoro-128v2 as an example. The initial difference vector in the buffer and
states is represented by the binary variables (x0, x1, . . . , x31) and (x32, x33) re-
spectively. Let us consider the XOR operation which has the rightmost byte
of buffer b, i.e. b31, and state byte a0 as inputs. These correspond to binary
variables x31 and x32 respectively, the input difference vector for this XOR op-
eration. From the update function, we can obtain the corresponding value of
the leftmost byte of buffer b, i.e. b0, after the first round. Let the corresponding
output difference vector be x34, which is the first new binary variable that we

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 84

h?
?

�

x31

x32

x34

L

x35

h?
?

-

x32

x2

x35

h?
?

-

x33

x7

x36

x36

x37 x38

? ?

? ?

h?
?

- h h h h? ?�

?

?

?

� ?�

?

-

?

x37

x16

x39

x38

x29

x40

x2

x41

x6

x7

x42

x15

x16

x43

x28

Fig. 2. Difference Vectors for Nine Operations in the First Round

L

S

S

0 1 2 6 7 15 16 28 29 31 32 33

34 39 400 1 41 6 42 43 178 28 29 303

S

S

35 36

37 38

34

6 15

Fig. 3. Differential State Update during the Initialization of Enocoro-128v2. The in-
dices refer to x-variables.

introduce. After introducing a binary dummy variable d0, this XOR operation
can be described by the equations:

x31 + x32 + x34 ≥ 2d0 ,

d0 ≥ x31 ,

d0 ≥ x32 ,

d0 ≥ x34 .

We now consider the second XOR operation, for which buffer b2 (input to
the first S-box) and the state a0 are the inputs. Because the S-box is bijective,
it is not only the case that the zero input difference results in a zero output
difference, but also that a non-zero input difference results in a non-zero output
difference. We find that (x2, x32) is the difference vector of the second XOR
operation. The second new variable, x35, will be the output difference vector for

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 85

this second XOR operation. Similarly, for the third XOR operation, the input
difference vector is (x7, x33) (corresponding to (b7, a1)), and the output difference
vector is x36. Given two binary dummy variables d1 and d2 for the second and
third XOR operation respectively, we again obtain four linear equations for every
XOR operation.

From the structure of the linear transformation of Enocoro-128v2, we know
that (x35, x36) is the input difference vector for the linear transformation L in
the first round. By introducing a new binary variable d3, the relations between
the output difference vector (x37, x38) and the input difference vector (x35, x36)
are easily described by the following equations:

x35 + x36 + x37 + x38 ≥ 3d3 ,

d3 ≥ x35 ,

d3 ≥ x36 ,

d3 ≥ x37 ,

d3 ≥ x38 .

The other five XORs in the first round are represented in a similar way. The
new variables x39, x40, x41, x42 and x43 are shown in Fig. 2. These equations
result in the binary dummy variables d4, d5, d6, d7, d8. For all the eight XORs
and one linear transformation L, ten new binary variables x34, x35, . . . , x43 and
nine binary dummy variables d0, d1, . . . , d8 are required. Therefore, a system of
4 · 8 + 5 · 1 = 37 equations is obtained to describe all the nine operations in the
first round (and also every subsequent round) of Enocoro-128v2. The detailed
input and output vectors for all the nine operations are shown in Fig. 2.

After one round the difference vector for buffer and state will be

(x34, x0, x1, x41, x3, . . . , x6, x42, x8, . . . , x15, x43, x17, . . . , x30)

and (x39, x40) respectively. All binary xi-variables obtained for the first round
are illustrated in Fig. 3. Therefore, using this technique we can represent the
differential update of Enocoro-128v2 for any round with a system of linear equa-
tions.

4.2 The Minimum Number of Active S-boxes for Differential
Cryptanalysis

We now focus on the variables that represent the S-box inputs in every round.
Note that x2, x7, x16, and x29 correspond to the input differences of the S-
boxes, and therefore determine if the S-box is active or not. Let Di include the
four indices of variables that represent the four S-box inputs in the i-th round
(1 ≤ i ≤ 96). The 96 sets include the indices for variables that represent the four
S-box inputs in each round. They can easily be obtained from Sect. 4.1, and are

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 86

as follows:

D1 = {2, 7, 16, 29} ,

D2 = {1, 6, 15, 28} ,

D3 = {0, 5, 14, 27} ,

D4 = {34, 4, 13, 26} ,

D5 = {44, 3, 12, 25} ,

...

D96 = {954, 941, 902, 863} .

Let kN be the number of active S-boxes for N rounds of Enocoro-128v2. If

IN =
⋃

1≤i≤N

Di ,

then
kN =

∑

i∈IN

xi

will be the number of active S-boxes in N rounds of Enocoro-128v2. To avoid
the trivial case where no S-boxes are active, we add an extra linear constraint
to specify that least one S-box is active. If we can minimize the linear function
kN =

∑
i∈IN

xi, it will give us the minimum number of active S-boxes for N
rounds of Enocoro-128v2. This will provide a security bound for Enocoro-128v2
against differential cryptanalysis. The objective function kN =

∑
i∈IN

xi is a
linear function, constrained by a system of 37N linear equations. If all variables
must be binary variables, this corresponds to an ILP program.

It is easy to verify that the maximum differential probability for the 8-bit
S-box of Enocoro-128v2 is 2−4.678. As the IV is limited to 64 bits, there are at
most 264 IV pairs for any given difference (if the key is fixed). Because there
exists a generic attack with a data complexity of 264 IV s (obtaining the entire
codebook under one key), attacks requiring 264 IV s or more should not be
feasible. Therefore, we do not consider attacks using more than 264 IV s, even
in the related-key setting. If the number of active S-boxes in the initialization
rounds is at least 14 > 64/4.678, we consider the cipher to be resistant against
differential cryptanalysis. Because we allow differences in both the key and the
IV, our results hold both in the single-key and in the related-key setting. We
note that typically, differential and linear cryptanalysis are used to attack a few
more rounds than the number of rounds of the characteristic. The cipher must
also be resistant against other types of attacks and add extra rounds to provide
a security margin. For these reasons, more rounds should be used than suggested
by our analysis.

In order to optimize the MILP program, we use CPLEX. The experiments are
implemented on a 24-core Intel Xeon X5670 @ 2.93 GHz, with 16 GB of RAM.
Because this computer is shared with other users, execution times may be longer
than necessary, which is why we do not give timing information for all problem

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 87

instances. We found that it takes about 52.68 seconds to show that the minimum
number of active S-boxes for 38 rounds of Enocoro-128v2 is 14. Therefore, 38
rounds of Enocoro-128v2 or more are secure against differential cryptanalysis.
The minimum number of active S-boxes for each round of Enocoro-128v2 are
listed in Table 1.

We would like to point out to the reader, that the seemingly complex book-
keeping of variable indices should not be a concern for the cryptanalyst who
wishes to use this technique. The MILP linear equations can be generated by a
small computer program. This program keeps track of the next unused x- and
d-variables. It is then easy to replace every XOR and L function operation in
the reference implementation of the cipher by a function to generate the corre-
sponding equations, and every S-box application by a function that constructs
the objective function. For a typical cipher, this should not require more than
half an hour of work for a minimally experienced programmer.

If all d-variables are restricted to binary variables, as well as variables x0 up
to x33, the equations ensure that the optimal solution for all other xi-variables
will be binary as well. Therefore, similar to Borghoff’s suggestion in [7], we
might solve an MILP program where only the d-variables and x0 up to x33

are binary variables, instead of a pure ILP program. We find that Borghoff’s
observation can give dramatic speed-ups in some cases: for 72 rounds, it takes
5,808.15 seconds using an MILP, compared 342,747.78 seconds using a pure ILP.
However, our MILP program for 38 rounds takes longer: 75.68 seconds instead
of 52.68 seconds. Explaining this phenomenon seems to be a useful direction for
future work.

5 Linear Cryptanalysis of Enocoro-128v2

We will use our technique to analyze an ideal variant of Enocoro-128v2 for linear
cryptanalysis. Similarly as for differential cryptanalysis, the real Enocoro-128v2
will have at least as many linearly active S-boxes as the idealized one, and
therefore can be used to prove a security bound.

5.1 Constructing the MILP Program

We now illustrate our technique by presenting the equations for the first round of
the stream cipher Enocoro-128v2 for linear cryptanalysis. For the initial state,
let the linear mask vector for the buffer be (y0, y1, . . . , y31), and for the state
be (y32, y33). Consider the three-forked branch, which has the state byte a0
as the input linear mask and buffer byte b31 as one output linear mask. We
obtain the first new binary variable y34 as the other output vector. The input
and output linear mask vector for this three-forked branch are then y32 and
(y31, y34) respectively. By introducing the binary dummy variable l0, the four

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 88

Table 1. Minimum Number of Differentially Active S-boxes min(kN) for N rounds of
Enocoro-128v2

N min(kN)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 2

N min(kN)

21 2

22 3

23 3

24 3

25 4

26 5

27 7

28 8

29 8

30 8

31 8

32 9

33 9

34 10

35 11

36 12

37 13

38 14

39 15

40 15

N min(kN)

41 16

42 17

43 18

44 18

45 18

46 19

47 20

48 20

49 21

50 22

51 22

52 22

53 22

54 22

55 22

56 22

57 23

58 23

59 24

60 24

N min(kN)

61 25

62 26

63 27

64 27

65 28

66 29

67 30

68 30

69 30

70 31

71 32

72 34

73 35

74 35

75 36

76 37

77 37

78 38

79 38

80 38

N min(kN)

81 39

82 39

83 40

84 40

85 40

86 41

87 42

88 43

89 43

90 44

91 44

92 45

93 45

94 46

95 47

96 47

equations describing the three-forked branch can be described as follows:

y31 + y32 + y34 ≥ 2l0 ,

l0 ≥ y31 ,

l0 ≥ y32 ,

l0 ≥ y34 .

For the XOR operation, the two inputs and the output all have the same
linear mask. The bijectiveness of the S-box implies the linear mask at the output
will be non-zero if and only if the input mask is non-zero. Therefore, the linear
transformation L has an input linear mask vector of (y34, y33), and an output
linear mask vector of (y35, y36). Using a new binary dummy variable l1, the
equations describing the L transformation are:

y34 + y33 + y35 + y36 ≥ 3l1 ,

l1 ≥ y34 ,

l1 ≥ y33 ,

l1 ≥ y35 ,

l1 ≥ y36 .

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 89

y31

y32

y34

L

y35

y2

y35

�-

y33

y36

y36

y37

y38

? ?

? ?

?

- �

? ?

�

?

-

?

y37

y16

y39

y29

y40 y41

y6

y7

y42 y43

?

�

y34

?

y34

?

y33

y15

y39

y28

y41 -

Fig. 4. Linear Mask Vectors for Nine Operations in the First Round

L

S

S

S

S

0 2 6 7 8 14 15 16 17 27 28 31 32 33

31 0 1 37 3 5 38 39 8 14 40 41 17 27 42 43 30

29

31

33

35 36

35

34

34

36

Fig. 5. Linear Mask Vectors Update during the Initialization of Enocoro-128v2. The
indices refer to y-variables.

As an Enocoro-128v2 round contains eight three-forked branch operations and
one linear transformation L, ten new binary variables y34, y35, . . . , y43, as well as
nine binary dummy variables l0, l1, . . . , l8 are introduced. Therefore, 4 ·8+5 ·1 =
37 equations are required to describe the propagation of linear masks for the
first round (as well as any subsequent round) of Enocoro-128v2. The input and
output linear mask vectors for all nine operations in the first round are shown
in Fig. 4. The linear mask vector for the buffer and state after one round are

(y31, y0, y1, y37, y3, · · · , y5, y38, y39, y8, · · · , y14, y40, y41, y17, · · · , y27, y42, y43, y30)

and (y35, y36) respectively. They are shown in Fig. 5.

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 90

5.2 The Minimum Number of Active S-boxes for Linear
Cryptanalysis

Using the technique in the previous section, we can represent any number of
rounds of Enocoro-128v2. We now explain how to calculate the number of active
S-boxes. Let Li include all indices of the four variables representing the input
linear mask vector of S-boxes in the i-th round (1 ≤ i ≤ 96). We then obtain
the following 96 sets:

L1 = {34, 33, 35, 36} ,

L2 = {44, 36, 45, 46} ,

L3 = {54, 46, 55, 56} ,

L4 = {64, 56, 65, 66} ,

L5 = {74, 66, 75, 76} ,

...

L96 = {984, 976, 985, 986} .

Let mN be the number of active S-boxes for N rounds of Enocoro-128v2. If

JN =
⋃

1≤j≤N

Lj ,

then
mN =

∑

j∈JN

yj

will be the number of active S-boxes for N rounds of Enocoro-128v2. By min-
imizing the linear objective function mN , we obtain the minimum number of
linearly active S-boxes for N rounds of Enocoro-128v2.

The maximum correlation amplitude of the 8-bit S-box of Enocoro-128v2 is
Cmax = 2−2. For the same reasons as for differential cryptanalysis, we limit the
number of IV s to 264. Let us denote the minimum number of active S-boxes by
a. From the limit on the number of IV s, we then find that resistance against
linear cryptanalysis requires [13, pp. 142–143]:

Ca
max = (2−2)a ≤ 2−64/2 .

This inequality is satisfied for a ≥ 16. Therefore, if the number of linearly active
S-boxes is at least 16, Enocoro-128v2 can be considered to be resistant against
linear cryptanalysis (in both the single-key and related-key setting).

If we solve the resulting MILP problem using CPLEX, we find that the mini-
mum number of active S-boxes is 18 for 61 rounds of Enocoro-128v2. This result
was obtained after 227.38 seconds. Therefore, we conclude that Enocoro-128v2
with 96 initialization rounds is secure against linear cryptanalysis (in both the
single-key and related-key setting). The minimum number of active S-boxes for
Enocoro-128v2 are listed in Table 2.

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 91

Table 2. Minimum Number of Linearly Active S-boxes min(mN) for Enocoro-128v2

N min(mN)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

N min(mN)

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 3

34 6

35 6

36 6

37 6

38 6

39 6

40 6

N min(mN)

41 6

42 9

43 9

44 9

45 12

46 12

47 12

48 12

49 12

50 12

51 12

52 15

53 15

54 15

55 15

56 15

57 15

58 15

59 15

60 15

N min(mN)

61 18

62 18

63 18

64 18

65 18

66 18

67 18

68 21

69 21

70 21

71 21

72 21

73 21

74 21

75 21

76 24

77 24

78 24

79 24

80 24

N min(mN)

81 24

82 27

83 27

84 27

85 27

86 27

87 27

88 27

89 27

90 27

91 27

92 27

93 30

94 30

95 33

96 33

6 Future Work

It is interesting to investigate how the internal parameters of CPLEX can be
fine-tuned to calculate bounds against linear and differential cryptanalysis in
the fastest possible time. If there are symmetries in the round function, these
may be used to speed up the search as well. Similarly, the attacker may improve
a given (suboptimal) lower bound for a particular cipher by clocking the round
functions forward or backward in order to obtain a lower number of S-boxes. To
obtain a rough lower bound for a large number of rounds, the “split approach”
(see for example [3]) may be used. For example, if r rounds of a cipher contain
at least a active S-boxes, then kr rounds of a cipher must contain at least ka
active S-boxes. It is useful to explore how these observations can be applied
when CPLEX takes a very long time to execute. Otherwise, the shorter solving
time does not compensate for the additional time to construct the program. For
ILP programs with a very long execution time, it may be better to calculate the
minimum number of active S-boxes using a different technique (e.g. [3]).

The technique in this paper is quite general, and may also be used for trun-
cated differentials, higher-order differentials, impossible differentials, saturation
attacks,... It can also be applied to other ciphers constructed using S-box opera-
tions, linear permutation layers, three-forked branches and/or XOR operations.
We leave the exploration of these topics to future work as well.

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 92

7 Conclusion

In this paper, we introduced a simple technique to calculate the security of many
ciphers against linear and differential cryptanalysis. The only requirement is that
the cipher is composed of a combination of S-box operations, linear permutation
layers and/or XOR operations. Our technique involves writing a simple program
to generate a mixed-integer linear programming (MILP) problem. The objective
function of the MILP program is the number of linearly or differentially active S-
boxes, which we want to minimize. This MILP problem can then easily be solved
using an off-the-shelf optimization package, for example CPLEX. The result can
be used to prove the security of a cryptosystem against linear and differential
cryptanalysis.

Our technique can be applied to a wide variety of cipher constructions.
As an example, we apply the technique in this paper to the stream cipher
Enocoro-128v2. We prove that for Enocoro-128v2 38 rounds are sufficient for
security against differential cryptanalysis, and 61 rounds against linear crypt-
analysis. These results are valid both in the single-key and related-key models.
As Enocoro-128v2 consists of 96 initialization rounds, this proves the security of
Enocoro-128v2 against linear and differential cryptanalysis.

We would like to point out that only little programming is required to ob-
tain this result. A minimally experienced programmer can modify the reference
implementation of a cipher, in order to generate the required MILP program
in about half an hour. In the case of Enocoro-128v2, it takes CPLEX less than
one minute on a 24-core Intel Xeon X5670 processor to prove security against
differential cryptanalysis, and less than four minutes to prove security against
linear cryptanalysis. We note that because very little programming is required,
both the time spent on cryptanalysis and the possibility of making errors are
greatly reduced.

Acknowledgments. The authors would like to thank their colleagues at COSIC,
as well as the anonymous reviewers for their detailed comments and suggestions.
Special thanks to Hirotaka Yoshida for reviewing an earlier draft of this paper.

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

2. Biryukov, A., Gong, G., Stinson, D.R. (eds.): Selected Areas in Cryptography -
17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-
13, 2010, Revised Selected Papers, LNCS, vol. 6544. Springer (2011)

3. Biryukov, A., Nikolić, I.: Search for Related-key Differential Characteristics in
DES-like ciphers. In: Joux, A. (ed.) FSE. LNCS, vol. 6733, pp. 342–358. Springer
(2011)

4. Bodganov, A.: Personal Communication (2011)
5. Bogdanov, A.: Analysis and Design of Block Cipher Constructions. Ph.D. thesis,

Ruhr University Bochum (2009)

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 93

6. Bogdanov, A.: On unbalanced Feistel networks with contracting MDS diffusion.
Des. Codes Cryptography 59(1-3), 35–58 (2011)

7. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a Mixed-Integer Linear Pro-
gramming Problem. In: Parker, M.G. (ed.) IMA Int. Conf. LNCS, vol. 5921, pp.
133–152. Springer (2009)

8. Bouillaguet, C., Fouque, P.A., Leurent, G.: Security Analysis of SIMD. In: Biryukov
et al. [2], pp. 351–368

9. Cameron McDonald, Chris Charnes, J.P.: An Algebraic Analysis of Trivium Ci-
phers based on the Boolean Satisfiability Problem. Cryptology ePrint Archive,
Report 2007/129 (2007), http://eprint.iacr.org/

10. Daemen, J., Clapp, C.S.K.: Fast Hashing and Stream Encryption with PANAMA.
In: Vaudenay, S. (ed.) FSE. LNCS, vol. 1372, pp. 60–74. Springer (1998)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization Weaknesses in Syn-
chronous Stream Ciphers. In: EUROCRYPT. pp. 159–167 (1993)

12. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) IMA
Int. Conf. LNCS, vol. 2260, pp. 222–238. Springer (2001)

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

14. Hell, M., Johansson, T.: Security Evaluation of Stream Cipher Enocoro-128v2.
CRYPTREC Technical Report (2010)

15. K. Muto, D.W., Kaneko, T.: Strength evaluation of Enocoro-128 against LDA and
its Improvement. In: Symposium on Cryptography and Information Security. pp.
4A1–1 (2008), (in Japanese)

16. Kanda, M.: Practical Security Evaluation against Differential and Linear Crypt-
analyses for Feistel Ciphers with SPN Round Function. In: Stinson, D.R., Tavares,
S.E. (eds.) Selected Areas in Cryptography. LNCS, vol. 2012, pp. 324–338. Springer
(2000)

17. Kazuto Okamoto, K.M., Kaneko, T.: Security evaluation of Pseudorandom Number
Generator Enocoro-80 against Differential/Linear Cryptanalysis (II). In: Sympo-
sium on Cryptography and Information Security. pp. 20–23 (2009), (in Japanese)

18. Konosu, K., Muto, K., Furuichi, H., Watanabe, D., Kaneko, T.: Security evaluation
of Enocoro-128 ver.1.1 against resynchronization attack. IEICE Technical Report,
ISEC2007-147 (2008), (in Japanese)

19. Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. In: EUROCRYPT.
pp. 386–397 (1993)

20. Matsui, M.: On Correlation Between the Order of S-boxes and the Strength of
DES. In: EUROCRYPT. pp. 366–375 (1994)

21. Muto, K., Watanabe, D., Kaneko, T.: Security evaluation of Enocoro-80 against
linear resynchronization attack. Symposium on Cryptography and Information Se-
curity (2008), (in Japanese)

22. Raddum, H.: Cryptanalytic Results on Trivium. eSTREAM report 2006/039
(2006), http://www.ecrypt.eu.org/stream/triviump3.html

23. Schrage, L.: Optimization Modeling with LINGO. Lindo Systems (1999), availabe
on-line: http://www.lindo.com

24. Shibutani, K.: On the Diffusion of Generalized Feistel Structures Regarding Dif-
ferential and Linear Cryptanalysis. In: Biryukov et al. [2], pp. 211–228

25. Watanabe, D., Kaneko, T.: A construction of light weight Panama-like keystream
generator. In: IEICE Technical Report, ISEC2007-78 (2007), (in Japanese)

26. Watanabe, D., Okamoto, K., Kaneko, T.: A Hardware-Oriented Light Weight
Pseudo-Random Number Generator Enocoro-128v2. In: The Symposium on Cryp-
tography and Information Security. pp. 3D1–3 (2010), (in Japanese)

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 94

27. Watanabe, D., Owada, T., Okamoto, K., Igarashi, Y., Kaneko, T.: Update on
Enocoro Stream Cipher. In: ISITA. pp. 778–783. IEEE (2010)

28. Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block
cipher structures. Cryptology ePrint Archive, Report 2011/551 (2011), http://
eprint.iacr.org/

A Number of Active S-boxes for AES

The four-round propagation theorem of AES [13] proves that the number of
active S-boxes in a differential or linear characteristic of four AES rounds is at
least 25. Combined with the properties of the AES S-box, this result was used in
the AES design document to prove the resistance against linear and differential
attacks. In this section, we illustrate our technique by applying it to the block
cipher AES. We not only confirm the four-round propagation theorem, but also
determine the minimum number of active S-boxes for up to 14 rounds in Table 4.

An AES round update consists of four operations: AddRoundKey (AR), Sub-
Bytes (SB), ShiftRows (SR) and MixColumns (MC). The update of the first AES
round is shown in Table 3. Every variable corresponds to a byte of the AES state.
The variable is 1 if the difference is non-zero, and 0 if the difference is zero. All
variables corresponding to the inputs of the SubByte operations are summed in
the objective function, this corresponds to the number of active S-boxes. The
linear function used in the MixColumns operation has a differential as well as a
linear branch number of 5.

A program was written in C to generate the equations for this optimization
problem in the CPLEX LP format. To illustrate the simplicity of our technique,
we provide this program (including source code comments) below in full. None
of the optimization problems in Table 4 took longer than 0.40 seconds to solve,
using only a single core of our 24-core Intel Xeon X5670 processor.

Table 3. The Variables in the First Round Update of AES

2

6

6

4

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

3

7

7

5

SB−→

2

6

6

4

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

3

7

7

5

SR−→

2

6

6

4

x0 x4 x8 x12

x5 x9 x13 x1

x10 x14 x2 x6

x15 x3 x7 x11

3

7

7

5

MC−−→

2

6

6

4

x16 x20 x24 x28

x17 x21 x25 x29

x18 x22 x26 x30

x19 x23 x27 x31

3

7

7

5

Table 4. Minimum Number of Differentially or Linearly Active S-boxes min(kN) for
N rounds of AES

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

min(kN) 1 5 9 25 26 30 34 50 51 55 59 75 76 80

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 95

#include <stdio.h>

int i,j,r;

const int ROUNDS = 4; /* number of rounds */

int next = 0; /* next unused state variable index */

int dummy = 0; /* next unused dummy variable index */

void ShiftRows(int a[4][4]) {

int tmp[4];

for(i = 1; i < 4; i++) {

for(j = 0; j < 4; j++) tmp[j] = a[i][(j + i) % 4];

for(j = 0; j < 4; j++) a[i][j] = tmp[j];

}

}

void MixColumn(int a[4][4]) {

for(j = 0; j < 4; j++) {

for (i = 0; i < 4; i++) printf("x%i + ",a[i][j]);

for (i = 0; i < 3; i++) printf("x%i + ",next+i);

printf("x%i - 5 d%i >= 0\n",next+3,dummy);

for(i = 0; i < 4; i++)

printf("d%i - x%i >= 0\n",dummy,a[i][j]);

for(i = 0; i < 4; i++)

printf("d%i - x%i >= 0\n",dummy,a[i][j]=next++);

dummy++;

}

}

int main() {

int a[4][4]; /* the bytes of the AES state */

for (i = 0; i < 4; i++)

for (j = 0; j < 4; j++)

a[i][j] = next++; /* initialize variable indices */

printf("Minimize\n"); /* print objective function */

for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);

printf("x%i\n\n",ROUNDS*16-1);

printf("Subject To\n"); /* round function constraints */

for (r = 0; r<ROUNDS; r++) { ShiftRows(a); MixColumn(a); }

/* at least one S-box must be active */

for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);

printf("x%i >= 1\n\n",ROUNDS*16-1);

printf("Binary\n"); /* binary constraints */

for (i = 0; i < 16; i++) printf("x%i\n",i);

for (i = 0; i < dummy; i++) printf("d%i\n",i);

printf ("End\n");

return 0;

}

DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING 96

Chapter 7

The provable constructive
effect of diffusion switching
mechanism in CLEFIA-type
block ciphers

Publication Data

Q. Wang, A. Bogdanov: The Provable Constructive Effect of Diffusion Switching
Mechanism in CLEFIA-type Block Ciphers. Inf. Process. Lett. 112(11): 427-
432, 2012.

Contributions

Major contributor:

• Get the theorem in Section 3 and prove it.

• Do the experiments in Section 4.

97

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 98

The Provable Constructive Effect of Diffusion
Switching Mechanism in CLEFIA-type Block

Ciphers

Qingju Wang1,2 and Andrey Bogdanov2

1 Shanghai Jiao Tong University, Department of Computer Science and Engineering,
N0.800, Dongchuan Road, Shanghai, 200240, China.

2 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Kasteelpark Arenberg
10, 3001 Leuven, Belgium.

{qingju.wang, andrey.bogdanov}@esat.kuleuven.be

Abstract. CLEFIA is a popular recent block cipher designed by Sony
Corporation, accepted as a lightweight encryption algorithm of the new
ISO/IEC 29192-2 standard, and proposed as a Japanese e-Government
recommendation cipher CRYPTREC candidate.
Provable security properties of cryptographic design are crucial in any
security evaluation. Providing lower bounds on the number of active S-
boxes in differential and linear characteristics has been one of the few
important provable properties that can be formally shown for block ci-
phers and hence received a lot of attention.
In this work, we prove tighter lower bounds on the number of linearly ac-
tive S-boxes in CLEFIA-type generalized Feistel networks (GFNs) with
diffusion switching mechanism (DSM). We show that every 6 rounds of
such GFNs provide 50% more linearly active S-boxes than proven previ-
ously. Moreover, we experimentally demonstrate that the new bound is
tight for up to at least 12 rounds, whereas the previous one is not.
Thus, this paper delivers first provable evidence that diffusion switching
mechanism actually provides an advantage by guaranteeing more active
S-boxes in GFNs.

Keywords: block ciphers, generalized Feistel networks, CLEFIA, diffusion
switching mechanism, substitution diffusion networks, linear cryptanalysis, effi-
ciency

1 Introduction

1.1 Motivation

Generalized Feistel networks (GFNs) [18] have been popular with the designers of
symmetric-key cryptographic primitives including block ciphers, stream ciphers
and hash functions. They offer a simple way of domain extension given a function
with good cryptographic properties. Probably the best understood structure of

99

its round transform relies on substitution-diffusion functions (SD-func-tions) — a
brick layer of local nonlinear permutations (S-boxes) followed by a multiplication
by a diffusion matrix over a binary finite field (linear diffusion).

GFN4 are 4-line generalized Feistel networks. Type-I and type-II GFN4 are
referred to as GFN4-I and GFN4-II throughout this paper, structures are shown
in Fig. 1 and 2. The findings of [5] indicate that going from single SD-functions
[11, 19] to double SD-functions improves the efficiency of GFN4 by up to 33%
for GFN4-I and by up to 50% for GFN4-II, as measured by the proportion of
differentially and linearly S-boxes in all S-boxes of the cipher. The work [5] proves
that for GFN4 with double SD-functions every 14 rounds of GFN4-I and every
6 rounds of GFN4-II add 7B and 6B differentially and linearly active S-boxes,
respectively, where B is the branch number of the diffusion matrix M (or its
transpose) used in the round functions. Underlying SD-type functions can differ

Fi ⊕

xi
1 xi

2 xi
3 xi

4

round i

Fig. 1: GFN4-I

Fi
2 ⊕Fi

1 ⊕

xi
1 xi

2 xi
3 xi

4

round i

Fig. 2: CLEFIA-type GFN4-II

depending on:

– Number of distinct diffusion matrices: The standard approach is to use
a single matrix in all rounds and functions (single-round diffusion), e.g. ap-
plied in Camellia [1]. The alternative approach proposed in [13] is to employ
two and more distinct diffusion matrices in different rounds and functions
(multiple-round diffusion, or diffusion switching mechanism, DSM), which
prevents difference and linear mask cancelation at XORs, e.g. utilized in
CLEFIA [14].

– Number of SD-layers in a function: SD-type functions usually consist
of a single SD-layer (single SD-functions), as e.g. those in CLEFIA [14] and
Camellia [1]. In some ciphers, however, SD-type functions have double SD-
layers (double SD-functions), e.g. in E2 [8] and Piccolo [12].

CLEFIA is a popular recent block cipher designed by Sony Corporation, ac-
cepted as a lightweight encryption algorithm of the new ISO/IEC 29192-2 stan-
dard, and proposed as a CRYPTREC Japaneese e-Government recommendation
cipher. The design of CLEFIA is a 4-line type-II GFN (GFN4-II) with DSM and
single SD-functions. GFN4-II belongs to the type of GFNs. We will be investi-
gating in this paper – d-line type-II GFNs with DSM and single SD-functions,
GFNd-II.

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 100

1.2 Previous work on GFNd-II

GFNd-II with other types of SD-type functions have been thoroughly studied in
the literature, see Table 1.

Tight lower bounds on the number of both differentially and linearly active
S-boxes for GFN4-II with single SD-functions and single-round diffusion are
obtained in [11]: Every 6 rounds of GFN4-II are proven to provide at least
2B active S-boxes, where B is the differential and linear branch number of the
diffusion matrices used in the round functions.

Tight minimum numbers of differentially and linearly active S-boxes for
GFN4-II with double SD-functions and single-round diffusion are proven in [5].
The findings of [5] indicate that going from single SD-functions [11] to double
SD-functions improves the efficiency of GFN4-II by up to 50%, as measured by
the proportion of differentially and linearly S-boxes in all S-boxes of the cipher.
The work [5] proves that every 6 rounds of GFN4-II with double SD-functions
add at least 6B active S-boxes for both differential and linear cryptanalysis.

Bounds on the number of differentially and linearly active S-boxes for GFN4-
II with single SD-functions and DSM were obtained in [15]. It is proven that every
6 rounds add at least 2B differentially and linearly active S-boxes. However, this
bound is not tight, especially for the number of linearly active S-boxes. In fact,
the bound proven in [15] for DSM yields a lower number of active S-boxes than
for single-round diffusion. So there has been no proof so far that DSM has any
advantage over single-round diffusion. This paper will greatly improve upon this.

Table 1: Upper bounds on the number of linearly active S-boxes and efficiency
E (Definition 1) for GFNd-II with SD-type functions.

design rounds bound function diffusion tightness efficiency E

GFN4-II [11] 6 2B + 2 single SD single-round yes 1/6

GFN4-II [5] 6 6B double SD single-round yes 1/4∗

GFNd-II [15] 6 2B single SD DSM no 1/6

GFNd-II, here 6 3B single SD DSM yes 1/4

∗Note that one has a doubled number of S-boxes in a round for double SD-functions
B : See Definitions 3 and 4

1.3 Contributions of this paper

In this work, we prove that every 6 rounds of GFNd-II with multiple-round
diffusion (diffusion switching mechanism) and single SD-functions add at least
3B linearly active S-boxes, see Table 1. This is exactly the construction behind
the design of the lightweight block cipher CLEFIA, for the case of d = 4. B is
the branch number of the single- and multiple-round diffusion matrices (their
transposed inverses) used in the round functions. We experimentally demonstrate
that the new bound is tight for up to at least 12 rounds, whereas the previous
one is not.

The relevance of this bound is three-fold:

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 101

– This result indicates that the efficiency of CLEFIA-type GFNs is 50% higher
than previously proven, in terms of the proportion of linearly active S-boxes
in all S-boxes. This efficiency metric E is a valid efficiency metric introduced
in [16] and used in [2–5]. Its definition can be found in Definition 1.

– Moreover, the new result suggests that the efficiency of GFNd with SD-type
functions is equally improved both by moving from single to double SD-
functions [5] and by going from single-round diffusion to DSM over multiple
rounds – the central contribution of this paper.

– The new bounds is also the first provable evidence that GFNs with DSM can
actually provide more active S-boxes than GFNs with single-round diffusion.
Previously [14, 15], for GFNs, this advantage has been only demonstrated
numerically for some concrete CLEFIA-like examples.

2 Preliminaries

2.1 GFN4 with SD-functions

Type-I and type-II GFNs are block ciphers with the state equally divided into
an even number d ≥ 4 wide lines. They are referred to as GFNd-I and GFNd-II
in this paper. The structurs of GFNd-I and GFNd-II when d = 4 are as shown
in Fig. 1 and 2. In one round of both GFN4-I and GFN4-II, let the input xi of
round i be xi = (xi

1, x
i
2, x

i
3, x

i
4). Then the output of GFN4-I and and for GFN4-II

will be (xi
2⊕F i(xi

1), x
i
3, x

i
4, x

i
1) and (xi

2⊕F i
1(x

i
1), x

i
3, x

i
4⊕F i

2(x
i
3), x

i
1) respectively,

for some keyed nonlinear functions F i, F i
1 and F i

2. The j-th F-functions F i
j of

⊕
⊕

⊕
. . .

s1

. . .
s2

sm

M i
j

ki
j

SD-functionF i
j

Fig. 3: SD-function

round i often exhibit the Substitution-Diffusion (SD) structure
(For type-I, there is only one F-function in each round). Here, the subkey ad-
dition followed by a layer of m S-boxes, si, i = 1, . . . ,m, and an m × m linear
diffusion mapping M i

j over a binary finite field. Such F-functions are called SD-
functions. The structure of SD-functions is depicted in Fig. 3.

2.2 Diffusion Switching Mechanism

Diffusion Switching Mechanism (DSM) is a design approach for Feistel networks
proposed by Shirai and Shibutani [13] and used in CLEFIA [14]. In this tech-
nique, two or more distinct diffusion matrices in the round function are switched

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 102

among multiple rounds in a predefined order to prevent the difference (linear
mask) cancellation which occurs in the differential (linear) trails due to the fact
that only a single matrix is employed for linear diffusion. Therefore, it provides
a larger number of active S-boxes than the single-round diffusion and is adopted
to enhance the efficiency of Feistel ciphers against differential and linear crypt-
analysis. A linearly active S-box is defined as an S-box given the non-zero input
linear mask.

2.3 Efficiency Metrics

Here a definition of two popular efficiency metrics for ciphers with SD-functions
is given as introduced by Shirai and Preneel in [16]:

Definition 1. (Efficiency metrics [16]) The efficiency metric Em,r for a GFNd-
II cipher over r rounds is defined as

Em,r =
Am,r

Sm,r

where Am,r is the number of active S-boxes over r rounds and Sm,r is the total
number of S-boxes over r rounds. The efficiency metric E is defined as

E = lim
m,r→∞

Em,r,

which simplifies comparisons.

3 Minimum number of active S-boxes

In this section, we prove a lower bound on the number of linearly active S-
boxes for six rounds GFNd-II (d ≥ 4) with DSM, the untwisted form of which is
illustrated in Fig. 4. When the DSM design strategy is applied to GFNd-II, from
Fig. 4 we can see that the relation between two matrices M i

j in F i
j and M i+2

j−1 in

F i+2
j−1 for all possible i and j should be considered.

3.1 Branch numbers

First we recall the notions of branch numbers we will be using throughout the
section:

Definition 2. (Bundle weight [6]) Let x ∈ {0, 1}pn be represented as x =
(x0, x1, · · · , xp−1), where xi ∈ {0, 1}n, then the bundle weight wn(x) is defined
as

wn(x) = #{i|0 ≤ i ≤ p− 1, xi 6= 0}.
Definition 3. (Branch number [6]) Let permutation P : {0, 1}pn → {0, 1}qn.
The branch number of P is defined as

Bn(P) = min
a 6=0

{wn(a) + wn(P (a))}.

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 103

Similarly to Definition 3, one can define a linear branch number for two matrices:

Definition 4. (Linear branch number of multiple matrices [16]) The linear
branch number of two matrices is defined as

BL = min{Bn[
t(M i

j)
−1|t(M i+2

j−1)
−1]}.

where tM denotes the transpose of matrix M , [M |N] denotes an m×2m matrix
obtained by concatenating two m×m matrices M and N .

F
i+4
j−3

Fi
0

F
i+2
d
2
−1

F
i+4
d
2
−2

F
i+1
0

F
i+3
d
2
−1

F
i+5
d
2
−2

F
i+1
j

F
i+3
j−1

F
i+5
j−2

F
i+2
j−1

F
i+4
j−2

Fi
j+1

F
i+2
j

F
i+4
j−1

F
i+1
j+1

F
i+3
j

F
i+5
j−1

Fi
j+2

F
i+2
j+1

F
i+4
j

F
i+1
d
2
−1

F
i+5
d
2
−3

F
i+3
d
2
−2

F
i+1
j−1

F
i+3
j−2

F
i+5
j−3

Fi
j−1 Fi

j

F
i+2
j−2

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

. . .

. . .

. . .

. . .

. . .

. . .

⊕

Fig. 4: 6-round GFNd-II with DSM

3.2 Two basic properties

With respect to the j-th F-function F i
j in the i-th round, we denote Γxi

j and

Γyij as the input and output linear masks, Li
j as the number of linearly active

S-boxes in F i
j . Also Li denotes the number of linearly active S-boxes in the i-th

round and, thus, Li =
∑ d

2−1
j=0 Li

j . When DSM design strategy is employed in
GFNd-II, the following properties hold:

Property 1. Any two consecutive rounds of GFNs have at least one linear active
F-function if a non-zero linear mask input is given.

If the input linear mask in the first round is non-zero, the input lines added to
the output of F-funtion in the first round will become the input of the F-function
in the next round, it means that the input of both F-funtions in the consecutive
two rounds can not be zero at the same time.

The following property is derived in [15]:

Property 2. For any i and j, the set of Li
j , L

i+1
j and Li+2

j−1 satisfies one of the
two cases:

– Li
j = Li+1

j = Li+2
j−1 = 0;

– Li
j + Li+1

j + Li+2
j−1 ≥ BL, where two of the terms are always non-zero.

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 104

Three round linear mask relation Γxi+1
j = Γyij ⊕ Γyi+2

j−1 can be represented in

matrix form as Γxi+1
j = t(M i

j)
−1Γxi

j⊕t(M i+2
j−1)

−1Γxi+2
j−1. If any two of the above

terms are zero, it is obviously all the three are zero. Using the the notion of the
branch number Li

j , it implies the first case in Property 2; otherwise if any of
the three terms is non-zero, we can see at least two terms will be non-zero. In
addition, from

Γxi+1
j = [t(M i

j)
−1|t(M i+2

j−1)
−1]

(
Γxi

j

Γxi+2
j−1

)

and since [t(M i
j)

−1|t(M i+2
j−1)

−1] has a branch number at least BL, we obtain

wn(Γxi
j) + wn(Γxi+1

j) + wn(Γxi+2
j−1) ≥ BL,

and, thus, the second case of Property 2 is shown.

3.3 Main result

Based on the above two properties, now we can derive the main result of the
paper:

Theorem 1. Let d ≥ 4. Any consecutive six rounds of GFNd-II with DSM
guarantee at least 3BL linear active S-boxes.

Proof. We consider six consecutive rounds starting in the i-th round. Property 1
implies that at least one F-function has a non-zero linear mask in the 3rd or 4th
round, i.e. the (i+2)-th or the (i+3)-th round. We consider them separately as
Case 1 and Case 2.

Case 1. A non-zero linear mask exists in the 3rd round, i.e. Li+2
j 6= 0 .

Based on condition Li+2
j 6= 0 and Property 2, we get

Li
j+1 + Li+1

j+1 + Li+2
j ≥ BL (1)

and Li+1
j + Li+3

j−1 ≥ 1. Now we consider two subcases Li+1
j 6= 0 and Li+3

j−1 6= 0
as follows:
Case 1-1. If Li+1

j 6= 0, Property 2 implies that

Li
j + Li+1

j + Li+2
j−1 ≥ BL. (2)

Similarly, from condition Li+2
j 6= 0 and Property 2, Li+4

j−1+Li+3
j ≥ 1, i.e. at

least one of the inequalities can be obtained from Li+4
j−1 6= 0 and Li+3

j 6= 0
respectively:

Li+3
j−1 + Li+4

j−1 + Li+5
j−2 ≥ BL (3)

Li+3
j + Li+4

j + Li+5
j−1 ≥ BL (4)

If d = 4, F i+4
j will be F i+4

j−2 . Thus (4) will be Li+3
j + Li+4

j−2 + Li+5
j−1 ≥

BL. Therefore from the above inequalities (1), (2) and (3) or (1), (2) and
(4)(even when d = 4, there is no overlapped term in the three inequalities),
we get that in this case the minimum number of linearly active S-boxes is∑i+5

k=i

∑ d
2−1
j=0 Lk

j ≥ 3BL.

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 105

Case 1-2. If Li+3
j−1 6= 0, Property 2 guarantees (3) again. From condition Li+3

j−1 6=
0 and Property 2, Li+2

j−1 +Li+4
j−2 ≥ 1 can be obtained. Therefore at least one

of the two inequalities (2) and (5) with

Li+3
j−2 + Li+4

j−2 + Li+5
j−3 ≥ BL (5)

can be derived from Property 2, since of Li+2
j−1 6= 0 and Li+4

j−2 6= 0, respec-

tively. If d = 4, F i+3
j−2 and F i+5

j−3 will become F i+3
j and F i+5

j−1 respectively,

and (5) will be Li+3
j + Li+4

j−2 + Li+5
j−1 ≥ BL. Therefore based on the above

inequalities (1), (3) and (2) or inequalities (1), (3) and (5) (when d = 4,
there are still no overlapped terms), we can conclude that in this case
∑i+5

k=i

∑ d
2−1
j=0 Lk

j ≥ 3BL.

Case 2. Any non-zero linear mask exists in the 4th round, i.e. Li+3
j−1 6= 0.

Since Li+3
j−1 6= 0, from Property 2, (3) and Li+2

j−1 + Li+4
j−2 ≥ 1 can be derived.

Again, similarly to Case 1, two subcases will be considered as follows, Li+2
j−1 6= 0

and Li+4
j−2 6= 0:

Case 2-1. If Li+2
j−1 6= 0, Property 2 implies (2). Similarly based on condition

Li+2
j 6= 0 and Property 2, at least one of the two inequalities (5) and (6)

with

Li
j−1 + Li+1

j−1 + Li+2
j−2 ≥ BL (6)

can be obtained. When d = 4, (3) becomes Li+3
j−1 + Li+4

j−3 + Li+5
j−2 ≥ BL.

Thus the above inequalities (3), (2) and (5) or inequalities (3), (2) and (6),

guarantee that the minimum number of active S-boxes is
∑i+5

k=i

∑ d
2−1
j=0 Lk

j ≥
3BL.

Case 2-2. If Li+4
j−2 6= 0, Property 2 means that (5) holds. Moreover, from

condition Li+3
j−1 6= 0 and Property 2, Li+1

j + Li+2
j ≥ 1 can be obtained.

Therefore at least one of the two equalities (2) and (1) can be derived from
Property 2 since Li+1

j 6= 0 and Li+2
j 6= 0, respectively. When considering d =

4, (5) will be turned into Li+3
j + Li+4

j−2 + Li+5
j−1 ≥ BL. Therefore inequalities

(3), (5) and (1) or inequalities (3), (5) and (2), yield
∑i+5

k=i

∑ d
2−1
j=0 Lk

j ≥ 3BL.

Combining all the above cases, we can conclude that at least 3BL linear active
S-boxes are guaranteed in any six consecutive rounds of GFNd-II with DSM
(d ≥ 4) which yields the claim of the theorem.

Therefore, we have proven that every six rounds GFNd-II with DSM (d ≥ 4)
provide a tight upper bound of 3B on the number of linearly active S-boxes.
When d = 4, it is CLEFIA-type GFNs and, thus, we showed that any six rounds
of CLEFIA-type GFNs yield by 50% more linearly active S-boxes than previously
proven in [15], see also Table 1.

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 106

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
E

m
,r

r

m = 4, experiment

m = 8, experiment

m = 4, Theorem 1

m = 8, Theorem 1

m = 4, [15]

m = 8, [15]

Fig. 5: Experimental efficiency Em,r and bounds, m ∈ {4, 8}, for GFN4-II. The
new bound is tight e.g. for r = 6 and r = 12

4 Tightness, experiments and conclusions

We investigate two examples of GFN4-II with DSM and MDS diffusion matri-
ces [6,9] to show tightness of the bounds of Theorem 1: one with m = 4 and one
with m = 8. Note that BL = m+ 1 for MDS matrices. For these constructions,
we experimentally derive the actual numbers Am,r of linearly active S-boxes over
several rounds r. Then, using metric Em,r of Definition 1, we numerically com-
pute the efficiency of this construction over r rounds. These results are given in
Fig. 5, together with the bounds of Theorem 1, 3BL = 3(m+1), as well as those
of [15], 2BL = 2(m+ 1). To obtain the experimental results of Fig. 5, we adopt
the mixed-integer linear programming (MILP) technique proposed in [10] to find
the security bounds for the initialization phase of the Hitachi-designed stream
cipher Enocoro-128v2 [17] against both differential and linear cryptanalysis. The
optimizer CPLEX [7] is used in our implementation of the technique.

We observe that our bound appears tight for at least both r = 6 and r = 12
rounds, whereas the bound of [15] is not. Moreover, we see that considering
multiples of 6 rounds for the bound on the number of linearly active S-boxes

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 107

is the most informative choice since it is those numbers of rounds that provide
most efficiency.

We conclude with the observation that the bound of Theorem 1 delivers first
provable evidence that employing the diffusion switching mechanism in GFN
designs (and especially, in CLEFIA-type GFNs) actually provides an advantage
by guaranteeing more active S-boxes.

Acknowledgements Andrey Bogdanov is postdoctoral fellow of the Fund for Sci-
entific Research - Flanders (FWO). This work was supported in part by the
National Natural Science Foundation of China (No. 61073150), by the IAP Pro-
gramme P6/26 BCRYPT of the Belgian State, by the European Commission un-
der contract number ICT- 2007-216676 ECRYPT NoE phase II, by KU Leuven-
BOF (OT/08/027), and by the Research Council KU Leuven (GOA TENSE).

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms – Design
and Analysis. In: D.R. Stinson and S. Tavares, editors, SAC’00, vol. 2012 of LNCS,
pp. 39–56, Springer-Verlag (2001)

2. Bogdanov, A.: On the Differential and Linear Efficiency of Balanced Feistel Net-
works. Information Processing Letters 110(20), pp. 861–866, Elsevier (2010)

3. Bogdanov, A.: On Unbalanced Feistel Networks with Contracting MDS Diffusion.
Designs, Codes and Cryptography 59(1-3), pp. 35–58. Springer-Verlag (2011)

4. Bogdanov, A., Shibutani, K.: Double SP-Functions: Enhanced Generalized Feistel
Networks. In: U. Parampalli and P. Hawkes (eds.), ACISP 2011, LNCS, vol. 6812,
pp. 106–119, Springer-Verlag (2011)

5. Bogdanov, A., Shibutani, K.: Generalized Feistel Networks Revisited. WCC’11,
Workshop on Coding and Cryptography (2011). Submitted to Designs, Codes and
Cryptography (2011)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES— The Advanced Encryption
Standard. Information Security and Cryptography, Springer-Verlag (2002)

7. IBM: IBM ILOG CPLEX Optimizer.
8. Kanda, M., Moriai, S., Aoki, K., Ueda, H., Takashima, Y., Ohta, K., Matsumoto,

T.: E2 – A New 128-Bit Block Cipher. IEICE Trans. Fundamentals, vol. E83-A(1),
January 2000.

9. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its
Applications 20. Cambridge University Press (1997)

10. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis
using Mixed-Integer Linear Programming. In: Inscrypt’11. LNCS, Springer-Verlag
(2011)

11. Shibutani, K.: On the Diffusion of Generalized Feistel Structures Regarding Dif-
ferential and Linear Cryptanalysis. In: SAC’10. LNCS, Springer-Verlag (2010)

12. Shibutani, K. Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: B. Preneel and T. Takagi, editors, CHES’11,
vol. 6917 of LNCS, Springer-Verlag (2011)

13. Shirai, T., Shibutani, K.: Improving immunity of feistel ciphers against differential
cryptanalysis by using multiple mds matrices. In: FSE’04, LNCS, vol. 3017, pp.
260-278. Springer-Verlag (2004)

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 108

14. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-
cipher CLEFIA (Extended Abstract). In: FSE’07. LNCS, vol. 4593, pp. 181–195.
Springer-Verlag (2007)

15. Shirai, T., Araki, K.: On Generalized Feistel Structures Using the Diffusion Switch-
ing Mechanism. IEICE Transactions 91-A(8), pp. 2120–2129 (2008)

16. Shirai, T., Preneel, B.: On Feistel Ciphers Using Optimal Diffusion Mappings
Across Multiple Rounds. In: ASIACRYPT’04. LNCS, vol. 3329, pp. 1–15. Springer-
Verlag (2004)

17. Watanabe, D., Okamoto, K., Kaneko, T.: A Hardware-Oriented Light Weight
Pseudo-Random Number Generator Enocoro-128v2. In: The Symposium on Cryp-
tography and Information Security. pp. 3D1-3 (2010)

18. Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: CRYPTO’89.
LNCS, vol. 435, pp. 461–480. Springer-Verlag (1989)

19. Wu, W., Zhang, W., Lin, D.: Security on Generalized Feistel Scheme with SP
Round Function. I. J. Network Security 3(3), 215–224 (2006)

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 109

THE PROVABLE CONSTRUCTIVE EFFECT OF DIFFUSION SWITCHING MECHANISM ... 110

Chapter 8

Related-Key Rectangle
Cryptanalysis of Rijndael-160
and Rijndael-192

Publication Data

Q. Wang, Z. Liu, D. Toz, K. Varıcı, D. Gu: Related-Key Rectangle Cryptanalysis
of Rijndael-160 and Rijndael-192. IET Information Security, 9(5): 266–276,
2015.

Contributions

Major contributor.

• Do the experiments and construct the distinguishers.

• Write the text from the very beginning to Section 4.

• Verify the attacks of Section 5 and 6.

111

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 112

Related-Key Rectangle Cryptanalysis of
Rijndael-160 and Rijndael-192

Qingju Wang1,4, Zhiqiang Liu1,4, Deniz Toz1,2, Kerem Varici1,3, and Dawu Gu4

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
800 Dongchuan Road, Minhang District, Shanghai, 200240, China
2 Clear2Pay, De Kleetlaan 6A, 1831 Diegem, Brussels, Belgium

3 ICTEAM-Crypto Group, Universite catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium

4 ESAT/COSIC, KU Leuven and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

qingju.wang@esat.kuleuven.be, ilu zq@163.com

deniz.toz@gmail.com,kerem.varici@uclouvain.be,dwgu@sjtu.edu.cn

Abstract. In this paper we present the first related-key rectangle crypt-
analysis of Rijndael-160/160 and Rijndael-192/192. Our attack on Rijndael-
160/160 covers eight rounds. The attack complexities are 2126.5 cho-
sen plaintexts, 2129.28 8-round Rijndael-160/160 encryptions and 2132.82

bytes. Our attack on Rijndael-192/192 covers ten rounds. It requires
2179 chosen plaintexts, 2181.09 10-round Rijndael-192/192 encryptions
and 2185.59 bytes memory. These are the currently best cryptanalytic re-
sults on Rijndael-160/160 and Rijndael-192/192 in terms of the number
of attacked rounds. Furthermore, our results show that the slow diffusion
in the key schedule of Rijndael makes it a target for this type of analysis.

Keywords: Rijndael, related-key attack, rectangle cryptanalysis

1 Introduction

Block ciphers are used widely in cryptography to ensure confidentiality and au-
thenticity. They are needed both in software and in hardware. For example, they
are used in electronic payments or for wireless security. For different demands,
different algorithms are designed [1–3] and they have been standardised as well.
Apart from this main functionality, block ciphers are also used as underlying
primitives in the design of hash functions or pseudo-random number generators.

Rijndael [2] is a block cipher designed by Daemen and Rijmen and is a
substitution-permutation network following the wide-trail strategy. Both the
block length and the key length can be any multiple of 32 bits, with a mini-
mum of 128 bits and a maximum of 256 bits, independently of each other with
key size greater than or equal to block size. The 128-bit block variant of Rijndael
has been chosen as the Advanced Encryption Standard (AES) [4]. This paper
deals with non-AES Rijndael variants, that is, Rijndael-b/k where b indicates
the block size and k indicates the key size in bits.

113

Without doubt AES is one of the most well-studied block ciphers: since its
introduction 15 years ago there has been extensive analysis of AES. Some promi-
nent examples include square attacks, impossible differential attacks, boomerang
attacks, rectangle attacks and meet-in-the-middle attacks in both the single-key
and related-key settings [5–18].

On the other hand, the variants of Rijndael with larger block sizes have
got arguably less attention from the cryptographic community. Current analy-
sis includes several multiset and integral attacks [19–22], as well as impossible
differential cryptanalysis [23–25]. A summary of these attacks and their time
and data complexities are given in Table 1. An important motivation for the
study of large-block Rijndael is the deployment of Rijndael-like permutations
in the design of hash functions, Whirlwind [26], SHAvite-3 [27], Whirlpool [28],
ECHO [29], PHOTON [30] and SHA-3 finalist Grøstl [31] constituting some
especially interesting instances.

The rectangle attack [32] introduced by Biham et al. is a special type of
differential cryptanalysis. The main idea of the attack is to divide the cipher
E into two sub-ciphers E0 and E1 such that E = E1 ◦ E0. The attacker then
constructs two relatively short differentials for E0 and E1 instead of finding a
long differential for the block cipher E. After that, a rectangle distinguisher for
E can be established by combining these two short differentials delicately. This
technique is useful when we have short differentials with high probability instead
of long ones with lower differential probabilities.

In the related-key model, the attacker can decrypt/encrypt not only under
the master key K, but also under the keys f1(K), f2(K) . . . fm(K), which are
called related-keys. The relations fi are chosen by the attacker in advance. The
aim of the attacker is to recover the master keys. The first related-key attacks
consider simple mappings, for example, rotations [33] and bit flips [34]. Recent
attack on AES [18] exploits the difference not between the master keys but
between the subkeys. The extra control might make the attack harder to mount
in practice. However, the designers still usually make great efforts to build ideal
primitives which can be used without further cryptanalysis to the applications of
modes of operation or protocols. Related-key attacks are applied to the attacks
on the protocols that use ciphers as a building block [35]. Contrasting to the
single-key attack, related-key attack recovers a secret parameter of the protocol.
Therefore resistance to related-key attack becomes one of the important design
aims for block ciphers, actually this was also stated as one of the design goals of
the Rijndael.

Moreover it is also possible to combine rectangle-type attack with related-
key attack to derive a more efficient cryptanalytic approach [36]. Actually, this
type of combined approach has been applied to various block ciphers and some
intriguing results have been achieved for AES [18,37] and KASUMI [38,39].

Contributions. In this paper we propose related-key rectangle attacks on reduced-
round versions of Rijndael-160/160 and Rijndael-192/192. Our attacks use the
idea of switch technique [40] and local collisions in [18]. We construct 6 and 8-
round rectangle distinguishers of Rijndael-160/160 and Rijndael-192/192, based

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 114

on which we attack 8 and 10 rounds of these two ciphers respectively. To our
knowledge, our results are the best ones in terms of the number of attacked
rounds. The attacks on Rijndael-160/160 and Rijndael-192/192 are summarized
in Table 1.

Table 1: Summary of Attacks on Rijndael-160/160 and Rijndael-192/192

C
ip
h
er

No. Complexity
Attack Type Ref.of Time Data Memory

Rd (EN) (CP) (Bytes)

R
ijn

d
a
el-1

6
0
/
1
6
0

6 2135 2105.5 - Imp. Diff. [23]
6 281.9 2147 - Imp. Diff. [24]

7 2144 2130.6 2128 Multiset [20]
7 281.9 2147 - Imp. Diff. [24]
7 2108 294.6 292 Integral [41]
7 298.6 298.6 - Integral [22]

8 2129.28 2126.5
† 2132.82

RK §5
Rectangle

R
ijn

d
a
el-1

9
2
/
1
9
2

6 2151 2121.5 293 Imp. Diff. [23]
6 2113.8 293.2 293 Imp. Diff. [24]

7 2120 2128 − 2119 261 Partial Sum [19]
7 2144 2130.6 2128 Multiset [20]
7 266.6 266.6 - Integral [22]
7 2174.5 228.5 - Integral [22]

8 2188 2128 − 2119 Partial Sum [19]
8 2177.4 2158 2157 Imp. Diff. [24]
8 281.4 2179 261 Imp. Diff. [24]
8 2174.5 268.5 - Integral [22]
8 2162.6 2162.6 - Integral [22]

9 2174.5 2164.5 - Integral [22]

10 2181.09 2179
‡ 2185.59

RK §6
Rectangle

CP: Chosen Plaintext; EN: Encryptions
†2128.5 ciphertexts under 4 related keys; ‡2181 ciphertexts under 4 related keys

Outline. This paper is organized as follows. In Section 2 we give a brief descrip-
tion of Rijndael and the notations used in our analysis. Section 3 introduces
the rectangle attack briefly and shows our rectangle distinguishers. We demon-
strate our attacks on Rijndael-160/160 and Rijndael-192/192 in Sections 5 and 6,
respectively. Finally, Section 7 concludes this paper.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 115

2 Description of Rijndael and Notations

In Rijndael, each data block (plaintext, ciphertext, subkey, or intermediate step)
is represented by a 4 × Nb state matrix of bytes, where Nb is the block size
divided by 32. The state is then transformed by iterating a round function. The
round function is composed of the following four operations:

– SubBytes (SB) : a non-linear byte substitution (8 × 8-bit S-box) that acts
on every byte of the state.

– ShiftRows (SR): a cyclic shift of bytes in a row that acts individually on
each of the last three rows of the state. The shift offset Ci of row i depends
on the block length Nb (See Fig. 1).

– MixColumns (MC): a linear transformation (based on an [8, 4, 5] MDS code
over GF (28)) that acts independently on every column of the state

– AddRoundKey (AK): the exclusive-or of the round key with the intermediate
state.

The number of rounds for the cipher Nr varies with Nb and Nk (the key size
divided by 32). Before the first round, there exists a whitening layer consisting of
AddRoundKey only, and in the last round the MixColumns operation is omitted.
We assume that this is also the case for the reduced round versions of Rijndael.

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(a) Byte index

Nk
Nb

4 5 6 7 8
4
5
6
7
8

(b) Number of rounds

10
11
12
13
14

13
13
13
13
14

Nb C0 C1 C2 C3

(c) Shift offsets

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

256224196160128

12
12
12
13
14

4
5
6
7
8

0
0
0
0
0

1
1
1
1
1

2
2
2
2
3

3
3
3
4
4

14
14
14
14
14

11
11
12
13
14

Fig. 1: Byte Index of the State Matrix and the Shift Offsets for Each Block
Length Nb

Key Scheduling: The key schedule derives (Nr+1) b-bit round keys RK0, RK1

. . .RKNr
from the master key. It consists of a linear array of 4-byte words de-

noted byW [i] for 0 ≤ i ≤ Nb·(Nr+1). The firstNk wordsW [0]‖W [1]‖ · · · ‖W [Nk−
1] are directly initialized with the words of the master key, while the remaining
key words, W [i] for i ∈ [Nk, Nk · (Nr + 1) − 1] are generated by the following
algorithm:

if (i mod Nk = 0) then W [i] = W [i−Nk]⊕SB(W [i−1] ≪ 8)⊕Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4) then W [i] = W [i−Nk]⊕SB(W [i−1])

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 116

W [0] W [1] W [2] W [3] W [4] W [6] W [7] W [8] W [9] W [56]W [57] W [58] W [59]

RK0 RK1 RK11

· · ·

· · ·

W [5n] = W [5n− 5]⊕ SB(W [5n− 1] <<< 8)⊕Rcon[n]

W [i] = W [5i− 5]⊕W [5i− 1], i 6= 5n

W [5] W [55]

Fig. 2: Key expansion and round key selection for Nb = Nk = 5.

else W [i] = W [i−Nk]⊕W [i− 1]

where ≪ denotes the rotation of the word to the left and Rcon[·] denotes the
fixed constants. Then the round key RKi is given by the words W [Nb · i] to
W [Nb · (i+ 1)]. The key expansion and the the round key selection of Rijndael-
160/160 are illustrated in Fig. 2. Here we only give a brief description of Rijndael,
for more detailed specification of the cipher, we refer to [2].

Notation: The notation that we will use throughout this paper is as follows:

Pa, Pb, Pc, Pd the plaintexts
(Pa)i,j ,(Pb)i,j ,(Pc)i,j ,(Pd)i,j the byte at row i column j of the plaintext state
Ca, Cb, Cc, Cd the ciphertexts
Ka, Kb, Kc, Kd secret related keys
(Ka)i,j , (Kb)i,j , (Kc)i,j , (Kd)i,j the byte at row i column j of the secret related keys
Kr

a, K
r
b , K

r
c , K

r
d secret subkey of Ka, Kb, Kc and Kd in round r

∆Kr
ab, ∆Kr

ac, ∆Kr
cd, ∆Kr

bd the difference of the related keys in round r
(∆Kr

ab)i,j difference byte of state ∆Kr
ab, at position row i and column j

SB[(i, j)] the SB operation on the byte at row i column j of the state matrix
SB[{(i, j)}] the SB operation on the subset bytes {(i, j)} of the state matrix

E(·, ·) encryption operation defined as {0, 1}n × {0, 1}k → {0, 1}n

3 Rectangle Attack

The rectangle attack introduced by Biham et al. [32] aims to reduce the complex-
ity of the differential cryptanalysis. The main idea is to use two short differential
characteristics with high probabilities instead of one long characteristic with a
lower probability. It is also possible to combine rectangle attack with related-
key attack to derive the related-key rectangle attack [36] in which the attacker
can query to the cipher with other keys that have a specified relation (often an
xor-difference) with the original key.

Let the encryption function E of the block cipher be considered as a cas-
cade of two sub-ciphers E = E1 ◦ E0. Assume that there exists a related-key
differential α → β for E0 under the key difference ∆Kab with probability p, i.e.,
(Pr[E0(P,K)⊕E0((P ⊕α), (K⊕∆Kab)) = β] = p). Similarly, assume that there
exists a related-key differential γ → δ for E1 under the key difference ∆Kac

with probability q, where ∆Kab and ∆Kac are the key differences known by the
attackers. A related-key rectangle distinguisher is then as follows:

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 117

E0 E0

E0 E0

E1 E1

E1

Pb

Pa

Pd

Pc

Cb Cd

Ca Cc

α

β
γ

γ
β

α

δ

δ E1

∆Kab

∆Kac

Fig. 3: The Related-Key Rectangle Distinguisher

1. Choose N plaintext pairs (Pa, Pb) with Pb = Pa ⊕ α at random. Ask for
the encryption of Pa under Ka and of Pb under Kb, respectively, where
Kb = Ka ⊕∆Kab.

2. Choose N plaintext pairs (Pc, Pd) with Pd = Pc ⊕ α at random. Ask for
the encryption of Pc under Kc and of Pd under Kd, respectively, where
Kc = Ka ⊕∆Kac and Kd = Kc ⊕∆Kab = Kb ⊕∆Kac.

3. For a quartet of plaintexts (Pa, Pb, Pc, Pd) with corresponding ciphertexts
(Ca, Cb, Cc, Cd), check whether Ca ⊕ Cc = Cb ⊕ Cd = δ holds or not. If yes,
we call it a right rectangle quartet. Fig. 3 illustrates the related-key rectangle
distinguisher.

The related-key rectangle attack can be mounted for all possible β’s and γ’s si-

multaneously. Firstly, we can use any γ for which γ
E1−−→ δ holds. This is equivalent

to mounting the attack for all values of γ with the condition (E0(Pa), E0(Pc))
and (E0(Pb), E0(Pd)) have the same difference (γ). In this case the probability
that conditions of the distinguisher are satisfied is

2−np2
∑

γ
E1−−→δ

Pr2[γ
E1−−→ δ] = 2−np2q̂2,

where n is the block size, and q̂ =

√∑
γ

E1−−→δ
Pr2[γ

E1−−→ δ]. Similarly, we can use

all β values simultaneously as well. Conditions for this case become: E0(Pa) ⊕
E0(Pb) = E0(Pc) ⊕ E0(Pd) = β and E0(Pa) ⊕ E0(Pc) = γ and the quartet has
probability Pr2[γ → δ] to become a right quartet. Hence, the probability that a
given quartet is a right quartet is

2−n
∑

α
E0−−→β

Pr2[α
E0−−→ β]

∑

γ
E1−−→δ

Pr2[γ
E1−−→ δ] = 2−np̂2q̂2,

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 118

where p̂ =

√∑
α

E0−−→β
Pr2[α

E0−−→ β]. Therefore starting with N plaintext pairs

with difference α, we expect to find N22−n(p̂q̂)2 right quartets. For an ideal
cipher, Step 3 is expected to hold with probability 2−2n. Therefore, if p̂q̂ ≫
2−n/2, the algorithm above allows to distinguish E from an ideal cipher. We
refer to [32,36,42,43] for more detail.

3.1 Local Collision

A local collision is a differential that starts and ends with the zero difference
in the internal state, but is non-zero in the middle. The idea of local collisions
has been first introduced by Joux and Chabaud [44] to attack hash functions.
It aims to inject a difference into an intermediate step and then to correct the
resulting differences with the injections in the next steps to obtain a collision.
The goal is to reduce the complexity of the attack by having as few disturbances
as possible. This idea has been later successfully applied to block ciphers in [18].
A local collision of Rijndael-160/160 is shown in Fig. 4.

In order to construct an optimal trail, first of all we construct a minimal-
weight disturbance layer, which will become a part of the key schedule difference.
Then, correction layer is constructed by encrypting on the previous round of the
disturbance layer. The key schedule difference is the sum of the disturbance
and the correction layers. The 4-round Rijndael-160/160 key schedule difference
constructed from local collisions is illustrated in Fig. 5. We follow this approach
in our analysis of Rijndael-160/160 and Rijndael-192/192.

SB

SR MC

Disturbance

Correction

AK

AK

01

1f

3e

1f

1f

21
3e

1f

1f

21

Fig. 4: A Local Collision of
Rijndael-160/160

Disturbance

Correction

Key

+

‖

01 0101 01 0101010101

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3e
1f
1f
21

3f
1f
1f
21

3e
1f
1f
21

3f
1f
1f
21

3e
1f
1f
21

3f
1f
1f
21

3e
1f
1f
21

3f
1f
1f
21

3e
1f
1f
21

3f
1f
1f
21

01

01 010101 01

Fig. 5: Constructing Related-keys from
Local Collisions

3.2 The Related Keys

In order to mount the related-key attacks presented in this paper, the adversary
needs to construct the relations between different keys as follows.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 119

Regarding Rijndael-160/160, for a secret key Ka, which the attacker tries to
find, we define a simple form of this relation as xor with a constant to obtain
Kb: Kb = Ka⊕∆K0

ab, where the constant ∆K0
ab is chosen in advance (see Table

2). Then we compute the subkeys K4
a and K4

b , based on which, the subkeys
K4

c and K4
d can be calculated by using the subkey difference ∆K4

ac. After that,
according to the key schedule of Rijndael-160/160, we can derive Kc and Kd

from the subkeys K4
c and K4

d , respectively. This is depicted in Fig. 6.

K0
a K1

a K2
a K3

a K4
a

K0
b K4

b

⊕∆K0
ab

⊕∆K4
ac

K4
c

K4
d

⊕∆K4
ac

Ka

Kb

Kc

Kd

Fig. 6: The Related-Key Computation of Rijndael-160/160

For Rijndael-192/192, a more complex non-linear forms of the relation be-
tween the keys will be adopted. We choose a desired XOR relation in the second
subkey as ∆K1

ab, and then define the implied relation between the actual keys
Ka and Kb as: Kb = F−1(F (Ka)⊕∆K1

ab) where F represents a single round of
the Rijndael-192/192 key schedule. Similar to Rijndael-160/160, we can define
the relation between Kb, Kc and Kd for Rijndael-192/192 (see Table 3).

3.3 Rectangle Switch

In this Subsection we focus on the transition between the top characteristic E0

and the bottom characteristic E1 of the rectangle. This method is called switch
technique [40] and it has been used to improve the probability of boomerang
distinguisher [18, 39, 45]. In this paper, we apply this switch technique to our
rectangle distinguishers on Rijndael. Let E be (m + n)-round Rijndael cipher.
Then, the common application is to choose

E0 = (AK ◦MC ◦ SR ◦ SB)m

E1 = (AK ◦MC ◦ SR ◦ SB)n

However, due to the flexibility of the SB operation (i.e., it is applied to each
byte in the state independently), this choice of E0, E1 can be done in a more

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 120

Table 2: Related-key Differences for Rijndael-160
∆Kr

ab

0

3f 3e 3f 3e 00

1

3f 01 3e 00 00

2

3f 3e 00 00 00

3

3f 01 01 01 01

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

21 21 21 21 00 21 00 21 00 00 21 21 00 00 00 21 00 00 00 00

∆Kr
ac

4

21 21 21 21 00

5

21 00 21 00 00

6

21 21 00 00 00

7

21 00 00 00 00

3e 3f 3e 3f 00 3e 01 3f 00 00 3e 3f 00 00 00 3e 01 01 01 01

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

8

21⊕ x∗ 21⊕ x 21⊕ x 21⊕ x 21⊕ x
3e 3f 3e 3f 3e

1f 1f 1f 1f 1f

1f 1f 1f 1f 1f
∗ x might differ for ∆K8

ac and ∆K8
bd

Table 3: Related-key Differences for Rijndael-192
∆Kr

ab

0

? 3e 00 00 3f 3e

1

3f 01 01 01 3e 00

2

3f 3e 3f 3e 00 00

? 1f 00 00 1f 1f 1f 00 00 00 1f 00 1f 1f 1f 1f 00 00

? 1f 00 00 1f 1f 1f 00 00 00 1f 00 1f 1f 1f 1f 00 00

? 21 00 00 21 21 21 00 00 00 21 00 21 21 21 21 00 00

3

3f 01 3e 00 00 00

4

3f 3e 00 00 00 00

5

3f 01 01 01 01 01

1f 00 1f 00 00 00 1f 1f 00 00 00 00 1f 00 00 00 00 00

1f 00 1f 00 00 00 1f 1f 00 00 00 00 1f 00 00 00 00 00

21 00 21 00 00 00 21 21 00 00 00 00 21 00 00 00 00 00

∆Kr
ac

6

00 21 21 21 21 00

7

00 21 00 21 00 00

8

00 21 21 00 00 00

00 3e 3f 3e 3f 00 00 3e 01 3f 00 00 00 3e 3f 00 00 00

00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00

00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00

9

00 21 00 00 00 00 10 x∗ 21⊕x 21⊕x 21⊕x 21⊕x 21⊕x
00 3e 01 01 01 01 00 3e 3f 3e 3f 3e

00 1f 00 00 00 00 00 1f 1f 1f 1f 1f

00 1f 00 00 00 00 00 1f 1f 1f 1f 1f
∗ x might differ for ∆K10

ac and ∆K10
bd

clever way. Let {(i, j)} and {(i′, j′)} be subsets of the state set, SB[{(i, j)}] and
SB[{(i′, j′)}] be the SB operations on the bytes {(i, j)} and {(i′, j′)}, respectively.
Then E0 and E1 can alternatively be defined as follows:

E0 = SB[{(i, j)}] ◦ (AK ◦MC ◦ SR ◦ SB)m,

E1 = (AK ◦MC ◦ SR ◦ SB)n−1 ◦AK ◦MC ◦ SR ◦ SB[{(i′, j′)}], (1)

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 121

where {(i, j)} is the absolute complement of {(i′, j′)} in the state set, and the
bytes (i, j) and (i′, j′) are passive in E0 and E1, respectively. For example, in
our rectangle distinguisher of Rijndael-160/160, we take m = 2, n = 4. The first
subcipher E0 covers rounds 2–3 of Rijndael-160/160 and SB operations on 12
bytes (i, j) in round 4, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4; The second subcipher
E1 starts with the SB operations on 8 bytes (i′, 0), (0, j′) in round 4 (1 ≤ i′ ≤ 3,
0 ≤ j′ ≤ 4), followed by AK ◦MC ◦ SR and rounds 5–7. Our 6-round rectangle
distinguisher is illustrated in Fig. 7.

4 The Rectangle Distinguishers

In the analysis of Rijndael-160/160, we use a 6-round rectangle distinguisher,
and extend one round before and after the distinguisher respectively (see Fig. 7).
Our rectangle distinguisher covers rounds 2–7 and we use the switch technique
in round 4 to avoid the active S-boxes in the key schedule and hence to reduce
the complexity of our attack. We take m = 2 and n = 4 in Equation (1) to
obtain E0 and E1.

The plaintext difference α is specified in 16 bytes (the left four columns),
two of them(denoted as “?”) can take any value whereas the remaining ones are
fixed to (0x3e,0x1f,0x1f,0x21)T. The key difference is chosen such that when
it is xored to the state, all differences cancel each other except the two bytes at
(0, 0) and (0, 2) of the top characteristic. For the differences in these two active
bytes we have:

(0x01⊕ α0,i)
SB−−→ 0x1f, i ∈ {0, 2} (2)

This guarantees that the input differences to the S-box operations in all the
internal states (except the ones specified in Equation 2) are 0x01. For the active
bytes in round 2 of the top characteristic, we adopt 0x1f as the output difference
of SB operation in order to achieve the optimal differential probability 2−6. We
develop the bottom characteristic by taking an similar approach. As to the active
byte in round 3 of the top characteristic, there are 127 possibilities of the output
difference for the input difference 0x01 according to the differential distribution
table of SB operation, among which one happens with the probability 2−6, the
others happen with probability 2−7. Then we construct the 6-round related-key
rectangle distinguisher by combining the 127 top characteristics and one bottom
characteristic mentioned above.

The probability of the 6-round distinguisher can be computed as follows.

– There are three active S-boxes in rounds 2–3, thus the probability of the 127
differentials for E0 can be calculated as p̂ =

√
(2−6)2·2[1 · (2−6)2 + 126 · (2−7)2]

≈ 2−10.5.
– There are five active S-boxes in rounds 4–7, thus the probability of the

differential for E1 is q̂ = (2−6)5 = 2−30.
– In total, the probability of this distinguisher can be calculated as (2−10.5 ·

2−30)2 · 2−160 = 2−251.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 122

Similarly, we find a 8-round rectangle distinguisher for Rijndael-192/192
which covers rounds 2–9, and the rectangle switch technique is applied at round
6 (see Fig. 8). There are 9 active S-boxes in the differential characteristics of E0

(Note that for the active S-box in round 5, all the 127 possible output differences
are used to derive 127 characteristics), and the probability can be computed as
p̂ =

√
(2−6)2·8[1 · (2−6)2 + 126 · (2−7)2] ≈ 2−51.5. For the differential character-

istic of E1, there are 5 active S-boxes and the probability is q̂ = (2−6)5 = 2−30.
In total, the distinguisher holds with probability (2−51.5 · 2−30)2 · 2−192 = 2−355.

Moreover, the differences after the MC operations are given as:




0x1f

0
0
0




MC−−→




0x3e

0x1f

0x1f

0x21


 ;




0
0x1f

0
0




MC−−→




0x21

0x3e

0x1f

0x1f




5 Attack on 8-Round Rijndael-160/160

By using the 6-round distinguisher for round 2–7 given in Subsection 4, we now
present a key recovery attack on 8-round Rijndael-160/160 (round 1–8). Based
on Fig. 7, an adversary aims to collect sufficient plaintext quartets such that
among these plaintext quartets there are averagely 4 right quartets with respect
to the 6-round distinguisher. Then among all the collected plaintext quartets,
the expected number of quartets satisfying the input and output differences of
this distinguisher for a random permutation is (4/2−251) · 2−320 = 2−67. From
this the adversary could distinguish the correct value from the wrong guessed
values of the subkey bytes adopted in rounds 1 and 8 which are related to the
6-round distinguisher with a high probability. The attack procedure is divided
into two phases: data collection phase and key recovery phase.

Data Collection

1. Collect N structures Gi = {Ui, Vi} of 217 plaintexts each, where 1 ≤ i ≤ N ,
Ui, Vi are the sets of 216 plaintexts of the form

? c1 ? c2 c3
c4 c5 c6 c7 c8
c9 c10 c11 c12 c13
c14 c15 c16 c17 c18

and

? c1 ⊕ 3e ? c2 ⊕ 3e c3
c4 ⊕ 1f c5 ⊕ 1f c6 ⊕ 1f c7 ⊕ 1f c8
c9 ⊕ 1f c10 ⊕ 1f c11 ⊕ 1f c12 ⊕ 1f c13
c14 ⊕21 c15 ⊕ 21 c16 ⊕ 21 c17 ⊕ 21 c18

,

respectively, c′is (1 ≤ i ≤ 18) are fixed 8-bit values and ‘?’ takes all possible
values.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 123

S
B

S
R

M
C

4
5

S
B

6
7

S
R

M
C

S
R

M
C

S
R

M
C

S
B

S
B

S
B

E
1

P
as
si
ve

B
y
te

A
rb
it
ra
ry

D
iff
er
en
ce

U
n
k
n
ow

n
F
ix
ed

D
iff
er
en
ce

1
2

S
R

M
C

S
R
M
C

S
B

S
B

S
B

E
0

3

S
R
M
C

S
R

8

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

?
?

? ? ? ?

?
?

?
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?
?

?
?

?

01
01

01
01

01

01
01

01
01

01
01

01
01

3f
3f

3f
3f

3f

1f
1f

1f
1f

1f
1f

1f
1f

1f
1f

1f
1f

1f

01
01

01
01

1f 1f 21

3e 1f 1f 21

3f 1f 1f 21

3e 1f 1f 21

1f 1f 21

1f 1f 213e

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

1f 1f 21

1f 1f 21

1f 1f 21

1f 1f 213e

1f 1f 213e
1f 1f 213e

1f 1f 21

21 1f 1f

3e21 1f 1f

3f21 1f 1f

3e21 1f 1f

3f21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e21 1f 1f

3f21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e21 1f 1f

3f21 1f 1f

3e21 1f 1f

3e21 1f 1f

3e 1f 1f

3e 1f 1f

3e 1f 1f

3f 1f 1f

3f 1f 1f

3e 1f 1f
1f 1f

1f 1f
1f 1f

1f 1f

?

F
ig
.
7
:
T
h
e
R
el
at
ed

-k
ey

R
ec
ta
n
gl
e
A
tt
ac
k
on

8-
R
ou

n
d
R
ij
n
d
ae
l-
16
0/
16
0.

S
w
it
ch

is
ap

p
li
ed

in
R
ou

n
d
4

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 124

2. Let T 1a = {X1
i }1≤i≤N , T 1b = {Y 1

i }1≤i≤N , T 2a = {X2
i }1≤i≤N , T 2b =

{Y 2
i }1≤i≤N , T 1c = {Z1

i }1≤i≤N , T 1d = {W 1
i }1≤i≤N , T 2c = {Z2

i }1≤i≤N and
T 2d = {W 2

i }1≤i≤N . Then for the case of (T 1a, T 1b, T 1c, T 1d), we can con-
struct (216 · 216 ·N)2 = 264 ·N2 plaintext quartets meeting the input differ-
ence of round 1 given in Fig. 7. Similarly we can obtain 264 · N2 plaintext
quartets satisfying the input difference of round 1 for (T 1a, T 1b, T 2c, T 2d),
(T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d), respectively, resulting in 264 ·
N2 · 4 = 266 ·N2 plaintext quartets in total. Among these plaintext quartets
there are about 266 · N2 · (2−16)2 · 2−251 = 2−217 · N2 right quartets. Let
2−217 ·N2 = 4, we can deduce that N = 2109.5.

3. Next, derive ciphertext quartets (Ca, Cb, Cc, Cd) and corresponding plain-
text quartets (Pa, Pb, Pc, Pd) from (T 1a, T 1b, T 1c, T 1d), (T 1a, T 1b, T 2c, T 2d),
(T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d) in an efficient way, such that
(Pa, Pb, Pc, Pd), (Ca, Cb, Cc, Cd) satisfy the input and output differences of
rounds 1 and 8, respectively, as shown in Fig. 7. Firstly, for the case of
(T 1a, T 1b, T 1c, T 1d) do the following:
– Initialize two vectors Lac and Lbd consisting of 288 lists Lac

η and Lbd
η ,

respectively, where η corresponds to a 11-byte value (i.e., the bytes
(1,4) and (i, j) of a ciphertext, where 2 ≤ i ≤ 3, 0 ≤ j ≤ 4), Lac

η =

{Sa
η , S

c
η, N

a
η , N

c
η}, Lbd

η = {Sb
η, S

d
η , N

b
η , N

d
η }, Sa

η , S
b
η, S

c
η, S

d
η are the sets

of ciphertexts under Ka, Kb, Kc and Kd, respectively, as well as their
structure indices, and Na

η , N
b
η , N

c
η , N

d
η denote the cardinalities of the sets

Sa
η , S

b
η, S

c
η and Sd

η , respectively.

– For each ciphertext in T 1a, extract the 88-bit value η, then insert the
ciphertext and its structure index into the set Sa

η of the corresponding
list Lac

η and increase Na
η by 1. For each ciphertext in T 1c, xor it with

00 00 00 00 00

00 00 00 00 3e

1f 1f 1f 1f 1f

1f 1f 1f 1f 1f

and then extract the 88-bit value η. After that, insert the ciphertext
and its structure index into the set Sc

η of the corresponding list Lac
η and

increase N c
η by 1. Do similarly for the ciphertexts in T 1b, T 1d and update

the lists Lbd
η .

– Keep the lists Lac
η in which both Na

η and N c
η are non-zero, and keep

the lists Lbd
η in which both N b

η and Nd
η are non-zero. Then derive the

ciphertext quartets (Ca, Cb, Cc, Cd) from the remaining lists Lac
η and Lbd

η

by using following criteria:
• Ca, Cc are chosen from the same list Lac

η , and Cb, Cd come from the

same list Lbd
η′ .

• The structure indices of Ca and Cb are the same, and the structure
indices of Cc and Cd are the same.

We obtain around (216 · 216 · 2109.5)2 · (2−88)2 = 2107 ciphertext quartets
(Ca, Cb, Cc, Cd) and their plaintext quartets (Pa, Pb, Pc, Pd) in this step.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 125

– For each of the 2107 quartets (Ca, Cb, Cc, Cd), check whether the following
conditions

(Ca ⊕ Cc)0,0 = (Ca ⊕ Cc)0,1 = . . . = (Ca ⊕ Cc)0,4

and
(Cb ⊕ Cd)0,0 = (Cb ⊕ Cd)0,1 = . . . = (Cb ⊕ Cd)0,4

hold or not. If not, discard the quartet. The expected number of remain-
ing quartets after this step is about 2107 · (2−32)2 = 243.

Do similarly for (T 1a, T 1b, T 2c, T 2d), (T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d),
respectively, and finally we get about 243 · 4 = 245 ciphertext quartets
(Ca, Cb, Cc, Cd) and their plaintext quartets (Pa, Pb, Pc, Pd).

Key Recovery

5. Guess the subkey bytes (Ka)0,j , (Kc)0,j (j ∈ {0, 2}) as follows:
(a) guess (Ka)0,0, (Kc)0,0 and calculate the values of (Kb)0,0, (Kd)0,0 by

using Table 2.
(b) guess (Ka)0,2, (Kc)0,2 and derive the values of (Kb)0,2, (Kd)0,2 from

Table 2.
For each of the remaining quartets in substeps (a)–(b), test whether the
corresponding equations

SB((Pa)0,j ⊕ (Ka)0,j)⊕ SB((Pb)0,j ⊕ (Kb)0,j) = 1f

SB((Pc)0,j ⊕ (Kc)0,j)⊕ SB((Pd)0,j ⊕ (Kd)0,j) = 1f

are satisfied or not. If not, discard the quartet. After this step, the number
of remaining quartets is about 245 · (2−8)4 = 213.

6. Guess the subkey bytes (K7
a)1,4, (K

7
b)1,4, (K

8
a)1,j , (K

8
b)1,j (0 ≤ j ≤ 3) and

obtain the values of (K7
c)1,4, (K

7
d)1,4, (K

8
c)1,j , (K

8
d)1,j according to Table 2.

Then for each remaining quartet (Ca, Cb, Cc, Cd), verify whether the follow-
ing equations

SB((K7
a)1,4)⊕ SB((K7

c)1,4)⊕ (Ca)0,0 ⊕ (Cc)0,0 = 21

SB((K7
b)1,4)⊕ SB((K7

d)1,4)⊕ (Cb)0,0 ⊕ (Cd)0,0 = 21

SB−1((Ca)1,j ⊕ (K8
a)1,j)⊕ SB−1((Cc)1,j ⊕ (K8

c)1,j) = 01

SB−1((Cb)1,j ⊕ (K8
b)1,j)⊕ SB−1((Cd)1,j ⊕ (K8

d)1,j) = 01

hold or not. If not, remove the quartet.

7. If the number of the remaining quartets after above steps is two or more,
output the corresponding 14 guessed subkey bytes (Ka)0,j1 , (Kc)0,j1 , (K

7
a)1,4,

(K7
b)1,4, (K

8
a)1,j2 and (K8

b)1,j2 (j1 ∈ {0, 2}, 0 ≤ j2 ≤ 3) as the correct key
information. Otherwise, return to Step 5 and repeat the procedure.

8. If the above 14 subkey bytes are retrieved after Step 7, perform an exhaustive
search over all possible values of the remaining 128 bits of K8

a so as to recover
the secret key.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 126

5.1 Analysis of the attack

In Step 6, ten equations (each with probability 2−8) need to be satisfied. There-
fore, for a wrong guess of the above 14 subkey bytes, the expected number of
quartets after Step 6 is 213 · (2−8)10 = 2−67. On the other hand, for a right guess
of the key, the expected number of right quartets is about 4. This means that
we can discard all the wrong subkeys (since the expected number of remaining
quartets for a wrong subkey is 2−67) and find the right 14 subkey bytes.

The probability of outputting a wrong key guess in Step 7 is derived by the
following Poisson distribution:

X ∼ Poi(λ = 2−67).

As Pr[X ≥ 2] ≈ 2−135, the expected number of wrong key guesses suggested in
Step 7 is about (28)14 · 2−135 = 2−23, and the wrong key information can be
easily removed in Step 8. Similarly, the probability that two or more quartets
remain after Step 7 for the correct key guess is also computed by the Poisson
distribution:

X ∼ Poi(λ = 4).

Since Pr[X ≥ 2] ≈ 0.91, the success probability of the attack on 8-round
Rijndael-160/160 is approximately 91%.

5.2 Complexity Issues

The data complexity of this attack is 2109.5 ·217 = 2126.5 chosen plaintexts which
are encrypted under Ka, Kb, Kc and Kd, respectively (resulting in 2126.5 · 4 =
2128.5 ciphertexts). The memory complexity is primarily owing to keeping T 1a,
T 1b, T 1c, T 1d, T 2a, T 2b, T 2c and T 2d, thus it can be estimated as 8 · 2125.5 · 20 ≈
2132.82 bytes.

The time complexity of the attack can be derived as follows:

– For the data collection phase, the time complexity comes from Step 2 and
Step 4.
• The time complexity of Step 2 is 2126.5 · 4 = 2128.5 8-round Rijndael-

160/160 encryptions.
• The time complexity of Step 4 can be estimated as 2125.5 · 8 = 2128.5

memory accesses, which can be measured as 2128.5 · 1
20·8 ≈ 2121.18 8-

round Rijndael-160/160 encryptions.
– For the key recovery phase, the time complexity is calculated as follows:

• The time complexity of Step 5 can be estimated as 245 · 216 · 4
20·8 + 229 ·

232 · 4
20·8 ≈ 256.68 8-round Rijndael-160/160 encryptions.

• The time complexity of Step 6 can be estimated as 213 · 2112 · 20
20·8 = 2122

8-round Rijndael-160/160 encryptions.
• The time complexity of Step 8 is about 2128 8-round Rijndael-160/160

encryptions.

As a result, the total time complexity of the attack is approximately 2129.28

8-round Rijndael-160/160 encryptions.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 127

6 Attack on 10-Round Rijndael-192/192

By using the 8-round distinguisher for round 2–9 given in Subsection 4, we now
present a key recovery attack on 10-round Rijndael-192/192 (round 1–10). Based
on Fig. 8, an adversary needs to collect sufficient plaintext quartets such that
among these plaintext quartets there are averagely 8 right quartets with respect
to the 8-round distinguisher. Then among all the collected plaintext quartets,
the expected number of quartets satisfying the input and output differences of
this distinguisher for a random permutation is (8/2−355) · 2−384 = 2−26. From
this the adversary could distinguish the correct value from the wrong guessed
values of the subkey bytes adopted in rounds 1 and 10 which are related to the
8-round distinguisher with a high probability. The attack procedure is divided
into two phases: data collection phase and key recovery phase.

Data Collection

1. Collect N structures Gi = {Ui, Vi} of 241 plaintexts each, where 1 ≤ i ≤ N ,
Ui, Vi are the sets of 240 plaintexts of the form

? c1 c2 c3 ? c4
? c5 c6 c7 c8 c9
? c10 c11 c12 c13 c14
? c15 c16 c17 c18 c19

and

? c1⊕3e c2 c3 ? c4⊕3e

? c5⊕1f c6 c7 c8⊕1f c9⊕1f

? c10⊕1f c11 c12 c13⊕1f c14⊕1f

? c15⊕21 c16 c17 c18⊕21 c19⊕21

respectively, c′is (1 ≤ i ≤ 16) are fixed 8-bit values and ‘?’ takes all possible
values.

2. For each structure Gi

(a) Ask for the encryption of Ui, Vi under Ka and Kb, respectively, to obtain
G1

i = {X1
i , Y

1
i }.

(b) Ask for the encryption of Vi, Ui under Ka and Kb, respectively, to obtain
G2

i = {X2
i , Y

2
i }.

(c) Ask for the encryption of Ui, Vi under Kc and Kd, respectively, to obtain
H1

i = {Z1
i ,W

1
i }.

(d) Ask for the encryption of Vi, Ui under Kc and Kd, respectively, to obtain
H2

i = {Z2
i ,W

2
i }.

3. Let T 1a = {X1
i }1≤i≤N , T 1b = {Y 1

i }1≤i≤N , T 2a = {X2
i }1≤i≤N , T 2b =

{Y 2
i }1≤i≤N , T 1c = {Z1

i }1≤i≤N , T 1d = {W 1
i }1≤i≤N , T 2c = {Z2

i }1≤i≤N and
T 2d = {W 2

i }1≤i≤N . Then for the case of (T 1a, T 1b, T 1c, T 1d), we can con-
struct (240 · 240 ·N)2 = 2160 ·N2 plaintext quartets meeting the input differ-
ence of round 1 given in Fig. 8. Similarly we can obtain 2160 ·N2 plaintext
quartets satisfying the input difference of round 1 for (T 1a, T 1b, T 2c, T 2d),
(T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d), respectively, resulting in 2160 ·
N2 ·4 = 2162 ·N2 plaintext quartets in total. Among these plaintext quartets
there are about 2162 · N2 · (2−40)2 · 2−355 = 2−273 · N2 right quartets. Let
2−273 ·N2 = 8, we can deduce that N = 2138.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 128

S
B

S
R

M
C

6
7

S
B

8
9

S
R M
C

S
R

M
C

S
R

M
C

S
B

S
B

S
B

E
1

P
as
si
ve

B
y
te

A
rb
it
ra
ry

D
iff
er
en
ce

U
n
k
n
ow

n
F
ix
ed

D
iff
er
en
ce

S
B

S
R M
C

1
2

3
4

S
R
M
C

S
R

M
C

S
R M
C

S
B

S
B

S
B

S
B

E
0

5

S
R

M
C

S
R

10

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

A
K

? ? ? ?

3e 1f 1f 21

3e 1f 1f 21

3f 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3f 1f 1f 21

3e 1f 1f 21

3f 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3f 1f 1f 21

01
3f 1f 1f 21

01
01

01

1f
1f

1f
1f

1f
1f

1f
1f

1f
1f

1f
1f

1f
1f

1f
1f

1f

1f
1f

1f 1f 21?
? ? ? ?

3e 1f 1f 21

3e 1f 1f 21

3e 1f 1f 21

3f 1f 1f 21

3f 1f 1f 21

01
01

01
01

01

01
01

01
01

01

?

3e 1f 1f21
3f 1f 1f21

3e 1f 1f21
3e 1f 1f21

3e 1f 1f21
3e 1f 1f21

3e 1f 1f21
3f 1f 1f21

3e 1f 1f21
3f 1f 1f21

3e 1f 1f21
3e 1f 1f21

3e 1f 1f21
3f 1f 1f21

01

3e 1f 1f21
3e 1f 1f21

3e 1f 1f21

3e 1f 1f21
3e 1f 1f21

3f 1f 1f21
01

01
01

? ? ? ?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

3e 1f 1f

3f 1f 1f

3e 1f 1f

3f 1f 1f

3e 1f 1f

3e 1f 1f
1f 1f

1f 1f
1f 1f

1f 1f

01
01

01
01

F
ig
.
8
:
T
h
e
R
el
at
ed

-k
ey

R
ec
ta
n
gl
e
A
tt
ac
k
on

10
-R

ou
n
d
R
ij
n
d
ae
l-
19
2/
19
2.

S
w
it
ch

is
ap

p
li
ed

in
R
ou

n
d
6

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 129

4. Next, derive ciphertext quartets (Ca, Cb, Cc, Cd) and corresponding plain-
text quartets (Pa, Pb, Pc, Pd) from (T 1a, T 1b, T 1c, T 1d), (T 1a, T 1b, T 2c, T 2d),
(T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d) in an efficient way, such that
(Pa, Pb, Pc, Pd), (Ca, Cb, Cc, Cd) satisfy the input and output differences of
rounds 1 and 10, respectively, as shown in Fig. 8. Firstly, for the case of
(T 1a, T 1b, T 1c, T 1d) do the following:
– Initialize two vectors Lac and Lbd consisting of 2112 lists Lac

η and Lbd
η ,

respectively, where η corresponds to a 14-byte value (i.e., the bytes
(1,0), (1,5) and (i, j) of a ciphertext, where 2 ≤ i ≤ 3, 0 ≤ j ≤ 5),
Lac
η = {Sa

η , S
c
η, N

a
η , N

c
η}, Lbd

η = {Sb
η, S

d
η , N

b
η , N

d
η }, Sa

η , S
b
η, S

c
η, S

d
η are the

sets of ciphertexts under Ka, Kb, Kc and Kd, respectively, as well as
their structure indices, and Na

η , N
b
η , N

c
η , N

d
η denote the cardinalities of

the sets Sa
η , S

b
η, S

c
η and Sd

η , respectively.

– For each ciphertext in T 1a, extract the 112-bit value η, then insert the
ciphertext and its structure index into the set Sa

η of the corresponding
list Lac

η and increase Na
η by 1. For each ciphertext in T 1c, xor it with

00 00 00 00 00 00

00 00 00 00 00 3e

00 1f 1f 1f 1f 1f

00 1f 1f 1f 1f 1f

and then extract the 112-bit value η. After that, insert the ciphertext
and its structure index into the set Sc

η of the corresponding list Lac
η and

increase N c
η by 1. Do similarly for the ciphertexts in T 1b, T 1d and update

the lists Lbd
η .

– Discard the lists Lac
η in which Na

η or N c
η is 0, and remove the lists Lbd

η in

whichN b
η orNd

η is 0. For each remaining list Lac
η , initialize 248 lists Lac

η,θ =
{Sa

η,θ, S
c
η,θ, N

a
η,θ, N

c
η,θ} defined similarly to Lac

η , where θ corresponds to
a 6-byte value (i.e., the bytes (0, j), 0 ≤ j ≤ 5), then do the following:
• For each ciphertext in Sa

η , extract the 48-bit value θ, then insert the
ciphertext and its structure index into the set Sa

η,θ of the correspond-
ing list Lac

η,θ and increase Na
η,θ by 1.

• Let δ1, δ2, . . . , δ127 denote all possible output differences of the S-Box
for the input difference 01. For each ciphertext in Sc

η, xor it with

00 21 21 21 21 21

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

and then extract the 48-bit value θ. After that, insert the ciphertext
and its structure index into the set Sc

η,θ1
, Sc

η,θ2
, . . ., Sc

η,θ127
of the

lists Lac
η,θ1

, Lac
η,θ2

, . . ., Lac
η,θ127

and increase N c
η,θ1

, N c
η,θ2

, . . ., N c
η,θ127

by 1, respectively, where θ1, . . ., θ127 denote θ⊕ (δ1‖δ1‖δ1‖δ1‖δ1‖δ1),
. . ., θ ⊕ (δ127‖δ127‖δ127‖δ127‖δ127‖δ127), respectively.

For each remaining list Lbd
η , do similarly to get the lists Lbd

η,θ.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 130

– Keep the lists Lac
η,θ in which both Na

η,θ and N c
η,θ are non-zero, and keep

the lists Lbd
η,θ in which both N b

η,θ and Nd
η,θ are non-zero. Then derive the

ciphertext quartets (Ca, Cb, Cc, Cd) from the remaining lists Lac
η,θ and

Lbd
η,θ by using following criteria:

• Ca, Cc are chosen from the same list Lac
η,θ, and Cb, Cd come from the

same list Lbd
η′,θ′ .

• The structure indices of Ca and Cb are the same, and the structure
indices of Cc and Cd are the same.

With the above procedure we obtain around (240 · 240 · 2138)2 · (2−112)2 ·
(127248)

2 ≈ 2130 ciphertext quartets (Ca, Cb, Cc, Cd) and their plaintext quar-
tets (Pa, Pb, Pc, Pd). Do similarly for (T 1a, T 1b, T 2c, T 2d), (T 2a, T 2b, T 1c, T 1d)
and (T 2a, T 2b, T 2c, T 2d), respectively, and finally we get about 2130 ·4 = 2132

ciphertext quartets (Ca, Cb, Cc, Cd) and their plaintext quartets (Pa, Pb, Pc, Pd).

Key Recovery

5. Guess the subkey bytes (Ka)j,5, (Kc)j,5 (j ∈ {2, 3, 0}) as follows:
(a) Guess the subkey bytes (Ka)2,5, (Kc)2,5. According to the key schedule

and Table 3, derive (∆Kab)1,0, (∆Kcd)1,0 as below:

(∆Kab)1,0 = SB((Ka)2,5)⊕ SB((Ka)2,5 ⊕ 1f)⊕ 1f,

(∆Kcd)1,0 = SB((Kc)2,5)⊕ SB((Kc)2,5 ⊕ 1f)⊕ 1f.

(b) Guess the subkey bytes (Ka)3,5, (Kc)3,5. Similarly, compute (∆Kab)2,0
and (∆Kcd)2,0 in terms of the key schedule and Table 3.

(c) Guess the subkey bytes (Ka)0,5, (Kc)0,5. Calculate (∆Kab)3,0, (∆Kcd)3,0
from the key schedule and Table 3.

For each of the remaining quartets in substeps (a)–(c), test whether the
corresponding equations

(Pa)((j−1) mod 4),0 ⊕ (Pb)((j−1) mod 4),0 ⊕ (∆Kab)((j−1) mod 4),0 = 0

(Pc)((j−1) mod 4),0 ⊕ (Pd)((j−1) mod 4),0 ⊕ (∆Kcd)((j−1) mod 4),0 = 0

are satisfied or not. If not, discard the quartet. After this step, the number
of remaining quartets is about 2132 · (2−8)6 = 284.

6. Guess the subkey bytes (Ka)0,4, (Kc)0,4. Then for each remaining quartet
(Pa, Pb, Pc, Pd), check whether the equations

SB((Pa)0,4 ⊕ (Ka)0,4)⊕ SB((Pb)0,4 ⊕ (Ka)0,4 ⊕ 3f) = 1f

SB((Pc)0,4 ⊕ (Kc)0,4)⊕ SB((Pd)0,4 ⊕ (Kc)0,4 ⊕ 3f) = 1f

hold or not. If not, remove the quartet. The expected number of remaining
quartets after this step is 284 · (2−8)2 = 268.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 131

7. Guess the subkey bytes (Ka)0,0, (Kb)0,0, (Kc)0,0, (Kd)0,0. Then for each
remaining quartet (Pa, Pb, Pc, Pd), test whether the equations

SB((Pa)0,0 ⊕ (Ka)0,0)⊕ SB((Pb)0,0 ⊕ (Kb)0,0) = 1f

SB((Pc)0,0 ⊕ (Kc)0,0)⊕ SB((Pd)0,0 ⊕ (Kd)0,0) = 1f

hold or not. If not, remove the quartet. The expected number of remaining
quartets after this step is 268 · (2−8)2 = 252.

8. Guess the subkey bytes (K9
a)1,5, (K

9
b)1,5. According to the key schedule and

Table 3, derive (∆K10
ac)0,0, (∆K10

bd)0,0 as below:

(∆K10
ac)0,0 = SB((K9

a)1,5)⊕ SB((K9
a)1,5 ⊕ 01),

(∆K10
bd)0,0 = SB((K9

b)1,5)⊕ SB((K9
b)1,5 ⊕ 01).

Then for each remaining quartet (Ca, Cb, Cc, Cd), verify whether the equa-
tions

(Ca)0,0 ⊕ (Cc)0,0 ⊕ (∆K10
ac)0,0 = 0

(Cb)0,0 ⊕ (Cd)0,0 ⊕ (∆K10
bd)0,0 = 0

hold or not. If not, remove the quartet. Note that (∆K10
ac)0,0, (∆K10

bd)0,0 ∈
{δ1, . . . , δ127}, and from Step 4 we know that (Ca)0,0 ⊕ (Cc)0,0, (Cb)0,0 ⊕
(Cd)0,0 ∈ {δ1, . . . , δ127}, thus the expected number of remaining quartets
after this step is 252 · (2−7)2 = 238. Moreover, according to Step 4 and Table
3 we have that for the remaining quartets, (Ca)0,i⊕ (Cc)0,i = (∆K10

ac)0,i and
(Cb)0,i ⊕ (Cd)0,i = (∆K10

bd)0,i hold for 1 ≤ i ≤ 5.

9. Guess the subkey bytes (K10
a)1,j , (K

10
b)1,j (1 ≤ j ≤ 4) as follows:

(a) guess (K10
a)1,1, (K

10
b)1,1 and calculate the values of (K10

c)1,1, (K
10
d)1,1

by using Table 3.
(b) guess (K10

a)1,2, (K
10
b)1,2 and derive the values of (K10

c)1,2, (K
10
d)1,2 from

Table 3.
(c) guess (K10

a)1,3, (K
10
b)1,3, (K

10
a)1,4, (K

10
b)1,4 and use Table 3 to obtain

the values of (K10
c)1,3, (K

10
d)1,3, (K

10
c)1,4, (K

10
d)1,4.

For each of the remaining quartets in substeps (a)–(c), check whether the
corresponding equations

SB−1((Ca)1,j ⊕ (K10
a)1,j)⊕ SB−1((Cc)1,j ⊕ (K10

c)1,j) = 01

SB−1((Cb)1,j ⊕ (K10
b)1,j)⊕ SB−1((Cd)1,j ⊕ (K10

d)1,j) = 01

are satisfied or not. If not, discard the quartet.

10. If the number of the remaining quartets after above steps is six or more,
output the corresponding 22 guessed subkey bytes (Ka)i,5, (Kc)i,5, (Ka)0,4,
(Kc)0,4, (Ka)0,0, (Kb)0,0, (Kc)0,0, (Kd)0,0, (K

9
a)1,5, (K

9
b)1,5, (K

10
a)1,j and

(K10
b)1,j (i ∈ {0, 2, 3}, 1 ≤ j ≤ 4) as the correct key information. Otherwise,

return to Step 5 and repeat the procedure.

11. If the above 22 subkey bytes are retrieved after Step 10, perform an exhaus-
tive search over all possible values of the remaining 152 bits of Ka so as to
recover the secret key.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 132

6.1 Analysis of the attack

The expected number of remaining quartets after each substep in Step 9 is given
as (a) 238 · (2−8)2 = 222, (b) 222 · (2−8)2 = 26 and (c) 26 · (2−8)4 = 2−26,
respectively. Thus for a wrong guess of the above 22 subkey bytes, the expected
number of quartets after Step 9 is 2−26. On the other hand, for a right guess of
the key, the expected number of right quartets is 8.

The probability of outputting a wrong key guess in Step 10 is derived by the
following Poisson distribution:

X ∼ Poi(λ = 2−26).

As Pr[X ≥ 6] ≈ 2−165.49, the expected number of wrong key guesses suggested
in Step 10 is about (28)22 · 2−165.49 = 210.51, and the wrong key information
can be removed in Step 11. Similarly, the probability that six or more quartets
remain after Step 9 for the correct key guess is also computed by the Poisson
distribution:

X ∼ Poi(λ = 8).

Since Pr[X ≥ 6] ≈ 0.81, the success probability of the attack on 10-round
Rijndael-192/192is approximately 81%.

6.2 Complexity Issues

The data complexity of this attack is 2138 ·241 = 2179 chosen plaintexts which are
encrypted under Ka, Kb, Kc and Kd, respectively (resulting in 2179 ·4 = 2181 ci-
phertexts). The memory complexity is primarily owing to keeping T 1a, T 1b, T 1c,
T 1d, T 2a, T 2b, T 2c and T 2d, thus it can be estimated as 8·2178 ·24 ≈ 2185.59 bytes.

The time complexity of the attack can be derived as follows:

– For the data collection phase, the time complexity comes from Step 2 and
Step 4.
• The time complexity of Step 2 is 2179 · 4 = 2181 10-round Rijndael-

192/192encryptions.
• The time complexity of Step 4 can be estimated as 2178 · 8 = 2181 mem-

ory accesses, which can be measured as 2181 · 1
24·10 ≈ 2173.09 10-round

Rijndael-192/192encryptions.
– For the key recovery phase, the time complexity is calculated as follows:

• The time complexity of Step 5 can be estimated as 2132 ·216 · 4
24·10 +2116 ·

232· 4
24·10+2100·248· 4

24·10 ≈ 2143.68 10-round Rijndael-192/192encryptions.
• The time complexity of Step 6 can be estimated as 284 ·264 · 4

24·10 = 2142.09

10-round Rijndael-192/192encryptions.
• The time complexity of Step 7 can be estimated as 268 ·296 · 4

24·10 = 2158.09

10-round Rijndael-192/192encryptions.
• The time complexity of Step 8 can be estimated as 252 · 2112 · 4

24·10 =
2158.09 10-round Rijndael-192/192encryptions.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 133

• The time complexity of Step 9 can be estimated as 238 ·2128 · 4
24·10 +222 ·

2144· 4
24·10+26·2176· 8

24·10 ≈ 2177.09 10-round Rijndael-192/192encryptions.
• The time complexity of Step 11 is about 2152 · 210.51 = 2162.51 10-round

Rijndael-192/192encryptions.

As a result, the total time complexity of the attack is approximately 2181.09

10-round Rijndael-192/192encryptions.

7 Conclusion

In this paper, we performed key recovery attacks on reduced-round versions of
Rijndael-160/160/160 and Rijndael-192/192. Firstly, we constructed a 6-round
related-key rectangle distinguisher of Rijndael-160/160/160, with which we at-
tacked 8 rounds of the cipher. Moreover, we established a 8-round related-key
rectangle distinguisher of Rijndael-192/192, based on which we demonstrated
the attack on 10 rounds of the cipher. Our results show that the related-key
rectangle attack is one of the best methods to analyze Rijndael and Rijndael-
like structures. To sum up, none of our attacks directly threatens the security of
Rijndael but they reduce the security margin of the cipher.

Acknowledgement

The authors are grateful to all anonymous reviewers for their valuable comments.
Moreover, the authors are supported by the National Natural Science Founda-
tion of China (no. 61202371, 61402288), Major State Basic Research Develop-
ment Program (973 Plan, no. 2013CB338004), China Postdoctoral Science Foun-
dation (no. 2012M521829), Shanghai Postdoctoral Research Funding Program
(no. 12R21414500), Plan of action for the innovation of science and technology
of Shanghai Municipal Science and Technology Commission (no. 14511100300),
and Shanghai Engineering Research Center Project (no. GCZX14014, C14001).

References

1. National Bureau of Standards. Data Encryption Standard. FIPS-Pub.46. National
Bureau of Standards, U.S. Department of Commerce, Washington D.C., January
1977.

2. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

3. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES, pages 450–466, 2007.

4. FIPS 197. Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197, U.S. Department of Commerce/N.I.S.T , 2001.

5. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square.
In Eli Biham, editor, FSE, volume 1267 of Lecture Notes in Computer Science,
pages 149–165. Springer, 1997.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 134

6. Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

7. Stefan Lucks. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys.
In AES Candidate Conference, pages 215–229, 2000.

8. Alex Biryukov. The Boomerang Attack on 5 and 6-Round Reduced AES. In
Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors, AES Conference,
volume 3373 of Lecture Notes in Computer Science, pages 11–15. Springer, 2004.

9. Raphael Chung-Wei Phan. Impossible Differential Cryptanalysis of 7-round Ad-
vanced Encryption Standard (AES). Inf. Process. Lett., 91(1):33–38, 2004.

10. Wentao Zhang, Wenling Wu, and Dengguo Feng. New Results on Impossible Dif-
ferential Cryptanalysis of Reduced AES. In Kil-Hyun Nam and Gwangsoo Rhee,
editors, ICISC, volume 4817 of Lecture Notes in Computer Science, pages 239–250.
Springer, 2007.

11. Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round
AES. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer
Science, pages 116–126. Springer, 2008.

12. Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossible
Differential Attacks on AES. In Dipanwita Roy Chowdhury, Vincent Rijmen, and
Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture Notes in Computer
Science, pages 279–293. Springer, 2008.

13. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Impossible Differen-
tial Attacks on 8-Round AES-192. In David Pointcheval, editor, CT-RSA, volume
3860 of Lecture Notes in Computer Science, pages 21–33. Springer, 2006.

14. Wentao Zhang, Wenling Wu, Lei Zhang, and Dengguo Feng. Improved Related-
Key Impossible Differential Attacks on Reduced-Round AES-192. In Eli Biham and
Amr M. Youssef, editors, Selected Areas in Cryptography, volume 4356 of Lecture
Notes in Computer Science, pages 15–27. Springer, 2006.

15. Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-Key Rectangle Attacks
on Reduced AES-192 and AES-256. In Alex Biryukov, editor, FSE, volume 4593
of Lecture Notes in Computer Science, pages 225–241. Springer, 2007.

16. Wentao Zhang, Lei Zhang, Wenling Wu, and Dengguo Feng. Related-Key
Differential-Linear Attacks on Reduced AES-192. In K. Srinathan, C. Pandu
Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes
in Computer Science, pages 73–85. Springer, 2007.

17. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-
Key Attack on the Full AES-256. In Shai Halevi, editor, CRYPTO, volume 5677
of Lecture Notes in Computer Science, pages 231–249. Springer, 2009.

18. Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

19. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In Schneier [46],
pages 213–230.

20. Jorge Nakahara, Daniel Santana de Freitas, and Raphael Chung-Wei Phan. New
Multiset Attacks on Rijndael with Large Blocks. In Ed Dawson and Serge Vaude-
nay, editors, Mycrypt, volume 3715 of Lecture Notes in Computer Science, pages
277–295. Springer, 2005.

21. Samuel Galice and Marine Minier. Improving Integral Attacks Against Rijndael-
256 Up to 9 Rounds. In Serge Vaudenay, editor, AFRICACRYPT, volume 5023 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2008.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 135

22. Yanjun Li and Wenling Wu. Improved Integral Attacks on Rijndael. Journal of
Information Science and Engineering, 27(6):2031–2045, 2011.

23. Jorge Nakahara and Ivan Carlos Pavão. Impossible-Differential Attacks on Large-
Block Rijndael. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René
Peralta, editors, ISC, volume 4779 of Lecture Notes in Computer Science, pages
104–117. Springer, 2007.

24. Lei Zhang, Wenling Wu, Je Hong Park, Bonwook Koo, and Yongjin Yeom. Im-
proved Impossible Differential Attacks on Large-Block Rijndael. In Tzong-Chen
Wu, Chin-Laung Lei, Vincent Rijmen, and Der-Tsai Lee, editors, ISC, volume 5222
of Lecture Notes in Computer Science, pages 298–315. Springer, 2008.

25. Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu, Jiazhe Chen, and Andrey Bog-
danov. Improved Impossible Differential Attacks on Large-Block Rijndael. In
Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, ICISC, volume 7839
of Lecture Notes in Computer Science, pages 126–140. Springer, 2012.

26. Paulo S. L. M. Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Elmar Tischhauser. Whirlwind: A New Cryptographic Hash Function. Des. Codes
Cryptography, 56(2-3):141–162, 2010.

27. Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. Submission to
NIST (Round 2), 2009.

28. P.S.L.M. Barreto and V. Rijmen. The whirlpool hashing function. Submit-
ted to NESSIE (September 2000), 2000. http://www.larc.usp.br/~pbarreto/

WhirlpoolPage.html(2008/12/11) (revised May 2003).

29. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and
Y. Seurin. SHA-3 proposal: ECHO. Submission to NIST (updated), 2009. http:

//crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf.

30. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of
Lightweight Hash Functions. In Phillip Rogaway, editor, Advances in Cryptol-
ogy - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2011.

31. Praveen Gauravaram, Lars R. Knudsen, K. Matusiewicz, Florian Mendel, Christian
Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3 candidate.
Submission to NIST, 2008. http://www.groestl.info.

32. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

33. Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptology,
7(4):229–246, 1994.

34. John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of 3-
WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Yongfei Han,
Tatsuaki Okamoto, and Sihan Qing, editors, Information and Communication Se-
curity, First International Conference, ICICS’97, Beijing, China, November 11-14,
1997, Proceedings, volume 1334 of Lecture Notes in Computer Science, pages 233–
246. Springer, 1997.

35. Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104 bit WEP
in less than 60 seconds. In Sehun Kim, Moti Yung, and Hyung-Woo Lee, editors,
Information Security Applications, 8th International Workshop, WISA 2007, Jeju
Island, Korea, August 27-29, 2007, Revised Selected Papers, volume 4867 of Lecture
Notes in Computer Science, pages 188–202. Springer, 2007.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 136

36. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and
Rectangle Attacks. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
LNCS, pages 507–525. Springer, 2005.

37. Alex Biryukov and Ivica Nikolic. Automatic Search for Related-Key Differential
Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia,
Khazad and Others. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of
Lecture Notes in Computer Science, pages 322–344. Springer, 2010.

38. Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rectangle Attack
on the Full KASUMI. In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of
Lecture Notes in Computer Science, pages 443–461. Springer, 2005.

39. Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key
Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. In Tal
Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
393–410. Springer, 2010.

40. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of LNCS, pages 156–170. Springer, 1999.

41. Marine Minier and Benjamin Pousse. Improving Integral Cryptanalysis against
Rijndael with Large Blocks. CoRR, abs/0910.2153, 2009.

42. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent. In Schneier [46], pages 75–93.

43. Eli Biham, Orr Dunkelman, and Nathan Keller. New Combined Attacks on Block
Ciphers. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of
LNCS, pages 126–144. Springer, 2005.

44. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 56–71. Springer, 1998.

45. Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanalysis of
SAFER++. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 195–211. Springer, 2003.

46. Bruce Schneier, editor. Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of
Lecture Notes in Computer Science. Springer, 2001.

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 137

RELATED-KEY RECTANGLE CRYPTANALYSIS OF RIJNDAEL-160 AND RIJNDAEL-192 138

Chapter 9

PRIMATEs

Publication Data

E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel, B. Mennink,
N. Mouha, Q. Wang, K. Yasuda: PRIMATEs v1.02. Round 2 of CAESAR
Competition, 2015.

Contributions

Major contributor of the PRIMATEs permutation:

• Design the operation ShiftRows, do the experiments and write the text.

• Work on security analysis of PRIMATE and write the text, together with
Florian Mendel.

139

PRIMATES 140

PRIMATEs v1.02
Submission to the CAESAR Competition

Designers/Submitters:

Elena Andreeva1, Begül Bilgin1,2, Andrey Bogdanov3, Atul Luykx1,
Florian Mendel4, Bart Mennink1, Nicky Mouha1, Qingju Wang1,5, and

Kan Yasuda6

1 KU Leuven, ESAT/COSIC, and iMinds Belgium.
2 University of Twente, EEMCS/SCS, The Netherlands.

3 Technical University of Denmark, DTU Compute, Denmark.
4 Graz University of Technology, IAIK, Austria.

5 Shanghai Jiao Tong University, Department of Computer Science and
Engineering, China.

6 NTT Secure Platform Laboratories, Japan.

primates.ae

primates@esat.kuleuven.be

141

Changes From v1.01

1. Clarification of the bounds on collision producing trails (Sect. 4.4.2).

Changes From v1.0

1. Included a ranking of the parameters as required by the CAESAR competition.

2. Removed statements describing APE’s nonce as being optional.

3. Improved the descriptions of the algorithms, layout, and wording.

4. Added figures for both fractional and integral, associated data and message cases.

All security analysis performed on the schemes in v1.0 and the reference
software implementation provided as v1 also holds for the schemes in v1.01
and v1.02.

PRIMATES 142

Notation

Set K := {0, 1}k, T := {0, 1}τ , N := {0, 1}ν , R := {0, 1}r, C := {0, 1}c, and C
1
2 :=

{0, 1}c/2. Given the state X ∈ R ×C, Xr ∈ R denotes its rate part and Xc ∈ C its
capacity part. We write 0r ∈ R for a shorthand of 00 · · · 0 ∈ R.

The bitwise XOR operation of the bit strings a1 and a2 is denoted by a1⊕a2. Both
a1 ‖ a2 and a1a2 denote the concatenation of the bit strings a1 and a2.

An element of R is called a block. Let R∗ denote the set of strings whose length
is a non-negative multiple of r and at most 2c/2 blocks. Given a plaintext (message)
M ∈ {0, 1}∗, we divide it into blocks and write M [1]M [2] · · ·M [w] ← M , where each
M [i] for i < w is a block and M [w] is a string of length less than or equal to a block.
We refer messages with 0 < |M [w]| < r as fractional messages (as opposed to integral
messages where |M [w]| = r). When we write M ‖ 10∗, we mean that M is padded
with a 1-bit and then zeros until the length of the resulting string is a multiple of r.
By definition, an empty input message M = ∅ is also padded to the one zero-length
block M [1]← 10r−1.

By bMcn we denote the n most significant bits of M (the n leftmost bits) whereas
by dMen we denote the n least significant bits.

Authenticated encryption with associated data (AEAD).

An authenticated encryption algorithm with associated data consists of a key gener-
ation K, an encryption E and a decryption D algorithm. The encryption algorithm
E takes as input a key K ∈ K, associated data A ∈ R∗, and a message M ∈ R∗,
and returns a ciphertext C ∈ R∗ and a tag T ∈ T, as (C, T) ← EK(A,M). The
decryption algorithm D takes as input a key K ∈ K, associated data A ∈ R∗, a ci-
phertext C ∈ R∗, and a tag T ∈ T, and returns either a message M ∈ R∗ or the reject
symbol ⊥, as M/⊥ ← DK(A,C, T). The two functionalities E and D are sound, in
the sense that

DK(A, EK(A,M)) = M,

for all K, A and M .

Nonce-based AEAD.

Whenever the AEAD scheme takes an additional nonce N ∈ N argument both in
encryption and decryption we speak of nonce-based AEAD. The encryption algorithm
is then defined as (C, T) ← EK(N,A,M) and the decryption algorithm as M/⊥ ←
DK(N,A,C, T) with the soundness condition DK(N,A, EK(N,A,M)) = M holding
for all N , K, A, and M .

Nonces.

A nonce N ∈ N is an unique non-repeating value, e.g. a counter. The nonces in this
work are public values and we alternatively refer to them as public message numbers.
We do not use secret message numbers. How the sender and receiver generate and
synchronize nonces is left implicit as long as the uniqueness condition is satisfied.

PRIMATES 143

s = 80 bits s = 120 bits

b (state size) 200 bits 280 bits

c (capacity size) 160 bits 240 bits

r (rate size) 40 bits 40 bits

permutations PRIMATE-80 PRIMATE-120

Table 1: The security levels for the PRIMATEs family.

1 Parameters

The authenticated encryption family PRIMATEs is defined by the following two pa-
rameters:

1. The mode of operation Scheme ∈ {APE,HANUMAN,GIBBON}.

2. The security level s ∈ {80, 120} bits;

The security level will regularly be expressed in terms of bits (80 or 120 bits). The
security level determines: the state size b, where the state consists of a rate part
with r and a capacity part with c bits; and the permutation family PRIMATE-s. The
PRIMATE-s : {0, 1}b → {0, 1}b family consists of four permutations p1, p2, p3, and
p4. On the other hand, each mode of operation determines the key length k, the tag
length τ , the nonce length ν, and the subset of permutations from PRIMATE-s.

For the purpose of the CAESAR competition, we rank the PRIMATEs as follows:

1. APE-120

2. HANUMAN-120

3. GIBBON-120

4. APE-80

5. HANUMAN-80

6. GIBBON-80

We note, however, that the different PRIMATEs serve different security goals, as we
will clarify in this document.

1.1 Recommended Parameters

We recommend a security level s of either 80 or 120 bits for PRIMATEs family, as
shown in Table 1.

In Table 2, we provide the respective key, tag and nonce values for the three modes
where Scheme-s indicates the mode under s = 80 and s = 120 bits respectively. For
HANUMAN and GIBBON we have identical values as compared to APE.

PRIMATES 144

APE-s HANUMAN-s GIBBON-s

k (key size) 2s s s

τ (tag size) 2s s s

ν (nonce size) s s s

PRIMATE p1 p1, p4 p1, p2, p3

Table 2: Key,tag and nonce values for the three modes of the PRIMATEs family.

When any of the parameters of the PRIMATEs are modified, a new key must be
chosen uniformly at random. The length of plaintext and associated data processing
is discussed in Sect. 2. Our recommendation for lightweight authenticated encryp-
tion is HANUMAN. For lightweight applications where speed is critical we recommend
GIBBON and for lightweight environments where additional security requirements are
needed or security is critical we recommend APE. The primary recommended security
level is s = 120, whereas we recommend s = 80 for extremely lightweight applications.
The primary recommended mode on the other hand is APE followed by HANUMAN
and GIBBON. Hence, in this document, we prioritize security. APE is robust even when
the nonce is misused whereas HANUMAN is secure as long as the nonce is unique and
non-repeating. GIBBON is the most efficient at the cost of weaker security guaran-
tees. As such, for different applications HANUMAN or GIBBON may be preferred over
APE. We also note that a possible weakness observed in one of the modes, does not
necessarily apply to the other modes.

2 Specification of PRIMATEs

We now provide the specifications of APE, HANUMAN and GIBBON. In this document,
we specify that the message and associated data can consist of a non-integer number of
bytes. However, due to restrictions on the API imposed by the CAESAR competition,
all implementations that will be provided during the competition only support an
integer number of bytes.

2.1 APE

The APE algorithm is described in Fig. 1. In APE, as opposed to HANUMAN and
GIBBON, we treat the nonce the same way as the associated data whenever present.
APE supports variable length associated data and plaintexts. As discussed in Sect. 3
we recommend the associated data and the plaintexts to be of size at most 2c/2 bits.
For APE-80 this is approximately 277 bytes and for APE-120 this is 2117 bytes. The
APE algorithm uses the permutation p1 together with its inverse p−11 for decryption.
The key is used twice for: (1) part of the capacity of the initial state; and (2) after the
tag generation. The fractional message cases are dealt with differently as compared to
the integral data as elaborated below:

Consider a message M and denote its last block by M [w], where |M [w]| = |M | mod
r. We distinguish among three cases:

PRIMATES 145

Algorithm 1: EK(N,A,M)

Input: K ∈ C, N ∈ C
1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1 V ← 0r ‖ K
2 N [1]N [2] · · ·N [y]← N
3 for i = 1 to y do
4 V ← p1

(
N [i]⊕ Vr ‖ Vc

)

5 end
6 if A 6= ∅ then
7 A[1]A[2] · · ·A[u]← A
8 A[u]← A[u] ‖ 10∗
9 for i = 1 to u do

10 V ← p1
(
A[i]⊕ Vr ‖ Vc

)

11 end

12 end

13 V ← V ⊕ (0b−1 ‖ 1)
14 M [1]M [2] · · ·M [w]←M
15 l← |M [w]|
16 M [w]←M [w] ‖ 10∗
17 for i = 1 to w do
18 V ← p1

(
M [i]⊕ Vr ‖ Vc

)

19 C[i]← Vr

20 end
21 C ← C[1]C[2] · · ·C[w − 2]
22 C ← C ‖ bC[w − 1]cl
23 C ← C ‖ C[w]
24 T ← Vc ⊕K
25 return (C, T)

Algorithm 2: DK(N,A,C, T)

Input: K ∈ C, N ∈ C
1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
Output: M ∈ {0, 1}∗ or ⊥

1 IV ← 0r ‖ K
2 N [1]N [2] · · ·N [y]← N
3 for i = 1 to y do
4 IV ← p1

(
N [i]⊕ IVr ‖ IVc

)

5 end
6 if A = ∅ then
7 A[1]A[2] · · ·A[u]← A
8 A[u]← A[u] ‖ 10∗
9 for i = 1 to u do

10 IV ← p1
(
A[i]⊕ IV r ‖ IV c

)

11 end

12 end
13 C[1]C[2] · · ·C[w]← C
14 l← |C[w]|
15 C[w]← dC[w − 1]er−l ‖ C[w]
16 C[w − 1]← bC[w − 1]cl
17 C[0]← IVr

18 V ← p−11

(
C[w] ‖ K ⊕ T

)

19 M [w]← bVrcl ⊕ C[w − 1]
20 V ← V ⊕M [w]10∗ ‖ 0c
21 for i = w − 1 to 1 do
22 V ← p−11

(
V
)

23 M [i]← C[i− 1]⊕ Vr

24 V ← C[i− 1] ‖ Vc

25 end
26 M ←M [1]M [2] · · ·M [w]
27 if IVc = Vc ⊕ (0c−1 ‖ 1) then
28 return M
29 else
30 return ⊥
31 end

Figure 1: The APE encryption EK(A,M) and decryption DK(A,C, T) algorithms for
fractional messages with w ≥ 2.

• |M [w]| ≤ r−1 and w = 1 (Figs. 6 and 7). Note that the corresponding ciphertext
will be of r bits. This is required for decryption to be possible;

• |M [w]| ≤ r−1 and w ≥ 2 (Figs. 8 and 9). Note that the ciphertext C[w−1] is of
size equal to M [w]. The reason we opt for this design property is the following:
despite M [w] being smaller than r bits, we require its corresponding ciphertext
to be r bits for decryption to be possible. As a consequence ciphertext C[w− 1]
is of size equal to M [w];

• |M [w]| = r (Figs. 10 and 11). In this special case where M is an integral message,
we employ a form of ‘10*’-padding. Instead of occupying an extra message block
for this, the usual ‘10*’-padding spills over into the capacity. This can be seen
as an XOR of 10 · · · 00 into the capacity part of the state.

The adjustments have no influence on the decryption algorithm D, except if |M | ≤ r
for which a slightly more elaborate function is needed. Note that the spilling of the
padding in case |M [w]| = r causes security to degrade by half a bit: intuitively, APE

PRIMATES 146

is left with a capacity of c′ = c − 1 bits. We have opted for this degradation over an
efficiency loss due to an additional round.

A similar spilling of the padding is also applied to the fractional associated data
as indicated in Figs. 7, 9 and 11.

2.2 HANUMAN

The HANUMAN algorithm is described in Fig. 2. HANUMAN supports variable length
associated data and plaintexts. As discussed in Sect. 3 we recommend the associated
data and the plaintexts to be of size at most 2c/2 bits. For HANUMAN-80 this is
approximately 277 bytes and for HANUMAN-120 this is 2117 bytes. The algorithm uses
two independent permutations, p1 and p4. The key is used twice for: (1) a part of
the capacity of the initial state; and (2) after the tag truncation. A fractional input
message (resp. associated data) is padded as usual by applying 10∗ padding to the
message (resp. associated data). In the case when |M [w]| = r with M is an integral
message, instead of occupying an extra message block for this, we employ the ‘10*’
spill over into the capacity, which also can be seen as an XOR of 10 · · · 00 into the
capacity part of the state. The encryption procedure of HANUMAN for all choices of
A and M are illustrated in Figs. 12, 13, 14 and 15.

Algorithm 3: EK(N,A,M)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1
2

1 V ← p1
(
0r ‖ K ‖ N

)

2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u] ‖ 10∗
5 for i = 1 to u− 1 do
6 V ← p4

(
A[i]⊕ Vr ‖ Vc

)

7 end

8 V ← p1
(
A[u]⊕ Vr ‖ Vc

)

9 end
10 M [1]M [2] · · ·M [w]←M
11 `← |M [w]|
12 M [w]←M [w] ‖ 10∗
13 for i = 1 to w do
14 C[i]←M [i]⊕ Vr

15 V ← p1
(
C[i] ‖ Vc)

16 end
17 C ← C[1]C[2] · · ·C[w − 1]bC[w]c`
18 T ← bVcc c

2
⊕K

19 return (C, T)

Algorithm 4: DK(N,A,C, T)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
1
2

Output: M ∈ {0, 1}∗ or ⊥
1 V ← p1

(
0r ‖ K ‖ N

)

2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u] ‖ 10∗
5 for i = 1 to u− 1 do
6 V ← p4

(
A[i]⊕ Vr ‖ Vc

)

7 end

8 V ← p1
(
A[u]⊕ Vr ‖ Vc

)

9 end
10 C[1]C[2] · · ·C[w]← C
11 `← |C[w]|
12 for i = 1 to w − 1 do
13 M [i]← C[i]⊕ Vr

14 V ← p1
(
C[i] ‖ Vc)

15 end
16 M [w]← bVrc` ⊕ C[w]

17 V ← p1
(
(M [w] ‖ 10∗ ⊕ Vr) ‖ Vc)

18 M ←M [1]M [2] · · ·M [w − 1]M [w]
19 T ′ ← bVcc c

2
⊕K

20 return T = T ′ ? M : ⊥

Figure 2: The HANUMAN encryption EK(N,A,M) and decryption DK(N,A,C, T)
algorithms for fractional messages.

2.3 GIBBON

The GIBBON algorithm is described in Fig. 3. GIBBON supports variable length asso-
ciated data and plaintexts. As discussed in Sect. 3 we recommend the associated data

PRIMATES 147

and the plaintexts to be of size at most 2c/2 bits. For GIBBON-80 this is approximately
277 bytes and for GIBBON-120 this is 2117 bytes. The algorithm uses three independent
permutations, p1, p2 and p3. The key K is used for: (1) a part of the capacity of the
initial state; (2) after the initialization (first p1 iteration); (3) before the finalization
(last p1 iteration); and (4) after the tag truncation. A fractional input message (resp.
associated data) is padded as usual by applying 10∗ padding to the message (resp.
associated data). In the case when |M [w]| = r with M an integral message, instead
of occupying an extra message block for this, we employ the ‘10*’ spill over into the
capacity, which also can be seen as an XOR of 10 · · · 00 into the capacity part of the
state. The encryption procedure of GIBBON for all choices of A and M are illustrated
in Figs. 16, 17, 18 and 19.

Algorithm 5: EK(N,A,M)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1
2

1 V ← p1
(
0r ‖ K ‖ N

)

2 V ← Vr ‖ (K ‖ 0
c
2)⊕ Vc

3 if A 6= ∅ then
4 V ← p2

(
V
)

5 A[1]A[2] · · ·A[u]← A
6 A[u]← A[u] ‖ 10∗
7 for i = 1 to u− 1 do
8 V ← p2

(
A[i]⊕ Vr ‖ Vc

)

9 end
10 V ← A[u]⊕ Vr ‖ Vc

11 end
12 M [1]M [2] · · ·M [w]←M
13 `← |M [w]|
14 M [w]←M [w] ‖ 10∗
15 V ← p3

(
V
)

16 for i = 1 to w do
17 C[i]←M [i]⊕ Vr

18 V ← p3
(
C[i] ‖ Vc)

19 end

20 V ← p1
(
Vr ‖ (K ‖ 0

c
2)⊕ Vc

)

21 C ← C[1]C[2] · · ·C[w − 1]bC[w]c`
22 T ← bVcc c

2
⊕K

23 return (C, T)

Algorithm 6: DK(N,A,C, T)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
1
2

Output: M ∈ {0, 1}∗ or ⊥
1 V ← p1

(
0r ‖ K ‖ N

)

2 V ← Vr ‖ (K ‖ 0
c
2)⊕ Vc

3 if A 6= ∅ then
4 V ← p2

(
V
)

5 A[1]A[2] · · ·A[u]← A
6 A[u]← A[u] ‖ 10∗
7 for i = 1 to u− 1 do
8 V ← p2

(
A[i]⊕ Vr ‖ Vc

)

9 end
10 V ← A[u]⊕ Vr ‖ Vc

11 end
12 C[1]C[2] · · ·C[w]← C
13 `← |C[w]|
14 V ← p3

(
V
)

15 for i = 1 to w − 1 do
16 M [i]← C[i]⊕ Vr

17 V ← p3
(
C[i] ‖ Vc)

18 end
19 M [w]← bVrc` ⊕ C[w]

20 V ← p3
(
(M [w] ‖ 10∗ ⊕ Vr) ‖ Vc)

21 M ←M [1]M [2] · · ·M [w − 1]M [w]

22 V ← p1
(
Vr ‖ (K ‖ 0

c
2)⊕ Vc

)

23 T ′ ← bVcc c
2
⊕K

24 return T = T ′ ? M : ⊥

Figure 3: The GIBBON encryption EK(N,A,M) and decryption DK(N,A,C, T) algo-
rithms for fractional messages.

2.4 PRIMATE Permutation

The underlying permutation of PRIMATEs which is called PRIMATE is inspired by [8].
It has two different sizes (we write PRIMATE-80 for a 200-bit permutation and PRIMATE-
120 for a 280-bit one) as well as 4 variants of each size (referred to as p1, p2, p3 and
p4). PRIMATE is designed according to the wide trail strategy [11] and its structure
resembles the data transform part of the Rijndael block cipher [12]. PRIMATE-80 and
PRIMATE-120 operate on a 5 × 8 and a 7 × 8 state of 5-bit elements, respectively.

PRIMATES 148

The first row of the state (5 bytes) is the rate of the state whereas the rest of the
state is the capacity for both sizes. The state and each individual element possess
big-endian encoding. PRIMATE update the internal state by means of the sequence of
transformations

CA ◦MC ◦ SR ◦ SE .
The four permutations p1, p2, p3 and p4 of PRIMATE are defined by means of different
round constants, which are generated by a 5-bit LFSR, and different number of rounds
as shown in the following table.

p1 p2 p3 p4

Number of rounds 12 6 6 12

Initial value of the LFSR 1 24 30 24

2.4.1 SubElements (SE).

The SubElements step is the only non-linear transformation of PRIMATE. It is a per-
mutation consisting of a 5-bit S-box applied to each element of the state (shown below
for PRIMATE-80).

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,j bi,jS-box

The S-box is an almost bent (AB) permutation as defined in Table 3. The maximum
differential and linear probability for this S-box is 2−4, which is best attainable [10]
and, thus, optimal in this sense. This particular S-box has been chosen from the AB
permutation set such that the area of both plain and shared implementation provide
a good tradeoff, cf. [8].

Table 3: 5-bit S-box (decimal).
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

2.4.2 ShiftRows (SR).

The ShiftRows step is an element transposition that cyclically shifts the rows of the
state over different offsets. Row i is shifted left by si = {0, 1, 2, 4, 7} positions for
PRIMATE-80 (shown below) and by si = {0, 1, 2, 3, 4, 5, 7} positions for PRIMATE-120.
Since ShiftRows is only wiring in hardware, its overall cost is negligible.

PRIMATES 149

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,0 ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 bi,0 bi,1 bi,2 bi,3 bi,4 bi,5 bi,6 bi,7≪ si

2.4.3 MixColumns (MC).

The MixColumns step is operating on the state column by column. It is a left-
multiplication by a 5 × 5 (resp. 7 × 7) matrix over F25

∼= F2[x]/(x5 + x2 + 1).
The main design goal of the MixColumns transformation is to follow the wide trail
strategy and that it can be implemented efficiently. Therefore, we use a recursive
approach [3, 14, 15, 22] to generate an MDS matrix that has a maximum (6 and 8 re-
spectively) branch number (the smallest nonzero sum of active inputs and outputs of
each column).

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7
a0,j

a1,j

a2,j

a3,j

a4,j

b0,j

b1,j

b2,j

b3,j

b4,j

⊗




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 18 2 2 18




5

a6,0 b6,0

a5,0 b5,0

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a6,1 b6,1

a5,1 b5,1

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a6,2 b6,2

a5,2 b5,2

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a6,3 b6,3

a5,3 b5,3

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a6,4 b6,4

a5,4 b5,4

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a6,5 b6,5

a5,5 b5,5

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a6,6 b6,6

a5,6 b5,6

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a6,7 b6,7

a5,7 b5,7

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7
a0,j

a1,j

a2,j

a3,j

a4,j

a6,j

a7,j

b0,j

b1,j

b2,j

b3,j

b4,j

b6,j

b7,j

⊗




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 2 15 9 9 15 2




7

2.4.4 ConstantAddition (CA).

In this transformation the state is modified by combining the second element of the
second row with a predefined constant by a bitwise XOR operation. The purpose of
adding round constants is to make each round different and to break the symmetry of
the other transformations. Furthermore, it provides a natural opportunity to make the
parts for processing associated data and message different from each other if needed.
A 5-bit Fibonacci LFSR with taps in the first (i.e. the most significant) bit and
the fourth bit is used to generate the round constants rc. Therefore, the hardware
implementation of ConstantAddition is in fact very cheap.

PRIMATES 150

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

a1,1 b1,1

⊕ rc

3 Security Claims

The designers claim the following levels of security, expressed in bits:

Scheme-s Scheme-80 Scheme-120

confidentiality of M c/2 80 120
integrity of M c/2 80 120
integrity of A c/2 80 120
integrity of N c/2 80 120

The claimed security levels correspond to the birthday bound security on the capacity
of PRIMATEs-80 and PRIMATEs-120, respectively (see also Sect. 4). The security of
GIBBON and HANUMAN relies on the uniqueness of the nonce, whereas APE is robust
against nonce reuse. Technically, this implies that all security results of APE only hold
up to common prefix: under the same associated data and nonce, two messages with
the same prefix (in r-bit blocks) have the same corresponding ciphertext blocks. We
refer to [1] for the technicalities.

The designers claim that APE offers certain additional security benefits. Most
importantly, it is secure under the release of unverified plaintext (RUP). This means
that APE is still secure if the decryption algorithm is implemented so as to output
the decrypted plaintext before successful verification. This scenario arises for example
when devices have insufficient memory to store the entire plaintext [13], or when the
decrypted plaintext needs to be processed early due to real-time requirements [9, 21].
We refer to [2] for more information on the security under the release of unverified
plaintext.

APE-s APE-80 APE-120

confidentiality under RUP c/2 80 120
integrity under RUP c/2 80 120

4 Security Analysis

PRIMATEs are indistinguishable from an ideal authenticated encryption scheme up to
about 2c/2 primitive calls; implying that PRIMATEs achieve a security level of c/2 bits.
This result is proven in the ideal model, where the underlying primitive permutations
PRIMATE are assumed to be perfectly random permutations.

PRIMATES 151

4.1 APE

The security results for APE can be found in [1]. APE is the first and currently the only
misuse resistant permutation based authenticated encryption. The security results for
APE apply both in the cases when nonces are unique values (full security) and also
when nonces are reused (full security up to common prefix, the maximum attainable
for single pass schemes). As a mode of operation for a permutation, APE is secure in
the ideal model. Considering a distinguisher whose queries are of total length at most
m blocks, APE is proven secure in the ideal model up to a bound of m2

2r+c + 2m(m+1)
2c

(integral messages) and m2

2r+c + 2m(m+1)
2c−1 (for fractional messages) [1].

We can also look at APE as a mode of operation for a block cipher where we replace
the operation (0r ‖ K)⊕ p1 ⊕ (0r ‖ K) with that of a block cipher (see [1] for a more
detailed explanation). This version of APE is secure in the standard model, meaning
if the underlying block cipher is a secure strong pseudorandom permutation (SPRP),
then APE with a block cipher is secure as well. The bounds from the ideal model also
hold in the standard model, up to twice the SPRP security of EK . We interpret this
result to mean that if (0r ‖ K)⊕ p1 ⊕ (0r ‖ K) with p1 instantiated by a PRIMATE is
a secure SPRP, then APE with a PRIMATE is secure as well.

In the same vein, a formal security proof for APE in the case unverified plaintext
is given in [2]. In more detail, the authors introduce a security model for the analysis
of authenticated encryption schemes in the case when unverified plaintext is released
upon decryption. In this model APE is proven to be secure upon release of unverified
plaintext with no security loss (compared to the above-mentioned bounds).

Taking c = 160, r = 40 for APE-80 or c = 240, r = 40 for APE-120, the security
levels approach the ones claimed in Sect. 3, but not exactly. For instance, for APE-80
we claim 80-bit security, while the proven security bound (fractional case) satisfies
m2

2r+c + 2m(m+1)
2c

= 1
2

for m ≈ 279.5. Similarly, for the fractional case the security bound
equals 1

2
for m ≈ 279. The difference is due to the security model and proof techniques

applied.

4.2 HANUMAN

HANUMAN follows a design similar to that of SpongeWrap [7]. The scheme constructs
a keystream which depends on the nonce (public message number) and message, with
which the message is then XORed to produce the ciphertext. As long as the nonce
remains unique for each encryption, confidentiality will be achieved since the keystream
will be close to uniformly random, assuming the PRIMATE permutations are close to
ideal. Note that if the nonce is repeated, then the XOR of the first message blocks can
be determined from the XOR of the ciphertexts. Associated data is processed via an
independent permutation in order to prevent forgery attacks in which a message is first
encrypted as associated data, and then again as plaintext. Attacks can be found if a
collision occurs in the capacity, yet this is expected to happen only after roughly 2c/2

total queries to the underlying permutations. It is also assumed that if the verification
step of the algorithm reveals that the ciphertext has been tampered with, then the
algorithm returns no information beyond the verification failure.

PRIMATES 152

4.3 GIBBON

The structure of GIBBON is similar to the MonkeyWrap [5] construction. The scheme
generates a stream of a ciphertext and a tag depending on the nonce (public message
number) and the message. Security is achieved as long as the nonce is used only once
with the same key. It is also assumed that if the verification step of the algorithm
reveals that the ciphertext has been tampered with, then the algorithm returns no
information beyond the verification failure. In particular, no plaintext blocks are
returned. A state recovery for GIBBON does not lead to trivial key recovery and also
does not lead to trivial universal forgery attacks due to the key additions.

4.4 PRIMATE

This section shows some known properties of the non-linear permutation PRIMATE.

4.4.1 Differential and Linear Trails

PRIMATE has diffusion properties according to the wide trail design strategy and
hence provides good bounds against differential an linear cryptanalysis. We use the
technique in [19] to calculate the differential and linear hull probabilities of PRIMATE.
Since the 5-bit S-box of PRIMATE is an almost bent (AB) permutation, the maximum
differential and linear probability for this S-box is 2−4, which provides optimal security
against linear and differential cryptanalysis [10].

For PRIMATE-80, as the branch number of the linear diffusion is 6, the differen-
tial/linear probability over any two rounds does not exceed 16 · (2−4)6 = 2−20 and
the differential/linear probability over any four rounds is upper-bounded by (2−20)5 =
2−100. For PRIMATE-120, the branch number of the linear diffusion is 8 and, therefore,
the differential/linear probability over any four rounds of PRIMATE-120 is upper-
bounded by (16 · (2−4)8)7 = 2−196.

This means that the probability of any twelve-round differential (and linear approx-
imation) in PRIMATE-80 (respectively, PRIMATE-120), assuming independent rounds,
does not exceed 2−100 (respectively, 2−196). Thus, there is only a very small chance
that the standard differential or linear approach would lead to a successful attack here.

4.4.2 Collision Producing Trails

Assume we have a certain difference for the message that may result in a zero difference
in the state with a high probability after the difference has been injected. We call the
trails corresponding to this behaviour collision producing trails. They can be used in
a forgery attack on PRIMATE. Note that a linear trail of a similar shape might be used
for a distinguishing attack on the keystream of PRIMATE.

The simple design of PRIMATE allows to prove good bounds against this kind
of differential and linear attacks. To obtain such bounds, we adopt the mixed-integer
linear programming (MILP) technique proposed in [18] to find the minimum number of
differentially and linearly active S-boxes of the target ciphers. Using this technique and
the optimizer CPLEX [17], we obtained the results provided in Table 4 for PRIMATE-80
and PRIMATE-120.

PRIMATES 153

Table 4: Bounds for the minimum number of active S-boxes for collision producing
trails of PRIMATE-80 and PRIMATE-120.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12
PRIMATE-80 44 48 52 56 61 84 105 113 117 122 145 162
PRIMATE-120 63 64 72 78 113 128 143 152 177 193 209 224

For 6 rounds of GIBBON-80 (and GIBBON-120), we find that trails with at least
84 (respectively, 128) active S-boxes can produce a collision. This results in an upper
bound on the differential and linear trail probability of 2−336 (respectively, 2−512).

For 12 rounds of HANUMAN and APE, we find that a collison requires at least
162 active S-boxes of HANUMAN-80/APE-80 (224 of HANUMAN-120/APE-120 respec-
tively). The upper bounds of the differential and linear trail probability are therefore
2−648 and 2−896 respectively.

4.4.3 Impossible Differential Cryptanalysis

Now we discuss the application of impossible differential cryptanalysis to PRIMATE.
Since the branch number of PRIMATE-80 and PRIMATE-120 is 6 and 8, respectively,
the number of nonzero element differences in each column before and after the MixColumns
operation can never be smaller than these values. Based on this property, we construct
impossible differentials for 6 and 5 rounds of PRIMATE-80 and PRIMATE-120, respec-
tively, which are depicted in Figures 4 and 5.

SR

SR

SR

SR−1

SR−1

SE

SE

SE

SE−1

SE−1

MC

MC

MC−1

MC−1

CA

CA

CA

CA

CA

MC

SR−1SE−1
CAMC−1

Figure 4: Impossible differential for 6 rounds of PRIMATE-80.

Taking PRIMATE-80 as an example, assume we start from the first round, if there
is a nonzero difference at position (0,0) of the state, then after 2.5 rounds of PRIMATE
encryption, the vector in column 3 before the MixColumns operation is (0, ∗, 0, ∗, 0)T ,
where “*” denotes a nonzero difference. At the same time, if there is a nonzero differ-
ence in column 1 after the MixColumns of round 6 at the bottom of the distinguisher,
there is a single nonzero difference at position (0,1) before MixColumns in round 5,
which leads to the output vector in column 3 after MixColumns operation in round 3

PRIMATES 154

SR

SR

SR−1

SR−1

SE

SE

SE−1

MC

MC

MC−1

MC−1

CA

CA

CA

CA

SE−1

SR−1SE−1
CAMC−1

Figure 5: Impossible differential for 5 rounds of PRIMATE-120.

to be (∗, ∗, ∗, 0, 0)T . These columns are highlighted in red in Figure 4. This means
that M(0, ∗, 0, ∗, 0)T = (∗, ∗, ∗, 0, 0)T , that is, that the number of nonzero element
differences before and after MixColumns is 5 which contradicts to the branch number
being 6. Therefore, a 6-round impossible differential has been constructed for PRI-
MATE-80. Similarly, we can obtain the 5-round impossible differential of Figure 5 for
PRIMATE-120.

5 Features of PRIMATEs

Permutation-based AE for lightweight applications.

The PRIMATEs authenticated encryption family is designed for lightweight crypto-
graphic applications. The domain of lightweight cryptography focuses on crypto-
graphic algorithms for extremely constrained hardware devices, where the goal is to
implement an efficient cryptographic algorithm using only a very limited number of
gates.

At the the core of the PRIMATEs family are the PRIMATE permutations. Since
the introduction of the Sponge functions methodology [6], permutation-based crypto-
graphic algorithms have rapidly been gaining acceptance due to their efficient imple-
mentation properties. Very recently, the sponge-based hash function Keccak [4] has
been selected as the winner of the NIST SHA-3 competition.

The PRIMATE permutation is a substitution-permutation network using a 5-bit
S-box with optimal linear and differential properties, and a recursive MDS matrix,
which leads to a very small and efficient implementation in hardware.

Resistance against hardware side-channel attacks.

To meet the requirements of resistance against hardware side-channel attacks, the un-
derlying permutation has been designed to offer an efficient threshold implementation

PRIMATES 155

to counter first-order DPA attacks, based on glitch-free secret-sharing-based masking,
cf. [8].

Online.

All PRIMATEs offer online encryption, thereby allowing the algorithm to output cipher-
text blocks without the knowledge of plaintext lengths or the next plaintext blocks.
PRIMATEs are inherently sequential. For lightweight applications, this is not an issue:
the design goal is to use a very small number of gates, therefore parallelism would not
be of any benefit.

Comparison to AES-GCM.

• GCM-AES is a block cipher based design. In comparison, PRIMATEs are smaller
than similar AEAD algorithms based on a block cipher (such as AES), as our
implementation does not contain a key schedule, uses smaller S-boxes (5 bits
instead of 8 bits), and uses a more compact, recursive MDS matrix implementa-
tion.

• Unlike in AES-GCM, PRIMATEs handle all nonce lengths in the same way,
thereby reducing the complexity of the implementation and simplifying the secu-
rity analysis. We must stress, however, that when any of the parameters of the
PRIMATEs (such as the nonce length) are modified, a new key must be chosen
uniformly at random.

• The PRIMATEs modes avoid all the attacks that are inherent to AEAD modes
based on a polynomial hash [16,20], such as AES-GCM.

Key and Nonce Agility.

Changing the key or nonce has very little overhead for all modes in the PRIMATEs
family, requiring only one permutation function call and one key XOR for GIBBON,
and requires only one permutation function call for HANUMAN. In the case of APE,
changing the key also requires one permutation function call. Changing the nonce
requires ν/r permutation function calls.

Besides the aforementioned features that hold in general for the PRIMATEs algo-
rithm family, several features make specific modes stand out.

Features Specific to APE, HANUMAN and GIBBON.

• APE should be used in applications where additional security is required. Like
HANUMAN, APE is provably secure, based on the security of the underlying per-
mutation. Additionally, APE provides resistance against nonce reuse [1], as well
as resistance against adversaries that can observe the unverified plaintext during
decryption [2]. The price to pay for this additional security is that decryption is
performed backwards using the inverse of the permutation.

• HANUMAN is based on the SpongeWrap [6] design strategy. More concretely, it
is the hermetic Sponge design strategy, which means that its underlying permu-
tation should be free of any structural distinguishers.

PRIMATES 156

• GIBBON is intended for lightweight applications where speed is critical and a
formal security proof (based on the security of the underlying permutation) is
not required. To achieve high throughput, GIBBON employs reduced-round per-
mutations p2 and p3 to process the associated data and message respectively,
next to the full-round permutation p1 used for initialization and finalization.

6 Design Rationale

The PRIMATEs have been designed with lightweight hardware requirements as present
in constrained devices in mind. For the mode of operation, they follow the principles of
the sponge methodology, more specifically, some of the principles of SpongeWrap and
MonkeyDuplex. The modes of operation are generic and free of weaknesses as justified
by the formal security proofs. For the underlying permutations, the PRIMATEs follow
the well-established SPN approach of Rijndael (and its wide-trail design strategy),
based on almost bent S-boxes (attaining best possible differential and linear properties)
as well as MDS diffusion matrices (achieving best possible differential and linear local
diffusion). To favor lightweight implementations of the PRIMATEs, the MDS diffusion
matrices are chosen to be recursive and the S-boxes to be 5-bit.

The PRIMATEs family includes three modes: GIBBON and HANUMAN are nonce-
based, while APE has been designed to maintain security under both nonce reuse and
release of unverified plaintext – scenarios that are likely to persist in highly constrained
embedded systems. GIBBON does not follow the hermetic sponge-based design ap-
proach, while both HANUMAN and APE do. This allows GIBBON to be considerably
faster and more energy-efficient. A state recovery for GIBBON does not lead to trivial
key recovery and also does not lead to trivial universal forgery attacks due to the key
additions.

The designers have not hidden any weaknesses in these ciphers.

7 Intellectual Property

The submitters are not aware of any patent involved in PRIMATEs family. Further-
more, PRIMATEs will not be patented. If any of this information changes, the sub-
mitters will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

8 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candi-
date, a third-round candidate, a finalist, a member of the final portfolio, or any other
designation provided by the committee. The submitters understand that the commit-
tee will not comment on the algorithms, except that for each selected algorithm the
committee will simply cite the previously published analysis that led to the selection
of the algorithm. The submitters understand that the selection of some algorithms is
not a negative comment regarding other algorithms, and that an excellent algorithm

PRIMATES 157

might fail to be selected simply because not enough analysis was available at the time
of the committee decision. The submitters acknowledge that the committee decisions
reflect the collective expert judgments of the committee members and are not subject
to appeal. The submitters understand that if they disagree with published analysis
then they are expected to promptly and publicly respond to those analysis, not to wait
for subsequent committee decisions. The submitters understand that this statement is
required as a condition of consideration of this submission by the CAESAR selection
committee.

Acknowledgments. We would like to thank Miroslav Knežević for his various
implementations and comments. This work was supported in part by the Research
Council KU Leuven: GOA TENSE (GOA/11/007) and by the Research Fund KU
Leuven, OT/13/071. In addtion, the work was supported in part by the Austrian
Government through the research program COMET (Project SeCoS, Project Number
836628). Elena Andreeva and Nicky Mouha are supported by Postdoctoral Fellowships
from the Flemish Research Foundation (FWO-Vlaanderen). Atul Luykx and Bart
Mennink are supported by Ph.D. Fellowships from the Institute for the Promotion
of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). Begül
Bilgin was partially supported by the FWO project G0B4213N. Qingju Wang is also
funded by the Major State Basic Research Development Program of China (973 Plan)
(No.2013CB338004), National Natural Science Foundation of China (No. 61073150),
and Chinese Major Program of National Cryptography Development Foundation.

References

[1] Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: Authenticated Permutation-Based Encryption for Lightweight
Cryptography. In: FSE 2014. Lecture Notes in Computer Science, Springer (2014),
to appear

[2] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.:
How to Securely Release Unverified Plaintext in Authenticated Encryption. Cryp-
tology ePrint Archive, Report 2014/144 (2014)

[3] Augot, D., Finiasz, M.: Direct Construction of Recursive MDS Diffusion Layers
using Shortened BCH Codes. In: FSE 2014. Lecture Notes in Computer Science,
Springer (2014), to appear

[4] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3
submission. Submission to the NIST SHA-3 Competition (Round 3) (2011)

[5] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-Based En-
cryption, Authentication and Authenticated Encryption. Directions in Authenti-
cated Ciphers (July 2012)

[6] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge
Functions, available at http://sponge.noekeon.org/CSF-0.1.pdf

PRIMATES 158

[7] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) Selected Areas in Cryptography 2011. Lecture Notes in Computer
Science, vol. 7118, pp. 320–337. Springer (2012)

[8] Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: Fides: Lightweight
Authenticated Cipher with Side-Channel Resistance for Constrained Hardware.
In: Bertoni, G., Coron, J.S. (eds.) CHES. Lecture Notes in Computer Science,
vol. 8086, pp. 142–158. Springer (2013)

[9] Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE:
AES-based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE. Lec-
ture Notes in Computer Science, Springer (2013)

[10] Carlet, C., Charpin, P., Zinoviev, V.: Codes, Bent Functions and Permutations
Suitable For DES-like Cryptosystems. Des. Codes Cryptography 15(2), 125–156
(1998)

[11] Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
IMA Int. Conf. Lecture Notes in Computer Science, vol. 2260, pp. 222–238.
Springer (2001)

[12] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer (2002)

[13] Fouque, P.A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line En-
cryption. In: Matsui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography.
Lecture Notes in Computer Science, vol. 3006, pp. 145–159. Springer (2003)

[14] Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 6841, pp. 222–239. Springer (2011)

[15] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher.
In: Preneel, B., Takagi, T. (eds.) CHES. Lecture Notes in Computer Science, vol.
6917, pp. 326–341. Springer (2011)

[16] Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 5157, pp. 144–161. Springer (2008)

[17] IBM: IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/

integration/optimization/cplex-optimizer/

[18] Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Inscrypt. Lecture Notes in Computer Science, vol. 7537, pp. 57–76. Springer (2011)

[19] Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maxi-
mum Differential and the Maximum Linear Hull Probability for SPN Structures
and AES. In: Johansson, T. (ed.) FSE. Lecture Notes in Computer Science, vol.
2887, pp. 247–260. Springer (2003)

PRIMATES 159

[20] Saarinen, M.J.O.: Cycling Attacks on GCM, GHASH and Other Polynomial
MACs and Hashes. In: Canteaut, A. (ed.) FSE. Lecture Notes in Computer Sci-
ence, vol. 7549, pp. 216–225. Springer (2012)

[21] Tsang, P.P., Solomakhin, R.V., Smith, S.W.: Authenticated streamwise on-line
encryption. Dartmouth Computer Science Technical Report TR2009-640 (2009)

[22] Wu, S., Wang, M., Wu, W.: Recursive Diffusion Layers for (Lightweight) Block
Ciphers and Hash Functions. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas
in Cryptography. Lecture Notes in Computer Science, vol. 7707, pp. 355–371.
Springer (2012)

PRIMATES 160

Diagrams

In all figures below the gray dotted box denotes the processing boundaries whenever
no associated data is present.

M[1]

0c-1||1

p1
T

K

C
0r

N[1]

...

A[1] A[u]

p1 p1 p1
K

...

N[y]

p1

Figure 6: APE AE where |M [w]| ≤ r − 1, w = 1, fractional A and padded A and M .

1||0c-1

M[1]

0c-1||1

p1
T

K

C
0r

N[1]

...

A[1] A[u]

p1 p1 p1
K

...

N[y]

p1

Figure 7: APE AE where |M [w]| ≤ r − 1, w = 1, integral A and padded M .

0r

N[1]

...

A[1] A[u]

p1 p1 p1
K

M[1]
C[1]

T

K

M[2]
[C[w-1]]M[w]

M[w]
C[w]

0c-1||1

p1 p1 p1... ...

N[y]

p1

Figure 8: APE AE where |M [w]| ≤ r − 1, w ≥ 2, fractional A and padded A and M .

PRIMATES 161

1||0c-1

0r

N[1]

...

A[1] A[u]

p1 p1 p1
K

M[1]
C[1]

T

K

M[2]
[C[w-1]]M[w]

M[w]
C[w]

0c-1||1

p1 p1 p1... ...

N[y]

p1

Figure 9: APE AE where |M [w]| ≤ r − 1, w ≥ 2, integral A and padded M .

0r

N[1]

...

A[1] A[u]

p1 p1 p1
K

M[1]
C[1]

T

K

M[2]
C[w-1]

M[w]
C[w]

0c-1||1

p1 p1 p1... ...

N[y]

p1

1||0c-1

Figure 10: APE AE where |M [w]| = r, fractional and padded A.

1||0c-1

0r

N[1]

...

A[1] A[u]

p1 p1 p1
K

M[1]
C[1]

T

K

M[2]
C[w-1]

M[w]
C[w]

0c-1||1

p1 p1 p1... ...

N[y]

p1

1||0c-1

Figure 11: APE AE where |M [w]| = r and integral A.

PRIMATES 162

A[1]

...

A[2] A[u] M[1]
C[1]

M[w]

K

T
p1 p4 p4 p1 p1 p1

K||N

0r
...

[C[w]]M[w]

Figure 12: HANUMAN AE where |M [w]| ≤ r − 1, fractional A and padded A and M .

A[1]

...

A[2] A[u] M[1]
C[1]

p1 p4 p4 p1 p1
K||N

0r

1||0c-1

M[w]

K

T
p1...

[C[w]]M[w]

Figure 13: HANUMAN AE where |M [w]| ≤ r − 1, integral A and padded M .

A[1]

...

A[2] A[u] M[1]
C[1]

M[w]
C[w]

K

T
p1 p4 p4 p1 p1 p1

K||N

0r

1||0c-1

...

Figure 14: HANUMAN AE where |M [w]| = r and fractional and padded A.

A[1]

...

A[2] A[u] M[1]
C[1]

M[w]
C[w]

K

T
p1 p4 p4 p1 p1 p1

K||N

0r

1||0c-1 1||0c-1

...

Figure 15: HANUMAN AE where |M [w]| = r and integral A.

PRIMATES 163

p1
K||N

K||0c/2

...

A[1] A[u] M[1]
C[1]

K||0c/2

T

K

p2 p2 p3 p3 p1p3
0r

M[w]

...

[C[w]]M[w]

Figure 16: GIBBON AE where |M [w]| ≤ r − 1, fractional A and padded A and M .

p1
K||N

K||0c/2

...

A[1] A[u] M[1]
C[1]

K||0c/2

T

K

p2 p2 p3 p3 p1p3
0r

1||0c-1

M[w]

...

[C[w]]M[w]

Figure 17: GIBBON AE where |M [w]| ≤ r − 1, integral A and padded M .

1||0c-1

p1
K||N

K||0c/2

...

A[1] A[u] M[1]
C[1]

...

M[w]
C[w]

K||0c/2

T

K

p2 p2 p3 p3 p1p3
0r

Figure 18: GIBBON AE where |M [w]| = r and fractional and padded A.

1||0c-1

p1
K||N

K||0c/2

...

A[1] A[u] M[1]
C[1]

...

M[w]
C[w]

K||0c/2

T

K

p2 p2 p3 p3 p1p3
0r

1||0c-1

Figure 19: GIBBON AE where |M [w]| = r and integral A.

PRIMATES 164

Chapter 10

Improved Impossible
Differential Attacks on
Large-Block Rijndael

Publication Data

Q. Wang, D. Gu, V. Rijmen, Y. Liu, J. Chen, A. Bogdanov: Improved Impossible
Differential Attacks on Large-Block Rijndael. In T. Kwon, M.-K. Lee, and D.
Kwon (Eds.): ICISC 2012, volume 7839 of Lecture Notes in Computer Science,
pages 126–140, 2013.

Contributions

Major author of the idea, the attacks and the text.

165

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 166

Improved Impossible Differential Attacks on

Large-Block Rijndael⋆

Qingju Wang1,2, Dawu Gu1, Vincent Rijmen2, Ya Liu1, Jiazhe Chen3, and
Andrey Bogdanov4

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, 200240, China.

2 KU Leuven, ESAT/COSIC and iMinds, Belgium.
{qingju.wang,vincent.rijmen}@esat.kuleuven.be, dwgu@sjtu.edu.cn

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, School of Mathematics, Shandong University, Jinan, 250100, China.

4 Technical University of Denmark, Department of Mathematics, Denmark.
a.bogdanov@mat.dtu.dk

Abstract. In this paper, we present more powerful 6-round impossi-
ble differentials for large-block Rijndael-224 and Rijndael-256 than the
ones used by Zhang et al. in ISC 2008. Using those, we can improve the
previous impossible differential cryptanalysis of both 9-round Rijndael-
224 and Rijndael-256. The improvement can lead to 10-round attack on
Rijndael-256 as well. With 2198.1 chosen plaintexts, an attack is demon-
strated on 9-round Rijndael-224 with 2195.2 encryptions and 2140.4 bytes
memory. Increasing the data complexity to 2216 plaintexts, the time com-
plexity can be reduced to 2130 encryptions and the memory requirements
to 293.6 bytes. For 9-round Rijndael-256, we provide an attack requiring
2229.3 chosen plaintexts, 2194 encryptions, and 2139.6 bytes memory. Al-
ternatively, with 2245.3 plaintexts, an attack with a reduced time of 2127.1

encryptions and a memory complexity of 290.9 bytes can be mounted.
With 2244.2 chosen plaintexts, we can attack 10-round Rijndael-256 with
2253.9 encryptions and 2186.8 bytes of memory.

Keywords: block cipher, impossible differential attack, Rijndael, large
block

1 Introduction

Rijndael [11] is a block cipher designed by Joan Daemen and Vincent Rijmen
built upon a Substitution Permutation Network (SPN). A subset of Rijndael
variants has been standardized as Advanced Encryption Standard (AES) by
the U.S. National Institute of Standards and Technology (NIST) [14] in 2002.

⋆ This work was supported by the National Natural Science Foundation of China
(No. 61073150), and in part by the Research Council K.U.Leuven: GOA TENSE,
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy),
and in part by the European Commission through the ICT program under contract
ICT-2007-216676 ECRYPT II.

167

Rijndael follows the design principles of Square [9]. In its full version, both the
block and the key sizes can range from 128 to 256 bits in steps of 32 bits.
For AES, the block size of Rijndael is restricted to 128 bits. This paper deals
with non-AES Rijndael variants, that is, large-block Rijndael-b, with b > 128
indicating the block size and key size in bits.

AES is probably the most well-studied block cipher, having received about 15
years of extensive public scrutiny by now. Square attacks, impossible differential
attacks, boomerang attacks, rectangle attacks and meet-in-the-middle attacks in
both the single-key and related-key settings are just several prominent examples
of cryptanalysis techniques applied to AES [1, 4–7, 12, 17, 20, 22–24,26–28].

The large-block Rijndael is arguably less analyzed, being a highly relevant
cipher though. Among others, an important motivation for the study of large-
block Rijndael is the deployment of Rijndael-like permutations in the design of
hash functions, Whirlwind [2] and SHA-3 finalist Grøstl [16] constituting some
especially interesting instances. We mention here several multiset and integral
cryptanalytic results [13, 15, 18, 21], as well as impossible differential cryptanal-
ysis [19, 25]. In terms of the impossible differential cryptanalysis – the major
object of our study in this paper – the best attack has been proposed by Zhang
et al. [25] which cryptanalyzes 9-round Rijndael-224 and Rijndael-256 with 2209

and 2208.8 encryptions, respectively.
Impossible differential cryptanalysis, which was proposed by [3,8], is a widely

used cryptanalytic technique. The attack starts with finding a certain input dif-
ference that can never result in a certain output difference, which makes up an
impossible differential. Usually, impossible differentials have truncated input and
output differences. By adding rounds before and/or after the impossible differ-
ential, one can collect pairs with certain plaintext and ciphertext differences.
If there exists a pair that meets the input and output values of the impossible
differential under some subkey bits, these bits must be wrong. In this way, we
discard as many wrong keys as possible and exhaustively search the rest of the
keys. The early abort technique is usually used during the key recovery phase,
that is, one does not guess all the subkey bits at once, but guesses some subkey
bits instead to discard some pairs that do not satisfy certain conditions step
by step. In this case, we can discard the unwished pairs as soon as possible to
reduce the time complexity.
Our Contributions. In this paper, we present more powerful 6-round im-
possible differentials for Rijndael-224 and Rijndael-256. Using these impossible
differentials, we can improve the existing impossible differential cryptanalyses of
both Rijndael-224 and Rijndael-256. In addition, the improvement can result in
a 10-round attack on Rijndael-256.

Our impossible differentials for both Rijndael-224 and Rijndael-256 have
more active bytes in the output difference and, therefore, the number of sub-
key bytes needed to be guessed during the key recovery phase can range with
more options, while the probability for a pair of plaintexts to pass the test of
sieving wrong pairs is higher compared to [25].

For 9-round Rijndael-256, utilizing the new impossible differential and de-
pending on the number of subkey bytes needed to be guessed in key recovery

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 168

Table 1. Summary of Attacks on Rijndael-224 and Rijndael-256

Cipher
Number of Complexity Attack

Source
Round Time (EN) Data(CP) type

Rijndael-224

7 2141 2130.5 Multiset [18]
7 2167 2138 Imp. Diff. [19]
7 2113.4 293.2 Imp. Diff. [25]
9 2196.5 2196.5 Integral [21]
9 2209 2212.3 Imp. Diff. [25]
9 2195.2 2198.1 Imp. Diff. sect. 4
9 2162 2208 Imp. Diff. sect. 4
9 2130 2216 Imp. Diff. sect. 4

Rijndael-256

7 2128 − 2119 2128 − 2119 Part. Sum [13]
7 2141 2130.5 Multiset [18]
7 244 6× 232 Integral [15]
7 2182 2153 Imp. Diff. [19]
7 2113.2 293 Imp. Diff. [25]
8 2128 − 2119 2128 − 2119 Integral [15]
9 2204 2128 − 2119 Integral [15]
9 2174.5 2132.5 Integral [21]
9 2208.8 2244.3 Imp. Diff. [25]
9 2194 2229.3 Imp. Diff. subsect. 3.2
9 2159.1 2237.3 Imp. Diff. subsect. 3.3
9 2127.1 2245.3 Imp. Diff. subsect. 3.3
10 2253.9 2244.2 Imp. Diff. subsect. 3.4

CP: Chosen Plaintext; EN: Number of round encryptions

phase, three improved attacks can be obtained. If we guess the same number of
subkey bytes as [25], an attack can be mounted with reduced data complexity
of 2229.3 Chosen Ciphertexts (CP), time complexity 2194 encryptions and mem-
ory complexity 2139.6 bytes respectively. In addition, if the number of subkey
bytes need to guess is less than [25], given 2237.3 CP, we can attack 9-round
Rijndael-256 with 2159.1 encryptions and 2115.3 bytes of memory. If the data
complexity are increased to 2245.3 CP, the time and memory complexity can be
significantly reduced to 2127.1 encryptions and 290.9 bytes. Moreover, based on
the same impossible differential, considering 2244.2 CP, we can even attack 10-
round Rijndael-256 with 2253.9 encryptions and 2186.8 bytes of memory accesses.
As for Rijndael-224, similarly three attacks can also be mounted on 9-round
with lower complexity. With 2198.1 CP, an attack is demonstrated on 9-round
Rijndael-224 with 2195.2 encryptions and 2140.4 bytes memory. Take 2208 CP, we
can attack 9-round Rijndael-224 with 2162 encryptions and 2117 bytes memory.
Increasing the data complexity to 2216 chosen plaintexts, the time complexity
can be greatly reduced to 2130 encryptions and the memory requirements to 293.6

bytes.

To the best of our knowledge, these results are the best impossible differ-
ential attacks on Rijndael-224 and Rijndael-256. We summarize our results for
Rijndael-224 and Rijndael-256, as well as the major previous results in Table 1.

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 169

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of Rijndael and introduces the notations used in this paper. In Section 3
we first derive a new 6-round impossible differential, and then present three
improved impossible differential attacks on 9-round Rijndael-256. The attack
can also be extended to 10-round Rijndael-256. Then in Section 4, after a new 6-
round impossible differential distinguisher is presented, we mount three improved
attacks on 9-round Rijndael-224. Finally, we conclude this paper in Section 5.

2 Description of Rijndael and Notations

Rijndael has Nr rounds, which can be 10, 12, or 14 depending on the key size. In
Rijndael, both the text block and the key sizes can range for 128 up to 256 bits
in steps of 32 bits. The 128-bit block version of Rijndael, with the key size 128,
192 or 256, is officially known as AES [14]. The plaintext, ciphertext, subkey,
and all the intermediate data are represented by a 4 × Nb state matrix of
bytes, where Nb is the number of 32-bit words in the block. The byte indexing
for the state matrix is shown in the left part of Figure 1. The key schedule

0

1

2

3 31

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

160-bit

192-bit

224-bit

256-bit

Nb C0 C1 C2 C3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

Fig. 1. Byte Index of the State Matrix and the Shift Offsets for Each Block Length Nb

derives (Nr +1) b-bit RoundKey(RK) from the master key, denoted from RK0 to
RKNr . The Expanded Key is a linear array of 4-byte words and is denoted by
W [Nb ∗ (Nr + 1)]. The first Nk words W [0]‖W [1]‖ · · · ‖W [Nk − 1] are directly
initialised by the Nk words of the master key, while the remaining key words,
W [i] for i ∈ {Nk, · · · , Nk∗(Nr+1)−1} are generated by the following algorithm:

if (i mod N) = 0 then W [i] = W [i−Nk]⊕ f(W [i− 1])⊕Rcon[i/Nk]
else if ((Nk > 6) and (i mod N = 4)) then W [i] = W [i−Nk]⊕g(W [i−1])

else W [i] = W [i −Nk]⊕W [i− 1]

where f, g : {0, 1}32 → {0, 1}32 are nonlinear permutations, Rcon denotes fixed
constants depending on its input. Roundkey RKi is given by the Round Key
buffer words W [Nb ∗ i] to W [Nb ∗ (i+ 1)].

The round function, which is repeated (Nr − 1) times, involves four opera-
tions: SubBytes(SB), ShiftRows(SR),MixColumns(MC) and AddRoundKey(ARK).

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 170

The SubBytes operation consists of the parallel application of a fixed 8-bit to
8-bit Sbox to each byte of the state. ShiftRows is a byte transposition that left
shifts the rows of the state over different offsets. The shift offsets Ci of row i
which depend on the block length Nb, are specified in the right part of Figure 1
for each block length of Rijndael. MixColumns is an (4× 4) Maximum Distance
Separable (MDS) matrix multiplication over GF (28) for each column of the
state. Obviously the branch number of this MDS matrix is five. AddRoundKey
consists of the exclusive-or combination of the RoundKey with the intermediate
state.

These (Nr − 1) rounds are surrounded by an whitening layer consisting of
AddRoundKey only, and the last round with MixColumns operation omitted. We
also assume that this is the same case for the reduced Rijndael we are focusing
on throughout this paper. Here we only give a brief description of Rijndael, for
more detailed specification of the cipher, we refer to [10, 11].

We will also use the technique that the operations of MixColumns and
AddRoundKey can be interchanged under some conditions [11]. Here we intro-
duce some notations as well for later use in the following.

Xi : the state of the i-th round;

∆Xi : the difference for state of the i-th round;

XI
i : the input state of the i-th round;

RKi : the subkey of the i-th round;

RK∗
i : the value of the subkey of the i-th round after the inverse of the MixColumns

operation;

XSB
i : the intermediate state after the SubBytes operation in the i-th round;

XSR
i : the intermediate state after the ShiftRows operation in the i-th round;

XMC
i : the intermediate state after the MixColumns operation in the i-th round;

XW
i : the intermediate state after the AddRoundKey operation with RK∗

i in the
i-th round;

XO
i : the intermediate state after the AddRoundKey operation in the i-th round;

? : an indeterminate difference.

Obviously, XI
i = XO

i−1 hold. Note that the operation of AddRoundKey will be
represented as ARK∗ throughout this paper when the Roundkey RK∗ is used.

3 Improved Impossible Differential Attacks on
Rijndael-256

In this section, we first give a new 6-round impossible differential for Rijndael-256
in Section 3.1. Based on this impossible differential and depending on the number
of the subkey bytes need to guess during the key recovery phase, three improved
9-round impossible differential attacks compared to [25] will be presented in
Subsection 3.2 and 3.3 respectively. Using the same impossible differential, we
can extend it to an attack of 10-round Rijndael-256 in Subsection 3.4.

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 171

MC−1
ARK∗

SB−1 SR−1

SB SR

SB SR MC

SB MC
1R

2R

6R

5R

4R

3R

SR

?

?

?

?

?

?

?

?

MC−1

MC−1

SB−1

SB−1

SR−1

SR−1

?

?

?

?

?

?

?

?

ARK

ARK

ARK

ARK

ARK

ARK

?

?

?

? ?

?

?

?

? ?

? ?

??

??

?

?

?

?

?

?

?

?

? ?

? ?

??

?? ?

?

?

?

?

?

?

?

? ?

? ?

??

??

Fig. 2. The New 6-Round Impossible Differential of Rijndael-256

3.1 New 6-Round Impossible Differential on Rijndael-256

Assume we start with round 1 (denoted as 1R in Figure 2) and the input differ-
ence ∆X1 has one active byte whereas the other bytes are zero, one illustration
with the first byte active is depicted in Figure 2. Then request 2.5 rounds en-
cryption from the SB operation in round 1 to the SR operation in round 3 to get
the difference ∆XSR

3 . Consider the output difference with three nonzero bytes in
the first column of the state, one option with the active bytes at (0,1,3) is shown
in Figure 2, the other option has the active bytes at (0,2,3). Decrypt 3.5 rounds
(as depicted from the operation ARK∗ in round 6 to the operation ARK in round
3) in order to get the difference ∆XMC

3 . Note there is no AddRoundKey operation
in round 6 because the order of MixColumns and AddRoundKey operations can
be interchanged as mentioned before in Section 2. For the third column of the
state ∆XSR

3 , the number of nonzero bytes is one, while it is at most three for
the nonzero bytes of ∆XMC

3 (it is indeterminate at byte 9). Since the branch
number of the MDS matrix is five, there is a contradiction before and after the
MixColumns operation. By similar reasoning, there is also a contradiction in the
seventh column in the state before and after the MixColumns operation in round
3. Therefore, we make up a 6-round impossible differential for Rijndael-256.

There exist more active bytes in the output of the impossible differential
compared to [25] (they has one byte), therefore we have more options in guessing
the subkey bytes to meet the output of the impossible differential while adding
extra rounds after the impossible differential distinguisher. There are three active

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 172

bytes in one column after MC−1 at the bottom of the impossible differential,
thus the number of the subkey bytes we need to guess in order to calculate the
output after MC−1 can range from two to four, therefore three attacks can be
mounted using this impossible differential.

3.2 9-Round Attack on Rijndael-256 with Lower Data Complexity

ARK∗
8R

MC−1
SB−1

SB−1 SR−1

SR−1

9R

Pr3

ARK

1R
SB MCSR

Pr1

ARK

6-Round Impossible Differential of Rijndael-256
7R

MC−1

Pr2

Fig. 3. Improved 9-Round Attack on Rijndael-256 with Lower Data Complexity

In this subsection we present the attacks on 9-round Rijndael-256 utilizing
the 6-round impossible differential in Subsection 3.1. In our attack, we guess the
same number (i.e. four) of subkey bytes of RK∗

8 as [25] in the key recovery phase.
As a result, 16 bytes of subkey RK9 will have to be guessed to partially decrypt
round 9 in order to calculate XW

8 (as shown in Figure 3), which will also provide
a 128-bit condition for ciphertexts in the data collection phase. The number of
active bytes at the end of the new impossible differential distinguisher will filter
out more wrong pairs during the key recovery phase. Therefore, an improved
attack with significantly reduced data complexity compared to [25] will be result
in. The detailed procedures of the attack will be described as follows.

Data Collection. We first choose 2n structures of plaintexts. In each structure
the plaintexts range over all 32-bit values at bytes (0,5,14,19), while the other
bytes can take certain fixed values. Each structure includes about (232)2/2 = 263

pairs of plaintexts, therefore 2n ·263 = 2n+63 pairs of plaintexts will be prepared.
Encrypt these pairs and keep the one whose ciphertext difference are zero at bytes
(1,2,4,5,8,9,11,12,14,21,23,24,26,27,30,31). The probability of such ciphertexts is
about 2−8·16 = 2−128, thus the expected number of the remaining pairs after
this phase is about 2n+63−128 = 2n−65.

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 173

The sieving of the ciphertexts can be done by birthday attack. As a result, the
time complexity of this phase is about 2n+32. In addition, we need 2n−65 ·5 ·32 =
2n−57.7 bytes memory to store these pairs.

Key Recovery. In order to check if the pairs generated in data collection
phase satisfy the impossible differential in Figure 3, we need to guess certain
bytes of subkey (RK9, RK0, , RK∗

8) during the key recovery phase. The details
are described in the following:

Step 1 For all the pairs of plaintext obtained in the data collection phase, we guess
the 32-bit subkey (RK9,0, RK9,29, RK9,22, RK10,19) and partially decrypt
round 9 to compute the first column of ∆XW

8 . Check if the differences at
byte (1,2,3) are zero. If it is not the case, discard the pair. The probability
of this event is 2−24. After this step the expected number of remaining pairs
is about 2n−65−24 = 2n−89.

Step 2 For every guess of the 32-bit subkey (RK9,16, RK9,13, RK9,6, RK9,3), we par-
tially decrypt round 9 to compute the fifth column of ∆XW

8 . Check if the
differences at byte (0,1,2) are zero. If it is not the case, discard the pair.
The probability of this event is 2−24. After this step the expected number
of remaining pairs is about 2n−89−24 = 2n−113.

Step 3 For every guess of the 32-bit subkey (RK9,20, RK9,17, RK9,10, RK9,7), we
partially decrypt round 9 to compute the sixth column of ∆XW

8 . Check if
the differences at byte (0,1,3) are zero. If it is not the case, discard the pair.
The probability of this event is 2−24. After this step the expected number
of remaining pairs is about 2n−113−24 = 2n−137.

Step 4 For every guess of the 32-bit subkey (RK9,28, RK9,25, RK9,18, RK9,15), we
partially decrypt round 9 to compute the eight column of ∆XW

8 . Check if
the differences at byte (0,2,3) are zero. If it is not the case, discard the pair.
The probability of this event is 2−24. After this step the expected number
of remaining pairs is about 2n−137−24 = 2n−161.

Step 5 We need to guess the 32-bit of subkey (RK0,0, RK0,5, RK0,14, RK0,19) for all
the remaining pairs, and partially encrypt round 1 to get the first column of
∆XMC

1 . Check if the difference at byte (1,2,3) are zero. If it is not the case,
discard the pair. The probability of this event is about 4·(28−1)/232 ≈ 2−22.
Thus after this step the remained pairs is about 2n−161−22 = 2n−183.

Step 6 For every guess of the 16-bit subkey (RK∗
8,0, RK∗

8,29, RK∗
8,22, RK∗

8,19), par-

tially decrypt round 8 to compute the first column of ∆XW
7 . Check if the

differences at the third byte is zero. If it is correct, delete all the 32-bit
subkey guesses of RK∗

8 since such a differential is impossible, each subkey
guess that proposes such a differential is a wrong key. After analyzing all the
2n−183 remaining pairs, if there still remains value of RK∗

8 , output the 192-
bit subkey guess of (RK0, RK∗

8 , RK9) as the correct key. Our experiments
provide the evidence that the probability of the pairs pass this step is about
Pr2 = 2 · 2−8 = 2−7.

The process steps of the key recovery phase above are described in Table 2,
whereas the second column lists the bytes need to be guessed in the correspond-

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 174

ing round for each step. The third column stands for the number of remained
pairs after sieving in each step, and the time complexity of each step will be
measured in the fourth column in Table 2. Note that when evaluating the time
complexity of the recovery, it is measured by one round encryption. Similar ta-
bles will be adopted to describe the steps of the key recovery phase throughout
this paper.

Table 2. Key Recovery Processes of the Attack on Rijndael-256 with lower Data
Complexity

Step Guessed Bytes #Pairs Kept Time Complexity

1 RK9 : 0, 29, 22, 19 2n−65−24 = 2n−89 232 · 2n−65 · 2/8 = 2n−35

2 RK9 : 16, 13, 6, 3 2n−89−24 = 2n−113 264 · 2n−89 · 2/8 = 2n−27

3 RK9 : 20, 17, 10, 7 2n−113−24 = 2n−137 296 · 2n−113 · 2/8 = 2n−19

4 RK9 : 28, 25, 18, 15 2n−137−24 = 2n−161 2128 · 2n−137 · 2/8 = 2n−11

5 RK0 : 0, 5, 14, 19 2n−161−22 = 2n−183 2160 · 2n−161 · 2/8 = 2n−3

6 RK∗
8 : 0, 29, 22, 19 -

2192 · 2 · [1 + (1− 2−7) + (1− 2−7)2

+ · · ·+ (1− 2−7)2
n−183

]/8

Analysis of the Attack Take n = 197.3, after analyzing all the remaining
pairs, there will be about 2192·(1−2−7)2

n−183

= 2−36.2 wrong subkeys ofRK0 left,
we can get rid of the wrong subkeys by 2187.8 trail encryptions. Therefore the data
complexity will be 2n+32 = 2229.3, the time complexity will be 2197.2/9 ≈ 2194

9-round encryptions, the memory required is about 2139.6 bytes.

3.3 9-Round Attack on Rijndael-256 with lower Time Complexity

We will use the same new 6-round impossible differential as the previous section,
which helps to get rid of more pairs. As mentioned in Subsection 3.1, the number
of subkey bytes need to be guessed in round 8 can be reduced compared to [25],
i.e. two or three bytes of RK∗

8 . Here we take two bytes for example. As a result,
it will be the same case for round 9, which means fewer columns need to be
decrypted. Meanwhile, 192 bits are zero for the ciphertexts, which provides an
stronger condition of ciphertexts for sieving wrong pairs compared to 128 bits
in [25]. As a result an improved attack with the time complexity greatly reduced
can be mounted on 9-round Rijndael-256. Because of the similarity of the attack
with the one in Subsection 3.2, only a brief description of this attack will be
demonstrated as follows:

In the data collection phase, we take the same structures as in Subsect 3.2,
thus 2n+63 pairs of plaintexts will be generated. there exists the 192-bit condition
for ciphertext to discard wrong pairs, thus the expected number of the remaining
pairs is 2n+63−192 = 2n−129 at the end of this phase.

In the key recovery phase, we only guess 8 bytes of RK9, 4 bytes of RK0

and 2 bytes of RK∗
8 to check if the impossible differential will be satisfied for the

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 175

remaining pairs. When filtering out wrong pairs, we obtain the probabilities that
the pairs pass the tests in round 8, round 1 and round 7 are Pr3 = (2−24)2 =
2−48, Pr1 = 4 · (28 − 1)/232 ≈ 2−22 and Pr2 = 2 · 2−8 ≈ 2−7 respectively. The
expected number of remaining pairs after this phase is about 2n−199. The steps
and the time complexity evaluation of this phase are given in Table 3. Take

Table 3. Key Recovery Processes of the Improved Attack on Rijndael-256 with lower
Time Complexity

Step Guessed Bytes #Pairs Kept Time Complexity

1 RK9 : 0, 29, 22, 19 2n−129−24 = 2n−153 232 · 2 · 2n−129/8 = 2n−99

2 RK9 : 28, 25, 18, 15 2n−153−24 = 2n−177 264 · 2 · 2n−153/8 = 2n−91

3 RK0 : 0, 5, 14, 19 2n−177−22 = 2n−199 296 · 2 · 2n−177/8 = 2n−83

4 RK∗
8 : 0, 29 -

2112 · 2 · [1 + (1− 2−7) + (1− 2−7)2

+ · · ·+ (1− 2−7)2
n−199

]/16

n = 213.3, the data complexity is 2n+32 = 2245.3 CP, the time complexity will
be 2130.3/9 ≈ 2127.1 9-round encryptions, the memory required is about 290.9

bytes.
Moreover, as mentioned at the beginning of this subsection, it is also possible

to guess three bytes of the subkey RK∗
8 to calculate ∆XW

7 in order to check if
the impossible differential can be satisfied. As a result 12 bytes of RK9 have
to be guessed to partially decrypt round 9 in the key recovery phase. In this
case, the data complexity is about 2237.3 CP, the time complexity is about 2159.1

9-round encryption, and the memory is about 2115.3 bytes.

3.4 10-Round Impossible Differential Attack on Rijndael-256

Based on the same impossible differential as in the previous subsection, we will
extend two rounds backwards and forwards respectively, an attack on 10-round
Rijndael-256 will be led with complexity less than exhaustive search. We adopt
the 9-round attack with lower time complexity in Subsection 3.3 to act as our
internal 9-round attack, on which we make some modification. In addition, we
will take the key schedule into consideration. The brief attack will be given out
as follows.

In the data collection phase, take 2n structures of plaintexts, in which the
plaintexts range over 128-bit values at bytes (0,3,4,5,9,12,14,16∼19,21,23,26,30,31),
while the other bytes can take certain fixed values. Each structure includes about
(2128)2/2 = 2255 pairs of plaintexts, therefore 2n · 2255 = 2n+255 pairs of plain-
texts are obtained. Encrypt these pairs and keep the one whose ciphertext
difference are zero at bytes (1∼14,16,17,20,21,23,24,26,27,30,31). The probabil-
ity of such ciphertexts is about 2−8·24 = 2−192, thus the expected number of the
remaining pairs after this phase is about 2n+255−192 = 2n+63.

In the key recovery phase, as in the 9-round attack in Subsection 3.3, 8 subkey
bytes ofRK10 should be guessed. Because of the extra round backward extension,

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 176

MC−1

ARK∗

1R

10R

2R

MC−1
SB−1

SB−1 SR−1

SR−1

9R

SB MCSR

Pr1

Pr4

Pr3

ARK

ARK

6-Round Impossible Differential of Rijndael-256

SR MC

Pr2

8R

ARK

Fig. 4. 10-Round Impossible Differential Attack on Rijndael-256

16 bytes of RK0 and 4 bytes of RK1 will also be guessed respectively. At the
end of this phase, the number of remaining pairs is 2n−103. The process steps
of this phase are described in Table 4. By the key schedule, we can calculate

Table 4. Key Recovery Processes of the Attack on 10-Round Rijndael-256

Step Guessed Bytes #Pairs Kept Time Complexity

1 RK10 : 0, 29, 22, 19 2n+63−24 = 2n+39 232 · 2n+63 · 2/8 = 2n+93

2 RK10 : 28, 25, 18, 15 2n+39−24 = 2n+15 264 · 2n+39 · 2/8 = 2n+101

3 RK0 : 0, 5, 14, 19 2n+15−24 = 2n−9 296 · 2n+15 · 2/8 = 2n+109

4 RK0 : 4, 9, 18, 23 2n−9−24 = 2n−33 2128 · 2n−9 · 2/8 = 2n+117

5 RK0 : 12, 17, 26, 31 2n−33−24 = 2n−57 2160 · 2n−33 · 2/8 = 2n+125

6 RK0 : 16, 21, 30, 3 2n−57−24 = 2n−81 2192 · 2n−57 · 2/8 = 2n+133

7 RK1 : 0, 5, 14, 19 2n−81−22 = 2n−103 2224 · 2n−81 · 2/8 = 2n+141

8 RK∗
9 : 0, 29 -

2240 · 2 · [1 + (1− 2−7) + (1− 2−7)2

+ · · ·+ (1− 2−7)2
n−103

]/16

RK0,29 from RK0,0 and RK1,0. RK0,5 and RK1,5 determine RK1,1, then RK1,1

together with RK0,30 determine RK0,1. Therefore, in order to recover the key,
there are 14 bytes of RK0 left to guess. We can take n = 116.2, from the
data collection phase we know that the data complexity of the attack is 2n ·
2128 = 2244.2 Chosen Ciphertext (CP). In the key recovery phase, after analyzing
the remaining 2n−103 = 213.2 pairs, the expected number of wrong subkeys is
2240 · (1− 2−7)2

n−103 ≈ 2133.5. With about 2112 · 2133.5 = 2245.5 trail encryptions,
the correct key will be recovered. The time complexity is about 2257.2/10 ≈ 2253.9

10-round encryptions. The memory required to store the pairs is about 2186.8

bytes.

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 177

4 Improved Impossible Differential Attacks on
Rijndael-224

In this section, we first give a new 6-round impossible differential of Rijndeal-224
(see Figure 5 in Appendix A). Utilizing the new 6-round impossible differential,
we extend one round at the top and two rounds at the bottom to mount 9-
round impossible differential attacks on Rijndael-224. As we can see there exist
three active bytes at the bottom of the distinguisher, as a result the number of
the subkey bytes need to guess in round 8 during the key recovery stage can
range from two to four. Therefore three 9-round attacks on Rijndael-224 can
be obtained respectively. First assume there are four bytes of subkey RK∗

8 need
to guess in order to check if the impossible differential distinguisher is satisfied
during the key recovery phase, as depicted in Figure 6.

In the data collection phase, choose structures of 232 plaintexts, in which the
plaintexts take all possible 32-bit values at bytes (0,5,10,19) while the others
take certain fixed values. Take 2166.1 structures, about 2229.1 pairs of plaintexts
will be generated. Filter out the pairs whose ciphertext difference are not zero at
byte (1∼5,8,10,13,16,19,23,26). Because of this 96-bit condition for ciphertexts,
the expected number of remaining pairs is 2133.1 at the end of this phase.

In the process of key recovery phase, we need to guess 16 bytes of subkeyRK9,
4 bytes of subkey RK∗

8 and 4 bytes of RK0 to check if the 6-round of impossible
differential is satisfied. While guessing the 4 bytes of RK∗

8 , the probability that
a pair can pass the test is about Pr2 = 2−8. The rest of the steps are similar to
Subsection 3.2. At the end of this phase, there exist about 2133.1−96−22 = 215.1

pairs.
After analyzing the remaining 215.1 pairs, we can get rid of 2192 · (1 −

2−8)2
15.1 ≈ 2−6.3 wrong pairs. With about 2185.7 encryption trails the key can

be recovered. The data complexity of this attack is about 2198.1 CP, the time
complexity is about 2198.4/9 ≈ 2195.2 encryptions, and the memory we need for
storing pairs is about 2133.1 · 5 · 32 = 2140.4 bytes.

As mentioned above, we can also guess three bytes of subkey RK∗
8 , given 2208

CP, a 9-round attack can be mounted with the time complexity and memory
about 2162 encryptions and 2117 bytes respectively. Moreover in the case that
two bytes of RK∗

8 are guessed, the data, time and memory complexity can be
2216 CP, 2130 encryptions and 293.6 bytes respectively.

5 Conclusion

More powerful 6-round impossible differentials for both Rijndael-224 and
Rijndael-256 are presented in this paper. Based on those, we significantly
improve impossible differential attacks on both Rijndael-224 and Rijndael-256.
The improvement can also result in a 10-round attack on Rijndael-256.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 178

References

1. Bahrak, B., Aref, M.R.: A Novel Impossible Differential Cryptanalysis of AES. In:
proceedings of WEWoRC (2007)

2. Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind:
a new cryptographic hash function. Des. Codes Cryptography 56(2-3), 141–162
(2010)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT ’99. LNCS, vol. 1592, pp. 12–23. Springer (1999)

4. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential At-
tacks on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA. Lecture Notes in
Computer Science, vol. 3860, pp. 21–33. Springer (2006)

5. Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) AES Conference. Lecture Notes in Computer
Science, vol. 3373, pp. 11–15. Springer (2004)

6. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT. Lecture Notes in Computer Sci-
ence, vol. 5912, pp. 1–18. Springer (2009)

7. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO. Lecture Notes in Computer
Science, vol. 5677, pp. 231–249. Springer (2009)

8. Borst, J., Knudsen, L.R., Rijmen, V.: Two attacks on reduced idea. In: Fumy,
W. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 1233, pp. 1–13.
Springer (1997)

9. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE. Lecture Notes in Computer Science, vol. 1267, pp. 149–165. Springer
(1997)

10. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. In: 1st AES Conference, Califor-
nia, USA (1998)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

12. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In:
Nyberg, K. (ed.) FSE. Lecture Notes in Computer Science, vol. 5086, pp. 116–126.
Springer (2008)

13. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE. Lecture Notes
in Computer Science, vol. 1978, pp. 213–230. Springer (2000)

14. FIPS 197: Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197, U.S. Department of Commerce/N.I.S.T (2001)

15. Galice, S., Minier, M.: Improving Integral Attacks Against Rijndael-256 Up to
9 Rounds. In: Vaudenay, S. (ed.) AFRICACRYPT. Lecture Notes in Computer
Science, vol. 5023, pp. 1–15. Springer (2008)

16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info

17. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES
Candidate Conference. pp. 230–241 (2000)

18. Jr., J.N., de Freitas, D.S., Phan, R.C.W.: New Multiset Attacks on Rijndael with
Large Blocks. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt. Lecture Notes in Com-
puter Science, vol. 3715, pp. 277–295. Springer (2005)

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 179

19. Jr., J.N., Pavão, I.C.: Impossible-Differential Attacks on Large-Block Rijndael. In:
Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC. Lecture Notes in
Computer Science, vol. 4779, pp. 104–117. Springer (2007)

20. Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE. Lecture Notes in Computer Science,
vol. 4593, pp. 225–241. Springer (2007)

21. Li, Y., Wu, W.: Improved Integral Attacks on Rijndael. Journal of Information
Science and Engineering 27(6), 2031–2045 (2011)

22. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New Impossible Differential Attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT. Lecture
Notes in Computer Science, vol. 5365, pp. 279–293. Springer (2008)

23. Lucks, S.: Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys. In:
AES Candidate Conference. pp. 215–229 (2000)

24. Phan, R.C.W.: Impossible differential cryptanalysis of 7-round Advanced Encryp-
tion Standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004)

25. Zhang, L., Wu,W., Park, J.H., Koo, B., Yeom, Y.: Improved Impossible Differential
Attacks on Large-Block Rijndael. In: Wu, T.C., Lei, C.L., Rijmen, V., Lee, D.T.
(eds.) ISC. Lecture Notes in Computer Science, vol. 5222, pp. 298–315. Springer
(2008)

26. Zhang, W., Wu, W., Feng, D.: New Results on Impossible Differential Cryptanal-
ysis of Reduced AES. In: Nam, K.H., Rhee, G. (eds.) ICISC. Lecture Notes in
Computer Science, vol. 4817, pp. 239–250. Springer (2007)

27. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved Related-Key Impossible Dif-
ferential Attacks on Reduced-Round AES-192. In: Biham, E., Youssef, A.M. (eds.)
Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 4356,
pp. 15–27. Springer (2006)

28. Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-Key Differential-Linear At-
tacks on Reduced AES-192. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT. Lecture Notes in Computer Science, vol. 4859, pp. 73–85. Springer
(2007)

A New 6-Round Impossible Differential of Rijndael-224
and 9-Round Attack with lower Data Complexity

Assume we start with round 1 and there is only one nonzero byte of the input
difference ∆X1 whereas the other bytes are zero. One options is depicted in
Figure 5 with nonzero byte at the first byte position. Then encrypt the input
for 2.5 rounds from the SB operation in 1R to the SR operation in 3R to get
the difference ∆XSR

3 . Given the output difference with three nonzero bytes in
the first column, whereas the other bytes are zero. For Rijndael-224, the only
option exists is given in Figure 5. After 3.5 rounds decryption (as depicted from
the operation ARK∗ in round 6 to the operation ARK in round 3 in order to get
the difference ∆XMC

3). For the first column of the state XSR
3 , the number of

nonzero bytes of ∆XSR
3 is one, while the maximum number of nonzero bytes

of ∆XMC
3 is three. Since the branch number of the MDS matrix is five, there

exists an contradiction. Therefore, we make up a 6-round impossible differential
for Rijndael-224.

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 180

ARK∗

SB−1 SR−1

SB SR

SB SR MC

SB MC
1R

2R

6R

5R

4R

3R

SR

MC−1
SB−1

SB−1

SR−1

SR−1

?

?

?

?

?

?

?

?

ARK

MC−1

ARK

ARK

ARK

ARK

ARK

MC−1

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Fig. 5. The New 6-Round Impossible Differential of Rijndael-224

ARK∗
8R

7R

MC−1
SB−1

SB−1 SR−1

SR−1

9R

Pr3

ARK

MC−1

1R
SB MCSR ARK

Pr1

Pr2

6-Round Impossible Differential of Rijndael-224

Fig. 6. The Improved 9-Round Attack on Rijndael-224 with lower Data Complexity

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 181

IMPROVED IMPOSSIBLE DIFFERENTIAL ATTACKS ON LARGE-BLOCK RIJNDAEL 182

Chapter 11

Cryptanalysis of
Reduced-Round SIMON32
and SIMON48

Publication Data

Q. Wang, Z. Liu, K. Varıcı, Y. Sasaki, V. Rijmen, Y. Todo: Cryptanalysis of
Reduced-Round SIMON32 and SIMON48. In W. Meier and D. Mukhopadhyay
(Eds.): INDOCRYPT 2014, volume 8885 of Lecture Notes in Computer Science,
pages 143–160, 2014.

Contributions

Major author except Subsection 3.2.

183

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 184

Cryptanalysis of Reduced-round SIMON32 and
SIMON48⋆

Qingju Wang1,2, Zhiqiang Liu1,2⋆⋆, Kerem Varıcı2,3⋆⋆, Yu Sasaki4⋆⋆,
Vincent Rijmen2⋆⋆, and Yosuke Todo4⋆⋆

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China

2 KU Leuven, ESAT/COSIC and iMinds, Belgium
3 ICTEAM-Crypto Group, Universite catholique de Louvain, Belgium

4 NTT Secure Platform Laboratories, Japan

Abstract. SIMON family is one of the recent lightweight block cipher
designs introduced by NSA. So far there have been several cryptanalytic
results on this cipher by means of differential, linear and impossible dif-
ferential cryptanalysis. In this paper, we study the security of SIMON32,
SIMON48/72 and SIMON48/96 by using integral, zero-correlation lin-
ear and impossible differential cryptanalysis. Firstly, we present a novel
experimental approach to construct the best known integral distinguish-
ers of SIMON32. The small block size, 32 bits, of SIMON32 enables us
to experimentally find a 15-round integral distinguisher, based on which
we present a key recovery attack on 21-round SIMON32, while previous
best results only achieved 19 rounds. Moreover, we attack 20-round SI-
MON32, 20-round SIMON48/72 and 21-round SIMON48/96 based on 11
and 12-round zero-correlation linear hulls of SIMON32 and SIMON48 re-
spectively. Finally, we propose new impossible differential attacks which
improve the previous impossible differential attacks. Our analysis shows
that SIMON maintains enough security margin.
Keywords: SIMON, integral, zero-correlation, impossible differential

1 Introduction

Lightweight primitives are designed to be efficient for limited resource environ-
ments, but they should also ensure that the message is transmitted confidentially.
Therefore, the vital design motivation is to maintain a reasonable trade-off be-
tween the security and performance. During recent years, many lightweight ci-
phers have been designed. Prominent examples are included but not limited to
these: ICEBERG [2], mCrypton [3], HIGHT [4], PRESENT [5], KATAN [6],
LED [7], Piccolo [8], KLEIN [9], EPCBC [10], PRINCE [11] and TWINE [12].

In 2013, NSA also proposed two families of highly-optimized block ciphers,
SIMON and SPECK [13], which are flexible to provide excellent performance

⋆ Due to page limitations, several details are omitted in this proceedings version. In
particular, impossible differential attacks are only described in the full version [1].

⋆⋆ Corresponding authors.
185

in both hardware and software environments. Moreover both families offer large
variety of block and key sizes such that the users can easily match the security
requirements of their applications without sacrificing the performance. However,
no cryptanalysis results are included in the specification of these algorithms.

Related Work and Our Contributions. On the one hand, several external
cryptanalysis results on SIMON and SPECK were published. In [14, 15], differ-
ential attacks are presented on various state sizes of SIMON and SPECK, while
the best linear attacks on SIMON are given in [16]. In [17] Biryukov et al. ex-
ploit the threshold search technique [18], where they showed better differential
characteristics and proposed attacks with better results on several versions of
SIMON and SPECK. Very recently, there are some differential attack results
about SIMON32 and SIMON48 in ePrint [19]. These results need to be further
verified although they seem intriguing.

In this paper, we investigate the security of SIMON32, SIMON48/72 and SI-
MON48/96 by using integral, zero-correlation linear and impossible differential
cryptanalysis. We firstly apply integral cryptanalysis. Regarding SIMON32, be-
cause the block size is only 32 bits, we can experimentally observe the behaviors
of all the plaintexts under a fixed key. Our experiments show that the number of
distinguished rounds rapidly increases when the number of active bits becomes
close to the block size. On the contrary, exploiting integral distinguishers with a
large number of active bits for recovering the key is hard in general. Indeed, our
distinguisher needs 31 active bits. To make the data complexity smaller than
the code book, we cannot iterate the analysis even for two sets of the distin-
guisher. We then exploit the fact that the key schedule consists of simple linear
equations, and show that reducing any fraction of subkey space can immediately
reduce the main key space by solving the linear equations with Gaussian elimina-
tion. By combining several known cryptanalytic techniques we present an attack
on 21-round SIMON32/64. As for SIMON48, the approach cannot be applied
due to the large search space. However, according to the experimental results
for SIMON32, we may expect that there exist good integral distinguishers of
SIMON48 when the number of active bits is near the block size.

Moreover, we construct 11 and 12-round zero-correlation linear hulls of SI-
MON32 and SIMON48 respectively by using miss-in-the-middle technique. Then
based on these distinguishers, we mount attacks on 20-round SIMON32, 20-
round SIMON48/72 and 21-round SIMON48/96 delicately with the help of
divide-and-conquer technique. Finally, we demonstrate impossible differential at-
tacks on 18-round SIMON32, 18-round SIMON48/72 and 19-round SIMON48/96.
Although these results are not better than the ones achieved by using differen-
tial, integral and zero-correlation linear cryptanalysis, they are the currently best
impossible differential attacks for SIMON32 and SIMON48. Our improvements
upon the state-of-the-art cryptanalysis for SIMON are given in Table 1.

Organization. The remainder of this paper is organized as follows. In Section 2,
we give a brief description of SIMON. Section 3 covers the integral attack. In

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 186

Table 1. Summary of Attack Results on SIMON

Cipher
Full

Attack
Attacked Complexity

Source
Rounds Rounds Time(EN) Data Memory(Bytes)

S
IM

O
N
3
2
/
6
4

32

Imp. Diff. 13 250.1 230.0KP 220.0 [20]
Imp. Diff. 18 261.14 232KP 247.67 [1]
Diff. 16 226.481 229.481CP 216 [15]
Diff. 18 246.0 231.2CP 215.0 [14]
Diff. 19 232 231CP - [17]
Zero-Corr. 20 256.96 232KP 241.42 Subsec 4.2
Integral 21 263.00 231CP 254 Subsec 3.2

S
IM

O
N
4
8
/
7
2

36

Imp. Diff. 18 261.87 248KP 242.12 [1]
Diff. 18 243.253 246.426CP 224 [15]
Diff. 19 252.0 246.0CC 220.0 [14]
Diff. 20 252 246CP - [17]
Zero-Corr. 20 259.7 248KP 243 Subsec 4.3

S
IM

O
N
4
8
/
9
6

36

Imp. Diff. 15 253.0 238.0KP 220.6 [20]
Imp. Diff. 19 285.82 248KP 266.68 [1]
Diff. 18 269.079 250.262CP 245.618 [15]
Diff. 19 276.0 246.0CC 220.0 [14]
Diff. 20 275 246CP - [17]
Zero-Corr. 21 272.63 248KP 246.73 Subsec 4.3

CP: Chosen Plaintext; KP: Known Plaintext; CC: Chosen Ciphertext; EN: Encryption

Section 4, zero-correlation cryptanalysis is studied. Finally, we conclude the pa-
per in Section 5. Impossible differential attacks are shown in [1]. Table 2 contains
the notations that we use throughout this paper.

2 Brief Description of SIMON

We denote the SIMON block cipher using n-bit words by SIMON2n, with n ∈
{16, 24, 32, 48, 64}. SIMON2n with an m-word key is referred to SIMON2n/mn.

SIMON is a two-branch balanced Feistel network with simple round functions
consisting of three operations: AND (&), XOR (⊕) and rotation (≪). In round
i−1, by using a function F (x) = (x ≪ 1)&(x ≪ 8)⊕(x ≪ 2), (Li−1, Ri−1) are
updated to (Li, Ri) by Li = F (Li−1)⊕Ri−1 ⊕ ki−1 and Ri = Li−1. The output
of the last round (Lr, Rr) (r is the number of rounds) yields the ciphertext. The
structure of the round function of SIMON is depicted in Figure 6 in Appendix A.

The key schedule of SIMON processes three different procedures depending
on the key size. The first mn round keys are directly initialized with the main
key, while the remaining key words are generated by three slightly different
procedures depending on the key words value m:

ki+m = c⊕ (zj)i ⊕ ki ⊕ Ym ⊕ (Ym ≪ 1), Ym =





ki+1 ≪ 3, if m = 2,
ki+2 ≪ 3, if m = 3,
ki+3 ≪ 3⊕ ki+1, if m = 4.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 187

Table 2. Notations: Top 8 are for general and bottom 4 are for integral attack.

Lr, Rr left and right branches of the input state to the r-th round
Lr,{i∼j}, Rr,{i∼j} the bits from bit i to bit j of Lr and Rr

∆Lr, ∆Rr left and right branches of the input difference of state to the r-th round
ΓLr, ΓRr left and right branches of the input linear mask of state to the r-th round
∆F (·) the output difference after round function F
kr the subkey in the r-th round
kr,{i∼j} the bits from bit i to bit j of kr
? an undetermined difference or linear mask

Let Λ be a collection of state vectors X = (x0, . . . , xn−1) where xi ∈ F2 is the i-th word of X:
A if all i-th words xi in Λ are distinct, xi is called active
B if the sum of all i-th words xi in Λ can be predicted, xi is called balanced
C if the values of all i-th words xi in Λ are equal, xi is called passive/constant
* if the sum of all i-th words xi in Λ can not be predicted

Here, the value c is constant 0xff . . . fc, and (zj)i denotes the i-th (least signif-
icant) bit from one of the five constant sequences zj (0 ≤ j ≤ 4). The main key
can be derived if any sequence of m consecutive subkeys are known.

3 Integral Cryptanalysis of SIMON

The integral attack [21, 22] first constructs an integral distinguisher, which is a
set of plaintexts such that the states after several rounds have a certain property,
e.g. the XOR sum of all states in the set is 0. Then, several rounds are appended
to the distinguisher for recovering subkeys. In this section, we investigate the
integral properties and present integral attacks on 21-round SIMON32/64.

3.1 Integral Distinguishers of SIMON32

We experimentally find integrals of SIMON32. The results are shown in Table 3.
Here the active bits are the ones in the input of round 1. An interesting obser-
vation is that the number of rounds increases rapidly when the number of active
bits becomes close to the block size. Giving a theoretical reasoning for this ob-
servation seems hard. In other words, experimental approaches are useful for a
small block size such that all plaintexts can be processed in a practical time.

Table 3. The Number of Rounds of SIMON32 Integral Distinguishers

Num. of Active Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Num. of Rounds 9 9 9 9 10 10 10 10 11 11 11 12 13 13 14 15

We explain the algorithm of our experiments as follows:

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 188

1. Firstly, we generate 2t plaintexts (t ≥ 16) by setting the right half (16 bits)
and (t − 16) bits of the left half of the input in round 1 to be active, while
keeping the remaining bits as constant.

2. (a) Choose the main key randomly. Encrypt 2t plaintexts r rounds and check
whether certain bits of the output are balanced (i.e., for each of these
bits, the XOR sum of the bit over 2t output states is 0). If yes, keep this
as an integral candidate.

(b) Repeat (a) 213 times and verify if the integral candidate always holds. If
not, discard it.

3. If there is an integral candidate for all the structures with the same pattern
(i.e., with the same t active bits), we regard this as an r-round integral
distinguisher of SIMON32.

As a result, we obtain a 15-round distinguisher (Figure 1) with 31 active bits:

(CAAA,AAAA,AAAA,AAAA, AAAA,AAAA,AAAA,AAAA)

→ (∗ ∗ ∗∗, ∗ ∗ ∗∗, ∗ ∗ ∗∗, ∗ ∗ ∗∗, ∗B ∗ ∗, ∗ ∗ ∗∗, B ∗ ∗∗, ∗ ∗ ∗B). (1)

The distinguisher in (1) is not ensured for all of 264 keys. Because our experi-
ment did not return any failure, we expect that the success probability of this
distinguisher is at least 1− 2−13.

3.2 21-round Integral Attack of SIMON32/64

We use a 15-round integral distinguisher shown in Figure 1. We first prepare
231 internal state values (XL‖XR) in which 31 bits are active, then compute the
corresponding plaintext (L0‖R0) as L0 ← XR and R0 ← F (XR) ⊕ XL. Those
231 plaintexts yield balanced bits in 3 positions after 15 rounds, i.e. (L15, R15).
Moreover, the subsequent subkey XOR to R15 in round 16 never breaks the
balanced property as long as the number of plaintexts in a set is even. We then
mount a key recovery attack on 21-round SIMON-32/64 by adding six rounds
after the distinguisher, which is illustrated in Figure 2.

3.2.1 Overall Strategy. The attacker guesses a part of the last 5-round
subkeys k16, k17, . . . , k20. Then he partially decrypts the 231 ciphertexts up to the
state R15⊕k15, and computes their XOR sum at the balanced bits. The 15-round
distinguisher in Figure 1 has 3 balanced bits. Because the partial decryption up
to all of those 3 bits requires too much subkey guesses, we only use 1 balanced
bit at position 0. Thus, the subkey space can be reduced by 1 bit per set of 231

plaintexts. In Figure 2, bit-position 0 of (R15 ⊕ k15) is circled and the related
bits to the partial decryption are shown. 3 bits of k16, 6 bits of k17, 10 bits of
k18, 14 bits of k19, 16 bits of k20, in total 49 subkey bits are related. Because
the block size is 32 bits, the analysis with 231 plaintexts can be iterated at most
twice, which implies that the 49-bit subkey space can be reduced at most 2 bits.

To detect the correct key, we further utilize the key schedule. 4 consecu-
tive subkey values can reveal the main key value. We aim to recover 64 bits

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 189

(�, �, �, �, �, �, �, �,

�, �, �, �, �, �, �, �)

(�, �, �, �, �, �, �, �,

�, �, �, �, �, �, �, �)

�� = 	
 �� = 	�

��

�� = 	� �� = �(�) ⊕ 	

14 rounds

��

(∗,∗,∗,∗, ∗,∗,∗,∗,

∗,∗,∗,∗, ∗,∗,∗,∗)

(∗, �,∗,∗, ∗,∗,∗,∗,

�,∗,∗,∗, ∗,∗,∗, �)

��� ��� ⊕
��

Fig. 1. 15-round Integral Distinguisher

&

∗,∗,∗,∗, ∗,∗,∗,∗, ∗,∗,∗,∗, ∗,∗,∗,∗ ∗, �,∗,∗, ∗,∗,∗,∗, �,∗,∗,∗, ∗,∗,∗, �
��� ��� ⊕
��

��,{
,��,��}�

���,{
,��,��}���,{�}

��,{�,�,�,��~��}�

���,{�,�,�,��~��}���,{
,��,��}

�
,{�~�,
,��~��}�

��
,{�~�,
,��~��}��
,{�,�,�,��~��}

��,{�,�~��}�

���,{�,�~��}���,{�~�,
,��~��}

��,{�~��}�

���,{�~��}���,{�,�~��}

���,{�~��} ���,{�~��}

<<< 8

<<< 2

<<< 1

match?

{0}

{0}

{0}

Fig. 2. 6-round Key-Recovery

of k17, . . . , k20. Among 64 bits, 46 bits are suggested from the 6-round partial
decryption. Moreover, because 5 subkeys k16, . . . , k20 are linked only with lin-
ear equations, 3 bits of k16,{8,14,15} can be converted to 3-bit information for
the remaining 18 bits of k17, . . . , k20 by solving linear equations with Gaussian
elimination. Thus, for each of 49 subkey bits suggested by the 6-round partial
decryption, the attacker can obtain 64 bits of k17, . . . , k20 only by guessing 15-bit
information of k17, . . . , k20, which leads to a faster key recovery attack than the
exhaustive search.

3.2.2 Efficient Subkey Recovery. To perform the 6-round partial decryp-
tion with 49-bit subkey guess with a straight-forward method, partial decryption
for 231 ciphertexts with 249 guesses are performed, which requires 280 computa-
tions i.e. more than the exhaustive search. Several methods are known to reduce
the complexity. Here, we use partial-sum [23], meet-in-the-middle match [24],
and exploiting linearity for meet-in-the-middle match [25].

The attack finds 49 subkey bits satisfying
⊕

(R15 ⊕ k15){0} = 0, which is⊕
((L15,{15}&L15,{8})⊕ L15,{14} ⊕ L16,{0}) = 0. This is further converted to

⊕
(L15,{15}&L15,{8}) =

⊕
(L15,{14} ⊕ L16,{0}). (2)

Hence, we can compute the left-hand side and right-hand side of Equation (2)
independently, and later find the match between two independent computations
as the meet-in-the-middle attack. The computation of the left-hand and right-
hand side of Equation (2) is shown in the left and right part of Figure 3, in
which 42 bits of subkeys are involved respectively. Compared to the original
6-round partial decryption in Figure 2, the number of related subkey bits are
reduced from 49 to 42, which contributes to reduce the attack complexity. The
complexity is further reduced by the partial-sum technique. Namely, every time
subkey bits are guessed and state values are updated, we compress the amount
of data only by keeping the state values appearing odd times.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 190

&

���,{�,��}

���,{�,��}

���,{
,�,�,��,��}

���,{
,�,�,��,��}���,{�,��}

���,{�~�,�,��~��}

���,{�~�,�,��~��}���,{
,�,�,��,��}

���,{
,�~�,�
~��}

���,{
,�~�,�
~��}���,{�~�,�,��~��}

��
,{
~�,�~��}

��
,{
~�,�~��}��
,{
,�~�,�
~��}

���,{
~�,�~��} ���,{
~��}

<<< 8

<<< 1 {0}
��

���,{��}�

	��,{��}
��,{�}

���,{�,�,�
,��}�

	��,{�,�,�
,��}
��,{��}

���,{�,�,�,��~�
,��,��}�

	��,{�,�,�,��~�
,��,��}
��,{�,�,�
,��}

���,{�,
~�,�~��}�

	��,{�,
~�,�~��}
��,{�,�,�,��~�
,��,��}

�
�,{�~��}�

	
�,{�~��}

�,{�,
~�,�~��}

�,{�~��} 	
�,{�~��}

<<< 2
{0}

�

Fig. 3. Computations of
⊕

(L15,{15}&L15,{8}) and
⊕

(L15,{14} ⊕ L16,{0})

3.2.2.1 Computation of
⊕

(L15,{15}&L15,{8}). Given a set including 231 plain-
texts,

⊕
(L15,{15}&L15,{8}) for 242 distinct subkey values can be computed with

250.55 21-round SIMON32 computations. The computed results along with 42-bit
guessed subkeys are stored in a table T1. We first initialize the following counters
which remembers the parity of internal state values.

– 227 counters T x
20, each corresponding to x = (L20,{0,2∼7,10∼14}, R20,{0∼6,8∼15}).

– 220 counters T x
19, each corresponding to x = (L19,{4∼6,8,12∼15}, R19,{0,2∼7,10∼14}).

– 213 counters T x
18, each corresponding to x = (L18,{0,6,7,13,14}, R18,{4∼6,8,12∼15}).

– 27 counters T x
17, each corresponding to x = (L17,{8,15}, R17,{0,6,7,13,14}).

We then compute
⊕

(L15,{15}&L15,{8}) by the following procedure.

1. For 215 guesses of k20,{0∼6,8∼15} and for each 231 ciphertext values, calcu-
late 27 bits of (L20,{0,2∼7,10∼14}, R20,{0∼6,8∼15}), and increase the relevant
counter T x

20 by 1. Keep the values of (L20,{0,2∼7,10∼14}, R20,{0∼6,8∼15}) which
appear odd times.

2. For 212 guesses of k19,{0,2∼7,10∼14} and for each 227 remaining values, calcu-
late 20 bits of (L19,{4∼6,8,12∼15}, R19,{0,2∼7,10∼14) and increase the counter
T x
19. Keep the values which appear odd times.

3. For 28 guesses of k18,{4∼6,8,12∼15} and for each 220 remaining values, calculate
13 bits of (L18,{0,6,7,13,14}, R18,{4∼6,8,12∼15}) and increase the counter T x

18.
Keep the values which appear odd times.

4. For 25 guesses of k17,{0,6,7,13,14} and for each 213 remaining values, calculate
7 bits of (L17,{8,15}, R17,{0,6,7,13,14}) and increase the counter T x

17. Keep the
values which appear odd times.

5. For 22 guesses of k16,{8,15} and for each 27 remaining values, calculate 2 bits
of L15,{8,15} and then 1-bit of (L15,{15}&L15,{8}). Store it in a table T1 along
with the guesses for 42-bit subkeys.

We then evaluate the computational cost. The unit is a single execution of 21-
round SIMON32. Updating one bit of the state is equivalent to 1/(16 · 21) 21-
round SIMON32 computation.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 191

Step 1. 231 · 215 · 15/(16 · 21) ≈ 241.51.
Step 2. 227 · 215 · 212 · 12/(16 · 21) ≈ 249.19.
Step 3. 220 · 215 · 212 · 28 · 8/(16 · 21) ≈ 249.61.
Step 4. 213 · 215 · 212 · 28 · 25 · 5/(16 · 21) ≈ 246.93.
Step 5. 27 · 215 · 212 · 28 · 25 · 22 · 3/(16 · 21) ≈ 242.19.

The sum of the above 5 steps is 250.55 21-round SIMON32 computations. The
table T1 contains 242 elements of 43-bit information, which is less than 245 bytes.

3.2.2.2 Computation of
⊕

(L15,{14} ⊕ L16,{0}). For each of 231 plaintexts set,⊕
(L15,{14} ⊕ L16,{0}) for distinct 242 subkey values can be computed with

254.01 21-round SIMON32 computations. The computed results along with 42-
bit guessed subkeys are stored in a table T2. Because the procedure is similar to
the computation of T1, the attack is explained shortly.

1. For 216 guesses of k20,{0∼15} and 231 ciphertext values, calculate 29 bits of
(L20,{0,2∼4,6∼14}, R20,{0∼15}). The complexity of this step is 231 ·216 ·16/(16 ·
21) ≈ 242.61.

2. For 213 guesses of k19,{0,2∼4,6∼14} and 229 remaining values, calculate 21
bits of (L19,{4,5,8,10∼12,14,15}, R19,{0,2∼4,6∼14). The complexity of this step is
229 · 216 · 213 · 13/(16 · 21) ≈ 253.31.

3. For 28 guesses of k18,{4,5,8,10∼12,14,15} and 221 remaining values, calculate 12
bits of (L18,{0,6,12,13}, R18,{4,5,8,10∼12,14,15}). The complexity of this step is
221 · 216 · 213 · 28 · 8/(16 · 21) ≈ 252.61.

4. For 24 guesses of k17,{0,6,12,13} and 212 remaining values, calculate 5 bits of
(L17,{14}, R17,{0,6,12,13}). The complexity of this step is 212 · 216 · 213 · 28 · 24 ·
4/(16 · 21) ≈ 246.61.

5. For 2 guesses of k16,{14} and 25 remaining values, calculate 2 bits of L15,{14}
and then 1-bit of (L15,{14} ⊕ L16,{0}). Store it in a table T2 along with the
guesses for 42-bit subkeys. The complexity of this step is 25 · 216 · 213 · 28 ·
24 · 2 · 2/(16 · 21) ≈ 239.61.

Table T2 contains 2
42 elements of 43-bit information, which is less than 245 bytes.

3.2.2.3 Matching T1 and T2. After T1 and T2 are independently generated, we
derive valid 49-bit subkey candidates. Because both of T1 and T2 contain 242

elements, the number of pairs is 284. From Equation (2), the valid candidates
will match the 1-bit result in T1 and T2. Moreover, 42-bit subkeys used in T1 and
42-bit subkeys in T2 overlap in 35 bits. Thus, 284−1−35 = 248 valid candidates
are generated, which reduces the entire 49-bit space by one bit.

3.2.3 Entire Attack Procedure and Complexity Evaluation

1. Represent the three subkey bits k15,{8,14∼15} by using k16‖k17‖k18‖k19 ac-
cording to the key schedule of SIMON32 and keep the three linear equations.

2. Generate a set of 231 plaintexts.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 192

3. For each of 231 plaintexts, compute T1 and T2 as explained before, and
identify the correct key candidates to reduce the subkey space of 49 bits in
the last 6 rounds.

4. For each of remaining subkey candidates, guess the 15 bits k19,{1,15}‖k18,{0∼3,7,9}
‖k17,{1∼5,11,15} and obtain three bits of k17,{8∼10} by solving the linear equa-
tions with Gaussian elimination. Then compute all bits of the original key by
inverting the key schedule, and check the correctness of the guess by using
two plaintext-ciphertext pairs.

The data complexity of the attack is 231 chosen-plaintexts. The time complexity
for Step 3 is 250.55 + 254.01 ≈ 254.13 21-round SIMON32 computations. After
Step 3, 248 subkey candidates remain. In Step 4, the cost of Gaussian elimination
is much smaller than 21-round SIMON32, and thus is ignored. The check with
two plaintext-ciphertext pairs can be done one by one, that is, the check for
the second pair is performed only with the first check is passed with probability
2−32. Hence, the time complexity is 248 ·215(1+2−32) ≈ 263 21-round SIMON32
computations. In total, the time complexity is 254.13 + 263 ≈ 263.00 21-round
SIMON32 computations. The memory complexity is 2·245 bytes for constructing
T1 and T2 and 248 49-bit subkey candidates after analyzing a plaintext set, which
is less than 251 bytes. The success probability is 1− 2−13 due to the probability
of the 15-round distinguisher.

4 Zero-Correlation Linear Cryptanalysis of SIMON

The zero-correlation attack is one of the recent cryptanalytic method introduced
by Bogdanov and Rijmen [26]. The attack is based on linear approximations with
zero correlation (i.e. linear approximations with probability exactly 1/2). We
introduce 11 and 12-round zero-correlation linear approximations of SIMON32
and SIMON48, based on which we present key recovery attacks on 20-round
SIMON32, 20-round SIMON48/72 and 21-round SIMON48/96 respectively.

4.1 Zero-Correlation Linear Distinguishers of SIMON

By applying miss-in-the-middle technique, we construct 11-round zero-correlation
linear hull for SIMON32 (see Figure 4). More specifically, this distinguisher con-
sists of two parts: forward part (along the encryption direction) and backward
part (along the decryption direction). For the forward part, we find that for any
6-round non-zero correlation linear hull with input mask being (0x0001,0x0000),
the most significant bit of the left half of its output mask must be 0. As to
the backward part, we observe that for any 5-round non-zero correlation lin-
ear hull with input mask being (0x0000,0x0080), the most significant bit of
the left half of its output mask must be 1. Combining the above two parts, we
can deduce that an 11-round linear hull with input and output masks being
(0x0001,0x0000) and (0x0000,0x0080) must be a zero-correlation linear hull.
Similarly, a 12-round zero-correlation linear hull for SIMON48 can be derived
(see Table 4 in Appendix B).

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 193

0??1,0000,??00,000?

0000,0000,1000,0000

?0??,?000,0???,??10

?100,000?,0000,0000

0000,0000,0000,0000

?0??,?000,0???,??10

0??1,0000,??00,000?

0???,???1,????,??0?

????,????,????,????

0??0,0000,?0??,1000

?000,0000,0?10,0000

0000,0000,1000,0000

0000,0000,0000,0000

0000,0000,1000,0000

0000,0000,0000,0001

0000,0000,0000,0000

0000,0000,0000,0001

0000,0000,0000,0001

F

F

F

F

F

F

F

F

F

F

F
0000,0000,0000,0000

?000,0000,0?10,0000

0??0,0000,?0??,1000

???,???0,?0??,????

?100,000?,0000,0000

????,?10?,0???,0000

????,?10?,0???,0000

???,???1,????,??0?0

1

Fig. 4. Zero-Correlation Linear Approximations of 11-round SIMON32. The ‘0’
at bottom left and the ‘1’ at top right (in red) constitute the contradiction that
ensures correlation zero.

4.2 Zero-Correlation Linear Attack on 20-round SIMON32

Let E denote the 20-round SIMON32 from round 0 to round 19. Suppose that
the 11-round zero-correlation linear distinguisher given in Figure 4 covers from
round 5 to round 15. We now present an attack on E based on this distin-
guisher by adding five rounds before the distinguisher and four rounds after the
distinguisher, which is illustrated in Figure 5.

4.2.1 Overall Strategy. For each of the 232 plaintext-ciphertext pairs, the
attacker first guesses a part of the last 4-round subkeys k16, k17, k18, k19 and
partially decrypts the ciphertext up to the state R16,{7}. Then he guesses a part
of the first 5-round subkeys k0, k1, . . . , k4 and partially encrypts the plaintext up
to the state L5,{0}. Finally, the attacker computes the value of L5,{0} ⊕R16,{7}.
The subkey bits related to the above partial encryption and partial decryption
are shown in Figure 5. We can see that 14 bits of k0, 10 bits of k1, 6 bits of k2,
3 bits of k3, one bit of k4, one bit of k16, 3 bits of k17, 6 bits of k18, 10 bits of
k19, in total 54 subkey bits are related.

For a guessed value of the 54 subkey bits, if the event that L5,{0}⊕R16,{7} is
equal to 0 happens 231 times (i.e., the correlation of the linear equation L5,{0}⊕
R16,{7} = 0 is exactly 0), then we take this guessed subkey information as a
correct subkey candidate. According to [26] and the Wrong-Key Randomization
Hypothesis given in [27], for a wrong subkey candidate, the probability that the

correlation of L5,{0} ⊕R16,{7} = 0 is 0 can be estimated as 1√
2π

2
4−32

2 ≈ 2−15.33.

Thus the 54-bit subkey space can be reduced by a factor of 215.33 approximately.
In order to recover the master key value (i.e., k0, k1, k2, k3), we further exploit

the key schedule. Among 64 bits of the master key, 33 bits are suggested from the

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 194

⊕F k4,{0}

L4,{8,14∼15} R4,{0}

⊕F

L3,{0,6∼7,12∼14}

⊕F

L2,{4∼6,8,10∼15}

⊕F

L1,{0,2∼14}

⊕F

L0,{0∼15}

R3,{8,14∼15}

R2,{0,6∼7,12∼14}
k2,{0,6∼7,12∼14}

k3,{8,14∼15}

R1,{4∼6,8,10∼15}
k1,{4∼6,8,10∼15}

R0,{0,2∼14}

k0,{0,2∼14}

11-round

ZC Distinguisher

0000,0000,0000,00000000,0000,0000,0001

L5,{0}

F ⊕

⊕

⊕

F

F

⊕F k16,{7}

k17,{5∼6,15}

k18,{3∼5,7,13∼14}

k19,{1∼6,11∼13,15}

L20 R20

11-round

ZC Distinguisher

0000,0000,0000,0000 0000,0000,1000,0000

R16,{7}

Fig. 5. Add 5 rounds before and 4 rounds after the Distinguisher

above procedure. Moreover, k4, k16, k17, k18, k19 can be derived from the master
key by using linear equations, therefore, one bit of k4, one bit of k16, 3 bits of
k17, 6 bits of k18 and 10 bits of k19 (totally 21 subkey bits) can be converted to
21-bit information for the remaining 31 bits of the master key. More specifically,
for each of the 33 master key bits suggested above, the attacker can guess 10-bit
information of the master key and then obtain 21 linear equations of 21 variables
(i.e., the remaining 21 bits of the master key). By solving these linear equations
with Gaussian elimination, the attacker can retrieve the master key value.

4.2.2 Efficient Subkey Recovery. We now explain the strategy for effi-
ciently performing 4-round partial decryption and 5-round partial encryption
with 54-bit subkey guess. By using a straightforward approach, we need to do
the partial decryption and partial encryption for 232 plaintext-ciphertext pairs
with 254 subkey guesses. This requires 232+54 = 286 computations, which is much
more than the exhaustive key search. In our attack, we adopt the divide-and-
conquer technique delicately to reduce the time complexity. More specifically,
checking whether L5,{0} ⊕R16,{7} = 0 has a zero correlation or not can be done
by counting the number of occurrences of the event that L5,{0}‖R16,{7} is equal to
“00” or “11” (If this number is 231, then the correlation of L5,{0}⊕R16,{7} = 0 is
exactly zero). To do this, we first guess the 20 bits of the last four-round subkeys
relevant to R16,{7} and get the value of L0,{0∼15}‖R0,{0,2∼14}‖R16,{7} (regarded
as the starting state), based on which, we set a starting counter and update
the state bit-by-bit for the first six rounds (the counters corresponding to the
states are obtained accordingly). Eventually we derive the counter with respect
to the value of L5,{0}‖R16,{7}. Note that all the bit-by-bit state transitions are
chosen elaborately to make the time complexity of our attack optimal, and all
the counters involved in this attack need to be initialized firstly. The reason why

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 195

we do not use all the plaintext-ciphertext bits related to L5,{0} and R16,{7} as
the starting state is that the size of this state is too large for us to mount an
efficient attack. The detailed attack procedure is given as below.

1. Collect all the 232 plaintext-ciphertext pairs of E. Let T1 be a vector of 231

counters correspond to all possible values of L0,{0∼15}‖R0,{0,2∼14}‖R16,{7}
(denoted as S1

1). Guess the 20 subkey bits k16,{7}‖k17,{5∼6,15}‖k18,{3∼5,7,13∼14}
‖k19,{1∼6,11∼13,15}. Then for each plaintext-ciphertext pair:
(a) Do partial decryption to get the value of R16,{7} and increase the corre-

sponding counter T1,S1
1
by one according to the value of S1

1 . After that,

we will do bit-by-bit state transitions based on S1
1 and update the coun-

ters corresponding to the intermediate states.
(b) Let T2 be a vector of 230 counters which correspond to all possible values

of L0,{1∼15}‖R0,{0,3∼7,9∼14} ‖L1,{2,8}‖R16,{7} (denoted as S1
2). Guess the

subkey bits k0,{2,8}. Encrypt partially for each possible value of S1
1 to

obtain the value of L1,{2,8}, then add T1,S1
1
to the relevant counter T2,S1

2

according to the value of S1
2 .

(c) Guess subkey bits k0,{9}, k0,{3}, k0,{4,10}, k0,{11}, k0,{5} and k0,{0,6∼7,12∼14}
step by step (see Table 5 in Appendix B).1 Do similarly to the above
and finally get the values of the counters corresponding to the state
L1,{0,2∼14}‖R1,{4∼6,8,10∼15}‖R16,{7} (denoted as S2

0).
2. Let X1 be a vector of 224 counters which correspond to all possible values of

L1,{0,2∼7,9∼14} ‖R1,{4∼6,8,11∼15}‖L2,{10}‖R16,{7} (denoted as S2
1). Guess the

subkey bit k1,{10}. For each possible value of S2
0 , do partial encryption to

derive the value of L2,{10} and add T8,S2
0
to the corresponding counter X1,S2

1

according to the value of S2
1 . After that, guess the subkey bits k1,{4}, k1,{11},

k1,{12}, k1,{13}, k1,{5}, k1,{6} and k1,{8,14∼15} sequentially. Do similarly to
the above and eventually obtain the values of the counters corresponding to
the state L2,{4∼6,8,10∼15}‖R2,{0,6∼7,12∼14}‖R16,{7} (denoted as S3

0).
3. Let Y1 be a vector of 216 counters which correspond to all possible values of

L2,{4∼6,8,11∼15} ‖R2,{0,6∼7,13∼14}‖L3,{12}‖R16,{7} (denoted as S3
1). Guess the

subkey bit k2,{12}. For each possible value of S3
0 , do partial encryption to gain

the value of L3,{12} and add X8,S3
0
to the relevant counter Y1,S3

1
according to

the value of S3
1 . Then guess the subkey bits k2,{13}, k2,{14}, k2,{6}, k2,{7} and

k2,{0} step by step. Do similarly to the above and finally derive the values of
the counters corresponding to the state L3,{0,6∼7,12∼14}‖R3,{8,14∼15}‖R16,{7}
(denoted as S4

0).
4. Let Z1 be a vector of 29 counters which correspond to all possible values of

L3,{0,6∼7,12∼13}‖ R3,{8,15}‖L4,{14}‖R16,{7} (denoted as S4
1). Guess the subkey

bit k3,{14}. For each possible value of S4
0 , do partial encryption to get the

value of L4,{14} and add Y6,S4
0
to the corresponding counter Z1,S4

1
according

to the value of S4
1 . After that, guess the subkey bits k3,{15} and k3,{8} step by

step. Do similarly to the above and eventually get the values of the counters
corresponding to the state L4,{8,14∼15}‖R4,{0}‖R16,{7} (denoted as S5

0).

1 Please refer to the full version for more details of the subsequential attack procedures.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 196

5. Let W be a vector of 22 counters which correspond to all possible val-
ues of L5,{0}‖R16,{7}. Guess the subkey bit k4,{0}. For each possible value
of S5

0 , do partial encryption to obtain the value of L5,{0} and add Z3,S5
0

to the relevant counter in W according to the value of L5,{0}‖R16,{7}. If
W0 + W3 = 231 (Note that W0, W3 are the counters corresponding to the
cases that L5,{0}‖R16,{7} = “00” and L5,{0}‖R16,{7} = “11”, respectively),
keep the guessed 54-bit subkey information (i.e., k0,{0,2∼14}‖k1,{4∼6,8,10∼15}
‖k2,{0,6∼7,12∼14}‖k3,{8,14∼15}‖k4,{0}‖k16,{7}‖k17,{5∼6,15}‖k18,{3∼5,7,13∼14}‖
k19,{1∼6,11∼13,15}, denoted as η) as a possible subkey candidate, and discard
it otherwise.

According to [26] and the Wrong-Key Randomization Hypothesis given in [27],
the probability that a wrong subkey candidate for η is kept after Step 5 can be
approximated as 1√

2π
2−14 ≈ 2−15.33, thus about 254 × 2−15.33 = 238.67 subkey

candidates for η will be left after the above procedure.

4.2.3 Master Key Recovery.

1. Represent the subkey bits k4,{0}, k16,{7}, k17,{5∼6,15}, k18,{3∼5,7,13∼14} and
k19,{1∼6,11∼13,15} by using k0,{0∼15}, k1,{0∼15}, k2,{0∼15} and k3,{0∼15} ac-
cording to the key schedule of SIMON32 and keep these 21 linear equations.

2. For each of the remaining 238.67 values of η, do the following to recover the
64-bit master key:
(a) Guess the 10 subkey bits k0,{1,15}, k1,{0∼3,7,9} and k2,{1∼2} and obtain

21 linear equations with respect to k2,{3∼5,8∼11,15} and k3,{0∼7,9∼13}.
(b) Solve the linear equations by means of Gaussian elimination so as to get

the value of k2,{3∼5,8∼11,15} ‖k3,{0∼7,9∼13}, thus all bits of master key
can be gained. Verify whether the master key is correct or not by using
two plaintext-ciphertext pairs (do the verification for one pair firstly, if
the master key can pass the test, do the verification for the other pair).

4.2.4 Complexity of the Attack. The data complexity of this attack is
232 known plaintexts. The memory complexity is primarily owing to keeping
the remaining subkey candidates for η in Step 5 of the Efficient subkey recovery
phase, thus it can be estimated as 238.67 · 54/8 ≈ 241.42 bytes.

Regarding the time complexity of this attack, it is mainly dominated by
Steps 1–4 of the Efficient subkey recovery phase and Step 2(b) of the Master key
recovery phase, which can be derived as follows.

1. In Step 1 of the Efficient subkey recovery phase, the time complexity can be
estimated as 252/5+3 · 248/5+2 · 247/5+249/5+254 · 3/5 ≈ 253.42 20-round
SIMON32 encryptions (See Table 5 in Appendix B).

2. In Step 2 of the Efficient subkey recovery phase, the time complexity can be
estimated as 7 · 254/5 + 255 · 3/5 ≈ 255.38 20-round SIMON32 encryptions.

3. In Step 3 of the Efficient subkey recovery phase, the time complexity can
be measured as 3 · 256/5 + 2 · 255/5 + 254/5 ≈ 255.77 20-round SIMON32
encryptions.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 197

4. In Step 4 of the Efficient subkey recovery phase, the time complexity can be
measured as 2 · 255/5 + 254/5 = 254 20-round SIMON32 encryptions.

5. In Step 2(b) of the Master key recovery phase, solving 21 linear equations
with 21 variables by using Gaussian elimination needs about 1

3 · 213 ≈ 3087
bit-XOR operations, which can be measured by 3087

16·4·20 ≈ 21.27 20-round
SIMON32 encryptions (Note that there are three XOR operations and one
AND operation in the round function of SIMON. For simplicity, we approxi-
mate them as four XOR operations in our analysis), thus the time complexity
of this step can be approximated as 238.67 · 210 · 21.27 + 238.67 · 210 ≈ 250.44

20-round SIMON32 encryptions.

Therefore, the total time complexity of this attack is about 253.42 + 255.38 +
255.77 + 254 + 250.44 ≈ 256.96 20-round SIMON32 encryptions.

4.3 Zero-Correlation Linear Attacks on SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher in Table 4
in Appendix, we can mount key recovery attacks on 20-round SIMON48/72 and
21-round SIMON48/96. For the former, the data, memory and time complexities
are about 248 known plaintexts, 243 bytes and 259.7 20-round SIMON48/72 en-
cryptions, respectively. As to the latter, the data, memory and time complexities
are about 248 known plaintexts, 246.73 bytes and 272.63 21-round SIMON48/96
encryptions, respectively.

5 Discussion and Conclusion

Discussion. As mentioned before, applying our experiments to SIMON48 is
hard due to the large block size especially when the number of active bits is close
to the block size. We then did experiments in which the number of active bits is
24 (i.e., half of the state) and 30 (i.e., 5/8 of the state), and found 9 and 10-round
distinguishers, respectively. Interestingly, according to the experimental results
for SIMON32 in Table 3, we observed that if half of the state (16 bits) are active,
9-round distinguishers can be found, and if 5/8 of the state (20 bits) are active,
10-round distinguishers can be derived. It seems that the ratio between the
number of active bits and the block size for SIMON48 matches with SIMON32
well, thus we may find 13-round distinguisher with 7/8 of the state (42 bits) being
active and 15-round distinguisher with 47 active bits for SIMON48. It remains
an open problem to apply this experimental approach efficiently to block ciphers
with larger block size.

Conclusion. In this paper, we investigated the security of SIMON32 and SI-
MON48 by using integral, zero-correlation linear and impossible differential
cryptanalysis, and obtained some new results on these ciphers. Firstly, we intro-
duced a novel approach to find a 15-round integral distinguisher of SIMON32,

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 198

with which an efficient attack was mounted on 21-round SIMON32. This ap-
proach gives a new way of constructing integral distinguishers for block ciphers
with small block size. Secondly, we presented attacks on 20-round SIMON32,
20-round SIMON48/72 and 21-round SIMON48/96 delicately based on 11 and
12-round zero-correlation linear hulls of SIMON32 and SIMON48 respectively.
Our attacks improved the previous best results (appeared in FSE 2014) in terms
of the number of attacked rounds. Moreover, we proposed improved impossible
differential attacks on SIMON32 and SIMON48. It is expected that our results
could be beneficial to the security evaluation of SIMON.

Acknowledgments The authors are grateful to all anonymous reviewers for
their valuable comments. We also thank Lauren De Meyer, Tomer Ashur and
Andras Boho for helping with the integral distinguishers. Moreover, the au-
thors are supported by the National Natural Science Foundation of China (no.
61202371), Major State Basic Research Development Program (973 Plan, no.
2013CB338004), China Postdoctoral Science Foundation (no. 2012M521829) and
Shanghai Postdoctoral Research Funding Program (no. 12R21414500).

References

1. Qingju Wang, Zhiqiang Liu, Kerem Varıcı, Yu Sasaki, Vincent Rijmen, and Yosuke
Todo. Cryptanalysis of Reduced-round SIMON32 and SIMON48. Cryptology
ePrint Archive, 2014. http://eprint.iacr.org/.

2. François-Xavier Standaert, Gilles Piret, Gaël Rouvroy, Jean-Jacques Quisquater,
and Jean-Didier Legat. ICEBERG : An Involutional Cipher Efficient for Block
Encryption in Reconfigurable Hardware. In Bimal K. Roy and Willi Meier, editors,
FSE, volume 3017 of Lecture Notes in Computer Science, pages 279–299. Springer,
2004.

3. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung
Kwon, and Moti Yung, editors, WISA, volume 3786 of Lecture Notes in Computer
Science, pages 243–258. Springer, 2005.

4. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of
Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

6. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.
In Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of LNCS, pages
272–288. Springer, 2009.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 199

7. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Preneel and Takagi [28], pages 326–341.

8. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In Preneel
and Takagi [28], pages 342–357.

9. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of
Lightweight Block Ciphers. In Ari Juels and Christof Paar, editors, RFIDSec,
volume 7055 of Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

10. Huihui Yap, Khoongming Khoo, Axel Poschmann, and Matt Henricksen. EPCBC -
A Block Cipher Suitable for Electronic Product Code Encryption. In Dongdai Lin,
Gene Tsudik, and Xiaoyun Wang, editors, CANS, volume 7092 of Lecture Notes
in Computer Science, pages 76–97. Springer, 2011.

11. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658
of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

12. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Platforms. In Knudsen and
Wu [29], pages 339–354.

13. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ci-
phers. Cryptology ePrint Archive, Report 2013/404, 2013.

14. Farzaneh Abed, Eik List, Jakob Wenzel, and Stefan Lucks. Differential Cryptanal-
ysis of round-reduced Simon and Speck. In Carlos Cid and Christian Rechberger,
editors, International Workshop on Fast Software Encryption - FSE 2014, Lecture
Notes in Computer Science. Springer, 2104.

15. Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON
Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.
http://eprint.iacr.org/.

16. Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar, and
Somitra Kumar Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. Cryp-
tology ePrint Archive, Report 2013/663, 2013. http://eprint.iacr.org/.

17. Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential Analysis of Block
Ciphers SIMON and SPECK. In Carlos Cid and Christian Rechberger, editors,
International Workshop on Fast Software Encryption - FSE 2014, Lecture Notes
in Computer Science. Springer, 2104.

18. Alex Biryukov and Vesselin Velichkov. Automatic Search for Differential Trails in
ARX Ciphers. In Josh Benaloh, editor, CT-RSA, volume 8366 of Lecture Notes in
Computer Science, pages 227–250. Springer, 2014.

19. Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Improved Differ-
ential Attacks on Reduced SIMON Versions. Cryptology ePrint Archive, Report
2014/448, 2014. http://eprint.iacr.org/.

20. Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential and Lin-
ear Cryptanalysis of Reduced-Round Simon. Cryptology ePrint Archive, Report
2013/526, 2013. http://eprint.iacr.org/.

21. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square.
In Eli Biham, editor, FSE, volume 1267 of Lecture Notes in Computer Science,
pages 149–165. Springer, 1997.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 200

22. Lars R. Knudsen and David Wagner. Integral Cryptanalysis. In Joan Daemen and
Vincent Rijmen, editors, FSE, volume 2365 of Lecture Notes in Computer Science,
pages 112–127. Springer, 2002.

23. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In Bruce
Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer Science, pages
213–230. Springer, 2000.

24. Yu Sasaki and Lei Wang. Meet-in-the-Middle Technique for Integral Attacks
against Feistel Ciphers. In Knudsen and Wu [29], pages 234–251.

25. Yu Sasaki and Lei Wang. Bitwise Partial-sum on HIGHT: A New Tool for Integral
Analysis against ARX Designs. In ICISC, Lecture Notes in Computer Science.
Springer, 2013.

26. Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Des. Codes Cryptography, 70(3):369–383,
2014.

27. Carlo Harpes, Gerhard G. Kramer, and James L. Massey. A Generalization of Lin-
ear Cryptanalysis and the Applicability of Matsui’s Piling-Up Lemma. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, EUROCRYPT, volume 921 of Lec-
ture Notes in Computer Science, pages 24–38. Springer, 1995.

28. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science.
Springer, 2011.

29. Lars R. Knudsen and Huapeng Wu, editors. Selected Areas in Cryptography,
19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-16,
2012, Revised Selected Papers, volume 7707 of Lecture Notes in Computer Science.
Springer, 2013.

A Round Function of SIMON

Li−1

≪8
&

≪2

Ri−1

Ri

ki−1

≪1

Li

Fig. 6. The Round Function of SIMON

B Details of Zero-Correlation Linear Cryptanalysis

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 201

Table 4. Zero-Correlation Linear Approximations of 12-round SIMON48

Round Left Right

F
o
r
w
a
r
d

0 0000,0000,0000,0000,0000,0001 0000,0000,0000,0000,0000,0000
1 0000,0000,0000,0000,0000,0000 0000,0000,0000,0000,0000,0001
2 0000,0000,0000,0000,0000,0001 ?100,000?,0000,0000,0000,0000
3 ?100,000?,0000,0000,0000,0000 0??1,0000,??00,000?,0000,0001
4 0??1,0000,??00,000?,0000,0001 ?0??,?10?,0???,0000,??00,000?
5 ?0??,?10?,0???,0000,??00,000? ????,????,????,??0?,0???,0001
6 ????,????,????,??0?,0???,0001 ????,????,????,????,????,??0?
7 ????,????,????,????,????,??0? ????,????,????,????,????,????

B
a
c
k
w
a
r
d

5 ????,????,????,?0?0,???0,001? 0???,10?0,???0,000?,?000,00??
4 0???,10?0,???0,000?,?000,00?? ??10,000?,?000,00?0,0000,0010
3 ??10,000?,?000,00?0,0000,0010 1000,00?0,0000,0000,0000,000?
2 1000,00?0,0000,0000,0000,000? 0000,0000,0000,0000,0000,0010
1 0000,0000,0000,0000,0000,0010 0000,0000,0000,0000,0000,0000
0 0000,0000,0000,0000,0000,0000 0000,0000,0000,0000,0000,0010

Table 5. Attack Procedure in Step 1

i Input state (S1
i)

Guessed
Output state S1

i+1

Counters
subkey bit related to

S1
i+1

0 L0,{0∼15}‖R0,{0∼15}
k16,{7}‖k17,{5∼6,15} L0,{0∼15}‖R0,{0,2∼14}

T
1,S1

1
‖k18,{3∼5,7,13∼14} ‖R16,{7}
‖k19,{1∼6,11∼13,15}

1
L0,{0∼15}‖R0,{0,2∼14} k0,{2,8}

L0,{1∼15}‖R0,{0,3∼7,9∼14} T
2,S1

2‖R16,{7} ‖L1,{2,8}‖R16,{7}

2
L0,{1∼15}‖R0,{0,3∼7,9∼14}

k0,{9}
L0,{1∼6,8∼15}

T
3,S1

3
‖L1,{2,8}‖R16,{7} ‖R0,{0,3∼7,10∼14}

‖L1,{2,8∼9}‖R16,{7}

3
L0,{1∼6,8∼15}

k0,{3}
L0,{2∼6,8∼15}

T
4,S1

4
‖R0,{0,3∼7,10∼14} ‖R0,{0,4∼7,10∼14}

‖L1,{2,8∼9}‖R16,{7} ‖L1,{2∼3,8∼9}‖R16,{7}

4
L0,{2∼6,8∼15}

k0,{4,10}
L0,{3∼6,8∼15}

T
5,S1

5
‖R0,{0,4∼7,10∼14} ‖R0,{0,5∼7,11∼14}

‖L1,{2∼3,8∼9}‖R16,{7} ‖L1,{2∼4,8∼10}‖R16,{7}

5
L0,{3∼6,8∼15}

k0,{11}
L0,{3∼6,8,10∼15}

T
6,S1

6
‖R0,{0,5∼7,11∼14} ‖R0,{0,5∼7,12∼14}

‖L1,{2∼4,8∼10}‖R16,{7} ‖L1,{2∼4,8∼11}‖R16,{7}

6
L0,{3∼6,8,10∼15}

k0,{5}
L0,{4∼6,8,10∼15}

T
7,S1

7
‖R0,{0,5∼7,12∼14} ‖R0,{0,6∼7,12∼14}

‖L1,{2∼4,8∼11}‖R16,{7} ‖L1,{2∼5,8∼11}‖R16,{7}

7
L0,{4∼6,8,10∼15}

k0,{0,6∼7,12∼14}
L1,{0,2∼14}‖R1,{4∼6,8,10∼15} T

8,S1
8

‖R0,{0,6∼7,12∼14} ‖R16,{7} (T
8,S2

0
)

‖L1,{2∼5,8∼11}‖R16,{7} (also denoted as S2
0)

The time complexities of substeps 0 – 7 are estimated as follows:
substep 0: 220 · 232 · 4/20 = 252/5; substep 1: 220 · 231 · 22 · 2/(16 · 20) = 248/5;
substep 2: 220 · 230 · 23/(16 · 20) = 247/5; substep 3: 220 · 229 · 24/(16 · 20) = 247/5;
substep 4: 220 · 228 · 26 · 2/(16 · 20) = 249/5; substep 5: 220 · 227 · 27/(16 · 20) = 248/5;
substep 6: 220 · 226 · 28/(16 · 20) = 248/5; substep 7: 220 · 225 · 214 · 6/(16 · 20) = 254 · 3/5.

CRYPTANALYSIS OF REDUCED-ROUND SIMON32 AND SIMON48 202

Chapter 12

Links Among Impossible
Differential, Integral and Zero
Correlation Linear
Cryptanalysis

Publication Data

B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. Alkhzaimi, C. Li:
Links Among Impossible Differential, Integral and Zero Correlation Linear
Cryptanalysis. In R. Gennaro and M.J.B. Robshaw (Eds.): CRYPTO 2015,
Part I, volumn 9215 of Lecture Notes in Computer Science, pages 95–115, 2015.

Contributions

Major contributor of Section 3 and Section 6:

• The idea of theorem is from Bing Sun, I give the proof in Section 3, and
write an early version of the text.

• Work on the four new integral distinguishers in Section 6.

203

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 204

Links among Impossible Differential, Integral
and Zero Correlation Linear Cryptanalysis ⋆

Bing Sun1,3, Zhiqiang Liu2,3,⋆ ⋆ ⋆, Vincent Rijmen3,⋆⋆⋆, Ruilin Li4,⋆⋆⋆,
Lei Cheng1, Qingju Wang2,3, Hoda Alkhzaimi5, Chao Li1

1 College of Science, National University of Defense Technology, Changsha, Hunan,
P.R.China, 410073

2 Dept. Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, P.R.China, 200240

3 Dept. Electrical Engineering (ESAT), KU Leuven and iMinds, Belgium
4 College of Electronic Science and Engineering, National University of Defense

Technology, Changsha, Hunan, P.R.China, 410073
5 Technical University of Denmark, Denmark
happy come@163.com, ilu zq@sjtu.edu.cn,

vincent.rijmen@esat.kuleuven.be, securitylrl@163.com

Abstract. As two important cryptanalytic methods, impossible differ-
ential and integral cryptanalysis have attracted much attention in recent
years. Although relations among other cryptanalytic approaches have
been investigated, the link between these two methods has been missing.
The motivation in this paper is to fix this gap and establish links between
impossible differential cryptanalysis and integral cryptanalysis.

Firstly, by introducing the concept of structure and dual structure,
we prove that a → b is an impossible differential of a structure E if and
only if it is a zero correlation linear hull of the dual structure E⊥. Mean-
while, our proof shows that the automatic search tool presented by Wu
and Wang could find all impossible differentials of both Feistel structures
with SP-type round functions and SPN structures. Secondly, by estab-
lishing some boolean equations, we show that a zero correlation linear
hull always indicates the existence of an integral distinguisher. With this
observation we improve the number of rounds of integral distinguishers of
Feistel structures, CAST-256, SMS4 and Camellia. Finally, we conclude
that an r-round impossible differential of E always leads to an r-round
integral distinguisher of the dual structure E⊥. In the case that E and
E⊥ are linearly equivalent, we derive a direct link between impossible
differentials and integral distinguishers of E .

Our results could help to classify different cryptanalytic tools and
facilitate the task of evaluating security of block ciphers against various
cryptanalytic approaches.

Keywords: Impossible Differential, Integral, Zero Correlation Linear,
Feistel, SPN, Camellia, CAST-256, SMS4, PRESENT, PRINCE, ARIA

⋆ The work in this paper is supported by the National Natural Science Foundation of
China(No: 61202371, 61402515, 61472250), and National Basic Research Program of
China (973 Program) (2013CB338002, 2013CB338004).

⋆ ⋆ ⋆ Corresponding Authors

205

1 Introduction

Block ciphers are considered vital elements in constructing many symmetric
cryptographic schemes such as encryption algorithms, hash functions, authen-
tication schemes and pseudo-random number generators. The core security of
these schemes depends on the resistance of the underlying block ciphers to known
cryptanalytic techniques. So far a variety of cryptanalytic techniques have been
proposed such as impossible differential cryptanalysis [1, 2], integral cryptanal-
ysis [3], zero correlation linear cryptanalysis [4], etc.

Impossible differential cryptanalysis was independently proposed by Knudsen
[1] and Biham [2]. One of the most popular impossible differentials is called
a truncated impossible differential. It is independent of the choices of the S-
boxes. Several approaches have been proposed to derive truncated impossible
differentials of a block cipher/structure effectively such as the U -method [5], UID-
method [6] and the extended tool of the former two methods generalized by Wu
and Wang in Indocrypt 2012 [7]. Integral cryptanalysis [3] was first proposed
by Knudsen and Wagner, and a number of these ideas have been exploited,
such as square attack [8], saturation attack [9], multi-set attack [10], and higher
order differential attack [11, 12]. With some special inputs, we check whether
the sum of the corresponding ciphertexts is zero or not. Usually, we do not need
to investigate the details of the S-boxes and only view the S-boxes as some
bijective transformations over finite fields. Zero correlation linear cryptanalysis,
proposed by Bogdanov and Rijmen in [4], tries to construct some linear hulls
with correlation exactly zero. In most cases, as in impossible differential and
integral cryptanalysis, we do not need to investigate the details of the S-boxes.
Generally, though there has been lots of work concentrating on the design and
cryptanalysis of S-boxes [13], most cryptanalytic results by using impossible
differential, integral and zero correlation linear cryptanalysis are independent
of the choices of the S-boxes. If we choose some other S-boxes in a cipher, the
corresponding cryptanalytic results will remain almost the same.

Along with the growing of the list of cryptanalytic tools, the question whether
there are direct links or any connections among different tools has drawn much
attention of the cryptographic research community, since such relations can be
used to compare the effectiveness of different tools as well as to improve crypt-
analytic results on block ciphers.

Efforts to find and build the links among different cryptanalytic techniques
were initiated by Chabaud and Vaudenay in [14], where a theoretical link between
differential and linear cryptanalysis was presented. After that, many attempts
have been made to establish further relations among various cryptanalytic tools.
In [15], Sun et al. proved that from an algebraic view, integral cryptanalysis can
be seen as a special case of the interpolation attack. In [16], Leander stated that
statistical saturation distinguishers are averagely equivalent to multidimensional
linear distinguishers. In [17], Bogdanov et al. showed that an integral implies a
zero correlation linear hull unconditionally, a zero correlation linear hull indicates
an integral distinguisher under certain conditions, and a zero correlation linear
hull is actually a special case of multidimensional linear distinguishers. In [18],

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 206

Blondeau and Nyberg further analyzed the link between differential and linear
cryptanalysis and demonstrated some new insights on this link to make it more
applicable in practice. They established new formulas between the probability
of truncated differentials and the correlation of linear hulls. This link was later
applied in [19] to provide an exact expression of the bias of a differential-linear
approximation. Moreover, they claimed that the existence of a zero correlation
linear hull is equivalent to the existence of an impossible differential in some spe-
cific cases [18]. As shown in [20], this link is usually not practical for most known
impossible differential or zero correlation linear distinguishers, since the sum of
the dimensions of input and output of each distinguisher is always the block size
of the cipher, which means if the dimension parameter for one type is small, it will
be infeasibly large for the other type. Blondeau et al. proposed a practical rela-
tion between these two distinguishers for Feistel-type and Skipjack-type ciphers
and showed some equivalence between impossible differentials and zero corre-
lation linear hulls with respect to Feistel-type and Skipjack-type ciphers [20].
In [21], Blondeau and Nyberg gave the link between truncated differential and
multidimensional linear approximation, and then applied this link to explore the
relations between the complexities of chosen-plaintext and known-plaintext dis-
tinguishing/key recovery attacks of differential and linear types. Moreover, they
showed that statistical saturation cryptanalysis is indeed equivalent to truncated
differential cryptanalysis, which could be used to estimate the data requirement
of the statistical saturation key recovery attack.

Contributions. Although there have been intriguing results with respect to
the relations among some important cryptanalytic approaches, the link between
impossible differential cryptanalysis and integral cryptanalysis is still missing. In
this paper, we aim to explore the link between these two cryptanalytic methods.
Since the fundamental step in statistical cryptanalysis of block ciphers is to con-
struct effective distinguishers, we focus on building the links among impossible
differential, zero correlation linear and integral cryptanalysis from the aspect of
distinguishers. Our main contributions are as follows (see Fig.1).

Integral cryptanalysis

()

Impossible differential cryptanalysis

()

Zero correlation linear cryptanalysis

()

2 1
 AA

!

Integral cryptanalysis

()

unconditional

unconditional

2 1
 AA

!

Section 3

Section 4Section 5

Section 5

Fig. 1. Links among Impossible Differential, Integral and Zero Correlation Linear
Cryptanalysis, where E is a structure and E⊥ is the dual structure of E , A1 and A2 are
linear transformations applied before the input and after the output of E .

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 207

1. We characterize what “being independent of the choices of S-boxes” means
by proposing the definition of structure E , which is a set containing some
ciphers that are “similar” to each other. Then, by introducing the dual struc-
ture E⊥, we prove that a → b is an impossible differential of E if and only
if it is a zero correlation linear hull of E⊥. More specifically, let PT and
P−1 denote the transpose and inverse of P respectively. Then for a Feistel
structure with SP -type round functions where P is invertible, denoted as
FSP , constructing an r-round zero correlation linear hull is equivalent to
constructing an impossible differential of FSPT , which is the same structure
as FSP with PT instead of P ; For an SPN structure ESP , constructing an
r-round zero correlation linear hull of ESP is equivalent to constructing an
impossible differential of ES(P−1)T , which is the same structure as ESP with

(P−1)T instead of P . Based on this result, we find 8-round zero correlation
linear hulls of Camellia without FL/FL−1 layer and 4-round zero correlation
linear hulls of ARIA.

2. We show that the automatic search tool, presented by Wu and Wang in
Indocrypt 2012, could find all impossible differentials of a cipher that are
independent of the choices of the S-boxes. This can be used in provable
security of block ciphers against impossible differential cryptanalysis.

3. We find that a zero correlation linear hull always implies the existence of
an integral distinguisher, which means the conditions used for deriving in-
tegral distinguisher from zero correlation linear hull in [17] can be removed.
Meanwhile, we observe that the statement “integral unconditionally implies
zero correlation linear hull” in [17] is correct only under the definition that
integral property is a balanced vectorial boolean function, while it does not
hold for the general case. For example, up to date we cannot use the integral
distinguisher for 4-round AES (with extra MixColumns) [4, 8] to construct
a zero correlation linear hull.

4. Following the results given above, we build the link between impossible dif-
ferential cryptanalysis and integral cryptanalysis, i.e., an r-round impossible
differential of a structure E always implies the existence of an r-round inte-
gral distinguisher of E⊥. Moreover, in the case that E⊥ = A2EA1 where A1

and A2 are linear transformations, we could get direct links between impos-
sible differential cryptanalysis and integral cryptanalysis of E . Specifically,
an r-round impossible differential of SPN structure which adopts bit permu-
tation as the linear layer, always leads to an r-round integral distinguisher.

5. We improve the integrals of Feistel structures by 1 round, build a 24-round
integral of CAST-256, present a 12-round integral of SMS4 which is 2-round
longer than previously best known ones, and construct an 8-round integral
for Camellia without FL/FL−1 layers. These distinguishers could not be
obtained by the known methods for constructing integral distinguishers or
by using the link given in [17]. As an example, the best known key recovery
attack on reduced round CAST-256 in non-weak key model is given to show
the effectiveness of the newly constructed distinguishers.

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 208

Organization. The remainder of this paper is organized as follows. Sec. 2
introduces the notations and concepts that will be used throughout the paper.
In Sec. 3, we establish the new links between impossible differential and zero
correlation linear cryptanalysis. Sec. 4 shows the refined link between integral
and zero correlation linear cryptanalysis. The link between impossible differential
and integral cryptanalysis is presented in Sec. 5. Then in Sec. 6, we give some
examples to show the effectiveness of the newly established links in constructing
new distinguishers of block ciphers. Finally, Sec. 7 concludes this paper.

2 Preliminaries

2.1 Boolean Functions

This section recalls the notations and concepts [22] which will be used throughout
this paper. Let F2 denote the finite field with two elements, and Fn

2 be the vector
space over F2 with dimension n. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn

2 . Then

a · b , a1b1 ⊕ · · · ⊕ anbn

denotes the inner product of a and b. Note that the inner product of a and b can
be written as abT where bT stands for the transpose of b and the multiplication is
defined as matrix multiplication. Given a function G : Fn

2 → F2, the correlation
of G is defined by

c(G(x)) ,
#{x ∈ Fn

2 |G(x) = 0} −#{x ∈ Fn
2 |G(x) = 1}

2n
=

1

2n

∑

x∈Fn
2

(−1)G(x).

Given a vectorial function H : Fn
2 → Fk

2 , the correlation of the linear approxi-
mation for a k-bit output mask b and an n-bit input mask a is defined by

c(a · x⊕ b ·H(x)) ,
1

2n

∑

x∈Fn
2

(−1)a·x⊕b·H(x).

If c(a ·x⊕b ·H(x)) = 0, then a → b is called a zero correlation linear hull of H[4].
This definition can be extended as follows: Let A ⊆ Fn

2 , B ⊆ Fk
2 . If for all a ∈ A,

b ∈ B, c(a · x⊕ b ·H(x)) = 0, then A → B is called a zero correlation linear hull
of H. In the case that H is a permutation on Fn

2 , for any b 6= 0, c(b ·H(x)) = 0
and for any a 6= 0, c(a · x) = 0. We call 0 → b and a → 0 trivial zero correlation
linear hulls of H where a 6= 0 and b 6= 0. Let A ⊆ Fn

2 . If the size of the set

H−1
A (y) , {x ∈ A|H(x) = y}

is independent of y ∈ Fk
2 , we say H is balanced on A. Specifically, if A = Fn

2 , we
say H is a balanced function. If the sum of all images of H is 0, i.e.

∑

x∈Fn
2

H(x) = 0,

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 209

we say H has an integral-balanced (zero-sum) property[3]. Let δ ∈ Fn
2 and ∆ ∈

Fk
2 . The differential probability of δ → ∆ is defined as

p(δ → ∆) ,
#{x ∈ Fn

2 |H(x)⊕H(x⊕ δ) = ∆}
2n

.

If p(δ → ∆) = 0, then δ → ∆ is called an impossible differential of H[1, 2]. Let
A ⊆ Fn

2 , B ⊆ Fk
2 . If for all a ∈ A and b ∈ B, p(a → b) = 0, A → B is called an

impossible differential of H. We recall the following property of balanced boolean
functions: a function G : Fn

2 → F2 is balanced if and only if c(G(x)) = 0.

2.2 Block Ciphers

Feistel Ciphers. An r-round Feistel cipher E is defined as follows: Let (L0, R0) ∈
F2n
2 be the input of E. Iterate the following transformation r times:

{
Li+1 = Fi(Li)⊕Ri

Ri+1 = Li

0 ≤ i ≤ r − 1,

where Li, Ri ∈ Fn
2 . The output of the r-th iteration is defined as the output of

E. In this paper, we will focus on the case that Fi’s are SP-type functions which
will be defined in the following.

SPN Ciphers. The SPN structure is widely used in constructing cryptographic
primitives. It iterates some SP-type round functions to achieve confusion and
diffusion. Specifically, the SP-type function f : Fs×t

2 → Fs×t
2 used in this paper is

defined as follows: Assume the input x is divided into t pieces x = (x0, . . . , xt−1),
and each of the xi’s is an s-bit word. Then apply the nonlinear transformation
Si to xi and let y = (S0(x0), . . . , St−1(xt−1)) ∈ Fs×t

2 . At last, apply a linear
transformation P to y, and Py is the output of f .

The following strategies are popular in designing the diffusion layer P of a
cipher:

(1) P is a bit-wise permutation of Fs×t
2 as in PRESENT [23]. PRESENT

adopts bit permutation as the diffusion layer P , which can be defined as a per-
mutation matrix P = (Pi,j)64×64:

Pi,j =

{
1 if j = 16i mod 63

0 otherwise
.

(2) Each bit of Py is a sum of some bits of y as in PRINCE [24]. Firstly, we will
define SR and M ′ as follows:

SR permutes the 16 nibbles, therefore it is a permutation of 64 bits and we
could write SR as a permutation matrix in F64×64

2 .
To construct M ′, we first define

M̂ (0) =



M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2


 , M̂ (1) =



M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3




LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 210

where

M0 =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,M1 =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 ,M2 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 ,M3 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 ,

and then we define M ′ = diag(M̂ (0), M̂ (1), M̂ (1), M̂ (0)), which is a 64× 64 block
diagonal matrix.

M ′ is used as the linear transformation of the middle round. The transfor-
mations M = SR ◦ M ′ and M−1 are used before and after the middle round,
respectively.

(3) Each word of Py is a sum of some words of y as in Camellia [25] and ARIA
[26]. The block cipher Camellia was recommended in the NESSIE block cipher
portfolio in 2003 and selected as a new international standard by ISO/IEC in
2005. ARIA is a 128-bit block cipher established as a Korean Standard by the
Ministry of Commerce, Industry and Energy in 2004. The linear transformations
PC and PA of Camellia and ARIA could be written as follows:

PC =




E 0 E E 0 E E E
E E 0 E E 0 E E
E E E 0 E E 0 E
0 E E E E E E 0
E E 0 0 0 E E E
0 E E 0 E 0 E E
0 0 E E E E 0 E
E 0 0 E E E E 0




PA =




0 0 0 E E 0 E 0 E E 0 0 0 E E 0
0 0 E 0 0 E 0 E E E 0 0 E 0 0 E
0 E 0 0 E 0 E 0 0 0 E E E 0 0 E
E 0 0 0 0 E 0 E 0 0 E E 0 E E 0
E 0 E 0 0 E 0 0 E 0 0 E 0 0 E E
0 E 0 E E 0 0 0 0 E E 0 0 0 E E
E 0 E 0 0 0 0 E 0 E E 0 E E 0 0
0 E 0 E 0 0 E 0 E 0 0 E E E 0 0
E E 0 0 E 0 0 E 0 0 E 0 0 E 0 E
E E 0 0 0 E E 0 0 0 0 E E 0 E 0
0 0 E E 0 E E 0 E 0 0 0 0 E 0 E
0 0 E E E 0 0 E 0 E 0 0 E 0 E 0
0 E E 0 0 0 E E 0 E 0 E E 0 0 0
E 0 0 E 0 0 E E E 0 E 0 0 E 0 0
E 0 0 E E E 0 0 0 E 0 E 0 0 E 0
0 E E 0 E E 0 0 E 0 E 0 0 0 0 E




where E and 0 denote 8× 8 identity and zero matrices, respectively.

(4) Each word of Py, seen as an element of some extension fields of F2, is
a linear combination of some other words of y as in the AES. In the following,
we will use the matrix expression of finite fields to show how to write the linear
layer of AES as a 128× 128 binary matrix:

Since ShiftRows is a permutation on 16 bytes, it is also a permutation on
128 bits. Therefore, as in the discussion above, we can represent ShiftRows as a
permutation matrix MSR in F128×128

2 . Let F28 = F2[x]/ < f(x) > where F2[x] is
the polynomial ring over F2, f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x] is the defining
polynomial of F28 . Then 1 = (00000001) ∈ F28 can be written as the 8 × 8
identity matrix E, 2 = (00000010) ∈ F28 can be written as the following 8 × 8

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 211

matrix:

M2 =




0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0




and the matrix representation of 3 = (00000011) isM3 = E⊕M2. If we substitute
1, 2 and 3 in MixColumns by E, M2 and M3, respectively, we get a 128 × 128
binary matrix MMC and the linear layer of AES can be written as MMCMSR

which is a 128× 128 matrix over F2.
Generally, no matter which linear transformation a cipher adopts, it is always

linear over F2. Therefore, P can always be written as a multiplication by a matrix
which leads to the following definition:

Definition 1. Let P be a linear transformation over Fm
2 for some positive inte-

ger m. The matrix representation of P over F2 is called the primitive represen-
tation of P .

2.3 Structure and Dual Structure

In many cases, when constructing impossible differentials and zero correlation
linear hulls, we are only interested in detecting whether there is a difference
(mask) of an S-box or not, regardless of the value of this difference (mask). For
example, the truncated impossible differential and zero correlation linear hull of
AES in [4, 27] and Camellia in [28, 29]. In other words, if these ciphers adopt
some other S-boxes, these distinguishers still hold. This leads to the following
definition:

Definition 2. Let E : Fn
2 → Fn

2 be a block cipher with bijective S-boxes as the
basic non-linear components.

(1) A structure EE on Fn
2 is defined as a set of block ciphers E′ which is ex-

actly the same as E except that the S-boxes can take all possible bijective
transformations on the corresponding domains.

(2) Let a, b ∈ Fn
2 . If for any E′ ∈ EE, a → b is an impossible differential (zero

correlation linear hull) of E′, a → b is called an impossible differential (zero
correlation linear hull) of EE.

Note. In the definition of EE , if E uses bijective S-boxes, then the S-boxes
in EE should be bijective. However, if S-boxes used in E are not necessarily
bijective, then EE could be defined as a set of block ciphers E′ which is exactly
the same as E except that the S-boxes can take all possible transformations
on the corresponding domains. As discussed above, the truncated impossible

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 212

differentials and zero correlation linear hulls of AES and Camellia found so far
are actually the impossible differentials and zero correlation linear hulls of EAES

and ECamellia.

Definition 3. Let FSP be a Feistel structure with SP -type round function, and
let the primitive representation of the linear transformation be P . Let σ be the
operation that exchanges the left and right halves of a state. Then the dual struc-
ture F⊥

SP of FSP is defined as σ ◦ FPTS ◦ σ.
Let ESP be an SPN structure with primitive representation of the linear trans-

formation being P . Then the dual structure E⊥
SP of ESP is defined as ES(P−1)T .

3 Links between Impossible Differential and Zero
Correlation Linear Cryptanalysis

In this section, we will show the equivalence between impossible differentials
and zero correlation linear hulls of a structure, which will be used to establish
the link between impossible differential and integral cryptanalysis in Sec. 5. The
next theorem is stated without proof in [17].

Theorem 1. a → b is an r-round impossible differential of FSP if and only if
it is an r-round zero correlation linear hull of F⊥

SP .

Proof. The proof can be divided into the following two parts (See Fig.2):

Part (I) We prove that for (δ0, δ1) → (δr, δr+1), if one can find E ∈ F⊥
SP such

that c((δ0, δ1) · x⊕ (δr, δr+1) ·E(x)) 6= 0, then one can find E′ ∈ FSP such that
p((δ1, δ0) → (δr+1, δr)) > 0.

ii

ii

ii

i i

Differential (SP) Linear (PTS)

P
i i iP iiiP

PT

Si,1,1i

,i t

,1i

,i t

,1i

,i t

,1i

,i t

Si,2

Si,t

Si,1

Si,2

Si,t

Fig. 2. Differential Propagation of FSP and Linear Propagation of F⊥
SP

Assume that (δ0, δ1) → (δr, δr+1) is a linear hull with non-zero correlation
for some E ∈ F⊥

SP , and the input to the round function could be divided into t

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 213

pieces, each of which is an s-bit word. Then there exists a linear characteristic
with non-zero correlation:

(δ0, δ1) → · · · (δi−1, δi) → · · · → (δr, δr+1),

where δi ∈ (Fs
2)

t. In this characteristic, the output mask of Si = (Si,1, . . . , Si,t) is
δi = (δi,1, . . . , δi,t) ∈ (Fs

2)
t, and let the input mask of Si be βi = (βi,1, . . . , βi,t) ∈

(Fs
2)

t. Since for γ 6= βiP , c(γ · x⊕ βi · (xPT)) = 0, δi+1 = δi−1 ⊕ βiP .
In the following, for any (xL, xR) = (xL,1, . . . , xL,t, xR,1, . . . , xR,t) ∈ (Fs

2)
t ×

(Fs
2)

t, we will construct an r-round cipher Er ∈ FSP , such that Er(xL, xR) ⊕
Er(xL ⊕ δ1, xR ⊕ δ0) = (δr+1, δr).

If r = 1, for j ∈ {1, . . . , t}: if δ1,j = 0, we can define S1,j as any possible
transformation on Fs

2, and if δ1,j 6= 0, we can define

S1,j(xL,j) = xL,j , S1,j(xL,j ⊕ δ1,j) = xL,j ⊕ β1,j ,

then for E1 ∈ FSP which adopts such S-boxes,

E1(xL, xR)⊕ E1(xL ⊕ δ1, xR ⊕ δ0) = (δ0 ⊕ β1P, δ1) = (δ2, δ1).

Suppose that we have constructed Er−1 such that Er−1(xL, xR)⊕Er−1(xL⊕
δ1, xR ⊕ δ0) = (δr, δr−1). Denote by (yL, yR) = (yL,1, . . . , yL,t, yR,1, . . . , yR,t) the
output of Er−1(xL, xR). Then in the r-th round, if δr,j = 0, we can define Sr,j

as any possible transformation on Fs
2, otherwise, define Sr,j as follows:

Sr,j(yL,j) = yL,j , Sr,j(yL,j ⊕ δr,j) = yL,j ⊕ βr,j .

Therefore Er(xL, xR)⊕ Er(xL ⊕ δ1, xR ⊕ δ0) = (δr−1 ⊕ βrP, δr) = (δr+1, δr).

Part (II) We prove that for (δ1, δ0) → (δr+1, δr), if one can find some E ∈ FSP

such that p((δ1, δ0) → (δr+1, δr)) > 0, one can find some E′ ∈ F⊥
SP such that

c((δ0, δ1) · x⊕ (δr, δr+1) · E′(x)) 6= 0.
Assume that (δ1, δ0) → (δr+1, δr) is a differential of E ∈ FSP . Then there

exists a differential characteristic with positive probability:

(δ1, δ0) → · · · (δi+1, δi) → · · · → (δr+1, δr),

where δi ∈ (Fs
2)

t. In this characteristic, the input difference of Si = (Si,1, . . . , Si,t)
is δi = (δi,1, . . . , δi,t) ∈ (Fs

2)
t, and let the output difference of Si be βi =

(βi,1, . . . , βi,t) ∈ (Fs
2)

t, then δi+1 = δi−1 ⊕ (βiP).
Taking the following fact into consideration: for (δi,j , βi,j), where δi,j 6= 0,

there always exists an s × s binary matrix Mi,j such that βi,j = δi,jM
T
i,j , then

for Si,j(x) = xMi,j , c(βi,j · x⊕ δi,j · Si,j(x)) = 1.
Now we construct an r-round cipher Er ∈ F⊥

SP such that c((δ0, δ1) · x ⊕
(δr, δr+1) · Er(x)) 6= 0. If r = 1, let S1,j(x) = xM1,j for δ1,j 6= 0 and any linear
transformation on Fs

2 otherwise. Then all operations in E1 ∈ F⊥
SP are linear

over F2, which implies that there exists a 2st× 2st binary matrix M1 such that
E1(x) = xM1, and

c((δ0, δ1) · x⊕ (δ1, δ2) · E1(x)) = 1.

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 214

Assume that we have constructed Er−1(x) = xMr−1 with Mr−1 being a
2st× 2st binary matrix such that

c((δ0, δ1) · x⊕ (δr−1, δr) · Er−1(x)) = 1,

and we can define Sr,j(x) in the r-th round similarly, then Er(x) = xMr for
some 2st× 2st binary matrix Mr, and

c((δ0, δ1) · x⊕ (δr, δr+1) · Er(x)) = 1,

which ends our proof. �

Note. In the proof of Theorem 1, the S-boxes we constructed are not necessarily
bijective. If we add the bijective condition, Theorem 1 still holds. Since for a
bijective S-box, if the correlation is non-zero, δ1,j 6= 0 implies β1,j 6= 0. Therefore,
in Part(I) of the proof, we can further define S1,j as

S1,j(x) =





xL,j ⊕ δ1,j x = xL,j ⊕ β1,j ,

xL,j ⊕ β1,j x = xL,j ⊕ δ1,j ,

x others,

and a similar definition can also be given to Sr,j . In this case, the S-boxes
are invertible. Moreover, for a bijective S-box, if the differential probability is
positive, δi,j 6= 0 implies βi,j 6= 0, thus in Part (II) of the proof, we can always
find a non-singular binary matrix Mi,j such that βi,j = δi,jM

T
i,j .

Similarly, we can prove the following theorem:

Theorem 2. a → b is an r-round impossible differential of ESP if and only if
it is an r-round zero correlation linear hull of E⊥

SP .

Definition 2 implies that the “impossibility” of an impossible differential of a
structure can be caused only by a differential δ1 → δ2 where either δ1 = 0 or
δ2 = 0 (but not both) over an invertible S-box, or by a differential 0 → δ2 over
a non-invertible S-box. Otherwise, according to the proof of Theorem 1, we can
always find an S-box such that δ1 → δ2 is a possible differential. Therefore, we
have the following corollary:

Corollary 1. The method presented in [7] finds all impossible differentials of
FSP and ESP .

As a matter of fact, this corollary can be used in the provable security of block
ciphers against impossible differential cryptanalysis, since with the help of this
corollary, the longest impossible differentials of a given structure could be given.

In case P is invertible, according to the definition of equivalent structures
given in [30], we have

FPTS =
(
(PT)−1, (PT)−1

)
FSPT

(
PT , PT

)
, (1)

which indicates:

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 215

Corollary 2. Let FSP be a Feistel structure with SP -type round function, and
let the primitive representation of the linear transformation be P . If P is invert-
ible, finding zero correlation linear hulls of FSP is equivalent to finding impossible
differentials of FSPT .

Example 1. (8-Round Zero Correlation Linear Hull of Camellia With-
out FL/FL−1) Let Camellia* denote the cipher which is exactly the same as
Camellia without FL/FL−1 layer except that PT is used instead of P . Then we
find that, for example:

((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, a, 0, 0, 0)) → ((0, 0, 0, 0, 0, 0, 0, h), (0, 0, 0, 0, 0, 0, 0, 0))

is an 8-round impossible differential of Camellia*, where a and h denote any
non-zero values. Therefore, we can derive an 8-round zero correlation linear
distinguisher of Camellia without FL/FL−1 layer as shown below:

((a, a, 0, 0, a, 0, a, a), (0, 0, 0, 0, 0, 0, 0, 0)) → ((0, 0, 0, 0, 0, 0, 0, 0), (h, 0, 0, h, 0, h, h, h)).

Furthermore, if FSP = FSPT and ESP = ES(P−1)T , we have:

Corollary 3. For a Feistel structure FSP with SP -type round function, if P is
invertible and P = PT , there is a one-to-one correspondence between impossible
differentials and zero correlation linear hulls.

For an SPN structure ESP , if P
TP = E, a → b is an impossible differential

if and only if it is a zero correlation linear hull.

Example 2. (4-Round Zero Correlation Linear Hull of ARIA) Since the
linear layer P of ARIA satisfies PTP = E, any impossible differential of EARIA is
automatically a zero correlation linear hull of EARIA. Therefore, the impossible
differentials of 4-round ARIA shown in [28] are also zero correlation linear hulls
of 4-round ARIA.

4 Links between Integral and Zero Correlation Linear
Cryptanalysis

Firstly, we give two fundamental statements that give links between integral
cryptanalysis and zero correlation linear cryptanalysis:

Lemma 1. Let A be a subspace of Fn
2 , A⊥ = {x ∈ Fn

2 |a · x = 0, a ∈ A} be
the dual space of A and F : Fn

2 → Fn
2 be a function on Fn

2 . For any λ ∈ Fn
2 ,

Tλ : A⊥ → Fn
2 is defined as Tλ(x) = F (x⊕ λ), then for any b ∈ Fn

2 ,

∑

a∈A

(−1)a·λc(a · x⊕ b · F (x)) = c(b · Tλ(x)).

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 216

Proof.

∑

a∈A

(−1)a·λc(a · x⊕ b · F (x)) =
∑

a∈A

(−1)a·λ
1

2n

∑

x∈Fn
2

(−1)a·x⊕b·F (x)

=
1

2n

∑

x∈Fn
2

(−1)b·F (x)
∑

a∈A

(−1)a·(λ⊕x) =
1

2n

∑

x∈Fn
2

(−1)b·F (x)|A|δA⊥(λ⊕ x)

=
1

|A⊥|
∑

y∈A⊥

(−1)b·Tλ(y) = c(b · Tλ(x)),

where δA⊥(x) =

{
1 x ∈ A⊥

0 x /∈ A⊥ . �

Lemma 2. Let A be a subspace of Fn
2 , F : Fn

2 → Fn
2 , and let Tλ : A⊥ → Fn

2 be
defined as Tλ(x) = F (x⊕ λ) where λ ∈ Fn

2 . Then for any b ∈ Fn
2 ,

1

2n

∑

λ∈Fn
2

(−1)b·F (λ)c(b · Tλ(x)) =
∑

a∈A

c2(a · x⊕ b · F (x)).

The proof of Lemma 2 is given in the full version of this paper [31]. The conclusion
of [17] that integral unconditionally implies zero correlation linear hull, is correct
only under their definition of integral, which requires that c(b · Tλ(x)) = 0.
Under the original, more general definition for an integral distinguisher [3], this
conclusion may not hold.

From Lemma 1, we can deduce the following:

Corollary 4. Let F : Fn
2 → Fn

2 be a function on Fn
2 , and let A be a subspace of

Fn
2 and b ∈ Fn

2 \ {0}. Suppose that A → b is a zero correlation linear hull of F ,
then for any λ ∈ Fn

2 , b · F (x⊕ λ) is balanced on A⊥.

This corollary states that if the input masks of a zero correlation linear hull form
a subspace, then a zero correlation linear hull implies an integral distinguisher.
Furthermore, the condition that input masks form a subspace can be removed,
which leads to the following result:

Theorem 3. A nontrivial zero correlation linear hull of a block cipher always
implies the existence of an integral distinguisher.

Proof. Assume that A → B is a non-trivial zero correlation linear hull of a block
cipher E. Then we can choose 0 6= a ∈ A, 0 6= b ∈ B, such that {0, a} → b is also
a zero correlation linear hull of E.

Since V = {0, a} forms a subspace on F2, according to Corollary 4, b · E(x)
is balanced on V ⊥. This implies an integral distinguisher of E. �

Moreover, in the proof of Theorem 3, we can always assume that 0 ∈ A. Then

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 217

1. If A forms a subspace, an integral distinguisher can be constructed from
A → b;

2. If A does not form a subspace, we can choose some A1 ⊂ A such that A1

forms a subspace, then an integral distinguisher can be constructed from
A1 → b.

It was stated in [17] that a zero correlation linear hull indicates the existence of
an integral distinguisher under certain conditions, while Theorem 3 shows that
these conditions can be removed. This results in a more applicable link between
zero correlation linear cryptanalysis and integral cryptanalysis.

It can be seen that Theorem 3 also gives us a new approach to find integral
distinguishers of block ciphers. More specifically, an r-round zero correlation
linear hull can be used to construct an r-round integral distinguisher.

5 Links between Impossible Differential and Integral
Cryptanalysis

According to the links given in the previous sections, we establish a link between
impossible differential cryptanalysis and integral cryptanalysis:

Theorem 4. Let E ∈ {FSP , ESP }. Then an impossible differential of E always
implies the existence of an integral of E⊥.

Proof. This can be deduced from the following facts:

– A zero correlation linear hull of E⊥ always implies the existence of an integral
of E⊥;

– A zero correlation linear hull of E⊥ could be constructed by constructing an
impossible differential of E . �
In case E⊥ = A2EA1 where A1 and A2 are linear transformations, we get the

direct links between impossible differential and integral cryptanalysis:

Corollary 5. Let FSP be a Feistel structure with SP -type round function, and
let the primitive representation of the linear transformation be P . If P is invert-
ible and there exists a permutation π on t elements such that for any (x0, . . . , xt−1) ∈
Fs×t
2 ,

P (x0, . . . , xt−1) = π−1PTπ(x0, . . . , xt−1),

then for FSP , an impossible differential always implies the existence of an inte-
gral distinguisher.

Example 3. SNAKE(2) is a Feistel cipher proposed by Lee and Cha at JW-
ISC’97, please refer to [32, 33] for details. According to [30], the round function
of SNAKE(2) can be seen as an SP-type one with the primitive presentation of
the matrix being defined as

P =




E E E E
E 0 E E
E 0 0 E
E 0 0 0


 ,

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 218

where E and 0 are the identity and zero matrices of F8×8
2 , respectively. Let

π =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 .

Then we have P = π−1PTπ, therefore, an impossible differential of SNAKE(2),
which is independent of the details of the S-boxes, always implies the existence
of an integral distinguisher of SNAKE(2).

Corollary 6. Let ESP be an SPN structure with the primitive representation of
the linear transformation being P . If PTP = diag(Q1, . . . , Qt), where Qi ∈ Fs×s

2 ,
then for ESP , an impossible differential always implies the existence of an integral
distinguisher.

Proof. Firstly, according to Theorem 4, if PTP = E, an impossible differential
of ESP always implies the existence of an integral.

Secondly, for the S-layer of ESP , if we substitute S by applying Qi to the
i-th S-box, according to definition 2, the structure stays identical. Since

P ◦ (diag(Q1, . . . , Qt) ◦ S) = (P ◦ diag(Q1, . . . , Qt)) ◦ S,

an SPN structure ESP is equivalent to an SPN structure ES(P◦diag(Q1,...,Qt)).
Based on the above two points, we can get the conclusion. �

To show applications of these links, we recall that, an n×n matrix P is called
orthogonal if and only if PTP = E, where E is the n× n identity matrix.

Example 4. We can check that, SR and M ′ used in PRINCE are orthogonal
matrices, therefore

MTM = (SR ◦M ′)T (SR ◦M ′) = E,

where E is the 64× 64 identity matrix. So all the linear layers used in different
rounds of PRINCE are orthogonal based on which we could conclude that any
r-round impossible differential of PRINCE which is independent of the choices
of the S-boxes implies the existence of an r-round integral distinguisher.

Example 5. Since the linear layer P of ARIA is both symmetric and involutional,
e.g. P = P−1 = PT , any impossible differential of ARIA which is independent
of the choices of S-boxes implies the existence of an integral distinguisher.

Example 6. We can check that P used in PRESENT satisfies P = (P−1)T ,
therefore, an impossible differential, which is independent of the details of the
S-boxes, always leads to the existence of an integral distinguisher. In fact, since
a permutation matrix P is always orthogonal, we have the following Corollary:

Corollary 7. For an SPN structure which adopts bit permutation as the diffu-
sion layer, the existence of an r-round impossible differential implies the exis-
tence of an r-round integral distinguisher.

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 219

6 New Integrals for Block Ciphers/Structures

6.1 New Integrals for Feistel Structures

Let Er be an r-round Feistel structure FSP . Then for any a 6= 0, b 6= a, (a, 0) →
(0, b) is a zero correlation linear hull of E3; and if the round functions are bijective,
then for any a 6= 0, (a, 0) → (0, a) is a zero correlation linear hull of E5.

So far the longest integral distinguisher known for a Feistel structure with
bijective round functions counts 4 rounds, and the longest integral distinguisher
for a Feistel structure with general round functions counts 2 rounds. We improve
these distinguishers by 1 round using Theorem 3.

Proposition 1. Let Er be an r-round Feistel structure defined on F2n
2 . Then

1. If the Fi’s are bijective, then for any c ∈ Fn
2 , c 6= 0, c · R5 is balanced on

{(0, 0), (c, 0)}⊥ with respect to E5.
2. If the Fi’s are not necessarily bijective, then let {α0, . . . , αn−1} be a base of

Fn
2 over F2. Then αn−1 · R3 is balanced on {(0,∑n−2

i=0 ciαi)|ci ∈ F2}⊥ with
respect to E3.

As a matter of fact, for any c ∈ Fn
2 , c 6= 0, (c, 0) → (0, c) is a zero correlation

linear hull of E5. Thus according to Theorem 3, we can construct an integral
distinguisher of E5, i.e., let (L0, R0) take all values in {(0, 0), (c, 0)}⊥, then c ·R5

is balanced.

6.2 24-Round Integral for CAST-256

The block cipher CAST-256 was proposed as a first-round AES candidate, and
we refer to [34] for details. Firstly, we recall the following zero correlation linear
property given in [17].

Property 1. (0, 0, 0, L1) → (0, 0, 0, L2) is a zero correlation linear hull of the 24-
round CAST-256 (from the 13-th round to the 36-th round of CAST-256), where
L1 6= 0, L2 6= 0 and L1 6= L2.

Let L∗
1 = {(l1, l2, . . . , l31, 0)|li ∈ F2} and L2 = (0, . . . , 0, 1). Then we obtain

a zero correlation linear hull (0, 0, 0, L∗
1) → (0, 0, 0, L2) for the 24-round CAST-

256. According to Theorem 3, we can get the following result:

Proposition 2. Let V = {(x1, x2, x3, 0
31y)|xi ∈ F32

2 , y ∈ F2}. If the input
takes all values in V , and let the output of the 24-round be (C0, C1, C2, C3) ∈
F32×4
2 (from the 13-th round to 36-th round). Then (0, . . . , 0, 1) · C3 is balanced.

Based on this integral distinguisher, we present a key recovery attack on 28-
round CAST-256 which is the best known attack on CAST-256 in the non-weak
key model. The details of the attack are listed the full version of this paper[31].

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 220

6.3 12-Round Integral for SMS4

The SMS4[35] block cipher is designed by the Chinese government as part of their
WAPI standard for wireless networks. Up to date, the longest known integral
distinguisher of SMS4 covers 10 rounds [36]. The details of SMS4 and the proof
of the following propositions are listed in the full version of this paper[31].

Proposition 3. Let V = {v ∈ (F8
2)

4|HW (vLT) = 1}, where HW (x1, x2, x3, x4) =
#{xi 6= 0, i = 1, 2, 3, 4}. For any d ∈ V , (0, 0, 0, d) → (d, 0, 0, 0) is a 12-round
zero correlation linear hull of SMS4.

Proposition 4. Let V = {v ∈ (F8
2)

4|HW (vLT) = 1}, Vd = {w ∈ (F32
2)4|(0, 0, 0, d)·

w = 0}, and let (c0, c1, c2, c3) be the output of 12-round SMS4. Then for any
d ∈ V , when the input takes all possible values in Vd, we have

#{d · c0 = 0} = #{d · c0 = 1}.

Note that most of the known integral distinguishers are independent of the
choices of the S-boxes. However, the integral distinguisher presented above is
highly related with the S-boxes, since for different S-boxes, we would find dif-
ferent zero correlation linear hulls which lead to different integral distinguishers
of SMS4.

6.4 8-Round Integral for Camellia without FL/FL−1 Layer

Based on the 8-round zero correlation linear hull presented in Example 1, we get
the following 8-round integral of Camellia without FL/FL−1 layer:

Proposition 5. Let V be defined as

V = {((x1, . . . , x8), (x9, . . . , x16))|x1 ⊕ x2 ⊕ x5 ⊕ x7 ⊕ x8 = 0, xi ∈ F8
2}.

For any h ∈ F8
2, h 6= 0, (h, 0, 0, h, 0, h, h, h) · Ri+8 is balanced on V with respect

to 8-round Camellia without FL/FL−1 layer.

7 Conclusion

In this paper, we have investigated the link between impossible differential and
integral cryptanalysis. To do this, we have introduced the concept of structure
E and dual structure E⊥ and established the link in the following steps:

– We derived the relation between impossible differential of E and zero cor-
relation linear hull of E⊥. We have shown that for a Feistel structure FSP

with SP -type round functions where P is invertible, constructing a zero
correlation linear hull of FSP is equivalent to constructing an impossible
differential of FSPT , which is the same structure as FSP with PT instead
of P . For an SPN structure ESP , constructing a zero correlation linear hull
of ESP is equivalent to constructing an impossible differential of ES(P−1)T ,

which is the same structure as ESP with (P−1)T instead of P .

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 221

– We presented the relation between zero correlation linear hull and integral
distinguisher of block ciphers. As proven in Sec. 4, a zero correlation lin-
ear hull always implies the existence of an integral distinguisher, while such
statement only holds under certain conditions in [17]. Meanwhile, we have
observed that the statement “integral unconditionally implies zero correla-
tion linear hull” in [17] is correct only under the definition that integral
property is a balanced vectorial boolean function, while it does not hold for
the general case (i.e., integral defined in [3] is a zero-sum property).

– We built the link between impossible differential of E and integral distin-
guisher of E⊥. We have demonstrated that an r-round impossible differen-
tial of E always leads to an r-round integral distinguisher of E⊥. In the case
that E and E⊥ are linearly equivalent, we obtained some direct links be-
tween impossible differential and integral distinguisher of E . Specifically, an
r-round impossible differential of an SPN structure, which adopts bit per-
mutation as the linear layer, always indicates the existence of an r-round
integral distinguisher.

The results and links presented in this paper not only allow to achieve a better
understanding and classifying of impossible differential cryptanalysis, integral
cryptanalysis and zero correlation linear cryptanalysis, but also provide some
new insights with respect to these cryptanalytic approaches as shown below:

– The automatic search tool presented by Wu and Wang in Indocrypt 2012
finds all impossible differentials of both Feistel structures with SP-type round
functions and SPN structures, which is useful in provable security of block
ciphers against impossible differential cryptanalysis.

– Our statement “zero correlation linear hull always implies the existence of
an integral distinguisher” provides a novel way for constructing integral dis-
tinguisher of block ciphers. With this observation, we have improved the
integral of Feistel structures by 1 round, built a 24-round integral of CAST-
256, proposed a 12-round integral of SMS4 which is 2-round longer than
previously best known ones, and present an 8-round integral of Camellia
without FL/FL−1 layers. These distinguishers could not be obtained by ei-
ther the previously known methods for constructing integral distinguishers
or by using the link given in [17]. Moreover, we have presented the best
known key recovery attack on CAST-256 in non-weak key model to show
that the new links can also be used to improve cryptanalytic results of some
concrete ciphers.

By using the matrix representation given in [37], the concept of dual structure
can be extended to generalized Feistel structures, and we can get similar results
for these structures. Furthermore, we have focused on the links among the dis-
tinguishers used in impossible differential, integral and zero correlation linear
cryptanalysis since distinguishers are the essential points in the evaluation of
security margins of a block cipher against various cryptanalytic tools, and our
results can be helpful in designing a block cipher from this point of view.

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 222

References

1. L.R. Knudsen. DEAL — A 128-bit Block Cipher. Department of Informatics, Uni-
versity of Bergen, Norway. Technical report, 1998.

2. E. Biham, A. Biryukov, A. Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. EUROCRYPT 1999, LNCS 1592, pp. 12–
23, Springer-Verlag, 1999.

3. L.R. Knudsen, D. Wagner. Integral Cryptanalysis. FSE 2002, LNCS 2365, pp.
112–127, Springer–Verlag, 2002.

4. A. Bogdanov, V. Rijmen. Linear Hulls with Correlation Zero and Linear Crypt-
analysis of Block Ciphers. Designs, Codes and Cryptography, 70(3), pp. 369–383,
2014.

5. J. Kim, S. Hong, J. Lim. Impossible Differential Cryptanalysis Using Matrix
Method. Discrete Mathematics, 310(5), pp. 988–1002, 2010.

6. Y. Luo, X. Lai, Z. Wu, G. Gong. A Unified Method for Finding Impossible Dif-
ferentials of Block Cipher Structures. Information Sciences, Volume 263, 1 April
2014, Pages 211–220.

7. S. Wu, M. Wang. Automatic Search of Truncated Impossible Differentials for Word-
Oriented Block Ciphers. Indocrypt 2012, LNCS 7668, pp. 283–302, 2012.

8. J. Daemen, L. R. Knudsen, V. Rijmen. The Block Cipher Square. Fast Software
Encryption 1997, LNCS 1267, pp. 149–165, Springer–Verlag, 1997.

9. S. Lucks. The Saturation Attack — A Bait for Twofish. Fast Software Encryption
2001, LNCS 2355, pp. 1–15, Springer–Verlag, 2002.

10. A. Biryukov, A. Shamir. Structural Cryptanalysis of SASAS. EUROCRYPT 2001,
LNCS 2045, pp. 394–405, Springer–Verlag, 2001.

11. X. Lai. Higher Order Derivatives and Differential Cryptanalysis. Communications
and Cryptography: Two Sides of One Tapestry, 227 (1994)

12. L.R. Knudsen. Truncated and Higher Order Differentials. Fast Software Encryption
1994, LNCS 1008, pp. 196–211. Springer, Heidelberg (1995)

13. S. Picek, L. Batina, D. Jakobović, B. Ege, M. Golub. S-box, SET, Match: A Toolbox
for S-box Analysis. WISTP 2014, LNCS 8501, pp. 140–149, 2014.

14. F. Chabaud, S. Vaudenay. Links Between Differential and Linear Cryptoanalysis.
EUROCRYPT 1994, LNCS 950, pp. 356–365, Springer-Verlag, 1995.

15. B. Sun, R. Li, L. Qu, C. Li. SQUARE Attack on Block Ciphers with Low Algebraic
Degree. Science China Information Sciences 53(10), pp. 1988–1995, 2010.

16. G. Leander. On Linear Hulls, Statistical Saturation Attacks, PRESENT and
a Cryptanalysis of PUFFIN. EUROCRYPT 2011, LNCS 6632, pp. 303–322,
Springer-Verlag, 2011.

17. A. Bogdanov, G. Leander, K. Nyberg and M. Wang. Integral and Multidimensional
Linear Distinguishers with Correlation Zero. ASIACRYPT 2012, LNCS 7658, pp.
244–261, Springer–Verlag, 2012.

18. C. Blondeau and K. Nyberg. New Links Between Differential and Linear Crypt-
analysis. EUROCRYPT 2013, LNCS 7881, pp. 388–404, Springer–Verlag, 2013.

19. C. Blondeau, G. Leander, K. Nyberg. Differential-Linear Cryptanalysis Revisited.
FSE 2014, LNCS 8540, pp. 411–430, Springer–Verlag, 2015.

20. C. Blondeau, A. Bogdanov, M. Wang. On the (In)Equivalence of Impossible Dif-
ferential and zero correlation Distinguishers for Feistel- and Skipjack-type Ciphers.
ACNS 2014, LNCS 8479, pp. 271–288, 2014.

21. C. Blondeau, K. Nyberg. Links Between Truncated Differential and Multidimen-
sional Linear Properties of Block Ciphers and Underlying Attack Complexities.
EUROCRYPT 2014, LNCS 8441, pp. 165–182, 2014.

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 223

22. C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cam-
bridge University Press, 2006.

23. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, C. Vikkelsoe: PRESENT: An Ultra-Lightweight Block Cipher.
CHES 2007, LNCS 4727, pp 450–466, 2007.

24. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knud-
sen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. Thomsen,
T. Yalçın. PRINCE — A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. ASIACRYPT 2012. LNCS 7658, pp. 208–225,
2012.

25. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima and T. Tokita.
Camellia: A 128–Bit Block Cipher Suitable for Multiple Platforms - Design and
Analysis. SAC 2000, LNCS 2012, pp. 39–56, Springer–Verlag, 2000.

26. D. Kwon, J. Kim, S. Park, S.H. Sung etc. New Block Cipher: ARIA. ICISC 2003,
LNCS 2971, pp.432–445, Springer-Verlag 2004.

27. H. Mala, M. Dakhilalian, V. Rijmen, M. Modarres-Hashemi. Improved Impossible
Differential Cryptanalysis of 7-Round AES-128. INDOCRYPT 2010, LNCS 6498,
pp. 282–291, Springer–Verlag, 2010.

28. W. Wu, W. Zhang, D. Feng. Impossible Differential Cryptanalysis of Round-
Reduced ARIA and Camellia. Journal of Computer Science and Technology, 22(3),
pp. 449–456, 2007.

29. A. Bogdanov, H. Geng, M. Wang, L. Wen, B. Collard. Zero Correlation Linear
Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and
CLEFIA. SAC 2013, LNCS 8282, pp. 306–323.

30. L. Duo, C. Li, K. Feng. New Observation on Camellia. SAC 2005, LNCS 3897, pp.
51–64, Springer–Verlag, 2006.

31. B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. Alkhzaimi, C. Li. Links
among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis.
http://eprint.iacr.org/2015/181.pdf.

32. C. Lee, Y. Cha. The Block Cipher: SNAKE with Provable Resistance against
DC and LC Attacks. In Proceedings of 1997 Korea-Japan Joint Workshop on
Information Security and Cryptology (JW–ISC’97), pp. 3–17, 1997.

33. S. Moriai, T. Shimoyama, T. Kaneko. Interpolation Attacks of the Block Cipher:
SNAKE. FSE 1999, LNCS 1636, pp. 275–289, 1999.

34. First AES Candidate Conference.
http://csrc.nist.gov/archive/aes/round1/conf1/aes1conf.htm.

35. Specification of SMS4, Block Cipher for WLAN Products — SMS4 (in Chinese),
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

36. W. Zhang, B. Su, W. Wu, D. Feng. C. Wu. Extending Higher-Order Integral:
An Efficient Unified Algorithm of Constructing Integral Distinguishers for Block
Ciphers. ACNS 2012, LNCS 7341, pp. 117–134, Springer-Verlag, 2012.

37. T.P. Berger, M. Minier, G. Thomas. Extended Generalized Feistel Networks Using
Matrix Representation. SAC 2013, LNCS 8282, pp. 289–305, 2014.

LINKS AMONG IMPOSSIBLE DIFFERENTIAL, INTEGRAL AND ZERO CORRELATION ... 224

Chapter 13

Optimized Interpolation
Attacks on LowMC

Publication Data

I. Dinur, Y. Liu, W. Meier, Q. Wang: Optimized Interpolation Attacks on
LowMC. In Tetsu Iwata and Jung Hee Cheon (Eds.): ASIACRYPT 2015, Part
II, volumn 9453 of Lecture Notes in Computer Science, pages 535-560, 2015.

Contributions

Major contributor of Section 4, 5 and 6, share 25% of workload.

225

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 226

Optimized Interpolation Attacks on LowMC

Itai Dinur1, Yunwen Liu2, Willi Meier3, and Qingju Wang2,4⋆

1 Département d’Informatique, École Normale Supérieure, Paris, France
2 ESAT/COSIC, KU Leuven and iMinds, Belgium

3 FHNW, Switzerland
4 Department of Computer Science & Engineering, Shanghai Jiao Tong University,

China

Abstract. LowMC is a collection of block cipher families introduced at
Eurocrypt 2015 by Albrecht et al. Its design is optimized for instanti-
ations of multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. A unique feature of LowMC is that its internal
affine layers are chosen at random, and thus each block cipher family
contains a huge number of instances. The Eurocrypt paper proposed
two specific block cipher families of LowMC, having 80-bit and 128-bit
keys.
In this paper, we mount interpolation attacks (algebraic attacks intro-
duced by Jakobsen and Knudsen) on LowMC, and show that a practically
significant fraction of 2−38 of its 80-bit key instances could be broken 223

times faster than exhaustive search. Moreover, essentially all instances
that are claimed to provide 128-bit security could be broken about 1000
times faster. In order to obtain these results we optimize the interpo-
lation attack using several new techniques. In particular, we present an
algorithm that combines two main variants of the interpolation attack,
and results in an attack which is more efficient than each one.
Keywords: Block cipher, LowMC, high-order differential cryptanalysis,
interpolation attack.

1 Introduction

LowMC is a collection of block cipher families designed by Albrecht et al. and
presented at Eurocrypt 2015. The cipher is specifically optimized for practical
instantiations of multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. In such applications, non-linear operations result in a
heavy computational penalty compared to linear ones. The designers of LowMC
took an extreme approach, combining very dense affine layers with simple non-
linear layers that have algebraic degree of 2.

Perhaps the most distinctive feature of LowMC is that its affine layers are
chosen at random, and thus each block cipher family contains a huge number

⋆ The fourth author is in part supported by the National Natural Science Foundation
of China (no. 61472250), Major State Basic Research Development Program (973
Plan, no. 2013CB338004).

227

of instances. As this may enable a malicious party to instantiate LowMC with
a hidden backdoor, its designers propose to use the Grain stream cipher [3] as
a source of pseudo-random bits in order to restrict the freedom available in the
LowMC instantiation. The designers also mention that it is possible to use any
sufficiently random source to generate the affine layers, and this source does not
necessarily need to be cryptographically secure.

The Eurocrypt paper proposed two specific block cipher families of LowMC,
having 80-bit and 128-bit keys. The internal number of rounds in each family
was set in order to guarantee a security level that corresponds to its key size.
For this purpose, the resistance of LowMC was evaluated against a variety of
well-known cryptanalytic attacks. One of the main considerations in setting the
internal number of rounds was to provide resistance against algebraic attacks
(such as high-order differential cryptanalysis [7]). Indeed, LowMC is potentially
susceptible to algebraic attacks due to the low algebraic degree of its internal
round, but the designers argue that LowMC has sufficiently many rounds to
resist such attacks.

In this paper, we evaluate the resistance of LowMC against algebraic attacks
and refute the designers’ claims regarding its security level. Our results are given
in Table 1, and show that a fraction of 2−38 of the LowMC 80-bit key instances
could be broken in about 257 time, using 239 chosen plaintexts. The probability
of 2−38 is practically significant, namely, a malicious party can easily find weak
instances of LowMC by running its source of pseudo-random bits with sufficiently
many seeds, and checking whether the resultant instance is weak (which can be
done efficiently using basic linear algebra).

For LowMC with 128-bit keys, we describe an attack that breaks a fraction
of 2−122 of its instances in time 286 using 270 chosen plaintexts. We note that
this specific attack does not violate the formal security claims of the LowMC
designers, as they do not consider attacks that apply to less than 2−100 of the
instances as valid. Nevertheless, the designers of LowMC allow to instantiate it
using a pseudo-random source that is not cryptographically secure. Our result
shows that this is risky, as using an over-simplified source for pseudo-randomness
may give a malicious party additional control over the LowMC instantiation, and
allow finding weak instances much faster than exhaustively searching for them
in 2122 time.

Finally, we describe an attack that can break essentially all LowMC instances
with 128-bit keys. Although the attack is significantly slower than the weak-
instance attack, it is still about 1000 times faster than exhaustive search, and
uses 273 chosen plaintexts.

All of our results were obtained using the interpolation attack, which is an
algebraic attack introduced by Jakobsen and Knudsen in 1997 [4]. In an inter-
polation attack, the attacker considers some intermediate encryption value b as
a polynomial in the ciphertext bits. The aim of the attacker is to interpolate the
algebraic normal form (ANF) of b by recovering its unknown coefficients, and
this typically allows to recover the secret key using ad-hoc techniques.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 228

Instance Number of Section Rounds Fraction of Data† Time†† Memory†††

Family Rounds Attacked Instances

LowMC-80 11 6.1 9 1 235 238 235

6.2 10 1 239 257 239

6.3 all (11) 2−38 239 257 239

LowMC-128 12 7.1 11 1 270 286 270

7.1 all (12) 2−122 270 286 270

7.2 all (12) 1 273 2118 280

† Given in chosen plaintexts.
†† Given in LowMC encryptions.
††† Given in 256-bit words.

Table 1. Attacks on LowMC

In order to recover the unknown coefficients, the attacker allocates a variable
for each one of them. Assuming that b has a low-degree representation in terms of
the plaintext bits, the attacker collects linear equations on the variables, typically
by using high-order differentials in a chosen plaintext attack. After obtaining
sufficiently many equations, the unknown variables are recovered by solving the
resultant linear equation system. The efficiency of the attack depends on the
algebraic degree of b in terms of the plaintext, but also on the number of allocated
variables which is determined by the number of unknown coefficients in the ANF
representation of b in terms of the ciphertext.

Although our results were obtained using the well-known interpolation at-
tack, its straightforward application does not seem to threaten the security of
LowMC. Therefore, we had to develop new techniques such as using carefully
chosen plaintext structures which allow to efficiently derive the linear system of
equations. However, our main new contribution is described next by considering
two variants of the interpolation attack.

In the original variant of the interpolation attack over GF (2) (which we refer
to as variant 1), the attacker views the ANF of some intermediate encryption bit
b as an initially unknown polynomial FK(C) in the ciphertext bits C = c1, . . . , cn,
whereK = x1, . . . , xκ is the unknown (fixed) secret key. In a dual approach to the
interpolation attack, which we refer to as variant 2 (used, for example, in [8]), the
attacker interpolates the full polynomial F (K,C) by considering each monomial
in the key bits x1, . . . , xκ with a non-zero coefficient as a separate (linearized)
variable. For example, consider the polynomial

F (c1, c2, x1, x2, x3) = c1c2x1 + c1c2x2 + c1x1 + c1x2 + c2x1 + x1x2 + x3 + 1.

We can write

F(x1,x2,x3)(c1, c2) = α1c1c2 + α2c1 + α3c2 + α4,

and thus in the first variant we have 4 variables: α1, α2, α3, α4. In this variant,
the actual representation of the variables in terms of the key is not considered.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 229

In the dual variant, we write

F (c1, c2, x1, x2, x3) = x1x2(1) + x1(c1c2 + c1 + c2) + x2(c1c2 + c1) + x3(1) + 1,

and we have 4 variables: x1x2, x1, x2, x3.
The advantage of variant 2 over the first variant is that it directly recovers the

secret key, and furthermore, in some cases it may result in a smaller number of
variables in the equation system. At the same time, in order to derive the actual
equation system the attacker has to evaluate the polynomial F for each cipher-
text. This process is less efficient in variant 2, since each evaluation of F (K,C) is
expensive (it requires evaluating all the complex ciphertext expressions that are
multiplied with the variables), whereas in variant 1 each evaluation of FK(C)
is relatively simple (it requires evaluating simple monomials in the ciphertext).
Therefore, the choice of which variant to use in order to optimize the attack
depends on the underlying cryptosystem.

Our main idea is to combine the two dual variants of interpolations attacks:
we first derive the equation system efficiently using the original variant of [4].
Then, we transform a carefully chosen variable subset to variables which are
linearized monomials in the key bits, as in variant 2. This results in a mixed
variable set that is smaller than the variable sets of each variant. Consequently,
we obtain an attack which is more efficient than each one of the two variants.

In our example above, we can express α1 = x1 + x2, α2 = x1 + x2 and
α3 = x1, resulting in only 3 variables: x1, x2, α4. Obviously, our toy example
merely demonstrates the idea at a very high level, and the actual choice of
which variables to transform as well as the analysis of the resultant algorithm
are more involved.

The paper is organized as follows. In Section 2 we give some preliminaries,
while in Section 3 we give a brief description of LowMC. Our basic attack on
9-round LowMC with an 80-bit key is described in Section 4, while our generic
framework for optimized interpolation attacks is described in Section 5. In sec-
tions 6 and 7 we apply our optimized attack to LowMC with 80 and 128-bit
keys, respectively. Finally, we conclude the paper in Section 8.

2 Preliminaries

In this section, we describe preliminaries that are used in the rest of the paper.

2.1 Boolean Algebra

For a finite set S, denote by |S| its size. Given a vector u = (u1, . . . , un) ∈
GF (2n), let wt(u) denote its Hamming weight.

Any function F from GF (2n) to GF (2) can be described as a multivari-
ate polynomial, whose algebraic normal form (ANF) is unique and given as
F (x1, . . . , xn) =

∑
u=(u1,...,un)∈GF (2n)

αuMu, where αu ∈ {0, 1} is the coefficient of

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 230

the monomial Mu =
n∏

i=1

xui
i , and the sum is over GF (2). The algebraic degree of

the function F is defined as deg(F) , max{wt(u)|αu 6= 0}. Therefore, a function

F with a degree bounded by d ≤ n can be described using
d∑

i=0

(
n
i

)
coefficients.

To simplify our notations, we define
(

n
≤d

)
,

d∑
i=0

(
n
i

)
.

The ANF coefficient αu of F can be interpolated by summing (over GF (2))
over 2wt(u) evaluations of F : define the set of inputs S to contain all the 2wt(u)

n-bit vectors whose bits set to 1 is a subset of the bits set to 1 in u1, . . . , un.
More formally, let S = {x = (x1, . . . , xn)|ū ∧ x = 0} (where ū is bitwise NOT
applied to u , and ∧ is bitwise AND), then αu =

∑
(x1,...,xn)∈S

F (x1, . . . , xn). Note

that this implies that a function F with a degree bounded by d ≤ n can be fully
interpolated given its evaluations on the set of

(
n
≤d

)
inputs whose Hamming

weight is at most d, namely {x = (x1, . . . , xn)|wt(x) ≤ d}.
Given the truth table of an arbitrary function F (as a bit vector of 2n entries),

the ANF of F can be represented as a bit vector of 2n entries, corresponding
to its 2n coefficients αu. This ANF representation can be efficiently computed
using the Moebius transform, which is an FFT-like algorithm. The Moebius
transform performs n iterations on its input vector (the truth table of F), where
in each iteration, half of the array entries are XORed into the other half. In total,
its complexity is about n · 2n bit operations. For more details on the Moebius
transform, refer to [5].

2.2 High-Order Differential Cryptanalysis and Interpolation
Attacks

In this section, we give a brief summary of high-order differential cryptanalysis
and interpolation attacks.

High-Order Differential Cryptanalysis High-order differential cryptanal-
ysis was introduced in [7] as an algebraic attack that is particularly efficient
against ciphers of low algebraic degree. The basic variant of high-order differen-
tial cryptanalysis over GF (2) considers some target bit b (which can be either a
ciphertext or an intermediate encryption value) and analyzes its ANF represen-
tation in terms of the plaintext P , denoted by FK(P) (where K is the unknown
secret key). Given that deg(FK(P)) ≤ dg independently of K for dg (relatively)
small, then the attacker chooses an arbitrary linear subspace S of dimension
dg + 1, and evaluates the cipher (in a chosen plaintext attack) over its 2dg+1

inputs. Since every differentiation reduces the algebraic degree of the target bit
by 1 and deg(FK(P)) ≤ dg, the value of the high-order differential over S for
the target bit b (namely, the sum of evaluations of b over GF (2)) is equal to
zero (refer to [7] for details). High-order differential properties may be used in
key recovery attacks, depending on the specification of the cipher (refer to [6]).

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 231

However, such key recovery methods are not part of the framework described in
this section.

Interpolation Attacks The interpolation attack was introduced in 1997 by
Jakobsen and Knudsen as an algebraic attack on block ciphers [4]. The at-
tack is closely related to high-order differential cryptanalysis1 and (similarly
to high-order differential cryptanalysis) is particularly efficient against block ci-
phers whose round function is of low algebraic degree. The interpolation attack
has several variants, and can be applied over a general finite field, exploiting
known or chosen plaintexts. Here, we give a high-level description of the chosen
plaintext interpolation attack over GF (2), as this is the variant we apply to
LowMC.

The attack considers some intermediate encryption target bit b of the block
cipher, whose ANF representation can be expressed from the decryption side in
terms of the ciphertext and key as F (C,K). The key K is viewed as an unknown
constant, and thus we can write FK(C) = FK(c1, . . . , cn) =

∑
u=(u1,...,un)∈GF (2n)

αuMu,

where αu ∈ {0, 1} is the coefficient of the monomial Mu =
n∏

i=1

cui
i . Therefore, the

coefficients αu of FK(C) generally depend on the secret key and are unknown
in advance. The goal of the interpolation attack is to recover (interpolate) the
unknown coefficients of FK(C), and then use various ad-hoc techniques (which
are not part of the framework described in this section) in order to recover the
actual secret key.

In order to deduce the unknown coefficients of FK(C), they are considered
as variables (i.e., linearized), and recovered by solving a linear equation system.
For the purpose of constructing the equation system, the attacker assumes that
the algebraic degree dg of the bit b in terms of the bits of the plaintext is
relatively small, which allows to use high-order differential cryptanalysis (as
described above). More specifically, a high-order differential property is devised
by encrypting a subspace S of plaintexts of dimension dg + 1, and performing
high-order differentiation with respect to this subspace, whose outcome is zero
on the bit b.

When expressed in terms of the ciphertexts C1, . . . , C2dg+1 (obtained by en-

crypting the plaintexts of S), this gives the equation
2d+1∑
t=1

FK(Ct) = 0. For each

ciphertext Ct, FK(Ct) is merely a linear expression in the variables αu (the
coefficient of αu in this expression is easily deduced by evaluating Mu on Ct),
and thus the subspace S gives rise to one linear equation in the variables αu.
In order to solve for the unknown variables αu, the attacker considers several
such subspaces, each giving one equation. In total, the number of equations (and
subspaces considered) needs to be roughly equal to the number of the unknown
αu variables, assuming the equations are sufficiently “random”.

1 In fact, some of its variants directly exploit high-order differential properties, as we
describe next.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 232

From the high-level description above, it is easy to conclude that the data
and time complexities of the attack depend on the value of the degree dg and
the number of unknown variables αu. Therefore, in order to mount efficient
interpolation attacks, the attacker tries to minimize these parameters, as we
demonstrate in our attacks on LowMC.

2.3 Model of Computation

Since an exhaustive key search attack (which evaluates the LowMC encryption
function) and our attacks use different bitwise operations, comparing these at-
tacks cannot be done simply by counting the number of encryption function
evaluations. Instead, we compare the complexity of straight-line implementa-
tions of the algorithms, counting the number of bit operations (such as XOR,
AND, OR) on pairs of bits. This computation model ignores operations such
as moving a bit from one position to another (which only requires renaming
variables in straight-line programs). As calculated in Section 3, the straight-line
implementation of one encryption function evaluation of LowMC requires about
219 bit operations. Consequently, a straight-line implementation of exhaustive
search for 80-bit and 128-bit keys requires about 299 and 2147 bit operations,
respectively, and these are quantities of reference for our attacks.

3 Description of LowMC

LowMC is a collection of SP-network instances, proposed at Eurocrypt 2015 [1]
by Albrecht et al. The specification defined two specific instance families which
are analyzed in this paper, both having a block size of n = 256 bits, and are
characterized by their key size κ, which is either 80 or 128 bits. In this paper, we
refer to these instance families as LowMC-80 and LowMC-128. The encryption
function of LowMC applies a sequence of rounds to the plaintext, where each
round contains a (bitwise) round-key addition layer, an Sbox layer, and an affine
layer (over GF (2)). LowMC was designed with distinct features (as detailed
in the pseudocode below): it has a linear key schedule and its affine layers are
selected at random, where each selection defines a separate instance of the family.
The Sbox layer of LowMC is composed of 3-bit Sboxes with degree 2 over GF (2)
(the actual specification of the Sboxes is irrelevant for our analysis and is omitted
from this paper). Furthermore, the Sbox layers are only partial, namely, in each
Sbox layer, only 3m < n bits go through an Sbox (where m is a parameter),
while the rest of the n− 3m bits remain unchanged.

Each family instance of LowMC is also defined with a data limit lim, which
determines the maximal (recommended) data complexity before changing the
key. In other words, the cipher is guaranteed to offer security according to its key
size as long as the adversary cannot obtain more than 2lim plaintext-ciphertext
pairs. The parameters of the two instance families are given in Table 2.

The pseudocode of the encryption function (taken from [1]) is given below.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 233

Instance Family key size κ Block Size n Sboxes m Data lim Rounds r

LowMC-80 80 256 49 64 11

LowMC-128 128 256 63 128 12

Table 2. LowMC Instance Families

ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)
for (i = 1 to r)

//m computations of 3-bit Sbox, n-3m bits remain the same
state = Sboxlayer (state)
//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)
//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),state)

end
ciphertext = state

The matrices LMatrix(i) are chosen at random from all invertible binary
n × n matrices, while the matrices KMatrix(i) are chosen independently and
uniformly at random from all binary n × κ matrices of rank min(n, κ). The
constants Constants(i) are chosen independently and uniformly at random from
all binary vectors of length n.

In this paper, we denote the 256-bit state at the input to the i’th key addition
layer by Xi−1 (e.g., the plaintext is denoted X0), the input to the i’th Sbox layer
by Yi−1 and the input to the i’th affine layer by Zi−1. We refer to the 3m bits
of the state that go through Sboxes in the Sbox layer as the S-part, while the
remaining n− 3m bits are referred to as the I-part. Given a state W , denote by
W |SP and W |IP the S-part and I-parts of the state, respectively (e.g., Y5|IP
is the I-part of the input state to the 6’th Sbox layer).

It is common practice in cryptanalysis of block ciphers to exchange the order
of the final two affine operations over GF (2) (namely, the keyless affine transfor-
mation and key addition). This allows the attacker to “peel off” the last affine
transformation at a negligible cost by working with an equivalent last-round key
(obtained by an affine transformation on the original last-round key). For the
sake of simplicity, we assume in the following that we have already “peeled off”
the last affine transformation of the cipher. Therefore, the final states of the last
round r are denoted by Xr−1, Yr−1, Zr−1 and Yr, which denotes the ciphertext
(after “peeling off” the final affine transformation).

Each affine layer of LowMC involves multiplication of the 256 state with a
256 × 256 matrix. This multiplication requires roughly 216 bit operations, and
therefore a single encryption of LowMC (that contains more than 8 rounds)
requires more than 216 · 8 = 219 bit operations (as already noted in Section 2.3).

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 234

4 A Basic 9-Round Attack on LowMC-80

In this section we describe our basic interpolation attack on 9-round LowMC,
which is given first without optimizations for the sake of clarity. We begin by
considering the elements that are required for the attack.

4.1 The High-Order Differential Property

We construct the high-order differential property used in the interpolation at-
tack. A similar property was described by the LowMC designers [1], but we
reiterate it here for the sake of completeness.

The algebraic degree of a single round of LowMC-80 over GF (2) is 2, and
therefore the algebraic degree of any bit at the input to the 6’th Sbox layer of
LowMC-80, Y5, in the input bits, X0, is at most 32. Moreover, as the bits of the
I-part of LowMC do not go through Sboxes in the first round, then the degree at
the input to the 7’th Sbox layer, Y6, in the bits of the I-part, X0|IP , (given that
the input bits of the S-part, X0|SP , are constant) is at most 32. Furthermore,
since the bits of the I-part of the 7’th Sbox layer do not go through an Sbox,
the degree of any bit of Z6|IP in the input bits of the I-part, X0|IP , is at most
32 (given that X0|SP is constant).

The last property implies that the value of a 33-order differential over any
33-dimensional subspace selected from X0|IP , (keeping X0|SP constant) is zero
for any bit of Z6|IP . Moreover, as we selected a subspace whose bits do not
go through an Sbox in the first round, the value of a 32-order differential for
any bit of Z6|IP over any 32-dimensional subspace from X0|IP , is a constant
(independent of the key). This observation implies that we can select several
32-dimensional subspaces, and compute in a preprocessing phase the constants
obtained by summing (over GF (2)) over a target bit of Z6|IP (for an arbitrary
fixed value of the key). Each such constant (derived from a 32-dimensional sub-
space) gives one bit of information that we will exploit as the constant value of
an equation in the interpolation attack.

4.2 Bounding the Number of Variables

In the interpolation attack on 9-round LowMC-80, we select a target bit from
Z6|IP and denote its ANF representation in the 256-bit ciphertext (obtained
after inverting the final affine transformation) and 80-bit key by F (C,K). We
consider K as an unknown constant, and write FK(C) = FK(c1, . . . , c256) =∑
u=(u1,...,u256)∈GF (2256)

αuMu, where αu ∈ {0, 1} is the coefficient of the monomial

Mu =
256∏
i=1

cui
i . As the complexity of the attack depends on the number of variables

αu, it is important to estimate their number with good accuracy. An initial
estimation can be made by observing that the algebraic degree of the (inverse)
round of LowMC-80 is 2,2 and thus deg(FK(C)) ≤ 4. This implies that αu = 0

2 The algebraic degree of any invertible 3-bit Sbox is (at most) 2.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 235

in case wt(u) > 4, and therefore the number of unknown variables is upper
bounded by

(
256
≤4

)
≈ 227.

The initial upper bound on the number of variables can be significantly im-
proved by considering the specific round function of LowMC-80. For this pur-
pose, it will be convenient to use additional notation to describe the variables αu

according to the degree ofMu, by defining the set of variables Ui for a positive in-
teger i as Ui = {αu that is not identically zero as a function of the key|wt(u) =
i
∧

u ∈ GF (2256)}. We have already seen that Ui is empty for i > 4 (as these
variables are identically zero independently of the key), and we now derive tighter
bounds on |Ui| for i ≤ 4. Thus, we analyze the symbolic representation of the
state variables in the decryption direction, starting from the ciphertext Y9, up
to Z6, as polynomials in the ciphertext bits c1, . . . , c256.

The ciphertext Y9 contains 256 bits of c1, . . . , c256, while in order to compute
Z8 we merely add (unknown) constants to these bits (recall that we “peeled off”
the last affine layer). Then, the inverse Sbox layer is applied to Z8 to obtain
the state Y8. Each 3-bit Sbox may contribute (up to) 3 quadratic monomials
to Y8, and 6 monomials in total, e.g., an Sbox corresponding to ciphertext bits
c1, c2, c3 may contribute the monomials c1, c2, c3, c1c2, c1c3, c2c3. Note that these
monomials may appear in the ANF of different bits of Y8 with different unknown
coefficients (e.g., c1x1 and c1x2 may appear in the ANF of two different bits of
Y8). However, in interpolation attacks, we consider the ANF of the target bit, in
which the coefficient αu of every monomial Mu in the ciphertext is linearized and
considered as a single variable. Therefore, the important quantity is the number
of possibilities to create the monomials Mu (for this reason, the monomial c1
is counted only once even if it appears in the ANF of different bits of Y8 with
different unknown coefficients).

Since there are 49 Sboxes, the total number of monomials Mu in the ANF of
the state bits of Y8 is bounded by |U2| ≤ 3 · 49 = 147, |U1| ≤ 256 (which is the
trivial bound) and |Ui| = 0 for i ≥ 3. As the affine and key addition mappings
do not influence the number of monomials Mu, this bound applies also to X8

and Z7.

Next, the inverse Sbox layer is applied to Z7 to obtain the state Y7, for which
we already know that |Ui| = 0 for i > 4. Since the Sbox layer is of degree
2, a trivial upper bound on the number of variables αu in Y7 is obtained by

multiplying the 147+256 = 403 monomials in unordered pairs, giving |
4⋃

i=1

Ui| ≤
(
403
2

)
+403 < 216.5. Since the key addition and affine layers do not influence the

number of monomials, the upper bound of 216.5 also applies to X7 and Z6, and
it is much smaller than our initial bound of about 227.

We denote the set of variables
4⋃

i=1

Ui by U , and note that the explicit set

{u|αu ∈ U} (which gives the relevant monomials Mu) can be easily derived dur-
ing preprocessing (which involves a more explicit computation of the monomial
set {Mu|αu ∈ U}, whose size is bounded above).

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 236

4.3 Obtaining the Data

After deducing that the number of variables in the system of equations is |U | ≈
216.5, we conclude that we need to differentiate over about 216.5 32-dimensional
subspaces in order to obtain sufficiently many equations to solve the system.
A trivial way to do this is to select about 216.5 arbitrary linearly independent
32-dimensional subspaces from the 256− 3 · 49 = 109 bits of X0|IP . This results
in an attack with data complexity of 232+16.5 = 248.5, and is rather wasteful.
A more efficient approach (which was previously used in various papers such
as [2]), is to select a large 37-dimensional subspace S from X0|IP , containing(
37
32

)
> 218 linearly independent 32-dimensional subspaces, which should suffice

for the attack (assuming that the constructed system of equations is sufficiently
random). The subspaces are indexed according to 37− 32 = 5 constant indexes
that are set to zero in S.

4.4 The Basic Interpolation Attack

We now describe a basic interpolation attack on 9-round LowMC-80. We note
that this attack is incomplete, as it only computes the |U | variables αu using
e ≈ |U | equations, without recovering the actual secret key. The details of this
final step will be given in the optimized attack in Section 5.2. For the sake
of convenience, we describe the attack in two phases: the preprocessing phase
(which is independent of the data and secret key) and online phase. However,
we take into account both phases in the total complexity evaluation.

Assume we selected a target bit b from Z6|IP , a subspace S of dimension 37
from X0|IP , and e ≈ |U | 32-dimensional subspaces S1, . . . , Se in S. The detailed
attack is described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U | equations, denoted
by a0: evaluate b on the subset of inputs of S (with the key set to zero),
and obtain a bit array of size 237. Finally, calculate the free coefficients
by summing on b for the e 32-dimensional subspaces S1, . . . , Se in S,
and store the result in a0.

2. Calculate the |U | vectors {u|αu ∈ U}: This can be done by first calcu-
lating the 403 monomials Mu past the first Sbox layer, and multiplying
them in pairs (as described in Section 4.2).

Online:

1. Ask for the encryptions of the 237 plaintexts in S and store the cipher-
texts in a table.

2. Allocate a 237 × |U | matrix A, where row A[t] is a bit array that repre-
sents the evaluation FK(Ct) (namely,

∑
{u|αu∈U}

αuMu(Ct)).

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 237

3. For each ciphertext Ct, calculate A[t] by evaluating FK(Ct):
(a) For each {u|αu ∈ U}, evaluate the monomialMu(Ct) (the coefficient

of αu) and set the corresponding bit entry in A[t] according to the
result.

4. Allocate an e × |U | matrix E over GF (2), representing the equation
system on U .

5. For each 32-dimensional subspace Sj in S, namely S1, . . . , Se (that
match the subspaces considered in preprocessing Step 1):
(a) Populate the row (equation) E[j] by summing over the 232 rows of

A corresponding to Sj .
6. Solve the equation system Ex = a0, where x represents the vector

of variables of U and a0 is the vector of free coefficients calculated in
preprocessing Step 1.

The data complexity of the attack is 237 chosen plaintexts. The total time
complexity of the attack is about 265 bit operations, dominated by online Step
5 (for each of the e subspaces, we sum over 232 bit vectors of size |U |, requiring
about e · 232 · |U | ≈ 265 bit operations). The memory complexity of the attack is
about 237 · |U | ≈ 253.5 bits, dominated by the storage of the matrix A in online
Step 2.

We note that in the complexity evaluation of the attack we ignore indexing
issues that arise (for example) in Step 3.a (that maps between a variable αu ∈ U
and its corresponding column index in A[t]), and in Step 5 (that maps between
a subspace Sj in S and the corresponding 5 constant indexes of S). The reason
that we can ignore these mappings in the complexity evaluation is that they are
independent of the secret key and data, and therefore, they can be precomputed
and integrated into the straight-line implementation of the program.

5 The Optimized Interpolation Attack

In this section, we introduce three optimizations of the basic 9-round attack
above. The first optimization reorders the steps of the algorithm in order to
reduce the memory complexity, while the second optimization further exploits
the structure of chosen plaintexts to reduce the time complexity of the attack.
Finally the third optimization is based on a novel technique in interpolation
attacks, and allows to (further) reduce the data and time complexities. We first
describe informally how to apply the optimizations to the basic 9-round attack
on LowMC-80 above, and then devise a more formal and generic framework that
can be applied to other LowMC variants.

The first two optimizations focus on online steps 2–5, which compute the
equation system E from the 237 ciphertexts. First, we reduce the memory com-
plexity by noticing that we do not need to allocate the matrix A. Instead, we
work column-wise and focus on a single column A[∗][ℓ] at a time, corresponding
to some {u|αu ∈ U}. We evaluate Mu(Ct) for all ciphertexts (which gives an
array of 237 bits, aℓ) and then populate the corresponding column E[∗][ℓ] by
summing over the 32-dimensional subspaces S1, . . . , Se on aℓ.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 238

Next, we reduce the time complexity by optimizing the summation process:
given a bit array aℓ of 237 entries, the goal is to sum over many 32-dimensional
subspaces (indexed according to 5 bits which are set to zero). This can be done
efficiently using the Moebius transform (refer to Section 2.1). For this purpose,
we can view aℓ as evaluating a 37-variable polynomial over GF (2), and the
summation over a 32-dimensional subspace of aℓ is equal to the coefficient of its
corresponding 32-degree monomial. All these coefficients are computed by the
Moebius transform in about 37 · 237 bit operations. We stress that the reason
that we can use the Moebius transform in this case is purely combinatorial and is
due to the way that we selected the structure of subspaces for the interpolation
attack. Indeed, there does not seem to be any obvious algebraic interpretation
to aℓ when viewed as a polynomial.

Finally, we optimize the data complexity (and further reduce the time com-
plexity): In order to achieve this, examine the polynomial F (K,C) (as a function
of both the key and ciphertext) for the target bit b selected in Z6|IP . Due to the
linear key schedule of LowMC, this polynomial is of degree 4, similarly to FK(C)
(in which the key is treated as a constant). We consider a variable αu ∈ U and
analyze its ANF in terms of the 80 key bit variables. Since αu is multiplied with
Mu in F (K,C), then deg(αu) + deg(Mu) ≤ 4, implying that if deg(Mu) ≥ 2,
then deg(αu) ≤ 2. This simple observation is borrowed from cube attacks [2]
and can be used to significantly reduce the number of variables U , as described
next.

Consider all the variables in U2

⋃
U3

⋃
U4, and recall that their number was

upper-bounded in Section 4.2 by roughly 216.5. However, since all of these vari-
ables are polynomials of degree (at most) 2 in the 80 key bits, they reside in
a linear subspace of monomials of dimension

(
80
2

)
+ 80 = 3240. This implies

that we can significantly reduce the total number of variables from ≈ 216.5 to
3240 + 256 = 3496 < 212 (including the 256 variables of U1) by considering
linear relations between the variables U2

⋃
U3

⋃
U4. An immediate consequence

of the reduction of variables is that we need less equations to solve the equation
system, and therefore, we require less subspaces (or data) to obtain these equa-
tions. More specifically, a subspace of dimension 35 contains

(
35
32

)
= 6545 > 212

subspaces of dimension 32, which should suffice for the attack.

Assuming that we interpolate the variables of U2

⋃
U3

⋃
U4 in terms of the

key and recover their values, then the key itself should be very easy to deduce,
as the variables of U3 are merely key bits.

We note that while the idea above exploits the linear key schedule of LowMC,
the technique is general and can be applied to block ciphers with arbitrary key
schedules. In this case, it would consider each round key as independent. This
increases the number of variables in the (linearized) key, but not necessarily by a
significant factor. For example, if LowMC-80 had a non-linear key schedule, the
optimization above would interpolate U2

⋃
U3

⋃
U4 in terms of

(
80
2

)
+80 = 3240

monomials in the key of round 9, and only 80 additional linear monomials and
3 · 49 = 294 quadratic monomials in the key of round 8 that are created by
the inverse Sbox layer of round 8 (we can assume that the key of round 8 is

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 239

added right after the 8’th Sbox layer, as the key addition and affine layer are
interchangeable).

5.1 Transformation of Variables

In this section, we begin to describe our generic framework for interpolation
attacks on LowMC by formalizing the last optimization described above.

Given an instance of LowMC with a 256-bit block, a key size of κ, and m
Sboxes per layer, we assume that we want to interpolate a target bit b through
the final r1 rounds of the cipher. We first describe in a more generic way how to
calculate the initial set of variables U , and bound its size. As in the 9-round at-
tack, the number of monomials in the 256 ciphertext bits at Yr−1 (after inverting
the final Sbox layer) is bounded by 256 + 3m. The target bit b is a polynomial
of degree 2r1−1 in the state Yr−1, and thus it contains at most

(
256+3m
≤2r1−1

)
mono-

mials. Therefore, the set of monomials with (apriori) unknown coefficients can
be computed by multiplying the 256+ 3m monomials in unordered tuples (with
no repetition) of size up to 2r1−1. Thus,

|U | ≤
(
256 + 3m

≤ 2r1−1

)
,

and this set can be computed with |U | multiplications of tuples. Note again that
this bound is generally better than the trivial bound of |U | ≤

(
256
≤2r1

)
, which is

obtained due to the fact that b is a polynomial of degree 2r1 in the 256 ciphertext
bits.

We consider the target bit b as a polynomial in both the ciphertext and the
key, namely, F (K,C) = F (x1, . . . , xκ, c1, . . . , c256) =

∑
u=(u1,...,un)∈GF (2n)

αuMu,

where Mu =
n∏

i=1

cui
i and αu(x1, . . . , xκ) is a polynomial from GF (2κ) to GF (2).

We partition the variables of |U | into subsets according to the degree of their
monomials in the ciphertext, which is bounded by deg(FK(C)) = 2r1 . Denote

d = 2r1 and write U =
d⋃

i=1

Ui, where Ui = {αu ∈ U |deg(Mu) = i}. Due to

the linear key schedule of LowMC, we have deg(F (K,C)) = deg(FK(C)) = d,
and therefore deg(αu) + deg(Mu) ≤ d. This allows us to transform the variable
set U into a smaller variable set, considering internal linear relations due to the
fact that deg(αu) ≤ d− deg(Mu). We stress again that the variable transforma-
tion technique can be applied to block ciphers with arbitrary key schedules by
considering each round key as independent.

We choose an integral splitting index 1 ≤ sp ≤ d + 1 , and write U =

U ′ ⋃U ′′, where U ′ =
sp−1⋃
i=1

Ui and U ′′ =
d⋃

i=sp

Ui. The observation above im-

plies that the algebraic degree of the variables in U ′′ (in terms of the key) is
bounded by d − sp, namely, deg(αu) ≤ d − sp, for each αu ∈ U ′′. Therefore,
we can interpolate each variable of U ′′ in terms of the key, and express it as

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 240

αu =
∑

{v=(v1,...,vκ)|wt(v)≤d−sp}
βuMv, where βv ∈ {0, 1} is the coefficient of the

monomial Mv =
κ∏

i=1

xvi
i . Note that the coefficients βv are independent of the key

and can be computed during preprocessing. This interpolation transforms the
set of variables U ′′ into the set of variables V , which are low degree monomials

in the key bits V = {Mv =
κ∏

i=1

xvi
i |v = (v1, . . . , vκ) ∧ wt(v) ≤ d− sp}. Similarly

to the partition of U , we partition the variables of V into subsets according to
the degree of their monomials in the key, namely Vi = {Mv ∈ V |deg(Mv) = i}.
In addition, we define V≤i =

i⋃
j=1

Vi. Note that αu ∈ Ui is a linear combination

of variables in V≤(d−i).
Recall that our initial set of variables is expressed as U = U ′ ⋃U ′′, where

U ′ =
sp−1⋃
i=1

Ui and U ′′ =
d⋃

i=sp

Ui. This set of variables is transformed via interpo-

lation into a new set of variables W = U ′ ⋃V .
We compute bounds on sizes of the variables sets as follows:

|U ′| ≤
(

256

≤ sp− 1

)
, |V | ≤

(
κ

≤ d− sp

)
,

|W | = |U ′|+ |V | ≤
(

256

≤ sp− 1

)
+

(
κ

≤ d− sp

)
.

The Variable Transformation Algorithm We now describe the algorithm
which interpolates a variable αu ∈ Ui in terms of the variable set V≤(d−i). For
the sake of efficiency, the algorithm is performed in two phases, where in the
first phase, we evaluate the polynomial αu in terms of the key for all relevant
keys of low Hamming weight and store the results. Note that each evaluation of
αu requires summing on 2i evaluations of the target bit b. In the second phase,
we use the evaluations to interpolate αu in terms of V≤(d−i).

1. Allocate a bit array a1 of size |V≤(d−i)| for the evaluations of αu.
2. Evaluate αu for each key with Hamming weight at most d− i. Namely,

for each key in the set {K|wt(K) ≤ d− i}:
(a) Evaluate F (K,C) (the target bit) on the subset of 2i inputs (with

the fixed key K) {K,C|ū∧C = 0}, sum the result over GF (2), and
store it in a1.

3. Allocate a bit array a2 of size |V≤(d−i)| for interpolation of αu in terms
of V≤(d−i).

4. For each Mv ∈ V≤(d−i) (with index ℓ), the coefficient βv of Mv in αu is
calculated as follows:
(a) Sum the 2wt(v) values of a1 calculated for the subset of keys {K|v̄∧

K = 0}, and store the result in a2[ℓ].

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 241

The total number of evaluations of b in Step 2 is 2i · |V≤(d−i)|, each requiring
r1 · 216 bit operations. Therefore, the total complexity of this step is r1 · 216+i ·
|V≤(d−i)|. Step 4 requires less than |V≤(d−i)| · 2d−i bit operations. In total, the

interpolation of αu ∈ Ui requires |V≤(d−i)| · (r1 · 216+i + 2d−i) bit operations.

Since U ′′ =
d⋃

i=sp

Ui, we can write the complexity of interpolating all the

variables as
d∑

i=sp

|Ui| · |V≤(d−i)| · (r1 · 216+i + 2d−i). A simple way to bound this

complexity is

|U ′′| · |V | · (r1 · 216+d + 2d−sp) ≈ |U ′′| · |V | · r1 · 216+d.

In some cases, we can obtain a refined bound by writing the complexity as

|Usp| · |V≤(d−sp)| · (r1 ·216+sp+2d−sp)+

d∑

i=sp+1

|Ui| · |V≤(d−i)| · (r1 ·216+i+2d−i) ≤

|Usp| · |V≤(d−sp)| ·(r1 ·216+sp+2d−sp)+ |U ′′| · |V≤(d−sp−1)| ·(r1 ·216+d+2d−sp+1) ≈

|Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U ′′| · |V≤(d−sp−1)| · r1 · 216+d.

Note that the bound is potentially better than the trivial one of |U ′′| · |V | ·r1 ·
216+d as |Usp| ≤

(
256
sp

)
, which may be smaller than |U ′′|. Moreover |V≤(d−sp−1)| ≤(

κ
≤d−sp−1

)
, which is smaller than |V |.

Transformation of Equations After computing the transformation of vari-
ables from U ′′ to V , we need to apply the actual transformation to every equa-
tion over U that we calculated. Namely, we are interested in transforming an
equation over the variable set U = U ′ ⋃U ′′, into an equation over variable
set W = U ′ ⋃V . Obviously, the coefficients of the variables of U ′ remain the
same, and we need to apply the transformation for every variable αu ∈ U ′′.
The complexity of transforming a single variable αu ∈ Ui in a single equation
is simply equal to its number of coefficients over V , namely |V≤(d−i)|. There-
fore, the complexity of transforming all the variables αu ∈ U ′′ in an equation is
d∑

i=sp

|Ui| · |V≤(d−i)|. A simple upper bound on this complexity is

|U ′′| · |V |.

Similarly to the variable transformation algorithm, a refined upper bound can
be calculated as

|Usp| · |V |+ |U ′′| · |V≤(d−sp−1)|.
In total, if we transform e equations, the complexity calculations above are
multiplied by e.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 242

Finally, we observe that the splitting index determines the complexity of
the variable and equation transformation algorithms. Furthermore, the splitting
index also determines |W |, which in turn determines the number of equations e.
In general, we will choose sp in order to minimize |W |, which in turn minimizes
the data and time complexity of the attack.

5.2 Details of the Optimized Interpolation Attack

Given an instance of LowMC with a 256-bit block, a key size of κ, and m Sboxes
per layer, we interpolate a target bit b through the final r1 rounds of the cipher.
Let U , U ′, U ′′, V and W be as defined above, and let e ≈ |W | denote the number
of equations. Assume S is a sufficiently large subspace of plaintexts, such that
it contains e smaller subspaces S1, . . . , Se whose high-order differential on b is a
constant value (independent of the key).

The preprocessing phase of the optimized attack in described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U ′| equations, de-
noted by a0: evaluate b on the subset of inputs (plaintexts) of S (with
the key set to zero), and obtain a bit array of size |S|. Then, calculate
the free coefficients by applying the Moebius transform to the bit array,
and copy the values of sums over S1, . . . , Se to a0.

2. Calculate the |U | vectors {u|αu ∈ U}: This is done by first calculating
the 256+3m monomials past the first Sbox layer, and multiplying them
in unordered tuples (with no repetition) of size up to 2r1−1(as described
in Section 5.1).

Step 1 involves |S| evaluations of the encryption scheme and one application
of the Moebius transform on a vector of size S. Altogether, it requires |S| ·
219 + log(|S|) · |S| ≈ |S| · 219 bit operations (as log(|S|) ≪ 219). Step 2 requires
|U | monomial multiplications, each monomial can be represented with a 256-bit
array, and therefore this step requires 28 · |U | bit operations.

A summary of the complexity analysis of the preprocessing phase is as fol-
lows.
Step 1: 219 · |S|
Step 2: 28 · |U |

In terms of memory, Step 1 requires |S| bits, while Step 2 requires 28 · |U |
bits.

Online:

1. Ask for the encryptions of the plaintexts in S and store the ciphertexts
in a table.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 243

2. Allocate a bit vector of size |S| for the storage of the vectors aℓ (the
ℓ’th column of the matrix A in the basic attack).

3. Allocate an e × |W | matrix E over GF (2), representing the (reduced)
equation system on W . The matrix is vertically decomposed into two
smaller matrices: E1 of size e× |U ′| and E2 of size e× |V |.

4. For each {Mu|αu ∈ U} with an index ℓ:
(a) For each ciphertext Ct, calculate aℓ[t] by evaluating Mu(Ct).
(b) Use the Moebius transform to sum over all subspaces of aℓ.
(c) If αu ∈ U ′, populate column ℓ of E1: For each subspace Sj in S,

namely S1, . . . , Se, obtain its corresponding sum from aℓ and copy
it to E1[j][ℓ].

(d) Otherwise, αu ∈ U ′′:
i. Given that αu ∈ Ui, interpolate the coefficients of V≤(d−i) in αu

as described in Section 5.1.
ii. For each subspace Sj in S, obtain its corresponding boolean

sum from aℓ (the coefficient of αu over U). If the sum is 1, then
add (over GF (2)) the interpolated coefficients into their indexes
in E2[j] (as described in Section 5.1).

5. Solve the equation system Ex = a0, where x represents the vector
of variables of W = U ′ ⋃V and a0 is the vector of free coefficients
calculated in preprocessing Step 1.

6. Deduce the κ-bit secret key, which is simply given by the monomials V1

(namely, the monomials of degree 1 in V).

The complexity of Step 1 is |S| encryptions, or |S| ·219 bit operations. In Step
4, we iterate over |U | monomials, where for each one we first evaluate Mu(Ct)
for each ciphertext in Step 4.a. Each such evaluation can be performed with d
bit operations (as deg(Mu) ≤ d), and thus monomial evaluations require about
d · |S| · |U | bit operations. Next, we apply the Moebius transform in Step 4.b,
requiring about log(|S|) · |S| bit operation, and therefore the complexity of all
the transforms is about log(|S|) · |S| · |U |. The complexity of interpolating all
the variables in Step 4.d.i, is bounded in Section 5.1 by |U ′′| · |V | · r1 · 216+d.
The complexity of Step 4.d.ii (over all αu ∈ U ′′) is bounded in Section 5.1 by
e · |U ′′| · |V | ≈ |W | · |U ′′| · |V |.

The complexity of Step 5 is |W |3 bit operations using Gaussian elimination.
A summary of the complexity analysis of the online phase is as follows. Since we
generally do not have a good bound for |U ′′|, we simply replace it with |U | (as
|U ′′| ≤ |U |), and further assume that e ≈ |W |.
Step 1: |S| · 219
Step 2: |S|
Step 3: |W | · |W |
Step 4.a: d · |S| · |U |
Step 4.b: log(|S|) · |S| · |U |
Step 4.c: |U ′| · |W |
Step 4.d.i: |U | · |V | · r1 · 216+d

Step 4.d.ii: |W | · |U | · |V |

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 244

Step 5: |W |3
Step 6: negligible

Alternatively, we can use the refined complexity bounds for steps 4.d.i and
4.d.ii, as calculated in Section 5.1.

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d

Step 4.d.ii: |W | · (|Usp| · |V |+ |U | · |V≤(d−sp−1)|)

The total data complexity of the algorithm is |S| chosen plaintexts. The total
time complexity is dominated by steps 4 and 5, as calculated above. The memory
complexity is potentially dominated by a few steps: the storage of variables in
preprocessing that requires 28 · |U | bits, the storage of ciphertexts in Step 1 that
requires 28 · |S| bits, and the storage of E in Step 3 that requires |W | · |W | bits.

6 Optimized Interpolation Attacks on LowMC-80

In this section we apply the optimized interpolation attack on LowMC-80, for
which κ = 80 and m = 49.

6.1 A 9-Round Attack

As in the basic attack described in Section 4.4, we select the target bit b in
Z6|IP , using subspaces of dimension 32 to obtain the equations. We interpolate
through r1 = 2 rounds, implying that d = 2r1 = 4. Therefore |U | =

(
256+3m
≤2r1−1

)
=(

403
≤2

)
≈ 216.5.

As described at the beginning of Section 5, we use sp = 2. We compute the
size of the relevant variable sets |U ′| ≤

(
256

≤sp−1

)
=

(
256
≤1

)
≈ 28, |V | ≤

(
κ

≤d−sp

)
=(

80
≤2

)
< 212, |W | = |U ′|+ |V | < 212.

We choose a subspace S of dimension 35 from X0|IP , containing
(
35
32

)
>

212 > |W | 32-dimensional subspaces, which should suffice for the attack.

In terms of time complexity, the analysis of the critical steps of the attack is
as follows:
Step 4.a: d · |S| · |U | ≈ 4 · 235 · 216.5 = 253.5

Step 4.b: log(|S|) · |S| · |U | ≈ 35 · 235 · 216.5 = 256.5

Step 4.c: |U ′| · |W | ≈ 28 · 212 = 220

Step 4.d.i: |U | · |V | · r1 · 216+d ≈ 216.5 · 212 · 2 · 220 = 249.5

Step 4.d.ii: |W | · |U | · |V | ≈ 212 · 216.5 · 212 = 240.5

Step 5: |W |3 ≈ 212·3 = 236

In total, the time complexity of the optimized 9-round attack is about 257 bit
operations (or 257−19 = 238 encryptions), mostly dominated by Step 4.b. The
data complexity is 235 chosen plaintexts. The memory complexity is dominated
by the storage of ciphertexts in Step 1, and is about |S| · 28 = 243 bits.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 245

We note that while the improvement of the optimized attack compared to
the basic one is rather moderate for the 9-round attack, the effect of our opti-
mizations is more pronounced in the attacks described next, as the reduction in
the number of variables becomes more significant (a comparison for the attack
on full LowMC-128 is at the end of Section 7.2).

6.2 A 10-Round Attack

Similarly to the 9-round attack, in order to attack 10 rounds of LowMC-80, we
select the target bit b in Z6|IP , using subspaces of dimension 32 to obtain the
equations. We interpolate through r1 = 3 rounds, implying that d = 2r1 = 8.
Therefore |U | =

(
256+3m
≤2r1−1

)
=

(
403
≤4

)
< 230.5.

In this attack we use sp = 4, and compute the size of the relevant variable sets
|U ′| ≤

(
256

≤sp−1

)
=

(
256
≤3

)
≈ 221.5, |V | ≤

(
κ

≤d−sp

)
=

(
80
≤4

)
< 221, |W | = |U ′|+ |V | <

222.5. We use the refined analysis for steps 4.d.i and 4.d.ii, and thus we also
calculate |Usp| = |U4| =

(
256
4

)
< 227.5 and |V≤(d−sp−1)| =

(
80
≤3

)
< 216.5.

We choose a subspace S of dimension 39 from X0|IP , containing
(
39
32

)
>

223 > |W | 32-dimensional subspaces.
In terms of time complexity, the analysis of the critical steps of the attack is

as follows (using the refined analysis for steps 4.d.i and 4.d.ii):
Step 4.a: d · |S| · |U | ≈ 8 · 239 · 230.5 = 272.5

Step 4.b: log(|S|) · |S| · |U | ≈ 39 · 239 · 230.5 ≈ 275

Step 4.c: |U ′| · |W | ≈ 221.5 · 222.5 = 244

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d ≈
227.5 · 221 · (3 · 220 + 24) + 230.5 · 216.5 · 3 · 224 ≈ 270 + 272.5 ≈ 273

Step 4.d.ii: |W |·(|Usp|·|V |+|U |·|V≤(d−sp−1)|) ≈ 222.5 ·(227.5 ·221+230.5 ·216.5) ≈
222.5 · (248.5 + 247) ≈ 271.5

Step 5: |W |3 ≈ 222.5·3 = 267.5

In total, the time complexity of the optimized 10-round attack is about 276

bit operations (or 257 encryptions), mostly dominated by Step 4.b. The data
complexity is 239 chosen plaintexts. The memory complexity is dominated by
the storage of ciphertexts in Step 1, and is about 28 · |S| = 247 bits (note that
the storage of E requires 222.5·2 = 245 bits).

6.3 An Attack on Full LowMC-80 for Weak Instances

The 9 and 10-round attacks described above can be extended by an additional
round with negligible cost for a subset of weak instances containing a fraction
of about 2−38 of all instances. In particular, this implies that about 2−38 of the
instances of full 11-round LowMC-80 can be attacked significantly faster than
exhaustive search.

Consider the 10-round attack: as shown above, we can construct an efficient
high-order differential property for any choice of target bit of Z6|IP , and also
for any linear combination of the bits of Z6|IP . When considering interpolation

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 246

from the decryption side on a full 11-round instance, we can efficiently interpolate
the polynomial FK(C) for any bit of Z7|IP , or any linear combination of the
bits of Z7|IP . Assume that there exists a linear dependency between the 109
bits of Z6|IP and the 109 bits of Z7|IP . In this case, the linear combination
in terms of Z6|IP does not go through an Sbox in round 8. Therefore, it is
possible to extend the high-order differential property on this linear combination
by another round with essentially no extra cost, and choose the target bit for
interpolation to be the corresponding linear combination on the bits of Z7|IP .
The existence of this linear dependency is determined by the affine layer of round
7 (the transformation between Z6 and X7), and assuming that random invertible
matrices behave roughly the same (with respect to the event considered) as
random matrices, the probability of this event is about 2109+109−256 = 2−38

(over the choice of the 7’th affine layer).
We note that there exists an additional subset of weak instances of about

the same size since the described attacks can also be mounted using chosen
ciphertexts (where interpolation is performed on the decrypted plaintexts). In
this case, the weakness of a given instance is determined by the choice of the
third affine layer.

7 Optimized Interpolation Attacks on LowMC-128

In this section we apply the optimized interpolation attack on LowMC-128, for
which κ = 128 and m = 63.

7.1 An 11-Round Attack and Weak Instances of LowMC-128

We describe our attack on 11-round LowMC-128 and then extend it to full
LowMC-128 for weak instances. We select the target bit b in Z7|IP , and in-
terpolate through r1 = 3 rounds, implying that d = 2r1 = 8. Therefore |U | =(
256+3m
≤2r1−1

)
=

(
445
≤4

)
< 231.

In this attack we use sp = 4, and compute the size of the relevant variable
sets |U ′| ≤

(
256

≤sp−1

)
=

(
256
≤3

)
≈ 221.5, |V | ≤

(
κ

≤d−sp

)
=

(
128
≤4

)
≈ 223.5, |W | =

|U ′|+ |V | ≈ 224.
For the high-order differential property, we use subspaces of dimension 26 =

64 whose bits are not multiplied together in the first round. The outcome of
such a high-order differential is a constant (independent of the key) for 1+6 = 7
rounds, and this property can be extended beyond the 8’th Sbox layer when
selecting the target bit from Z7|IP .

Since |W | ≈ 224, we require roughly the same number of 64-dimensional
subspaces to construct the equation system and mount the attack. Therefore,
we take a larger subspace of dimension 70, containing

(
70
64

)
> 224 ≈ |W | 64-

dimensional subspaces. As X0|IP contains only 67 bits, we choose the subspace
from these 67 bits and additional 3 bits in X0|SP , contained in 1 active Sbox.
Since the active Sbox is non-linear, we guess the 3 linear key expressions that are

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 247

added to its input, which allow us to construct the required ≈ 224 64-dimensional
subspaces from a 70-dimensional subspace after the first Sbox layer.

The guess of the 3 key bits can be avoided by selecting the 70 − 64 = 6
constant bits of the 64-dimensional subspaces from the 67 bits of X0|IP in the
70-dimensional subspace. This restriction keeps the selected Sbox fully active
in all subspaces, and thus the linear subspace after the first Sbox layer (at Z0)
is independent of the key bits. The number of such restricted 64-dimensional
subspaces is

(
67
6

)
> 224 ≈ |W |, and hence they should suffice for the attack.

Finally, we notice that the Moebius transforms (Step 4.b) can be optimized
due to the way that we chose the subspaces in S, as for all of them, 3 specific bits
of X0|SP are active. In order to exploit this, we perform the Moebius transform
on a 270 bit vector in two phases: in the first phase, we partition the 270 big
subspace into 267 3-dimensional subspaces according to the 67 bits of X0|IP ,
and sum on all of them in time 270, obtaining a vector of size 267. In the second
phase, we perform the Moebius transform on the 267 vectors computed in the
first phase. Therefore, the complexity of a single Moebius transform is reduced
from 70 ·270 ≈ 276 to 270+67 ·267 ≈ 273. The complexity of online Step 4.b now
becomes |U | · 273 ≈ 2104 bit operations.

The time complexity analysis of the critical steps of the attack is as follows:
Step 4.a: d · |S| · |U | ≈ 8 · 270 · 231 = 2104

Step 4.b: 2104 (as noted above)
Step 4.c: |U ′| · |W | ≈ 221.5 · 224 = 245.5

Step 4.d.i: |U | · |V | · r1 · 216+d ≈ 231 · 223.5 · 3 · 224 ≈ 280.5

Step 4.d.ii: |W | · |U | · |V | ≈ 224 · 231 · 223.5 = 278.5

Step 5: |W |3 ≈ 224·3 = 272

In total, the time complexity of the attack is about 2105 bit operations,
dominated by steps 4.a and 4.b. The data complexity is 270 chosen plaintexts.
The memory complexity is dominated by the storage of ciphertexts in Step 1,
and is about |S| · 28 = 278 bits.

Extending the Attack to Full LowMC-128 for Weak Instances Simi-
larly to the attacks on LowMC-80, the 11-round attack on LowMC-128 can be
extended by an additional round with no increase in complexity for a subset
of weak instances. However, the fraction of these instances is much smaller, as
the I-part of LowMC-128 contains only 67 bits, and is smaller than the one of
LowMC-80. A similar analysis to the one of Section 6.3 shows that the fraction
of such weak instances for LowMC-128 is roughly 267+67−256 = 2−122. As noted
in the Introduction, this attack does not violate the formal security claims of
the LowMC designers.

7.2 An Attack on Full LowMC-128

We now describe our attack on full (12-round) LowMC-128. This attack is more
marginal than the previous attacks, and we have to use essentially all of our

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 248

previously described optimizations, as well as new ones in order to obtain an
attack which is faster than exhaustive search.

In order to attack 12 rounds of LowMC-128, we extend the interpolation of
the 11-round attack past another round, interpolating Z7|IP through r1 = 4
Sbox layers, and hence d = 24 = 16, |U | =

(
256+3m
≤2r1−1

)
=

(
445
≤8

)
≈ 255.

In this attack we use sp = 8, and compute the size of the relevant variable
sets |U ′| ≤

(
256

≤sp−1

)
=

(
256
≤7

)
≈ 243.5, |V | ≤

(
κ

≤d−sp

)
=

(
128
≤8

)
≈ 240.5, |W | =

|U ′|+ |V | ≈ 244. We use the refined analysis for steps 4.d.i and 4.d.ii, and thus
we also calculate |Usp| = |U8| =

(
256
8

)
< 248.5 and |V≤(d−sp−1)| =

(
128
≤7

)
< 236.5.

The High-Order Differential Property We can try to mount the attack
with high-order differentials on subspaces of dimension 64 for the target bit in
Z7|IP , but this results in an attack which is at best very marginally faster than
exhaustive search. The main new optimization introduced in this attack is the
use of reduced subspaces of dimension 60. Obviously, the result of a high-order
differentiation over such a subspace is not a constant, but (as we show next)
its algebraic degree in the key bits is bounded by 8. Consequently, the resul-
tant function (polynomial) of each high-order differentiation can be expressed in
terms of our reduced variable set V = |V≤(8)|. This polynomial can be interpo-
lated during preprocessing and does not contribute additional variables to the
equation system.

We select a big subspace S of dimension 73 that contains all the 67 bits of
X0|IP and 6 additional bits of 2 active Sboxes inX0|SP , and (similarly to the 11-
round attack) define the 60-dimensional subspaces according to their 73−60 = 13
constant bits in X0|IP . The number of such subspaces is

(
67
13

)
> 244 ≈ |W |, and

therefore they should suffice for the attack.
In order to show that the result of a high-order differentiation of the target

bit in Z7|IP over a selected 60-dimensional is of degree 8 in the key bits, consider
the state Z0 obtained after the first Sbox layer. The algebraic degree of the target
bit b (selected from Z7|IP) in Z0 is bounded by 26 = 64. As the linear subspace
undergoes a one-to-one transformation in the first Sbox layer (through the fully
active 2 Sboxes), it remains a linear subspace in Z0. Therefore, the algebraic
degree of the high-order differentiation in the bits of Z0 and the key is upper-
bounded by 64−60 = 4. Since each bit of Z0 is a polynomial in the key of degree
(at most) 2, the algebraic degree of the high-order differentiation in the bits of
the key is upper-bounded by 4 · 2 = 8, as claimed.

The Preprocessing Phase The main change in this attack compared to the
one of Section 5.2 is in preprocessing Step 1, where in addition to interpolating
the e ≈ |W | free coefficients, we interpolate the e · |V | ≈ |W | · |V | coefficients
of V (since we selected 60-dimensional subspaces instead of 64-dimensional sub-
spaces). The modified preprocessing step is described below. It is similar to
the variable transformation algorithm of Section 5.1, interpolating first over the
plaintexts and then over the keys. Note that the matrix E of linear equations is
allocated and initialized already at this stage.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 249

1. Allocate an e × |W | matrix E over GF (2), representing the (reduced)
equation system on W . The matrix is vertically decomposed into two
smaller matrices: E1 of size e× |U ′| and E2 of size e× |V |.

2. Allocated an e · |V | evaluation matrix EV .
3. Allocate a |S| = 273 bit array a1 for the evaluations of the target bit b.
4. For each key in the set {K|wt(K) ≤ 8} (with index ℓ):

(a) Evaluate b (the target bit) on the set S of 273 inputs (with the fixed
key K) and store the result in a1.

(b) Apply the Moebius transform on a1.
(c) Populate column ℓ of EV : For each subspace Sj in S, namely

S1, . . . , Se, obtain its corresponding sum from a1 and copy it to
E1[j][ℓ].

5. For each equation 1, . . . , e (with index j):
(a) For each Mv ∈ V≤8 = V (with index ℓ):

i. Sum the 2wt(v) values of EV [j] calculated for the subset of keys
{K|v̄ ∧K = 0}, and store the result in E2[j][ℓ].

We first note that similarly to the 11-round attack, the complexity of the
Moebius transform can be optimized (due to the way that we selected the sub-
spaces) in a 2-step process from 73 · 273 to 273 + 67 · 267 ≈ 274.

We analyze the complexity of the computationally heavy steps 4 and 5. The
complexity of Step 4.a (for all {K|wt(K) ≤ 8}) is |V | · |S| ·219 ≈ 240.5 ·273 ·219 =
2132.5. The complexity of Step 4.b (using the optimized Moebius transform) is
|V | · 274 ≈ 2114.5. The complexity of Step 4.c is e · |V | ≈ |W | · |V | ≈ 244 · 240.5 =
284.5. The complexity of Step 5.a.i is bounded by e · |V | · 28 ≈ 244 · 240.5 · 28 =
292.5. In total, Step 4.a dominates the time complexity, which is about 2132.5 bit
operations.

Analysis of the Full Attack In terms of time complexity, the analysis of the
critical steps of the online attack is as follows (using the optimized Moebius
transform and the refined analysis for steps 4.d.i and 4.d.ii):
Step 4.a: d · |S| · |U | ≈ 16 · 273 · 255 = 2132

Step 4.b: |U | · 274 ≈ 2129

Step 4.c: |U ′| · |W | ≈ 243.5 · 244 = 287.5

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d ≈
248.5 · 240.5 · (4 · 224 + 28) + 255 · 236.5 · 4 · 232 ≈ 2115 + 2125.5 ≈ 2125.5

Step 4.d.ii: |W | ·(|Usp| · |V |+ |U | · |V≤(d−sp−1)|) ≈ 244 ·(248.5 ·240.5+255 ·236.5) ≈
244 · (289 + 291.5) ≈ 2136

Step 5: |W |3 ≈ 244·3 = 2132

The online phase complexity is about 2136 dominated by3 Step 4.d.ii. The
total complexity of the attack is less than 2137 bit operations, which is about

3 We note that the analysis of Step 4.d.ii can be refined further, and its actual com-
plexity is lower by a factor between 2 and 4. Moreover, the actual algorithm of this
step can be optimized, but we do not consider such low-level optimizations here for
the sake of simplicity.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 250

2128+19−137 = 210 times faster than exhaustive search (including the preprocess-
ing phase, whose complexity is about 2132.5). The data complexity of the attack
is 273 chosen plaintexts. The memory complexity is dominated by the storage of
E, whose size is about |W | · |W | ≈ 288 bits.

Note that without the variable transformation, merely Step 5 (Gaussian elim-
ination) would require about 255·3 = 2165 bit operations, which is much slower
than exhaustive search.4

8 Conclusions

In this paper, we introduced new techniques for interpolation attacks, including
a new variable transformation algorithm that can lead to savings in their data
and time complexities. We applied the optimized interpolation attack to LowMC,
and refuted the claims of the designers regarding the security level of both the 80
and 128-bit key variants. As a future work item, it will be interesting to optimize
our techniques further and apply them to additional block ciphers.

References

1. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In E. Oswald and M. Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 430–454.
Springer, 2015.

2. I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In
A. Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes
in Computer Science, pages 278–299. Springer, 2009.

3. M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain Family of Stream
Ciphers. In M. J. B. Robshaw and O. Billet, editors, New Stream Cipher Designs -
The eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages
179–190. Springer, 2008.

4. T. Jakobsen and L. R. Knudsen. The Interpolation Attack on Block Ciphers. In
E. Biham, editor, Fast Software Encryption, 4th International Workshop, FSE ’97,
Haifa, Israel, January 20-22, 1997, Proceedings, volume 1267 of Lecture Notes in
Computer Science, pages 28–40. Springer, 1997.

5. A. Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 1st edition, 2009.
Pages 285-286.

4 Solving the equation system remains slower than exhaustive search even when using
more advanced algorithms which are based on Strassen’s algorithm [9], requiring
about 255·2.8 = 2154 bit operations. While there are known algorithms that perform
better in theory, most of them are very complex and inefficient in practice.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 251

6. L. R. Knudsen. Truncated and Higher Order Differentials. In B. Preneel, editor,
Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14-16
December 1994, Proceedings, volume 1008 of Lecture Notes in Computer Science,
pages 196–211. Springer, 1994.

7. X. Lai. Higher Order Derivatives and Differential Cryptanalysis. In ”Symposium
on Communication, Coding and Cryptography”, in honor of James L. Massey on
the occasion of his 60’th birthday, pages 227–233, 1994.

8. T. Shimoyama, S. Moriai, and T. Kaneko. Improving the Higher Order Differential
Attack and Cryptanalysis of the KN Cipher. In E. Okamoto, G. I. Davida, and
M. Mambo, editors, Information Security, First International Workshop, ISW ’97,
Tatsunokuchi, Japan, September 17-19, 1997, Proceedings, volume 1396 of Lecture
Notes in Computer Science, pages 32–42. Springer, 1997.

9. V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik, 13:354–
356, 1969.

OPTIMIZED INTERPOLATION ATTACKS ON LOWMC 252

Appendix A

For a binary vector x = (x1, . . . , xm) ∈ Fm2 , the weight of x is the Hamming
weight wt(x) =

m∑
i=1

xi.

A Boolean function of m variables is a function f : Fm2 → F2, and we denote
by Bm the set of all Boolean functions of m variables. Among the classical
representations of Boolean functions, the one which is most usually used in
cryptography and coding is the m-variable polynomial representation over F2
of the form

f(x1, . . . , xm) =
∑
u∈Fm

2

λu

 m∏
i=1

xui
i

 , λu ∈ F2 .

It is called the Algebraic Normal Form (ANF) of f .

The algebraic degree of f , denoted as degf , is the maximum value of wt(u) such
that λu 6= 0.

Definition 4 ([51]). The permutation f is said to be almost bent (AB) if the
Walsh transform

µf (α, β) =
∑
x∈Fn

2

(−1)<α,x>⊕<β,f(x)>

is equal to either 0 or ±2 n+1
2 when α, β ∈ Fn2 and (α, β) 6= (0, 0), here <,> is

the inner product on Fn2 .

An AB permutation provides optimum resistance against both differential and
linear cryptanalysis, however it exists only when n is odd.

253

254

Curriculum Vitae

Qingju Wang was born in Shandong Province, China. She received B.Sc
and M.Sc in Applied Mathematics from Linyi University and Central South
University, China in July 2003 and March 2006 respectively. Then she worked as
assistant Professor in Department of Mathematics, Shaoxing University, China.
In September 2009, She started her PhD in Shanghai Jiao Tong University. In
October 2010, She visited COSIC as an exchange student and joined COSIC as
a joint PhD student of KU Leuven and Shanghai Jiao Tong University from
February 2012.

255

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING (ESAT)

COMPUTER SECURITY AND INDUSTRIAL CRYPTOGRAPHY (COSIC)
Kasteelpark Arenberg 10, Bus 2452

B-3001 Heverlee
qingju.wang@esat.kuleuven.be

www.esat.kuleuven.be/cosic/

	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	I Symmetric Key Primitives
	Introduction
	Cryptography model
	Symmetric key primitives
	Block ciphers
	Stream ciphers
	Hash functions
	Message authentication codes
	Authenticated encryption

	About this dissertation

	Block Ciphers
	Definitions
	Design methods
	Iterated design method
	Substitution-Permutation networks
	Feistel networks
	Lai-Massey schemes

	Modes of operation
	Conclusions

	Cryptanalysis Methods
	Attack models
	Attack data types
	Attack key settings
	Attack goals
	Attack complexity metrics

	Differential cryptanalysis and extensions
	Differential cryptanalysis
	Impossible-differential cryptanalysis
	Boomerang attack
	Rectangle attack
	Higher-order differential attack
	Integral attack
	Local collision

	Linear cryptanalysis and extensions
	Linear cryptanalysis
	Zero-correlation linear cryptanalysis

	Algebraic cryptanalysis
	Interpolation attack

	Conclusions

	Contributions of this thesis
	MILP and its applications to symmetric-key primitives
	Backgrounds
	Applications to stream cipher Enocoro-128v2
	Applications to AES
	Applications to GFNd-II
	Design PRIMATEs permutation
	Applications to Rijndael in the related-key model

	ID, ZC, integral cryptanalysis and their links
	Impossible-differential attacks on Rijndael
	Integral and zero-correlation attack on SIMON
	The links among ID, ZC and integral cryptanalysis

	Interpolation attack of LowMC
	Conclusions

	Conclusion and future work
	MILP and its applications
	Cryptanalysis of block ciphers
	Links among cryptanalysis methods
	Directions for future work

	Bibliography

	II Publications
	Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming
	The provable constructive effect of diffusion switching mechanism in CLEFIA-type block ciphers
	Related-Key Rectangle Cryptanalysis of Rijndael-160 and Rijndael-192
	PRIMATEs
	Improved Impossible Differential Attacks on Large-Block Rijndael
	Cryptanalysis of Reduced-Round SIMON32 and SIMON48
	Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis
	Optimized Interpolation Attacks on LowMC
	
	Curriculum Vitae

