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Abstract:  The girth of a graph G (with cycles) is the length of a small-
est cycle of G and is denoted by ¢g(G). For a connected graph G having
girth 2k + 1 > 5 for some integer k > 2, the Schwenk graph G* of G has
the set of all paths of order k 4+ 1 of G as its vertex set V(G*), where
two vertices P and @ of G* are adjacent in G* if P = (uy,ug,...,Ux+1)
and @ = (v1,v2,...,Vk+1) such that ugy; = v1, V(P)NV(Q) = {uky1}
and u1vg+1 € E(G). It is shown that the Schwenk graph is triangle-free
and for each odd integer g > 5, there exists a connected graph of girth g
whose Schwenk graph contains 4-cycles. Connected graphs of girth 5 whose
Schwenk graph contains 4-cycles are characterized. Structural properties
of the Schwenk graphs of the unique 5-cage (the Petersen graph) and the
unique 7-cage (the McGee graph) are studied. Other results and open
questions are presented for the Schwenk graphs of cages.
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1 Introduction

The girth of a graph G (with cycles) is the length of a smallest cycle of
G and is denoted by g(G). For each pair r, g of integers with » > 2 and
g > 3, there exists a graph of minimum order that is both r-regular and
has girth g (see [2]). Such a graph is called an (r, g)-cage or simply a cage.
The (3, g)-cages have been the studied the most and are often referred to
as g-cages. For r = 2 and g = 5, the 5-cycle C5 is the unique (2,5)-cage;
while for r = 3 and g = 5, the Petersen graph P is the unique 5-cage.
Furthermore, for r = 3 and g = 7, the McGee graph is the unique 7-cage
(see [4]).

Although (r, g)-cages exist for each pair r, ¢ of integers with » > 2 and
g > 3, they are not always unique. While for r = 3, there is a unique
g-cage for 4 < g < 8, there are 18 different 9-cages, each of order 58, and
there are three different 10-cages, each of order 70. The Cage Problem is
one of the well-known classical problems in Graph Theory. The goal is
to find the minimum order of those graphs having a prescribed girth and
degree of regularity and to find all such graphs satisfying these conditions.
The study of this problem was initiated by Tutte [6] in 1947. A related
problem of determining the minimum order of an r-regular Hamiltonian
graph of girth g for given integers r and g was described by Karteszi [3] in
1960. We refer to the book [1] for graph theory notation and terminology
not described in this paper.

In 2015 Schwenk [5] introduced a new class of derived graphs when he was
investigating problems involving cages, and graphs in general having odd
girth 5 or more. For a connected graph G having girth 2k +1 > 5 for
some integer k > 2, the Schwenk graph G* of G has the set of all paths
of order k + 1 (or (k + 1)-paths) of G as its vertex set V(G*), where two
vertices P and @ of G* are adjacent in G* if P = (uy,uz,...,urt1) and
Q = (v1,v2,...,Vk41) such that ug11 = v, V(P)NV(Q) = {ug+1} and
u1vk+1 € E(G). Since the girth of G is 2k 4 1, it follows that the subgraph
of G induced by V(P)UV(Q) is G[V(P)UV(Q)] = Caky1. For the special
case where G is a connected graph of girth 5, the Schwenk graph G* of G
is defined as that graph whose vertex set is the set of all 3-paths (paths
of order 3) of G, where two vertices P and @ of G* (two 3-paths P and
Q of G) are adjacent in G* if they have an end-vertex in common but no
other vertex in common and the subgraph of G induced by V(P)UV(Q) is
a 5-cycle. To illustrate this concept, we show that Cj = Cy for every odd
integer g > 5.
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Proposition 1.1. If G is a cycle of odd order g > 5, then G* = (.

Proof. Let G = Cy = (v1,v2,...,v4,v1) and let g = 2k + 1 for some integer
k>2. A (k+ 1)-path Pyyq in G is (vi,Viq1,...,0k4) for some integer
i with 1 < 4 < g, where the subscript of each vertex is expressed as an
integer 1,2,...,¢g modulo g. Thus, the vertex set of G* is V(G*) = {z; =
(Vi, Vit1, -+, Vk+i) : 1 < i< g}andsothe order of G* is g. For each integer
i€{1,2,...,9}, the (k+1)-paths z; and x; 1 of G have exactly one vertex
in common, namely v; 4, and it is an end-vertex of both z; and x; 14 (where
x; 18 a v; — vk path and ;4 p 18 a v, — vipor path). Since G = Copyq,
it follows that v;v; 4o € E(G). Thus, x; adjacent to ;15 in G*. Similarly,
x; is adjacent to x;—j in G*. If j # i £ k, then z; and x; have at least two
vertices in common and so z; is not adjacent to z; in G*. Hence, G* is a 2-
regular graph. Furthermore, G* = (21, Tx41, T2k+1, L3k+41, - - - s Tght1 = L1)
and so G* = (. O

By Proposition 1.1, for every connected graph G of odd girth g > 5, the
Schwenk graph G* of G must contain a g-cycle. However, for no such
integer g can G* contain a triangle.

Proposition 1.2. If G is a connected graph of odd girth g > 5, then G* s
triangle-free and so the girth of G* is at least 4.

Proof. Let g = 2k + 1 for some integer k > 2. Assume, to the contrary,
that G* contains a triangle (a,b,c,a). Let a = (ai,a2,...,a541), b =
(b1,ba,...,bgr1) and ¢ = (c1,¢2,...,¢kr1). Since ab € E(G*), we may
assume that apt1 = by and a1bg41 € E(G). Since be € E(G*), it follows
that (i) ¢1 = br41 and bicgy1 € E(G) or (ii) by = ¢1 and bgyicpi1 €
E(G). See Figure 1. First, suppose that (i) occurs. Since ac € E(G*) and
art1ck+1 € E(G), it follows that a; = ¢;. However, because ¢; = bgyq
and a1biy1 is an edge of G, it is impossible that a; = ¢1, a contradiction.
Next, suppose that (i) occurs. Because ac € E(G*) and ap+1 = ¢1, we
have aick4+1 € E(G). However then, (a1,bg+1,Crt1,0a1) is a triangle in G,
a contradiction. Therefore, G* is triangle-free and so g(G*) > 4. O

Since the Schwenk graph G* of a connected graph G of girth g > 5 must
contain a g-cycle and cannot contain a 3-cycle, this brings up the question as
to whether G* contains a 4-cycle. The following result provides an answer
to this question.
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Figure 1: The two situations in the proof of Proposition 1.2

Proposition 1.3. For each odd integer g > 5, there exists a connected
graph G having girth g such that G* contains Cy as a subgraph.

Proof. Let g = 2k + 1 for some integer £ > 2 and let G be the graph of
order 4k obtained from the cycle C' = (v1,ve, ..., vax) of order 4k by adding
the two edges vivort1 and vi41v3k41. For each integer ¢ with 1 <4 < 4k,
let x; = (v3,Vit1,...,vi4k) be the subpath of order k + 1 on C, where the
subscripts are expressed as integers 1,2, ...,4k modulo 4k. Thus, the girth
of G is 2k + 1. We now consider the four vertices 1, Zr+1,Tok+1 and x3x41
in G*. Since x; and x4 have the vertex viy1 in common and vyvgk41 is
an edge of G, it follows that x; and zy; are adjacent in G*. Similarly,
ZTr41 and xo41 are adjacent in G*, xop1 and zsi41 are adjacent in G* and
Z3k+1 and xzq are adjacent in G*. Thus, Cy = (21, Tk+1, T2k+1, T3kt+1, L1)
is a 4-cycle in the graph G*. O

For graphs G of girth 5, we know precisely the conditions under which G*
contains a 4-cycle.

Theorem 1.4. Let G be a connected graph of girth 5. Then G* has a
4-cycle if and only if G contains a subgraph isomorphic to the graph H of
Figure 2.

Proof. First, suppose that G is a connected graph of girth 5 containing a
subgraph isomorphic to the graph H of Figure 2, which is necessarily an
induced subgraph of G. Then G* contains the 4-cycle shown in Figure 2.

64



U8 1 v2 123
o——O0—0
H : in G* :
v v3 781 345
V6 U5 on 567

Figure 2: A graph H of girth 5 and the subgraph Cy in H*

For the converse, suppose that G is a connected graph of girth 5 such that
G* contains a 4-cycle. We show that G contains a subgraph isomorphic to
the graph H of Figure 2. Let (21, z2, 23,24, 1) be a 4-cycle in G*. We may
assume that 7 = (a,b,¢) and zo = (¢, d,e) are two 3-paths in G having
only the vertex ¢ in common and ae € E(G). There are two choices for z3,
namely either (i) z3 = (¢, f,g) where {d,e} N {f,g} =0 and eg € F(G) or
(ii) z3 = (e, f,g) where {c¢,d} N {f,g} = 0 and cg € E(G). We claim that
fyg ¢ {a,b,c,d,e} in both situations (i) and (ii). Since x3 is adjacent to
x9 = (¢,d, e), it follows that f,g ¢ {c,d,e}. Thus, it remains to show that
f.9 ¢ {a,b}.

* First, suppose that (i) occurs.
If f = a, then (a,b,c,a) is a triangle in G, a contradiction.
If f =b, then (a,b,g,¢e,a) is a 4-cycle in G, a contradiction.
If g = a, then (a,b, ¢, f,a) is a 4-cycle in G, a contradiction.

If g = b, then (c, f,b,c) is a triangle in G, a contradiction.

* Next, suppose that (i7) occurs.
If f = a, then (a,b,¢,g,a) is a 4-cycle in G, a contradiction.
if f =0, then (b, ¢, g,b) is a triangle in G, a contradiction.
if g = a, then (a,e, f,a) is a triangle in G, a contradiction.

If g = b, then (a,b, f,e,a) is a 4-cycle in G, a contradiction.

Therefore, f,g ¢ {a,b,c,d,e} in both (i) and (ii). We consider these two

cases.

Case 1. x3 = (¢, f,g) for some vertices f and g of G. Then eg € E(G) and
ag ¢ E(G). First, suppose that x4 contains c. Since (1) x4 is adjacent to
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z1 and z3 and (2) 1 and x3 both contain ¢, it follows that z4 = (¢, h, h’)
for some vertices h and A’ (distinct from a and g) of G and i’ is adjacent to
both a and g. However then (a,e, g, ', a) is a 4-cycle in G, which is a con-
tradiction. Hence, 24 cannot contain ¢ and so x4 = (a, h, g) for some vertex
h of G. However then, (a,e, g, h,a) is a 4-cycle in G, which is impossible.

Case 2. x3 = (e, f,g) for some vertices f and g of G. Then cg is an
edge of G and ag is not an edge of G (for otherwise, G contains a 4-cycle).
By the symmetry of the graph Cy, the argument in Case 1 that shows
that z3 cannot contain ¢ can also be used here to show that z, cannot
contain ¢. Thus, x4 must contain a. Thus, there are two possible choices
for x4, according to whether x4 contains e or x4 contains g. If 4 = (a, h, €)
for some edge h of G, then (a,e, h,a) is a triangle, a contradiction. If
x4 = (a,h,g), then the subgraph G[{a,b,c,d,e, f,g,h}] induced by the
set {a,b,c,d,e, f,g,h} of eight vertices of G is the graph H of Figure 2.
Therefore, G contains H as a subgraph. O

Since the graph H of Figure 2 contains an 8-cycle, the following corollary
is an immediate consequence of Theorem 1.4.

Corollary 1.5. If G is a connected graph of girth 5 having no 8-cycle, then
9(G") = 5.

The converse of Corollary 1.5 is not true, however. For example, the graph
G of the dodecahedron contains 8-cycles. This graph is a 3-regular graph
of order 20 and girth 5. Thus, the Schwenk graph G* has order 60. If C
and C’ are two distinct 5-cycles in G, then either (i) C and C’ have exactly
one edge in common or (ii) C' and C’ are edge-disjoint. Therefore, every
3-path belongs to exactly one 5-cycle in G and so G* is 2-regular. In fact,
G* cousists of twelve 5-cycles and so g(G*) = 5.

2 The Petersen graph: the unique 5-cage

One of the best-known graphs in graph theory is the Petersen graph P,
shown in Figure 3. The Schwenk graph P* of P is a 4-regular graph of
order 30 and girth 4. Since the Petersen graph is 3-regular of order 10
and each 3-path corresponds to a pair of adjacent edges in P, the Petersen
graph P has 10(2) = 30 distinct 3-paths and so P* has order 30. For each
3-path @ = (u,v,w) in the Petersen graph, there are only two paths @’
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with end-vertices u and two 3-paths Q' with end-vertices w such that Q
and Q' are edge-disjoint and P[V(Q)U V(Q’')] = C5, so P* is 4-regular.

0

3 2
Figure 3: The Petersen graph P

By Proposition 1.2, the graph P* is triangle-free. However, P* contains
4-cycles. Figure 4 shows the Schwenk graph P* embedded in the projective
plane where edges that cross the outer circle continue diametrically opposite
(due to Schwenk). In this figure, a 3-path (v;, v;, vx) is denoted by ¢jk where
0<4i,5,k <9and |{3,j,k} =3.

While the Petersen graph P is not Hamiltonian, the Schwenk graph P* is
Hamiltonian and so P* contains a Hamiltonian cycle, that is, a cycle Csq
of order 30. In fact, more can be said. First, we introduce some definitions.
A graph G is said to be decomposable into the subgraphs Hy, Hs, ...,
Hy it {E(H,y), E(Hs), ..., E(Hy)} is a partition of E(G). Such a partition
produces a decomposition of G. If D = {H;, Ho, ..., H;} is a decomposition
of a graph G such that H; = H for some graph H for each i (1 < i < t),
then D is an H-decomposition of G. If there exists an H-decomposition of
a graph G, then G is said to be H-decomposable. If each subgraph in D is a
cycle in G, then D is a cyclic decomposition of a graph G. If each subgraph
in D is a Hamiltonian cycle of G, then D is a Hamiltonian decomposition
of a graph G. In this case, G is Hamiltonian-decomposable. Not only is
the Schwenk graph P* of the Petersen graph P Hamiltonian, this graph is
Hamiltonian-decomposable, as we show next.

Proposition 2.1. The Schwenk graph of the Petersen graph is
Hamiltonian-decomposable.

Proof. The Schwenk graph P* of the Petersen graph P can be decomposed
into two Hamiltonian cycles. For example, let C' be the Hamiltonian cycle
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403 @

Figure 4: The Schwenk graph of the Petersen graph
embedded in the projective plane

as follows:

c = (331,952,$3,$21,$2273323,3324,95307332975528,
Z19, L20,L10,L11, L12, L18, L17, L13, L14, L4,

T25, X265, L165L15, L27, L9, L8, L7, L6, L5, 951)-

Then C' = G — E(C) is another Hamiltonian cycle of P*. Thus, P* can
be decomposed into C and C’. This is illustrated in Figure 5. Thus, P* is
Hamiltonian-decomposable. O

In fact, the Schwenk graph P* of the Petersen graph P has a variety of
cyclic decompositions. We list some of these:



Figure 5: A Hamiltonian decomposition of the Schwenk graph P*

* The Schwenk graph P* can be decomposed into three distinct cycles,
namely, a 30-cycle, a 25-cycle and a 5-cycle, as follows:

C3o = (x2,%3,74,T5, 21,210, T9, T8, L7, Te, T30, L29, T28,
...,I13,1‘12,Z(J11,$2).

Oy = (352,371,3730,552473618,%12,%67375,9626,3316736779811730107
53207$2979625,534,35147302375519,33287378,35177%1379622,%2)-

Cs = (x3,215,T27, L9, Ta1,T3)

Such a decomposition is referred to as an irregular decomposition,
where no two subgraphs in this decomposition are isomorphic.
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* The Schwenk graph P* can be decomposed into four cycles,
namely two 20-cycles and two 5-cycles, as follows:

Cos = (w6, 77,28,T9,T10; - -, T30, T6)

Cos = ($17$10,-7320,1'2973325,x4,$14;$237$19,$28;338’-731771'137
T2, T2, T11, L7, 16, T26, T5, L6, T12, T18, T24, T30, T1)

Cs = (iﬂga T27,T15, L3, T21, $9)

Cs = (I17I27I3,$4,ZL’5,I1)~

* There is an irregular cycle decomposition
D = {Ca5,C13,C, Cs,Cs }
of the Schwenk graph P* into five cycles of different length as follows:

Cops = (501,9310,3520,11729,3925,354,9614,$23,$19,$28,$8,$17,!1713,

L22, L2, T11, L7, L16,L26, L5, L6, L12, T18, L24, $307$1)

Cis = (x15,%16,---,T26, Ta7,T15)

Cy = ($97$10,~~~7$15,$3,$21»$9)

Cs = (9,227,728, T29, T30, Tg, L7, Tg, T9)
05 = ($1,$2,...,Z‘5,x1)

* There is an irregular cycle decomposition
D = {Cis,C12,C11,C3,C, Cs }
of the Schwenk graph P* into six cycles of different length as follows:

Cis = (@3,%4, %25, %24, T18,T12, TG, T30, T29, £20,

T10, 21, L5, $267xlﬁax77$117x2ax3)3

Ci2 (552279021,259,1327,%157%14, T23,T19, L28, L8, L17, 251375522);
011 = (I4,I5,...,IE14,:L'4),

Cs = (23,215, %T16,--.,T21,23),

Cs = (95307 T1,T2,T22,%23,T24, 3330)7

Cs = ($257$26,~-,3029,$5)~
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twelve 5-cycles as follows:

$1,$2,1‘3,$4,$5,$1),

L13,T14,L15,L16, 131771”13)’

x2,T11,T12, £U1375E227902)7
T4,T14,T23, $247$25,$4),

* There is an isomorphic Cs-decomposition of Schwenk graph P* into

$77$8,$9,$107l‘11,x7)
19, 20, L21, 22, T23, 5019)

T3, T15, Ta7, T9, T21, T'3),
T8y, L17,T18,T19, L28, 378)

( (
( (
($25, T26, L27, 28, L29, $25), (3030, L6, T12, 218, L24, 130)
( (
( (
( (

L1020, L29, 305 L1, 3310), L1165 L26, L5, L6, LT, 1‘16)

Proposition 2.2. The mazimum number of cycles in a cycle decomposition
of the Schwenk graph of the Petersen graph is 15.

Proof. Since the girth of P* is 4, the largest possible number of cycles in a
cycle decomposition of P* is 15. On the other hand, the graph P* has an
isomorphic Cy-decomposition into fifteen 4-cycles as follows:

(271735271'11,.’,510,(171) (I4,I5,$267I25,I4), ($7,I167I17,x87x7)7
(T14, 13, T22, T23, T14), (T20, 719, T28, T29,T20), (¥3,T4,T14,T15,73),
(fL' .T77.'L'11,./L'12,‘T6), (.%'2,333,:62171'22,.%'2), (CE ‘r97x277x287x8)7
( ( (
( ( (

T12,T13,T17,L18, $12)
Z30,T1, L5, L6, £L’30)

L1165 L15, L275 L26, -7316)7
L29, T30, L24, L25, 129)7

X9, T10,L20,T21, 339)
L18, 19, L23, L24, Ils)

Therefore, the maximum number of cycles in a cycle decomposition of the
Schwenk graph P* of the Petersen graph P is 15. O

Consequently, the Schwenk graph P* of the Petersen graph P is
Cy4-decomposable and C3p-decomposable. We thus have the following ques-
tion.

Problem 2.3. For which integers g in addition to g =4, g =5 and g = 30,
is the Schwenk graph of the Petersen graph Cy-decomposable?

3 The McGee graph: the Unique 7-Cage

In this final section, we investigate the Schwenk graph of another cage: the
7-cage called the McGee graph M. In fact, the McGee graph M is the
unique 7-cage (see [4]). Since M contains 7-cycles, it follows that M* has
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7-cycles. Observe that M contains a subgraph G that is isomorphic to the
graph described in the proof of Proposition 1.3 for ¢ = 7. This is illustrated
in Figure 6 where the vertices of G are indicated as solid vertices. Since
G* contains C} as a subgraph, it follows that M* contains 4-cycles. It then
follows by Proposition 1.2 that g(M*) = 4. However, M* contains neither
5-cycles nor 6-cycles, as we show next.

v12 1 vg
e
o —_ v3
[
\Q
@ Us
v11 .\
V10 .\.
V9 \.\",,,..
v8 v7 Ve

Figure 6: A subgraph G in the 7-cage M

Proposition 3.1. If M is the McGee graph, then the Schwenk graph M*
contains neither 5-cycles nor 6-cycles.

Proof. First, we show that M* is Cs-free. Assume, to the contrary, that
M* contains 5-cycles. Let C' = (a,b,c,d, e,a) be a 5-cycle in M*, where

a = (a1,a2,as,a4), b = (b1,b2,b3,b4), c = (c1,c2,¢3,¢a),

d = (dl,dg,dg,d4) and e = (61,62,63,64)

are 4-paths in M. Since ab is an edge of M™, we may assume, without loss
of generality, that ay = b1 and a1b4 € E(M). Next, because bc is an edge
of M, it follows that
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(i) ¢1 = by and c4by € E(M) or (ii) ¢ = by and bycy € E(M).

We consider these two cases.

Case 1. ¢1 = by and c4by € E(M). Since c¢d € E(M™), it follows that
(1) dy = ¢1 and dycq € E(M) or (2) di = ¢4 and c1dy € E(M).
Because de € E(M*), we have
(a) e1 = dy and eqdy € E(M) or (b) e3 = dy4 and dyreq € E(M).

This is illustrated in Figure 7. We now consider the edge ea in M*.

* Suppose that (1) and (a) occur. Since ag = ey, it follows that a1e4 €
(M). However then, (a1,bs,cq,dy,eq,a1) is a 5-cycle in the 7-cage,

which is a contradiction.

* Suppose that (1) and (b) occur. Since ageq € E(M), it follows that
a1 = ey and so (a1,b4,cq4,61 = ay) is a triangle in the 7-cage, a
contradiction.

Suppose that (2) and (a) occur. If a; = e; and agsey € E(M), then
(a4, e4,dq,a4) is a triangle in the 7-cage, a contradiction. Hence,
a1 = e4 and aqe; € E(M). However then, (ci,c¢a,c3,c4,¢1) is a 4-
cycle in the 7-cage, a contradiction.

Suppose that (2) and (b) occur. Since ejaq € E(M), it follows that
a1 = eq. However then, (a1, by, cq,eq4 = aq) is a triangle in the 7-cage,
a contradiction.

Case 2. ¢ = by and bicy € E(M). Since cd € E(G*), it follows that

(1) diy = c1 and dycq € E(M) or (2) di = c4 and c1dy € E(M)

Since de € E(G*), it follows that

(a) e1 = dy and eqdy € E(M) or (b) ey = d4 and diey € E(M).
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(2)-(a) (2)-(b)

Figure 7: The four situations in Case 1 in the proof of Proposition 3.1

This is illustrated in Figure 8. We now consider the edge ea in M*.

* Suppose that (1) and (a) occur. Since aje; € E(M), it follows that
ag = ey. Hence, (aq,bs,bs, by = €1,€2,e3,e4 = ay) is a 6—cycle in the
7-cage, a contradiction.

* Suppose that (1) and (b) occur. If a; = e; and aqeq € E(M), then
(since di = by and dy = e7), it follows that (di,ds,ds,ds,d1) is a
4—cycle in the 7-cage, a contradiction. Hence, a; = e4 and a4e; €
E(M). However then, (b1, c4,e1,aq4 = by) is a triangle in the 7-cage,
a contradiction.

* Suppose that (2) and (a) occur. Since ase; € E(M) and so a1 = ey, it
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Cc2
e4
g o \/
3 ds
cy=di =e1

o— < B

€
€q 3

(2)-(a)

(2)-(b)

Figure 8: The four situations in Case 2 in the proof of Proposition 3.1

follows that (a1,bs,ds, aq) is a triangle in the 7-cage, a contradiction.

* Suppose that (2) and (b) occur. If a; = e; and aqeq € E(M), then
(e4,a4,cq,€4) is a triangle in the 7-cage, a contradiction. Hence, aq =
eq and age; € E(M). However then, (a4,d;,ds,ds,ds = e1,a4) is a
5—cycle in the 7-cage, a contradiction.

By a similar argument, it can be shown that M* is Cg-free. O

This brings up the more general question:

If G is a graph of odd girth g > 7, what smaller cycles can G*
contain?
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